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Abstract. Given an undirected graph with edge weights, the MAX-CUT
problem consists in finding a partition of the nodes into two subsets, such that
the sum of the weights of the edges having endpoints in different subsets is max-
imized. It is a well-known NP-hard problem with applications in several fields,
including VLSI design and statistical physics. In this paper, a greedy ran-
domized adaptive search procedure (GRASP), a variable neighborhood search
(VNS), and a path-relinking (PR) intensification heuristic for MAX-CUT are
proposed and tested. New hybrid heuristics that combine GRASP, VNS, and
PR are also proposed and tested. Computational results indicate that these
randomized heuristics find near-optimal solutions. On a set of standard test
problems, new best known solutions were produced for many of the instances.

1. Introduction

Given an undirected graphG = (V,E), where V = {1, . . . , n} is the set of vertices
and E is the set of edges, and weights wij associated with the edges (i, j) ∈ E, the
MAX-CUT problem consists in finding a subset of vertices S such that the weight
of the cut (S, S̄) given by

w(S, S̄) =
∑

i∈S,j∈S̄

wij

is maximized. The decision version of the MAX-CUT problem was proved to be
NP-complete by Karp [27]. Applications are found in VLSI design and statistical
physics, see e.g. [4, 10, 11, 33] among others. The reader is referred to Poljak and
Tuza [35] for an introductory survey.

The MAX-CUT problem can be formulated as the following integer quadratic
program:

max
1
2

∑
1≤i<j≤n

wij(1− yiyj)

subject to

yi ∈ {−1, 1} ∀ i ∈ V.

Each set S = {i ∈ V : yi = 1} induces a cut (S, S̄) with weight

w(S, S̄) =
1
2

∑
1≤i<j≤n

wij(1− yiyj).

In recent years, several continuous and semidefinite programming relaxations of
the above formulation have been considered. The idea that the MAX-CUT problem
can be naturally relaxed to a semidefinite programming problem was first observed
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by Lovász [29] and Shor [41]. Goemans and Williamson [22] proposed a randomized
algorithm that uses semidefinite programming to achieve a performance guarantee
of 0.87856. Since then, many approximation algorithms for NP-hard problems have
been devised using SDP relaxations [22, 26, 34].

More recent algorithms for solving the semidefinite programming relaxation are
particularly efficient, because they explore the structure of the MAX-CUT prob-
lem. One approach along this line is the use of interior-point methods [6, 16, 17].
In particular, Benson, Ye, and Zhang [6] used the semidefinite relaxation for ap-
proximating combinatorial and quadratic optimization problems subject to linear,
quadratic, and Boolean constraints. They proposed a dual potential reduction al-
gorithm that exploits the sparse structure of the relaxation.

Other nonlinear programming approaches have also been presented for the MAX-
CUT semidefinite programming relaxation [24, 25]. Homer and Peinado [25] refor-
mulated the constrained problem as an unconstrained one and used the standard
steepest ascent method on the latter. A variant of the Homer and Peinado algorithm
was proposed by Burer and Monteiro [7]. Their idea is based on the constrained
nonlinear programming reformulation of the MAX-CUT semidefinite programming
relaxation obtained by a change of variables.

More recently, Burer, Monteiro, and Zhang [8] proposed a rank-2 relaxation
heuristic for MAX-CUT and described a computer code, called circut, that pro-
duces better solutions in practice than the randomized algorithm of Goemans and
Williamson.

The remainder of this paper is organized as follows. In Section 2 we propose
various randomized heuristics for finding approximate solutions of the MAX-CUT
problem, based on the instantiation of several metaheuristics and their hybrids.
Computational results are reported in Section 3. Concluding remarks are given in
the last section.

2. Randomized heuristics

Recent surveys on randomized metaheuristics can be found in [32]. Almost all
randomization effort in implementations of the GRASP (greedy randomized adap-
tive search procedure) metaheuristic [12, 13, 37] involves the construction phase.
On the other hand, strategies such as VNS (Variable Neighborhood Search) and
VND (Variable Neighborhood Descent) [23, 31] rely almost entirely on the ran-
domization of the local search to escape from local optima. With respect to this
issue, probabilistic strategies such as GRASP and VNS may be considered as com-
plementary and potentially capable of leading to effective hybrid methods. A first
attempt in this direction was done by Martins et al. [30]. The construction phase of
their hybrid heuristic for the Steiner problem in graphs follows the greedy random-
ized strategy of GRASP, while the local search phase makes use of two different
neighborhood structures as a VND strategy. Their heuristic was later improved by
Ribeiro, Uchoa, and Werneck [39], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro and
Souza [38] also combined GRASP with VND in a hybrid heuristic for the degree-
constrained minimum spanning tree problem. Canuto, Resende, and Ribeiro [9]
used path-relinking in a GRASP for the prize collecting Steiner tree problem.

In this paper, we designed, implemented, and tested several pure and hybrid
heuristics:
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procedure GRASP(MaxIterations)
1 for i = 1, . . . , MaxIterations do
2 Build a greedy randomized solution x;
3 x← LocalSearch(x);
4 if i = 1 then x∗ ← x;
5 else if w(x) > w(x∗) then x∗ ← x;
6 end;
7 return (x∗);
end GRASP;

Figure 1. Pseudo-code of a generic GRASP.

• a pure GRASP;
• a GRASP that uses path-relinking for intensification;
• a pure VNS;
• a VNS that uses path-relinking for intensification;
• a GRASP that uses VNS to implement the local search phase; and
• a GRASP that uses VNS to implement the local search phase and path-
relinking for intensification.

In the algorithms described in the next subsections, we combined the main charac-
teristics of some of the state-of-the-art heuristics, in an attempt to take advantage
of their best properties in terms of computation time and solution quality.

2.1. A pure GRASP. GRASP is a randomized multistart iterative method pro-
posed in Feo and Resende [12, 13]. For a comprehensive study of GRASP strategies
and variants, the reader is referred to the survey chapter by Resende and Ribeiro
[37], as well as to the annotated bibliography of Festa and Resende [14] for a survey
of applications. Generally speaking, GRASP is a randomized heuristic having two
phases: a construction phase and a local search phase. The construction phase
adds one element at a time to a set that ends up with a representation of a feasible
solution. At each iteration, an element is randomly selected from a restricted candi-
date list, whose elements are well-ranked according to some greedy function. Once
a feasible solution is obtained, the local search procedure attempts to improve it by
producing a locally optimal solution with respect to some neighborhood structure.
The construction and the local search phases are repeatedly applied. The best so-
lution found is returned as an approximation of the optimal. Figure 1 depicts the
pseudo-code of a generic GRASP heuristic.

The construction phase makes use of an adaptive greedy function, a construction
mechanism for the restricted candidate list, and a probabilistic selection criterion.
The greedy function takes into account the contribution to the objective function
achieved by selecting a particular element. In the case of the MAX-CUT problem,
it is intuitive to relate the greedy function to the sum of the weights of the edges
in each cut. More formally, let (S, S̄) be a cut. Then, for each vertex v we define
σS(v) =

∑
u∈S wvu and σS̄(v) =

∑
u∈S̄ wvu. The greedy choice consists in selecting

the vertex v with either the highest σS(v) or the highest σS̄(v). If σS(v) > σS̄(v),
then v is placed in S̄; otherwise it is placed in S. To define the construction
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procedure LocalSearch(x= {S, S̄})
1 change← .TRUE.
2 while change do;
3 change← .FALSE.
4 for v = 1, . . . , |V | while .NOT.change circularly do
5 if v ∈ S and δ(v) = σS(v) − σS̄(v) > 0
6 then do S ← S \ {v}; S̄ ← S̄ ∪ {v}; change← .TRUE. end;
7 if v ∈ S̄ and δ(v) = σS̄(v) − σS(v) > 0
8 then do S̄ ← S̄ \ {v}; S ← S ∪ {v}; change← .TRUE. end;
9 end;
10 end;
11 return (x = {S, S̄});
end LocalSearch;

Figure 2. Pseudo-code of the local search phase.

mechanism for the restricted candidate list, let

wmin = min{min
v∈V ′

σS(v), min
v∈V ′

σS̄(v)}

and

wmax = max{max
v∈V ′

σS(v), max
v∈V ′

σS̄(v)},

where V ′ = V \ {S ∪ S̄} is the set of vertices which are not yet assigned to either
subset S or subset S̄. Denoting by µ = wmin +α · (wmax−wmin) the cut-off value,
where α is a parameter such that 0 ≤ α ≤ 1, the restricted candidate list is made
up by all vertices whose value of the greedy function is greater than or equal to µ.
A vertex is randomly selected from the restricted candidate list.

The local search phase is based on the following neighborhood structure. Let
(S, S̄) be the current solution. To each vertex v ∈ V we associate either the neighbor
(S \ {v}, S̄ ∪ {v}) if v ∈ S, or the neighbor (S ∪ {v}, S̄ \ {v}) otherwise. The value

δ(v) =

{
σS(v) − σS̄(v), if v ∈ S,

σS̄(v) − σS(v), if v ∈ S̄,

represents the change in the objective function associated with moving vertex v
from one subset of the cut to the other. All possible moves are investigated. The
current solution is replaced by its best improving neighbor. The search stops after
all possible moves have been evaluated and no improving neighbor was found. The
pseudo-code of the local search procedure is given in Figure 2.

2.2. Hybrid GRASP with path-relinking. Path-relinking is an enhancement
to the basic GRASP procedure, leading to significant improvements in solution
quality. Path-relinking was originally proposed by Glover [18] as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search [19, 20, 21]. Starting from one or more elite solutions, paths in
the solution space leading towards other guiding elite solutions are generated and
explored in the search for better solutions. This is accomplished by selecting moves
that introduce attributes contained in the guiding solutions. Successful applications
of path-relinking combined with GRASP are described in [1, 2, 9, 28, 36, 39].
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procedure PR(x,EliteSet)
1 Let (S, S̄) be the partition defined by x;
2 Randomly select a solution z ∈ EliteSet;
3 Compute the symmetric difference ∆(x, z) = {i = 1, . . . , |V | : xi = zi};
4 w∗ ← max{w(x), w(z)};
5 x̄, y ← x;
6 while |∆(x, z)| ≥ 2 do
7 i∗ = argmax{σS(i)− σS̄(i),∀i ∈ S̄ ∩∆(x, z) ;

σS̄(i)− σS(i),∀i ∈ S ∩∆(x, z)};
8 Place vertex i∗ in the other partition and set yi∗ ← 1− yi∗ ;
9 if w(y) > w∗ then do w∗ ← w(y); x̄← y end;
10 ∆(x, z)← ∆(x, z) \ {i∗};
11 end;
12 return (x̄);
end PR;

Figure 3. Pseudo-code of the path-relinking heuristic.

Implementation strategies are described and investigated in detail by Resende and
Ribeiro [37].

We now briefly describe the integration of path-relinking into the pure GRASP
algorithm described in Subsection 2.1. In this context, path-relinking is applied to
pairs (x, z) of solutions, where x is the locally optimal solution obtained by local
search (initial solution) and z (guiding solution) is randomly chosen from a pool
with a limited number MaxElite of high quality solutions found along the search.
The pseudo-code for the path-relinking procedure is shown in Figure 3.

Each solution y = (S, S̄) is represented by its characteristic vector y, such that
yi = 1 if vertex i ∈ S; yi = 0 otherwise. The path-relinking procedure starts by
computing the set ∆(x, z) = {i = 1, . . . , n : xi = zi} of variables with different
values in the initial and guiding solutions. Each iteration of this procedure has
two steps. In the first step, we evaluate the incremental cost δ(i) resulting from
changing the subset of the partition in which vertex i is currently placed, for each
i ∈ ∆(x, z) (see the description of the local search procedure in Section 2.1). In the
second step, the vertex

i∗ = argmax{σS(i)− σS̄(i),∀i ∈ S̄ ∩∆(x, z) ; σS̄(i)− σS(i),∀i ∈ S ∩∆(x, z)}
with the largest incremental cost is selected, the value of variable yi∗ is flipped, we
set ∆(x, z)← ∆(x, z) \ {i∗}, and a new iteration resumes. The relinking procedure
stops when the guiding solution is attained. The best solution x̄ found along this
trajectory is returned.

The pool of elite solutions is originally empty. The best solution x̄ found along
the relinking trajectory is considered as a candidate to be inserted into this pool. If
the pool already has MaxElite solutions and the candidate is better than the best
elite solution, then x̄ replaces the worst elite solution. If the candidate is better
than the worst elite solution, but not better than the best, it replaces the worst if it
is sufficiently different (see Section 3) from all elite solutions. If the pool is not full,
the candidate is simply inserted. Figure 4 depicts the pseudo-code of the proposed
GRASP with path-relinking hybrid algorithm.
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procedure GRASP+PR(MaxIterations)
1 for i = 1, . . . , MaxIterations do
2 Construct a greedy randomized solution x;
3 x← LocalSearch(x);
4 if i = 1 then do EliteSet← {x}; x∗ ← x;
5 else do
6 x̄← PR(x,EliteSet);
7 Update EliteSet with x̄;
8 if w(x̄) > w(x∗) then x∗ ← x̄;
9 end;
10 end;
11 return (x∗);
end GRASP+PR;

Figure 4. Pseudo-code of the hybrid GRASP with path-relinking.

2.3. A pure VNS. The variable neighborhood search (VNS) metaheuristic, pro-
posed by Hansen and Mladenović [23], is based on the exploration of a dynamic
neighborhood model. Contrary to other metaheuristics based on local search meth-
ods, VNS allows changes of the neighborhood structure along the search.

VNS explores increasingly distant neighborhoods of the current best found so-
lution x. Each step has three major phases: neighbor generation, local search, and
jump. Let Nk, k = 1, . . . , kmax be a set of pre-defined neighborhood structures and
let Nk(x) be the set of solutions in the kth-order neighborhood of a solution x. In
the first phase, a neighbor x′ ∈ Nk(x) of the current solution is applied. Next, a
solution x′′ is obtained by applying local search to x′. Finally, the current solution
jumps from x to x′′ in case the latter improved the former. Otherwise, the order
of the neighborhood is increased by one and the above steps are repeated until
some stopping condition is satisfied. The pseudo-code of a typical VNS procedure
is illustrated in Figure 5.

In the case of the MAX-CUT problem, the kth-order neighborhood is defined by
all solutions that can be derived from the current one by selecting k vertices and
transfering each of them from one subset of the partition to the other. The same
local search strategy used within the pure GRASP algorithm described in Section
2.1 is used in the VNS heuristic.

2.4. Hybrid VNS with path-relinking. As is the case for GRASP, VNS also
can be hybridized with path-relinking. At the end of each major VNS cycle, an
intensification phase using path-relinking is carried out. Figure 6 shows the pseudo-
code for this hybrid heuristic.

2.5. Hybrid GRASP with VNS. This hybrid procedure is simply obtained by
replacing the local search phase of the GRASP procedure described in Section 2.1
(line 4 of the pseudo-code in Figure 1) by the VNS procedure presented in Section
2.3. To speed up the search, a smaller value of kmax is used in the VNS. The
resulting pseudo-code is depicted in Figure 7.

2.6. Hybrid GRASP with VNS and path-relinking. Finally, path-relinking
intensification can be added to the GRASP with VNS, resulting in the hybrid
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procedure VNS(MaxIterations, kmax)
1 for i = 1, . . . , MaxIterations do
2 k ← 1;
3 Generate a starting solution x at random;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′ ← LocalSearch(x′);
7 if w(x′′) > w(x)
8 then do x← x′′; k ← 1;
9 else k ← k + 1;
10 end
11 end;
12 end;
13 x∗ ← x;
14 return (x∗);
end VNS;

Figure 5. Pseudo-code of a generic VNS heuristic.

procedure VNS+PR(MaxIterations, kmax)
1 for i = 1, . . . , MaxIterations do
2 k ← 1;
3 Generate a starting solution x at random;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′ ← LocalSearch(x′);
7 if w(x′′) > w(x)
8 then do x← x′′; k ← 1;
9 else k ← k + 1;
10 end;
11 end;
12 if i = 1
13 then do EliteSet← {x}; x∗ ← x;
14 else do
15 x̄← PR(x,EliteSet);
16 Update EliteSet with x̄;
17 if w(x̄) > w(x∗) then x∗ ← x̄;
18 end;
19 end;
20 return (x∗);
end VNS+PR;

Figure 6. Pseudo-code of VNS with path-relinking.
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procedure GRASP+VNS(MaxIterations, kmax)
1 for i = 1, . . . , MaxIterations do
2 k ← 1;
3 Build a greedy randomized solution x;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′ ← LocalSearch(x′);
7 if w(x′′) > w(x)
8 then do x← x′′; k ← 1;
9 else k← k + 1;
10 end;
11 end;
12 if i = 1 then x∗ ← x;
13 else if w(x) > w(x∗) then x∗ ← x;
14 end;
15 return (x∗);
end GRASP+VNS;

Figure 7. Pseudo-code of the hybrid GRASP with VNS.

procedure GRASP+VNS+PR(MaxIterations, kmax)
1 for i = 1, . . . , MaxIterations do
2 k ← 1;
3 Build a greedy randomized solution x;
4 while k ≤ kmax do
5 Generate x′ ∈ Nk(x) at random;
6 x′′ ← LocalSearch(x′);
7 if w(x′′) > w(x)
8 then do x← x′′; k ← 1;
9 else k← k + 1;
10 end;
11 end;
12 if i = 1
13 then do EliteSet← {x}; x∗ ← x;
14 else do
15 x̄← PR(x,EliteSet);
16 Update EliteSet with x̄;
17 if w(x̄) > w(x∗) then x∗ ← x̄;
18 end;
19 end;
20 return (x∗);
end GRASP+VNS+PR;

Figure 8. Pseudo-code of GRASP with VNS and path-relinking.
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GRASP with VNS and path-relinking heuristic, whose pseudo-code is shown in
Figure 8.

3. Experimental results

In this section, we describe computational experience with the heuristics pro-
posed in this paper. We describe the computer environment, discuss implementa-
tion details, describe the instances, and report on the experimental evaluation of
the different algorithms.

The computational experiments were performed on an SGI Challenge computer,
with 28 196-Mhz MIPS R10000 processors and 7.6 Gb of memory. All runs were
done using a single processor. Our codes were written in Fortran 77 and com-
piled with the SGI MIPSpro F77 compiler using flags -O3 -r4 -64. The rank-2
relaxation heuristic circut was compiled with the SGI MIPSpro 7 F90 compiler
using flags -O3 -r4 -64. Processing times were measured with the system function
etime. The portable random number generator of Schrage [40] was used.

Our initial objective was to compare our heuristics with the randomized algo-
rithm of Goemans and Williamson [22], to show that the solutions produced by our
randomized heuristics are of much better quality than theirs and can be found in a
fraction of the time taken by their algorithm. Recently, however, Burer, Monteiro,
and Zhang [8] showed that circut, a Fortran 90 implementation of their rank-2 re-
laxation heuristic for MAX-CUT, produces higher quality approximate solutions in
practice than the randomized algorithm of Goemans and Williamson. In addition,
running times were shown to be small. For this reason, in this section we compare
our heuristics directly with circut. We compiled version 0.612 of circut on our
computer and used it to solve all but one of the test problems used to test our
heuristics. We set the circut parameters to their default values with the exception
of (N,M) = (50, 10), the most intensive parameter settings used in [8].

We implemented the following six heuristics described in Section 2:
1. g: A pure GRASP, where MaxIterations independent GRASP iterations

are executed. Each iteration uses the restricted candidate list parameter
α selected from the uniform distribution interval [0, 1]. During a GRASP
iteration the value of α does not change.

2. gpr: The pure GRASP g with forward path-relinking (path-relinking from the
local search solution to a randomly chosen elite solution, see [37]) executed
after each GRASP local search phase.

3. vns: A pure VNS with MaxIterations cycles, each starting with a randomly
constructed initial solution, and maximum neighborhood parameter kmax =
100.

4. vnspr: The variable neighborhood search vns with forward path-relinking
(path-relinking from a locally optimum VNS solution to a randomly chosen
elite solution) done after each VNS cycle.

5. gvns: The pure GRASP g using VNS (with kmax = 15) as the local search
phase.

6. gvnspr: gvns with forward path-relinking (path-relinking from a locally op-
timum VNS solution to a randomly chosen elite solution) done after the VNS
local search.

Path-relinking is performed within gpr, vnspr, and gvnspr. The maximum size
of the elite set was set to 30. Recall that the characteristic vector x of a solution
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{S, S̄} is such that xi = 1 if vertex i ∈ S and xi = 0 if vertex i ∈ S̄. For inclusion
in the elite set, we use a strategy suggested by Fleurent and Glover [15]. In the
case that the candidate solution is better than the worst elite set solution but not
better than the best, the characteristic vector of the candidate x̄ is compared to
the characteristic vectors of all elite set solutions. If the candidate differs from all
elite solutions by more than 1%, it replaces the worst solution in the elite set.

The experiments consisted of three parts.
In the first part, we tested circut and the six randomized heuristics on test

problems G1, G2, G3, G11, G12, G13, G14, G15, G16, G22, G23, G24, G32, G33, G34,
G35, G36, G37, G43, G44, G45, G48, G49, and G50. These test problems were created
by Helmberg and Rendl [24] using a graph generator written by Rinaldi and were
used by Burer and Monteiro [7], Benson et al. [5], and Burer, Monteiro, and Zhang
[8] for testing their algorithms. They consist of toroidal, planar, and randomly
generated graphs of varying sparsity and sizes. These graphs vary in size from 800
to 3000 nodes and in density from 0.17% to 6.12%.

We first ran the randomized heuristics g, gvns, and vns on the Helmberg and
Rendl instances using the random number generator seed 270001 for a single it-
eration. Our objective was to show that the value guaranteed to be achieved by
the randomized algorithm of Goemans and Williamson can be easily achieved by
our randomized heuristics. Since only one iteration of each algorithm was done,
path-relinking was not used. The weights of optimal cuts for these instances are
not known. Therefore, we compare the solutions found by our randomized heuris-
tics with the value 0.87856 of the SDP upper bound (which is at least as large as
the value guaranteed to be achieved by the randomized algorithm of Goemans and
Williamson). Table 1 summarizes these results. We make the following observations
about the results in Table 1:
• The pure GRASP (g) found, in its first iteration, a cut with weight at least as
large as 0.87856 of the SDP upper bound in 18 of the 24 instances. GRASP
with VNS local search (gvns) as well as pure VNS (vns) found, in their first
iteration, a cut with weight at least as large as 0.87856 of the SDP upper
bound in 19 of the 24 instances.
• As expected, the processing time increased when going from g to gvns to vns.
Pure GRASP times varied from less than 0.5 second to less than 7 seconds.
Pure VNS times went from a little over 9 seconds to over 200 seconds.
• The heuristics appeared to be sensitive to problem characteristics. For the
sparsest problems with 800 nodes (G11,G12, and G13), in only 2 of the 9 runs,
did the heuristics find a cut with weight at least as large as 0.87856 of the SDP
upper bound. Likewise, for the sparsest problems with 2000 nodes (G32,G33,
and G34), no heuristic found a cut with weight at least as large as 0.87856 of
the SDP upper bound. On all other instances, all heuristics found a cut with
weight at least as large as 0.87856 of the SDP upper bound.
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The heuristic circut and the six randomized heuristics were run a single time
on the Helmberg and Rendl test instances. For each instance, we ran each of our
heuristics a total of 1000 iterations, i.e. with MaxIterations= 1000. The random
number generator seed 270001 was used on all runs. For each instance, Table 2
shows the cut weights found by circut and each of our six randomized heuristics, as
well as the best known semidefinite programming upper bound (SDP UB). Table 3
lists times (in seconds) to run circut using parameters (N,M) = (50, 10) and to
run 1000 iterations with each randomized heuristic.

On this class of problems, we make the following observations:

• All heuristics were, on average, between 4.5% and 5.4% off from the semidef-
inite programming upper bound.
• With only two exceptions, all heuristics found cuts greater than 0.87856 of
the SDP upper bound. The two exceptions occured with the pure GRASP
(g) on instances G33 and G34.
• For the randomized heuristics g, gvns, and vns, the incorporation of path-
relinking was beneficial, improving some of the solutions, with little additional
computational burden.
• At the expense of increased running times, the use of VNS in the local search
phase of GRASP was beneficial. Likewise, at the expense of increased running
times, using a pure VNS strategy with larger neighborhoods improved upon
GRASP with VNS (with a smaller neighborhood).
• Among the randomized heuristics, the variable neighborhood search with
path-relinking (vnspr) found the best cuts. Heuristic circut found slightly
better solutions than the randomized heuristic vnspr on 13 of the 24 in-
stances. On seven of the 24 instances, vnspr found slightly better cuts, while
on the remaining four instances, cuts of the same weight were found by circut
and vnspr. Overall, the quality of the solutions found by circut and vnspr
differed by less than 0.12%.
• In terms of solution quality, circut and vnspr seemed to be sensitive to
problem characteristics. For problems with |V | = 800, circut found better
solutions for the densest classes (with densities 1.58% and 6.12%), while vnspr
found better solutions for the sparsest class (with density 0.63%). Likewise,
for problems with |V | = 2000, circut found better solutions for the densest
classes (with densities 0.64% and 1.05%), while vnspr found better solutions
for the sparsest class (with density 0.25%). For the three problems with |V | =
1000, all with density 2.1%, circut found better solutions on two instances,
while vnspr found the better solution on the other instance. For the largest
and sparsest instances (|V | = 3000 with density 0.17%) both algorithms found
equally good solutions. The solutions found by both heuristics for G48 and
G49 were optimal.
• Running times for 1000 iterations of the randomized heuristics went from a
factor of 11 with respect to the running time of circut to over a factor of
300. Even when one considers the time to best, vnspr is still over two orders
of magnitude slower than circut.

Since the running times per iteration of our six randomized heuristics vary sub-
stantially, we plot in Figure 9 the empirical distributions of the random variable
time-to-target-solution-value considering instances G11, G12, and G13, using the tar-
get values those found by the pure GRASP in the 1000 iteration runs, i.e. 552, 546,
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and 572, respectively. We performed 200 independent runs of each heuristic using
random number generator seeds 270001, 270002, . . . , and 270200 and recorded the
time taken to find a solution at least as good as the target solution. As in [3], to
plot the empirical distribution we associate with the i-th sorted running time (ti)
a probability pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200.
We make the following observations about the runs shown in Figure 9:
• The pure GRASP (g) is the heuristic that most benefited from path-relinking.
Running times for g varied from less than one second to about 2000 seconds,
while with GRASP with path-relinking (gpr), in 80%, 90%, and 100% of the
200 runs on G13, G12, and G11, respectively, the target solution was found in
less than 10 seconds.
• The second heuristic to most benefit from path-relinking was GRASP with
VNS as the local search procedure (gvns). Heuristic gvns found the tar-
get solution in less than 10 seconds on 17%, 20%, and 38% of the 200 runs
on instances G13, G12, and G11 runs, respectively, while with path-relinking
(gvnspr) found the target solution in less than 10 seconds on 50%, 50%, and
87% of the runs on G13, G12, and G11 runs, respectively.
• Though not as much as GRASP and GRASP with VNS local search, pure
VNS also benefited slightly from path-relinking.
• Overall, pure GRASP with path-relinking was the fastest heuristic to find
sub-optimal solutions with cut weights at least as large as the target values.

In the second part of the experiments, we report on instance pm3-8-50, from
the benchmark problem set of the 7th DIMACS Implementation Challenge 1. This
instance has |V | = 512 nodes and density 1.17%. It was generated by M. Jünger
and F. Liers using the Ising model of spin glasses. The best known solution prior
to this paper was 456 and the best known upper bound is 461. The SDP upper
bound of 527 is far from the optimal. Burer, Monteiro, and Zhang [8] report a
solution of 454 using circut with parameters (N,M) = (8, 100). Using variable
neighborhood search with path-relinking (vnspr), we were able to improve the best
known solution for this instance. We ran the algorithm 60 times, using random
number generator seeds 270001, 270002, . . . , and 270060, for a maximum of 1000
iterations. In 16 of these 60 runs, vnspr found a solution of weight 456. On
the remaining 44 runs, new best known solutions of weight 458 were found. We
recorded the time taken to find a solution of weight 458 and plotted the empirical
distribution of the random variable time-to-target-solution-value in Figure 10. To
plot the empirical distribution, we associate with the i-th sorted running time (ti)
a probability pi = (i− 1

2 )/44, and plot the points zi = (ti, pi), for i = 1, . . . , 44.
Finally, we considered ten instances from MAX-CUT problems arising in physics,

proposed by Burer, Monteiro, and Zhang [8]. These instances correspond to cubic
lattice graphs modeling Ising spin glasses. We used ten instances sg3dl101000,
sg3dl102000, . . . , sg3dl1010000 with |V | = 1000 and density 0.60% and ten
larger and sparser instances sg3dl141000, sg3dl142000, . . . , sg3dl1410000 with
|V | = 2744 and density 0.22%. To the best of our knowledge, SDP upper bounds
are not known for these instances. We ran circut using the most intensive param-
eter settings used in [8], i.e. (N,M) = (50, 10), and the randomized heuristics gpr,
gvnspr, and vnspr for 1000 iterations. Table 4 summarizes the results. For each
instance, the table lists the best cut weights found by each heuristic, as well as the

1http://dimacs.rutgers.edu/Challenges/Seventh/
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Figure 9. Empirical probability distributions of time to target
solution for the six randomized heurisitics on problems G11, G12,
and G13. Target solution is the solution found by the pure GRASP
on the 1000 iteration run.
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total processing times and the time when vnspr made its last solution improve-
ment. Sums of cut weights found by each heuristic over the instances are listed.
Sums of processing times, as well as those sums normalized by the sum of the pro-
cessing times of circut, are also listed for each heuristic. We make the following
observations about these runs:
• The processing time for circut was the smallest. For the three randomized
heuristics gpr, gvnspr, and vnspr, cut weights increased with processing
times.
• On the smaller set of problems, runs for circut were 5 to 180 times faster
than 1000 iterations of the randomized heuristics. On the larger set of prob-
lems, runs for circut were 13 to 530 times faster than 1000 iterations of the
randomized heuristics. Even when considering the time when vnspr stopped
making solution improvements, circut was still on average about 52 and 279
times faster than vnspr, on the smaller and larger set of instances, respec-
tively.
• Overall, vnspr found the best cuts, followed by circut, gvnspr, and gpr.
• On the set of ten smaller instances vnspr found the best solution for nine
instances, while circut found the best solution for only two instances. On
one instance there was a tie.
• On the set of ten larger instances vnspr found the best solution for seven
instances, while circut found the best solution for four instances. On two
instances both heuristics found solutions with the same weight.
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4. Concluding remarks

In this paper we proposed, implemented, and tested six randomized heuristics
for the MAX-CUT problem. The heuristics are derived from a greedy randomized
adaptive search procedure (GRASP), variable neighborhood search (VNS), and
path-relinking (PR).

Without adding much additional computational burden, path-relinking is able
to improve the basic GRASP, the basic VNS, as well as the GRASP with VNS local
search. GRASP benefits the most from path-relinking, with VNS enjoying the least
benefit. GRASP with path-relinking was the fastest among the six randomized
heuristics to converge to a solution with the weight at least as good as a specified
sub-optimal value. The VNS with path-relinking found the best-quality solutions,
but required the longest running times.

The randomized heuristics can quickly find solutions that are competitive with
those found by the randomized algorithm of Goemans and Williamson [22], such
as implemented by Benson, Ye, and Zhang [6] and, at the expense of additional
processing time, can find solutions that come within 5% of the semidefinite pro-
gramming (SDP) upper bound. For many sparse instances, better cuts than those
found by the rank-2 relaxation heuristic of Burer, Monteiro, and Zhang [8] where
identified. On problems arising from physics, one of the randomized heuristics
(variable neighborhood search with path-relinking) improved the best known lower
bound for pm-3-8-50, a problem from the 7th DIMACS Implementation Chal-
lenge. On Ising spin glasses problems on lattice graphs, the variable neighborhood
search with path-relinking found smaller cut weights than circut on only five of
20 instances, again at the expense of longer processing times.

As shown in [1], the random variable time-to-target-solution-value in GRASP
with path-relinking fits a two-parameter exponential distribution. Consequently,
one can expect good speed-ups in a parallel implementation of this algorithm.

We experimented with only one neighborhood parameter setting for GRASP
with VNS local search, as well as with pure VNS. A more systematic investigation
of different parameter settings may yield algorithm with improved performance.
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