
GRASP with Path Relinking for the Weighted
MAXSAT Problem

PAOLA FESTA

University of Napoli Federico II

PANOS M. PARDALOS

University of Florida

LEONIDAS S. PITSOULIS

Aristotle University of Thessaloniki

and

MAURICIO G. C. RESENDE

AT&T Labs Research

A GRASP with path relinking for finding good-quality solutions of the weighted maximum satis-

fiability problem (MAX-SAT) is described in this paper. GRASP, or Greedy Randomized Adaptive

Search Procedure, is a randomized multistart metaheuristic, where, at each iteration, locally op-

timal solutions are constructed, each independent of the others. Previous experimental results

indicate its effectiveness for solving weighted MAX-SAT instances. Path relinking is a procedure

used to intensify the search around good-quality isolated solutions that have been produced by

the GRASP heuristic. Experimental comparison of the pure GRASP (without path relinking) and

the GRASP with path relinking illustrates the effectiveness of path relinking in decreasing the av-

erage time needed to find a good-quality solution for the weighted maximum satisfiability problem.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm Design and Anal-

ysis

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Algorithms, heuristics, GRASP, path relinking, experimenta-

tion, performance, time-to-target plots

Authors’ addresses: Paola Festa, Department of Mathematics and Applications, University of

Napoli Federico II, Compl. MSA, Via Cintia, 80126, Napoli, Italy; email: paola.festa@unina.it;

Panos M. Pardalos, Department of Industrial and Systems Engineering, University of Florida, 303

Weil Hall, Gainesville, FL 32611; email: pardalos@ufl.edu; Leonidas S. Pitsoulis, Department of

Mathematical and Physical Sciences, School of Engineering, Aristotle University of Thessaloniki,

Thessaloniki, GR54124, Greece; email: pitsouli@gen.auth.gr; Mauricio G. C. Resende, Internet and

Network Systems Research Center, AT&T Labs Research, 180 Park Avenue, Room C241, Florham

Park, NJ 07932; email: mgcr@research.att.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-6654/2006/0001-ART2.4 $5.00 DOI 10.1145/1187436.1216581 http://doi.acm.org

10.1145/1187436.1216581

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006, Pages 1–16.

2 • P. Festa et al.

1. INTRODUCTION

A propositional formula � on a set of n Boolean variables V = {x1, . . . , xn} in
conjunctive normal form (CNF), is a conjunction on a set of m clauses C =
{C1, . . . , Cm}. Each clause Ci is a disjunction of |Ci| literals, where each literal
li j is either a variable x j or its negation ¬x j . Formally, we write

� =
m∧

i=1

Ci =
m∧

i=1

(|Ci |∨
j=1

lij

)

A clause is satisfied if at least one of its literals evaluates to 1 (true), which
means that either one of the unnegated Boolean variables has the value of
1 or a negated variable has the value of 0. The propositional formula is said
to be satisfied if all of its clauses are satisfied. In the satisfiability problem
(SAT), one must decide whether there exists an assignment of values to the
variables such that a given propositional formula is satisfied. SAT was the
first problem to be shown to be NP-complete [Cook 1971]. The maximum
satisfiability problem (MAX-SAT) is a generalization of SAT, where given a
propositional formula, one is interested in finding an assignment of values
to the variables, which maximizes the number of satisfied clauses. Gener-
alizing even further, if we introduce a positive weight wi, for each clause
Ci, then the weighted MAX-SAT problem consists in finding an assignment
of values to the variables such that the sum of the weights of the satisfied
clauses is maximized.The MAX-SAT has many applications both theoretical
and practical, in areas such as complexity theory, combinatorial optimization,
and artificial intelligence [Battiti and Protasi 1998]. It is an intractable prob-
lem in the sense that no polynomial time algorithm exists for solving it un-
less P = NP, which is evident, since it generalizes the satisfiability problem
[Garey and Johnson 1979].

Because of the computational complexity of the MAX-SAT, there has been
an extensive research effort devoted to the development of approximation
and heuristic algorithms for solving it. An ε-approximate algorithm for the
MAX-SAT is a polynomial time algorithm, which finds a truth assignment to
the variables that results in a total weight of the satisfied clauses that is at
least ε times the optimum (0 < ε < 1). We will refer to ε of an approximation
algorithm as its performance ratio. The first approximation algorithms for the
MAX-SAT were introduced in Johnson [1974], where Johnson presented two al-
gorithms with performance rations (k−1)/k and (2k −1)/2k , where k is the least
number of literals in any clause. For the general case k = 1 they both trans-
late to a 1/2-approximation algorithm, while it has been shown in Chen et al.
[1997] that the second algorithm is, in fact, a 2/3-approximation algorithm. A
3/4-approximation algorithm, based on network flow theory, was presented by
Yannakakis [1992] and also in Goemans and Williamson [1994]. Currently
the best deterministic polynomial time approximation algorithm for MAX-SAT
achieves a performance ratio of 0.758 and is based on semidefinite program-
ming [Goemans and Williamson 1995], while there is also a randomized algo-
rithm with performance ratio 0.77 [Asano 1997]. Better approximation bounds

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 3

for special cases of the problem in which, for instance, we restrict the number of
literals per clause or impose the condition that the clauses are satisfiable have
also been found [Feige and Goemans 1995; Karloff and Zwick 1997; Trevisan
2000]. With respect to inapproximability results, it is known [Hastad 2001]
that unless P = NP there is no approximation algorithm with performance ra-
tio greater than 7/8 for the MAX-SAT in which every clause contains exactly
three literals, thereby limiting the general case as well.

Local search is the main ingredient for most of the heuristic algorithms that
have appeared in the literature for solving the MAX-SAT, where, in conjunc-
tion with various techniques for escaping local optima, they provide solutions
which exceed the theoretical upper bound of approximating the problem. We
can divide the heuristic algorithms that have appeared in the literature into
two main classes. The first class being those heuristics which use the history of
the search in order to construct a new solution, such as Tabu Search [Hansen
and Jaumard 1990], HSAT [Gent and Walsh 1993], and Reactive Search [Battiti
and Protasi 1997], and those that are not history sensitive such as Simulated
Annealing [Spears 1996], GSAT [Selman et al. 1992] and GRASP [Resende and
Feo 1996; Resende et al. 1997]. Surveys of approximation and heuristic algo-
rithms for solving the MAX-SAT can be found in Battiti and Protasi [1998] and
Hansen and Jaumard [1990].

GRASP is a constructive multistart metaheuristic, which has been applied to
a wide range of well known combinatorial optimization problems with favorable
experimental results [Resende and Pitsoulis 2002]. Each iteration of a generic
GRASP procedure consists of two phases: a construction phase, where a solu-
tion is constructed in a semigreedy, i.e., randomized greedy, fashion [Hart and
Shogan 1987]; and a local search phase, where the local optimum is found in the
neighborhood of the constructed solution. GRASP can, therefore, be thought of
as a memoryless procedure, where past information from previous solutions is
not used for the construction of a new solution.

Resende et al. [1997, 2000] describes a GRASP implementation for solv-
ing the weighted MAX-SAT and report extensive computational results on a
set of weighted SAT benchmark instances [Johnson and Trick 1996], which
indicate that the heuristic produces good-quality solutions. In this paper, we
show how memory can be incorporated in the GRASP for weighted MAX-SAT
proposed in Resende et al. [1997]. At each iteration of the GRASP heuris-
tic, a path of feasible solutions linking the current solution with a solution
from a set of elite (or good-quality) solutions previously produced by the al-
gorithm is explored. Path relinking has been used as a memory mechanism
in GRASP [Resende and Ribeiro 2005] resulting in faster convergence of the
algorithm.

The remainder of the paper is organized as follows. In Section 2, we
state the implementation of GRASP for the MAX-SAT from Resende et al.
[1997], while in Section 3 we describe how to apply path relinking for the
MAX-SAT. Finally, in Section 4, computational results are presented, which
demonstrate empirically that path relinking results in faster convergence of
GRASP.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

4 • P. Festa et al.

Fig. 1. Pseudocode of GRASP for maximization problem.

2. GRASP FOR THE WEIGHTED MAX-SAT

The construction and local search phase of GRASP are described in detail in
Resende et al. [1997], while in Resende et al. [2000], a complete Fortran imple-
mentation is given along with extensive computational runs. In this section,
we provide a description in order to facilitate the discussion of path relinking
that will follow in the next section. Given a set of clauses C and a set of Boolean
variables V , let us denote by x ∈ {0, 1}n the truth assignment that corresponds
to the truth values assigned to the variables, while let c(x) denote the sum of
the weights of the satisfied clauses as implied by x. Without loss of generality,
we can assume that all the weights wi of the clauses are positive integers. Given
any two truth assignments x, y ∈ {0, 1}n, let us denote their difference set

�(x, y) := {i : xi �= yi, i = 1, . . . , n} (1)

and their distance

d (x, y) := |�(x, y)| =
n∑

i=1

|xi − yi| (2)

which is the Hamming distance, and will be used as a measure of prox-
imity between two solutions. The GRASP procedure is shown in Figure 1.
In the two following sections, we will describe the procedures Construct
Solution(RandomSeed) and LocalSearch(x) shown in lines 3 and 4 of Figure 1,
respectively.

2.1 Construction Phase

In the construction phase of the algorithm (line 3 of Figure 1), we build a solution
one element at a time in a greedy randomized fashion. We maintain a restricted
candidate list (RCL) throughout the procedure, which contains elements that
correspond to assignments of yet-unassigned variables to either 1 (true) or 0
(false). Choosing an element to be added to a partial solution from the RCL
corresponds to assigning the corresponding truth value to the given variable.
Given any partial solution, which corresponds to a set of satisfied clauses,
we want the next element to be added to the solution to maximize the total
weight of the unsatisfied clauses that become satisfied after the assignment. Let

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 5

N = {1, 2, . . . , n} and M = {1, 2, . . . , m} be sets of indices for the set of variables
and clauses, respectively. Moreover, for i ∈ N , let �+

i be the set of currently
unsatisfied clauses that would become satisfied if variable xi were to be set
to true, and �−

i be the set of currently unsatisfied clauses that would become
satisfied if variable xi were to be set to false. Let us denote by γ +

j and γ −
j the

gain in the objective function value if we set the unassigned variable x j to 1
and 0, specifically

γ +
i =

∑
j∈�+

i

w j and γ −
i =

∑
j∈�−

i

w j

If X ⊆ V is the set of already assigned variables, we compute the best gain

γ ∗ := max{γ +
j , γ −

j : j such that x j ∈ V \ X }
and keep in the RCL only those assignments with γ +

j and γ −
j that are greater

or equal to α · γ ∗ where 0 ≤ α ≤ 1 is a parameter. A random choice from
the RCL corresponds to a new assignment xs = 1 (xs = 0), which is added to
our partial solution, that is, X := X ∪ {xs}. After each such addition to the
partial solution, the sets �+

i , �−
i , as well as the gains γ +

j and γ −
j are updated, a

process illustrated in Figure 2, where s is the index of the variable just added
to the partial solution. We can recognize two possible cases. If the variable just
assigned was set to true then �+, �−, γ + and γ − are updated in lines 5, 8, 12,
and 13, while if the variable just assigned was set to false, then �+, �−, γ +

and γ − are updated in lines 19, 22, 26, and 27. The process is repeated until
|X | = n.

The parameter α reflects the ratio of randomness versus greediness in the
construction process, where α = 1 corresponds to a pure greedy selection for a
new assignment and α = 0 to a pure random assignment.

2.2 Local Search

Having completed a truth assignment x, we apply local search (line 4 of
Figure 1) in order to guarantee local optimality. The 1-flip neighborhood is
used in the local search, which is defined as

N1(x) := {y ∈ {0, 1}n : d (x, y) = 1} (3)

where x is a local maximum if, and only if, c(x) ≥ c(y) for all y ∈ N1(x). A
straightforward implementation of the local search procedure, would require
|N1| = n function evaluations to find the best solution in a given neighborhood,
where for a given assignment each function evaluation computes the sum of
the weights of the satisfied clauses. If we wish to reach a local maximum, we
might need an exponential number of computational steps [Johnson et al. 1988;
Krentel 1988]. We can, however, exploit the structure of the neighborhood to
reduce the computational effort.

Given an initial solution x define Gi to be the gain in total weight resulting
from flipping variable xi in x, for all i. Let k be such that Gk = max{Gi | i ∈ N }. If
Gk = 0 then x is the local maximum and local search ends. Otherwise, the truth
assignment resulting from flipping xk in x, is a local maximum and, hence, we

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

6 • P. Festa et al.

Fig. 2. AdaptGreedyFunction pseudocode.

only need to update the Gi values such that the variable xi occurs in a clause
in which variable xk occurs (since the remaining Gi values do not change in
the new truth assignment). Upon updating the Gi values, we repeat the same
process, until Gk = 0 where the local search procedure is terminated. The pro-
cedure is described in the pseudocode in Figure 3. Initially in line 2, we calculate
the Gi values for all the variables in a given assignment x. Given an index k
that corresponds to the variable xk that is flipped, procedure UpdateGains is
used to update the Gi values returned in an array G. In lines 4 through 7, the
procedure finds a local maximum. The value of the local maximum is saved in
line 8.

3. PATH RELINKING

Path relinking was originally proposed by Glover [1996] as an intensifica-
tion strategy exploring trajectories connecting elite solutions obtained by tabu
search or scatter search. Given any two elite solutions, their common elements
are kept constant, and the space of solutions spanned by these elements is
searched with the objective of finding a better solution. The size of the solution
space grows exponentially with the distance between the initial and guiding

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 7

Fig. 3. The local search procedure in pseudocode.

solutions and, therefore, only a small part of the space is explored by path
relinking. Path relinking has been applied to GRASP as an enhancement pro-
cedure in various problems [Aiex et al. 2003, 2005; Canuto et al. 2001; Laguna
and Martı́ 1999; Resende and Ribeiro 2003; Ribeiro et al. 2002], where it can be
empirically concluded that it speeds up convergence of the algorithm. A recent
survey of GRASP with path relinking is given in Resende and Ribeiro [2005].

We now describe the integration of path relinking into the pure GRASP
algorithm described in Section 2. Path relinking will always be applied to a pair
of solutions x, y, where one is the solution obtained from the current GRASP
iteration, and the other is a solution from an elite set of solutions. We call x the
initial solution, while y is the guiding solution. The set of elite solutions will
be denoted by E and its size will not exceed MaxElite. Let us denote the set of
solutions spanned by the common elements of x and y as

S(x, y) := {w ∈ {0, 1}n : wi = xi = yi, i /∈ �(x, y)} \ {x, y} (4)

where it is evident that |S(x, y)| = 2d (x,y) − 2. The underlying assumption
of path relinking is that there exist good-quality solutions in S(x, y), since
this space consists of all solutions, which contain the common elements of two
good solutions x, y. Taking into consideration that the size of this space is
exponentially large, we will adopt a greedy search where a path of solutions

x = w0, w1, . . . , wd (x,y) = y

is constructed, such that d (wi, wi+1) = 1, i = 0, . . . , d (x, y) − 1, and the best
solution from this path is chosen. Note that since both x, y are local maxima in
some neighborhood N1 by construction,1 in order for S(x, y) to contain solutions
that are not contained in the neighborhoods of x or y, we must have d (x, y) > 3.
Therefore, we need not apply path relinking between any two solutions, which
are not sufficiently far apart, since it is certain that we will not find a new
solution that is better than both x and y.

The pseudocode, which illustrates the exact implementation for the path re-
linking procedure, is shown in Figure 4. We assume that our initial solution will
always be the elite set solution, while the guiding solution is the GRASP iterate.
This way we allow for greater freedom to search the neighborhood around the

1Where the same metric d (x, y) is used.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

8 • P. Festa et al.

Fig. 4. Pseudocode of path relinking for maximization problem.

elite solution. In line 1, we select at random among the elite set elements, an
initial solution x that differs sufficiently from our guiding solution y. In line 2,
we set the initial solution as w0, and in line 3 we save x as the best solution. The
loop in lines 4 through 15 computes a path of solutions w1, w2, . . . , wd (x,y)−2,
and the solution with the best objective function value is returned in line 16.
This is achieved by advancing one solution at a time in a greedy manner, as
illustrated in lines 6 through 12, while the function flip(wk , i) returns the as-
signment obtained by flipping the value of the variable wi in solution wk . It is
noted that the path of solutions never enters the neighborhood of y.

The integration of the path relinking procedure with the pure GRASP is
shown in Figure 5, specifically, in lines 6 through 11. The pool of elite solutions
is initially empty and, until it reaches its maximum size, no path relinking takes
place. After a solution y is found by GRASP, it is passed to the path relinking
procedure to generate another solution. Note here that we may get the same
solution y after path relinking. The procedure AddToElite(E , y) attempts to add
to the elite set of solutions the currently found solution. A solution y is added
to the elite set E if either one of the following conditions holds:

1. c(y) > max{c(w) : w ∈ E},
2. c(y) > min{c(w) : w ∈ E} and d (y, w) > βn, ∀w ∈ E , where β is a parameter

between 0 and 1 and n is the number of variables.

If y satisfies either of the above, it then replaces an elite solution z of weight
not greater than c(y) and most similar to y, i.e., z = argmin{d (y, w) : w ∈ E ,
c(w) ≤ c(y)}.

4. COMPUTATIONAL RESULTS

In this section, we report on an experiment designed to determine the effect
of path relinking on the convergence of the GRASP for MAX-SAT described in

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 9

Fig. 5. Pseudocode of GRASP with path relinking for maximization problem.

Resende et al. [2000].2 After downloading the Fortran source code, we modified
it to enable recording of the elapsed time between the start of the first GRASP
iteration and when a solution is found having weight greater than or equal to
a given target value. We call this pure GRASP implementation grasp. Using
grasp as a starting point, we implemented path relinking, making use of the
local search code in grasp. The GRASP with path relinking implementation is
called grasp+pr. To simplify the path relinking step, we use β = 1, when testing
if a solution can be placed in the elite set. This way only improving solutions
are put in the elite set. We were careful to implement independent random
number sequences for the pure GRASP and the path relinking portions of the
code. This way, if the same random number generator seeds are used for the
GRASP portion of the code, the GRASP solutions produced in each iteration
are identical for the GRASP and GRASP with path relinking implementations.
Consequently, GRASP with path relinking will never take more iterations to
find a target value solution than the pure GRASP. Since the time for one GRASP
with path relinking iteration is greater than for one pure GRASP iteration, we
seek to determine if the potential reduction in number of iterations of GRASP
with path relinking will suffice to make the total running time of GRASP with
path relinking smaller than that of pure GRASP.

The Fortran programs were compiled with the g77 compiler, version 3.2.3
with optimization flag -O3 and run on a SGI Altix 3700 Supercluster running
RedHat Advanced Server with SGI ProPack. The cluster is configured with 32
1.5-GHz Itanium-2 processors (Rev. 5) and 245 GB of main memory. Each run
was limited to a single processor. User running times were measured with the
etime system call. Running times exclude problem input.

2The Fortran subroutines for the GRASP for MAX-SAT described in Resende et al. [2000] can be

downloaded from http://www.research.att.com/∼mgcr/src/maxsat.tar.gz.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

10 • P. Festa et al.

Table I. Test Problems Used in Experimenta

Problem Variables Clauses Target Rel. Error(%)

jnh1 100 800 420739 0.044

jnh10 100 800 420357 0.115

jnh11 100 800 420516 0.056

jnh12 100 800 420871 0.013

jnh201 100 850 394222 0.047

jnh202 100 850 393870 0.076

jnh212 100 850 394006 0.059

jnh304 100 900 444125 0.092

jnh305 100 900 443815 0.067

jnh306 100 900 444692 0.032

aFor each problem, the table lists its name, number of variables,

number of clauses, the target weight used as a stopping criterion,

and the percentage deviation of the target from the optimal solution.

We compared both variants on ten test problems previously studied in
Resende et al. [2000].3 Optimal weight values are known for all problems. The
target weight values used in the experiments correspond to solutions found in
Resende et al. [2000] after 100,000 GRASP iterations and are all near-optimal.
Table I shows test problem dimensions, target values, and how close to optimal
the targets are.

Since grasp and grasp+pr are both stochastic local search algorithms, we
compare their performance by examining the distributions of their running
times. For each instance, we make 200 independent runs of each heuristic (using
different random number generator seeds) and record the time taken for the
run to find a solution with weight at least as large as the given target value. For
each instance/heuristic pair, the running times of each heuristic are sorted in
increasing order. We associate with the ith sorted running time (ti) a probability
pi = (i − 1

2
)/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200. These

plots are called the time to target plots and were first introduced in Feo et al.
[1994]. These plots display the empirical probability distributions of the random
variable time to target solution. Figures 6 through 9 are the time to target plots
of the test instances.4

We make the following observations about the experiments.

� Each heuristic was run a total of 2000 times in the experiments.
� Though the maximum number of GRASP iterations was set to 200,000, both

algorithms took much less than that to find truth assignments with total
weight at least as large as the target weight on all 200 runs on each instance.

� On all but one instance, the time to target curves for grasp+pr were to the
left of the curves for grasp.

� The relative position of the curves implies that, given a fixed amount of com-
puting time, grasp+pr has a higher probability than grasp of finding a target

3The test problems can be downloaded from http://www.research.att.com/∼mgcr/data/maxsat.

tar.gz.
4The raw data as well as the plots of the distributions for all of the test problems are available at

http://www.research.att.com/∼mgcr/exp/gmaxsatpr.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 11

Fig. 6. Time to target distributions comparing grasp and grasp+pr on instances jnh1, jnh10, and

jnh11.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

12 • P. Festa et al.

Fig. 7. Time to target distributions comparing grasp and grasp+pr on instances jnh12, jnh201,

and jnh202.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 13

Fig. 8. Time to target distributions comparing grasp and grasp+pr on instances jnh212, jnh304,

and jnh305.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

14 • P. Festa et al.

Fig. 9. Time to target distributions comparing grasp and grasp+pr on instances jnh306.

solution. For example, consider instance jnh1 in Figure 6. The probabilities of
finding a target at least as good as 420750 in, at most, 50 s are 48% and 97%,
respectively, for grasp and grasp+pr. In, at most, 100 s, these probabilities
increase to 73 and 99%, respectively.

� The relative position of the curves also implies that, given a fixed probabil-
ity of finding a target solution, the expected time taken by grasp to find a
solution with that probability is greater than the time taken by grasp+pr.
For example, consider instance jnh306 in Figure 9. For grasp to find a target
solution with 50% probability, we expect it to run for 329 s, while for grasp+pr
we expect a run of only 25 s. For 90% probability, grasp is expected to run for
984 s, while grasp+pr only takes 153 s.

� The only instance on which the time to target plots intersect was jnh305,
where grasp+pr took longer to converge than the longest grasp run on 21 of
the 200 runs, Still, two thirds of the grasp+pr were faster than grasp.

5. CONCLUSIONS

In this paper we propose a GRASP with path relinking for the weighted
maximum satisfiability problem. Although GRASP has been previously im-
plemented for the weighted MAX-SAT problem with favorable computational
results in Resende et al. [1997], it did not use past information throughout the
search process to improve solution quality or speed up convergence. Path relink-
ing enhances the GRASP heuristic by providing a mechanism to search between

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

GRASP with Path Relinking for the Weighted MAXSAT Problem • 15

elite solutions, thereby incorporating memory to the procedure. Extensive com-
putational experiments on a standard set of benchmark instances, indicate that
for a given amount of computational time, path relinking will significantly in-
crease the probability that a target solution will be found. Equivalently we can
state that given that the GRASP heuristic has a certain probability of finding a
target solution, path relinking will decrease the expected computational time.

REFERENCES

AIEX, R. M., BINATO, S., AND RESENDE, M. 2003. Parallel GRASP with path-relinking for job shop

scheduling. Parallel Computing 29, 393–430.

AIEX, R. M., RESENDE, M. G. C., PARDALOS, P. M., AND TORALDO, G. 2005. GRASP with path relinking

for three-index assignment. INFORMS J. on Computing 17, 2, 224–247.

ASANO, T. 1997. Approximation algorithms for MAX-SAT: Yannakakis vs. Goemans-Williamson.

In 5th IEEE Israel Symposium on the Theory of Computing and Systems. 24–37.

BATTITI, R. AND PROTASI, M. 1997. Reactive search, a history-sensitive heuristic for MAX-SAT.

ACM Journal of Experimental Algorithms 2, 2.

BATTITI, R. AND PROTASI, M. 1998. Approximate algorithms and heuristics for the MAX-SAT. In

Handbook of Combinatorial Optimization, D. Z. Du and P. M. Pardalos, Eds. vol. 1. Kluwer

Academic Publ., Boston, MA. 77–148.

CANUTO, S. A., RESENDE, M. G. C., AND RIBEIRO, C. C. 2001. Local search with perturbations for the

prize-collecting Steiner tree problem in graphs. Networks 38, 50–58.

CHEN, J., FRIESEN, D., AND ZHENG, H. 1997. Tight bound on johnson’s algorithm for MAX-SAT. In

Proceedings of the 12th Annual IEEE Conference on Computational Complexity. 274–281.

COOK S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing. 151–158.

FEIGE, U. AND GOEMANS, M. X. 1995. Approximating the value of two proper proof systems, with

applications to MAX-2SAT and MAX-DICUT. In Proceedings of the Third Israel Symposium on
Theory of Computing and Systems. 182–189.

FEO, T. A. RESENDE, M. G. C., AND SMITH, S. H. 1994. A greedy randomized adaptive search proce-

dure for maximum independent set. Operations Research 42, 860–878.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, CA.

GENT, I. P. AND WALSH, T. 1993. Towards an understanding of hill-climbing procedures for SAT.

In Proceedings of the 11th National Conference on Artificial Intelligence. 28–33.

GLOVER, F. 1996. Tabu search and adaptive memory programming: Advances, applications and

challenges. In Interfaces in Computer Science and Operations Research, R. S. Barr, R. V. Helgason,

and J. L. Kennington, Eds. Kluwer Academic Publ. Boston, MA. 1–75.

GOEMANS, M. X. AND WILLIAMSON, D. P. 1994. A new 3
4

approximation algorithm for the maximum

satisfiability problem. SIAM Journal on Discrete Mathematics 7, 656–666.

GOEMANS, M. X. AND WILLIAMSON, D. P. 1995. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of Association for Com-
puting Machinery 42, 6, 1115–1145.

Hansen, P. and Jaumard, B. 1990. Algorithms for the maximum satisfiability problem. Comput-
ing 44, 279–303.

HART, J. P. AND SHOGAN, A. W. 1987. Semi greedy heuristics: An empirical study. Operations
Research Letters 6, 107–114.

HASTAD, J. 2001. Some optimal inapproximability results. Journal of the ACM 48, 798–859.

JOHNSON, D. S. 1974. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences 9, 256–278.

JOHNSON, D. S., PAPADIMITRIOU, C. H., AND YANNAKAKIS, M. 1988. How easy is local search? Journal
of Computer and System Sciences 37, 79–100.

JOHNSON, D. S. AND TRICK, M. A., EDS. 1996. Cliques, coloring, and Satisfiability: Second DIMACS
Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science. American Mathematical Society.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

16 • P. Festa et al.

KARLOFF, H. AND ZWICK, U. 1997. A 7
8

-approximation algorithm for MAX-3SAT. In Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science. 406–415.

KRENTEL, M. W. 1988. The complexity of optimization problems. Journal of Computer and System
Sciences 36.

LAGUNA, M. AND MARTı́, R. 1999. GRASP and path relinking for 2-layer straight line crossing

minimization. INFORMS Journal on Computing 11, 44–52.

RESENDE, M. G. C. AND FEO, T. A. 1996. A GRASP for Satisfiability. In Cliques, Coloring, and
Satisfiability: Second DIMACS Implementation Challenge, D. S. Johnson and M. A. Trick, Eds.

Number 26 in DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer-

ican Mathematical Society. New Providence, Rhode Island. 499–520.

RESENDE, M. G. C. AND PITSOULIS, L. S. 2002. Greedy randomized adaptive search procedures.

In Handbook of Applied Optimization, P. M. Pardalos and M. Resende, Eds. Oxford University

Press, Oxford. 168–183.

RESENDE, M. G. C., PITSOULIS, L. S., AND PARDALOS, P. M. 1997. Approximate solutions of weighted

MAX-SAT problems using GRASP. In Satisfiability Problem: Theory and Applications, D.-Z.

Du, J. Gu, and P. M. Pardalos, Eds. DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, American Mathematical Society. 393–405.

RESENDE, M. G. C., PITSOULIS, L. S., AND PARDALOS, P. M. 2000. Fortran subroutines for computing

approximate solutions of weighted MAX-SAT problems using GRASP. Discrete Applied Mathe-
matics 100, 95–113.

RESENDE, M. G. C. AND RIBEIRO, C. C. 2003. A GRASP with path-relinking for private virtual

circuit routing. Networks 41, 104–114.

RESENDE, M. G. C. AND RIBEIRO, C. C. 2005. GRASP and path-relinking: Recent advances and

applications. In Metaheuristics: Progress as Real Problem Solvers, T. Ibaraki, K. Nonobe, and

M. Yagiura, Eds. Springer, New York. 29–63.

RIBEIRO, C. C., UCHOA, E., AND WERNECK, R. F. 2002. A hybrid GRASP with perturbations for the

Steiner problem in graphs. INFORMS Journal on Computing 14, 228–246.

SELMAN, B., LEVESQUE, H., AND MITCHELL, D. 1992. A new method for solving hard satisfiability

instances. In Proceedings of the 10th National Conference on Artificial Intelligence. 440–446.

SPEARS, W. M. 1996. Simulated annealing for hard satisfiability problems. In Cliques, Coloring,
and Satisfiability: Second DIMACS Implementation Challenge, D. S. Johnson and M. A. Trick,

Eds. Number 26 in DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society. New Providence, Rhode Island. 533–555.

TREVISAN, L. 2000. Approximating satisfiable satisfiability problems. Algorithmica 28, 1, 145–

172.

YANNAKAKIS, M. 1992. On the approximation of maximum Satisfiability. In Proceedings of the
Third ACM-SIAM Symposium on Discrete Algorithms. 1–9.

Received September 2005; revised January 2006; accepted January 2006

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.4, 2006.

