
A GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

FOR JOB SHOP SCHEDULING

S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

Abstract. In the job shop scheduling problem (JSP), a finite set of jobs is
processed on a finite set of machines. Each job is characterized by a fixed
order of operations, each of which is to be processed on a specific machine
for a specified duration. Each machine can process at most one job at a time
and once a job initiates processing on a given machine it must complete pro-
cessing uninterrupted. A schedule is an assignment of operations to time slots
on the machines. The objective of the JSP is to find a schedule that mini-
mizes the maximum completion time, or makespan, of the jobs. In this paper,
we describe a greedy randomized adaptive search procedure (GRASP) for the
JSP. A GRASP is a metaheuristic for combinatorial optimization. Although
GRASP is a general procedure, its basic concepts are customized for the prob-
lem being solved. We describe in detail our implementation of GRASP for job
shop scheduling. Further, we incorporate to the conventional GRASP two new
concepts: an intensification strategy and POP (Proximate Optimality Princi-
ple) in the construction phase. These two concepts were first proposed by
Fleurent & Glover (1999) in the context of the quadratic assignment problem.
Computational experience on a large set of standard test problems indicates
that GRASP is a competitive algorithm for finding approximate solutions of
the job shop scheduling problem.

1. Introduction

In the job shop scheduling problem (JSP), a finite set of jobs is processed on a
finite set of machines. Each job is characterized by a fixed order of operations, each
of which is to be processed on a specific machine for a specified duration. Each
machine can process at most one job at a time and once a job initiates processing
on a given machine it must complete processing on that machine uninterrupted.
A schedule is an assignment of operations to time slots on the machines. The
makespan is the maximum completion time of the jobs. The objective of the JSP
is to find a schedule that minimizes the makespan.

Formally, the JSP can be stated as follows. Given a set M of machines (denote
the size of M by |M|) and a set J of jobs (denote the size of J by |J |), let

σj1 ≺ σj2 ≺ · · · ≺ σj|M| be the ordered set of |M| operations of job j, where σjk ≺ σ
j
k+1

indicates that operation σjk+1 can only start processing after the completion of

operation σjk. Let O be the set of operations. Each operation σjk is defined by two

parameters: Mj
k is the machine on which σjk is processed and pjk = p(σjk) is the

Date: December 2000.
Key words and phrases. Combinatorial optimization, job shop scheduling, local search,

GRASP, intensification, proximal optimality principle, probabilistic algorithm.
AT&T Labs Research Technical Report: 00.6.2.

1

2 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

processing time of operation σjk . Defining t(σjk) to be the starting time of the k-th

operation σjk ∈ O, a disjunctive programming formulation for the JSP is as follows:

minimize Cmax

subject to: Cmax ≥ t(σjk) + p(σjk), for all σjk ∈ O,
t(σjk) ≥ t(σjl) + p(σjl), for all σjl ≺ σ

j
k,(1a)

t(σjk) ≥ t(σil) + p(σil) ∨(1b)

t(σil) ≥ t(σjk) + p(σjk), for all σil , σ
j
k ∈ O such that Mσil

=Mσjk
,

t(σjk) ≥ 0, for all σjk ∈ O,

where Cmax is the makespan to be minimized.
A feasible solution of the JSP can be built from a permutation of J on each

of the machines in M, observing the precedence constraints, the restriction that a
machine can process only one operation at a time, and requiring that once started,
processing of an operation must be uninterrupted until its completion. Once the
permutation of J is given, evaluate its makespan Cmax can be done in O(|J | · |M|),
see [38]. Each set of permutations has a corresponding schedule. Thus, the objective
of the JSP is to find a set of permutations with the smallest makespan.

The JSP is NP-hard [28] and has continuously challenged computational re-
searchers. Even instances with three machines and unit processing times, as well
as instances with three jobs, are NP-hard. If preemption is allowed, the JSP re-
mains NP-hard. Exact methods [3, 8–10, 23] have been successful in solving small
instances, including the notorious 10 × 10 instance of Fisher and Thompson [20],
proposed in 1963 and only solved twenty years later. Problems of dimension 15×15
are usually considered to be beyond the reach of exact methods. For such prob-
lems there is a need for good heuristics. Surveys of heuristic methods for the JSP
are given in [33, 39]. These include dispatching rules reviewed in [22], the shift-
ing bottleneck approach [1,3], local search [30,31,39], simulated annealing [30,40],
tabu search [31,32,38], and genetic algorithms [11]. A comprehensive survey of job
shop scheduling techniques can be found in Jain and Meeran [25]. In this paper we
present a greedy randomized adaptive search procedure (GRASP) for the job shop
scheduling problem.

Our interest in studying a new heuristic for a problem for which many efficient
heuristics have been proposed is motivated by several observations. GRASP has
been applied with success to a number of scheduling problems [4,5,12–14,17,18,26,
29, 35, 36, 41]. A natural question is whether it can find good solutions to the job
shop scheduling problem. The new heuristic is not only another tool in the toolset
of practitioners, but can also serve as a building block for researchers who want to
investigate heuristic refinements, such as intensification strategies or parallelization
schemes. GRASP has several characteristics which make it appealing for a heuristic
designer. It is a metaheuristic and therefore is built on well defined and understood
concepts. It can usually be implemented quickly, since construction and local search
algorithms for the job shop scheduling problem are readily available. Parameter
tuning is minimal. Finally, because of the probability distribution of its running
time to find a suboptimal target solution, GRASP can be implemented in parallel
with optimal speed-up.

A GRASP FOR JOB SHOP SCHEDULING 3

The remainder of the paper is organized as follows. In Section 2, we make a
brief review of the building blocks of GRASP. Section 3 focuses on a basic GRASP
for the job shop scheduling problem, describing a construction mechanism and a
local search algorithm. In Sections 4 and 5, an intensification scheme that makes
use of memory mechanisms and the use of the proximal optimality principle are
incorporated to the basic GRASP. Computational results are reported in Section 6
and concluding remarks are made in Section 7.

2. A brief review of GRASP

In this paper, we apply the concepts of GRASP (greedy randomized adaptive
search procedures) to the job shop scheduling problem. GRASP [15,16] is an itera-
tive process, where each GRASP iteration consists of two phases: construction and
local search. The construction phase builds a feasible solution, whose neighborhood
is explored by local search. The best solution over all GRASP iterations is returned
as the result.

In the construction phase, a feasible solution is built, one element at a time.
At each construction iteration, the next element to be added is determined by
ordering all elements in a candidate list with respect to a greedy function that
measures the (myopic) benefit of selecting each element. This list is called the RCL
(restricted candidate list). The adaptive component of the heuristic arises from the
fact that the benefits associated with every element are updated at each iteration
of the construction phase to reflect the changes brought on by the selection of the
previous elements. The probabilistic component of a GRASP is characterized by
randomly choosing one of the best candidates in the RCL, but usually not the best
one. This way of making the choice allows for different solutions to be obtained
at each GRASP iteration, while not necessarily jeopardizing the adaptive greedy
component.

The solutions generated by a GRASP construction phase are not guaranteed
to be locally optimal with respect to simple neighborhood definitions. Hence, it
is almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an iterative fashion by
successively replacing the current solution by a better solution from its neighbor-
hood. It terminates when there is no better solution found in the neighborhood
with respect to some cost function.

Figure 1 illustrates a generic GRASP implementation in pseudo-code. Input for
GRASP includes parameters for setting the candidate list size and the maximum
number of GRASP iterations, and the seed for the random number generator. The
GRASP iterations are carried out in lines 1–5. Each GRASP iteration consists of
the construction phase (line 2), the local search phase (line 3) and, if necessary, the
incumbent solution update (line 4).

GRASP has been applied successfully to numerous combinatorial optimization
problems, including set covering, quadratic assignment, satisfiability, vehicle rout-
ing, location problems, maximum independent set, feedback vertex set, transmission
network expansion planning, and graph planarization. For an annotated bibliogra-
phy of GRASP, see Festa and Resende [19].

4 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

procedure GRASP(ListSize,MaxIter,RandomSeed)
1 do k = 1, . . . , MaxIter →
2 ConstructSolution(ListSize,RandomSeed);
3 LocalSearch(BestSolutionFound);
4 UpdateSolution(BestSolutionFound);
5 od;
6 return BestSolutionFound

end GRASP;

Figure 1. A generic GRASP pseudo-code.

3. GRASP for Job Shop Scheduling

In this section, we specialize GRASP for the job shop scheduling problem (JSP).
We first describe a basic construction scheme and then show a local search algorithm
that uses disjunctive graphs.

3.1. Construction phase. The GRASP construction phase builds a feasible so-
lution, one element at a time. In the JSP, we consider a single operation to be the
building block of the construction phase. That is, we build a feasible schedule by
scheduling individual operations, one at a time, until all operations are scheduled.

Recall that σjk denotes the k-th operation of job j and is defined by the pair

(Mj
k, p

j
k), where Mj

k is the machine on which operation σjk is performed and pjk is

the processing time of operation σjk.
While constructing a feasible schedule, not all operations can be selected at a

given stage of the construction. An operation σjk can only be scheduled if all prior
operations of job j have already been scheduled. Therefore, at each construction
phase iteration, at most |J | operations are candidates to be scheduled. Let this
set of candidate operations be denoted by Oc and the set of already scheduled
operations by Os.

More than one greedy algorithm can be proposed for the JSP. One such algorithm
consists of selecting the operation σjk that results in the smallest increase in the
makespan of the already scheduled jobs to schedule next. Let the adaptive greedy
function h(σ) denote the makespan resulting from the addition of operation σ to
the already scheduled operations, i.e.

h(σ) = Cmax for O = {Os ∪ σ}.
The greedy choice is to next schedule operation

σ = argmin(h(σ) | σ ∈ Oc).
Defining

σ = argmax(h(σ) | σ ∈ Oc),
h = h(σ), and h = h(σ), the GRASP restricted candidate list (RCL) is defined as

RCL = {σ ∈ Oc | h ≤ h(σ) ≤ h+ α(h− h)},
where α is a parameter such that 0 ≤ α ≤ 1.

A GRASP FOR JOB SHOP SCHEDULING 5

S

5

15

4

10

20

5

2

10

10

T

J1

J2

J3

M1 M2

M3

Figure 2. Disjunctive graph: representation of schedule.

The next operation to be scheduled is chosen at random from the RCL. In
a standard GRASP, the candidates in the RCL are assigned equal probabilities
of being chosen. However, any probability distribution can be used to bias the
selection towards some particular candidates. Bresina [7] introduced a family of
such probability distributions. In Bresina’s selection procedure, the candidates are
ranked according to the greedy function. Let r(σ) denote the rank of element σ,
Bresina studied several bias functions, e.g. random bias, bias(r) = 1, for r ∈ RCL,
linear bias, bias(r) = 1/r, for r ∈ RCL, log bias, bias(r) = log−1(r + 1), for
r ∈ RCL, exponential bias, bias(r) = e−r, for r ∈ RCL, and polynomial bias of
order n, bias(r) = r−n, for r ∈ RCL. In this work we will also use Bresina’s
selection procedure, but restricted to elements of the RCL.

Once we evaluate bias values for all elements of the RCL, we can calculate the
probability π(σ) of selecting operation σ as

π(σ) =
bias(r(σ))∑

σ′∈RCL bias(r(σ′))
.(2)

Note that the standard GRASP uses a random bias function.
A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled
is selected from the RCL and is added to the partial schedule, resulting in a new
partial schedule. Construction ends when the partial schedule is complete, i.e. all
operations have been scheduled.

3.2. Local search phase. Since there is no guarantee that the schedule obtained
in the construction phase is locally optimal with respect to the local neighborhood
being adopted, local search may improve the constructed solution.

The local search algorithm employed in this GRASP for JSP is the two exchange
local search based on the disjunctive graph model of Roy and Sussmann [37]. In
this model, the disjunctive graph G = (V,A,E) is defined such that

V = {O ∪ {0, |J | · |M|+ 1}}

6 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

S

5

15

4

10

20

5

2

10

10

T

J1

J2

J3

M1 M2

M3
0

0

4

15

4

5

30

5

5

4

10

17
27

50

15

27

60

17

J3

J2

J1

60503015105

Figure 3. Disjunctive graph: critical path with a makespan of 60.

S

5

15

4

10

20

5

2

10

10

T

J1

J2

J3

M1 M2

M3
0

0

4

4

5

19

5

4
19

5

10

31
41

39

29

41

51

31

J3

J2

J1

6051413119105

Figure 4. Disjunctive graph: recomputing the critical path with
a makespan of 51.

is the set of nodes, where {0} and {|J | · |M| + 1} are artificial source and sink
nodes, respectively,

A = {(v, w) | v, w ∈ O, v ≺ w} ∪
{(0, w) | w ∈ O,

�
v ∈ O 3 v ≺ w} ∪

{(v, |J | · |M|+ 1) | v ∈ O,
�
w ∈ O 3 w ≺ v}

A GRASP FOR JOB SHOP SCHEDULING 7

is the set of directed arcs connecting consecutive operations of the same job, and

E = {(v, w) | Mv =Mw}
is the set of edges that connect operations on the same machine. Vertices in the
disjunctive graph model are weighted. Vertices 0 and |J | · |M| + 1 have weight
zero, while the weight of vertex i ∈ {1, . . . , |J | · |M|} is the processing time of the
operation corresponding to vertex i. Notice that the edges of A and E correspond,
respectively, to constraints (1a) and (1b) of the disjunctive programming formula-
tion of the JSP. An example of a disjunctive graph for a 3-job, 3-machine instance
is shown in Figure 2.

A feasible schedule consists in giving an orientation for the edges in E. Given
an orientation of E, one can compute the earliest start time of each operation by
computing the longest (weighted) path from node 0 to the node corresponding to
the operation. Consequently, the makespan of the schedule can be computed by
finding the critical (longest) path from node 0 to node |J | · |M|+ 1, as illustrated
in Figure 3. Thus, the objective of the JSP is to find an orientation of E such that
the longest path in G is minimized.

Taillard [38] describes an O(|J | · |M|) algorithm to compute the longest path on
G and an O(|J | · |M|) procedure to recompute the makespan when two consecutive
operations in the critical path (on the same machine) are swapped.

Taillard [38] describes an O(|J · M|) algorithm to compute the longest path in
G. Also, he shows that the entire neighborhood of a given schedule, where the
neighborhood is defined by the swap of two consecutive operations in the critical
path, can be examined, i.e. have their makespan computed, in complexity O(|J ·
M|) given that the longest path of G was evaluated. We use these procedures in
our local search.

The local search procedure begins by identifying the critical path in the dis-
junctive graph corresponding to the schedule produced in the construction phase.
All pairs of consecutive operations sharing the same machine in the critical path
are tentatively exchanged. If the exchange improves the makespan, it is accepted.
Otherwise, the exchange is undone. Once an exchange is accepted, the critical path
may change and a new critical path must be identified. If no pairwise exchange
of consecutive operations in the critical path improves the makespan, the current
schedule is locally optimal and the local search ends. For example, in Figure 4, the
second operation of job 3 was exchanged with the first operation of job 1, resulting
in an improvement of the makespan.

4. Intensification

One possible shortcoming of the standard GRASP framework is the indepen-
dence of the GRASP iterations, i.e. the fact that GRASP does not learn from
the history of solutions found in previous iterations. This is so because the stan-
dard GRASP discards information about any solution encountered that does not
improve upon the incumbent. An obvious use of the information obtained from
the “good” solutions is to implement a memory-based procedure to influence the
construction phase by modifying the probabilities assigned to each RCL element,
see eq. (2). Fleurent and Glover [21] introduced one such memory-based scheme.
Their approach was illustrated in the context of the quadratic assignment problem
(QAP), but is general and can be adapted to multistart methods, such as GRASP,

8 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

for other combinatorial optimization problems. In this section, we present an inten-
sification scheme based on the approach of Fleurent and Glover but specialized for
the GRASP for JSP. Other enhancements to GRASP that make use of historical
information include path relinking [27] and reactive GRASP [34].

The idea in the approach of Fleurent and Glover is to maintain a set E of up to
q diverse elite solutions and use this set to guide the construction phase of GRASP.
A schedule found in any GRASP iteration is a candidate to be included in the
elite set if its makespan is less than the largest makespan of the elite schedules. A
candidate schedule is made elite if its makespan is smaller than the makespan of
the best elite schedule (the elite schedule having the smallest makespan) or it is
sufficiently different from all elite schedules. The elite set of schedules is initially
empty and its worst makespan is arbitrarily set to ∞. This is kept set to ∞ until
the q elite schedules are included in the elite set. Once the elite set has q schedules
and a new schedule is to be added to the elite set, the elite schedule having the
largest makespan is removed from the elite set.

One way to measure the difference between two schedules is to compare the
order of jobs processed at each machine. Another approach is to compare start
times of each operation in each schedule. In the GRASP described in this paper,
the latter approach is used because of its ease of implementation. A measure of non-
similarity of two schedules is the number of different start times in both schedules.
Let ∆(A,B) be the number of operations having different start times in schedules A
and B and let δ be a parameter used to differentiate diverse schedules from similar
schedules. Furthermore, let G denote a GRASP schedule that is a candidate to
become elite. For all elite schedules Ei, i = 1, . . . , q, if ∆(G, Ei) ≥ δ · |J | · |M|,
schedule G is made elite because it is sufficiently different from all elite schedules.

We next show how the set of elite solutions can be used to guide the search
procedure in the construction phase. As in Fleurent and Glover [21], the idea is to
bias the construction procedure to reinforce good characteristics of elite solutions.
Our implementation of this concept differs slightly from the implementation of
Fleurent and Glover. Define t(S, σ) to be the start time of operation σ in schedule
S and Sp to be the partial schedule under construction. For σ ∈ RCL, the intensity
index is defined as

I(σ) =
∑

s∈H

Cmax(E∗)
Cmax(S)

,

where Cmax(E∗) is the makespan of the best elite solution E∗ and Cmax(S) is the
makespan of schedule S, and

H = {S ∈ E | t(S, σ) = t(Sp, σ), for all σ ∈ RCL},
is the set of elite schedules with operation σ having identical start time as operation
σ of the partial schedule under construction. It is easy to see that the intensity
of operation σ increases with the number of elite schedules having identical start
times for this operation.

As discussed previously, the intensity function is used to alter the greedy heuristic
function used in the construction phase. To accomplish this, define the new heuristic
function, for all σ ∈ RCL, to be

h′(σ) = λ
h

h(σ)
+ I(σ),(3)

A GRASP FOR JOB SHOP SCHEDULING 9

where λ is an adjustable parameter used to take into account the fact that 0 ≤
h/h(σ) ≤ 1 and 0 ≤ I(σ) ≤ q, where q is the number of elite schedules, and as
defined previously, h = h(σ).

To give equal emphasis to h/h(σ) and I(σ), one would set λ = q. A strategy for
setting the values of λ, suggested by Fleurent and Glover, is to give more emphasis
to h/h(σ) in the early stages of the run and gradually shift the emphasis towards the
intensity function. In this implementation, we use a scheme based on the variance
of the makespan obtained for the last block of k GRASP iterations. If the variance
increases, the λ parameter increases by 10. Otherwise, if the variance decreases, the
λ parameter decreases by 10. For the first block of 2k iterations, we take λ = 100q.

Having defined the new heuristic function, we are ready to describe the procedure
used for selecting an element from the restricted candidate list. Initially, the RCL
is set up in the same manner as described in Subsection 3.1. To select the next
operation to be scheduled from the RCL, the new heuristic function is applied
to all operations in the RCL and the operations are ranked according to their
new heuristic function values. The probability of selecting each RCL operation
is evaluated by (2) and an operation is sampled from the RCL according to this
probability distribution.

5. Proximate Optimality Principle

In the construction phase of GRASP, schedules are built one operation at a
time. The Proximate Optimality Principle (POP) [24], applied to this scheduling
problem, states that good solutions of partial schedules with v operations are close
to good solutions of partial schedules with v+ 1 operations. An error in scheduling
an operation early in the construction process may lead to other errors in scheduling
operations that follow. The standard framework of GRASP corrects these erroneous
steps with a local search procedure when the partial schedule is complete. However,
due to the nature of local search procedures (such as 2-exchange), it may be difficult
to identify and disassemble the erroneous decisions.

Fleurent and Glover [21] introduced the POP concept within the framework
of a constructive multi-start method for the QAP. Periodically, they execute a
local search procedure on a partial assignment (a restricted QAP problem) with
the objective of reevaluating the assignments that were previously selected in the
construction phase. In the context of job shop scheduling, the idea is similar, i.e.
after a number of operations have been scheduled, the local search algorithm is
executed on the partial schedule with the objective of reducing the makespan of
the partial schedule.

To implement POP for the JSP, we use a slightly modified disjunctive graph
based local search. Let Sp be the partial schedule and Op the corresponding opera-
tions of Sp. The disjunctive graph is built using only already-scheduled operations
(from set Op), while the remaining operations are grouped in the sink node, as il-
lustrated in Figure 5. In this way, only operations that have been already scheduled
are allowed to be swapped in the local search. For example, in Figure 6, the second
operation of job 2 was exchanged with the first operation of job 1, resulting in an
improvement in the makespan of the schedule under construction. After executing
POP in the partial schedule, we continue scheduling the yet unscheduled operations
in the construction phase.

10 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

S

5

15

4

10

20

5

2

10

10

T

J1

J2

J3

M1 M2

M3
0

0

4

15

4

5

30

5

5

4

10

50

15

J3

J2

J1

503015105

Figure 5. POP: Critical path of a partial schedule with a
makespan of 50.

S

5

15

4

10

20

5

2

10

10

T

J1

J2

J3

M1 M2

M3
0

0

4

4

5

19

5

4
19

5

10

39

29

J3

J2

J1

50393119105

Figure 6. POP: Recomputing critical path and the partial sched-
ule with a makespan of 39.

Because local search can be computationally demanding, POP cannot be applied
at each iteration of the construction procedure. In the implementation used in this
paper, a parameter freq is used to determine when POP is applied. This parameter
indicates the frequency of application of POP. For example, freq = 40 forces POP
to be applied after 40% and 80% of the operations have been scheduled in the
construction phase.

A GRASP FOR JOB SHOP SCHEDULING 11

8000

8200

8400

8600

8800

9000

9200

9400

9600

9800

0.001 0.01 0.1 1 10 100

m
ak

es
pa

n

time (seconds)

Figure 7. Problem car4: Incumbent makespan as a function of
CPU time for five independent runs of GRASP. Runs stop when
solution with a makespan of 8003 is found.

1200

1250

1300

1350

1400

1450

0.001 0.01 0.1 1 10 100 1000

m
ak

es
pa

n

time (seconds)

Figure 8. Problem la15: Incumbent makespan as a function of
CPU time for five independent runs of GRASP. Runs stop when
solution with a makespan of 1207 is found.

6. Computational experiments

To illustrate the effectiveness and performance of an implementation of the
GRASP described in this paper, we consider 66 instances from five classes of stan-
dard JSP test problems: abz, car, la, mt, and orb. Problem dimensions vary
from 6 to 30 jobs and 4 to 20 machines. All test instances were downloaded from
Beasley’s OR-Library [6], http://mscmga.ms.ic.ac.uk.

12 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

1250

1300

1350

1400

1450

0.001 0.01 0.1 1 10 100 1000

m
ak

es
pa

n

time (seconds)

Figure 9. Problem abz5: Incumbent makespan as a function of
CPU time for five independent runs of GRASP. Runs stop when
solution with a makespan of 1238 is found.

900

950

1000

1050

1100

1150

1200

1250

0.001 0.01 0.1 1 10 100 1000 10000 100000

m
ak

es
pa

n

time (seconds)

Figure 10. Problem mt10: Incumbent makespan as a function of
CPU time for five independent runs of GRASP. Runs stop when
solution with a makespan of 938 is found.

The experiments were done on a Silicon Graphics Challenge computer (196 MHz
MIPS R10000 processor). The codes were compiled with the SGI MIPSpro F77
compiler using flags -O3 -static. The CPU times are measured with the system
routine etime.

Extensive testing of the code, which we will not discuss here, determined a suit-
able choice of parameters. In general, we observed that the GRASP with intensifica-
tion did better, i.e. improved the results, than the GRASP without intensification.
An intensification scheme with an elite set of 30 solutions and a discrimination

A GRASP FOR JOB SHOP SCHEDULING 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

pr
ob

ab
ili

ty

time (seconds)

Figure 11. Problem la27: Superimposed empirical and theo-
retical distributions of time to sub-optimal within 10% of best
known solution. Theoretical probability distribution is F (t) =
1 − e−(t+0.649)/58.8688. Plot produced with data from 200 inde-
pendent runs of GRASP.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

pr
ob

ab
ili

ty

time (seconds)

Figure 12. Problem orb7: Superimposed empirical and theo-
retical distributions of time to sub-optimal within 1% of best
known solution. Theoretical probability distribution is F (t) =
1 − e−(t−114.875)/733.5056. Plot produced with data from 200 in-
dependent runs of GRASP.

threshold value δ = 0.8 was used. The variance of the makespans is computed ev-
ery k = 100 iterations and the intensification parameter λ is adjusted as described
in Section 4. As well, we observed that the GRASP with POP local search did
better than the GRASP without POP. Consequently, we opted to experiment with

14 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

a GRASP having POP. POP was activated with parameter freq = 40. In these
experiments, the RCL parameter α is selected at random from the uniform distri-
bution in the interval [0, 1] and is fixed during each GRASP iteration. In general,
we observed that the linear bias function was the best among the bias functions.
Accordingly, a linear bias function was used for selecting candidates from the RCL.

Our objective with these experiments was to observe the general behavior of the
algorithm, as well as learn how the algorithm performs on a standard set of test
problems, i.e. how close to the best known solution (BKS) can the algorithm come.

Figures 7 – 10 show the general behavior of the algorithm on test problems
car4, la15, abz5, and mt10, respectively. These figures show the best makespan
(incumbent) as a function of CPU time for five runs of GRASP (each using a distinct
initial random number generator seed). The stopping criterion on these runs was
solution quality. The runs terminated after the algorithm produced for the first
time the best known GRASP solution. For the first two instances, these solutions
are optimal, while for abz5 the best known GRASP solution is about 0.3% off of
the optimal and for mt10 the best known GRASP solution is about 1% off of the
optimal. In these figures, one can observe the wide distribution of CPU times.

As was shown by Aiex, Resende, and Ribeiro [2], many GRASP implementations
have CPU time to find a given target solution that fits a two-parameter exponen-
tial distribution. This also appears to be the case for the GRASP for job shop
scheduling described in this paper. Figures 11 and 12 show superimposed empirical
and theoretical distributions of solution time to a target solution within 10% of
the BKS for la27 and within 1% of the BKS for orb7, respectively. Each figure is
generated with data from 200 independent runs of GRASP (using distinct initial
random number generator seeds). The parameters of the two-parameter exponen-
tial distribution were estimated using the methodology described in [2]. Figure 11
shows, for example, that the probability of finding a solution within 10% of the
BKS for la27 in less than 50 seconds on an SGI 196-MHz R10000 processor is
about 60%, while with about 80% probability one expects to find such a solution
in less than 100 seconds.

To learn how the algorithm performs with respect to solution quality, we ran the
implementation extensively on all of the test problems. The number of GRASP
iterations was often in the millions (accomplished by restarting the procedure with
different initial random number generator seeds). Tables 1 and 2 report these
results. Each table lists, for each test problem, its name, dimension (number of
jobs and number of machines), the total number of GRASP iterations executed,
the CPU time in SGI 196-MHz R10000 seconds per 1000 iterations, the value of
the best known solution (BKS), the value of the best solution found by GRASP,
and the relative error (in %) of the GRASP solution with respect to the BKS.

Of the 66 instances, GRASP found the BKS in 31 cases (47%). It was within
0.5% of the BKS in 38 instances (58%). In 44 cases (67%), the GRASP solution
was within 1% of the BKS, and in 49 cases (74%), it was within 2% if the BKS. In
57 instances (86%) the GRASP solution was within 5% of the BKS, while for all
cases the GRASP solution was within 10.5% of the BKS.

Tables 3 and 4 summarize these results by problem class. Table 3 shows, for each
problem class, its name, the sum of the BKS values, the sum of the best GRASP
solution values, and the relative error of the sum of the best GRASP solution values
with respect to the sum of the BKS values. Table 4 shows, for each problem class,
its name, the percentage of instances for which a GRASP solution within 0.5%, 1%,

A GRASP FOR JOB SHOP SCHEDULING 15

Table 1. Experimental results on problem classes abz, car, mt,
and orb. Table shows problem name, problem dimension (jobs and
machines), total number of GRASP iterations performed, CPU
time per 1000 GRASP iterations, the best known solution (BKS),
the best solution found by GRASP, and the relative percentual
error of the GRASP solution with respect to the BKS.

iterations time per 1000 GRASP relative error
problem jobs machines (×106) iterations BKS solution (%)

abz5 10 10 20.1 0.3s 1234 1238 0.3
abz6 10 10 20.1 3.1s 943 947 0.4
abz7 15 20 20.1 17.4s 665 723 8.7
abz8 15 20 20.1 18.2s 670 729 8.8
abz9 15 20 20.1 17.1s 691 758 9.7

car1 11 5 0.1 1.4s 7038 7038 0.0
car2 13 4 0.1 1.5s 7166 7166 0.0
car3 12 5 240.1 1.5s 7312 7366 0.7
car4 14 4 0.1 1.6s 8003 8003 0.0
car5 10 6 20.1 1.3s 7702 7702 0.0
car6 8 9 10.1 1.5s 8313 8313 0.0
car7 7 7 0.1 1.0s 6558 6558 0.0
car8 7 7 0.1 1.0s 8264 8264 0.0

mt06 6 6 0.1 0.7s 55 55 0.0
mt10 10 10 90.1 2.9s 930 938 0.9
mt20 20 5 90.1 4.3s 1165 1169 0.3

orb1 10 10 40.1 2.9s 1059 1070 1.0
orb2 10 10 40.1 3.8s 888 889 0.1
orb3 10 10 40.1 3.1s 1005 1021 1.6
orb4 10 10 40.1 3.1s 1005 1031 2.6
orb5 10 10 40.1 2.8s 887 891 0.5
orb6 10 10 40.1 3.1s 1010 1013 0.3
orb7 10 10 10.1 3.2s 397 397 0.0
orb8 10 10 40.1 3.1s 899 909 1.1
orb9 10 10 40.1 3.1s 934 945 1.2
orb10 10 10 40.1 2.9s 944 953 1.0

2%, 5%, and 10% of the BKS was produced. From these tables, one can conclude
that the easiest classes are car and mt, for which all GRASP solutions are within
1% of the BKS, while the most difficult are orb, la, and abz. Problem class abz

was the one for which GRASP did worst, achieving an overall relative error of 4.52%
with respect to the BKS. On the other two “hard” classes, the overall relative errors
were much lower, 1.01% and 1.74%.

To compare the results obtained in this study with those obtained for other
heuristics is a difficult task and is beyond the scope of this paper. The reader is
referred to the survey of Jain and Meeran [25] where one attempt to tabulate results
obtained using different methods is made.

7. Concluding remarks

We describe a new algorithm for finding approximate solutions to the job shop
scheduling problem. The algorithm is a greedy randomized adaptive search pro-
cedure (GRASP) with an intensification-enhanced construction phase which also
makes use of the Proximate Optimality Principle (POP) to correct imperfections

16 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

Table 2. Experimental results on problem classes la. Table
shows problem name, problem dimension (jobs and machines), to-
tal number of GRASP iterations performed, CPU time per 1000
GRASP iterations, the best known solution (BKS), the best so-
lution found by GRASP, and the relative percentual error of the
GRASP solution with respect to the BKS.

iterations time per 1000 GRASP relative error
problem jobs machines (×106) iterations BKS solution (%)

la01 10 5 0.1 1.4s 666 666 0.0
la02 10 5 0.1 1.4s 655 655 0.0
la03 10 5 50.1 1.3s 597 604 1.2
la04 10 5 0.1 1.3s 590 590 0.0
la05 10 5 0.1 1.3s 593 593 0.0

la06 15 5 0.1 2.4s 926 926 0.0
la07 15 5 0.1 2.5s 890 890 0.0
la08 15 5 0.1 2.4s 863 863 0.0
la09 15 5 0.1 2.9s 951 951 0.0
la10 15 5 0.1 2.5s 958 958 0.0

la11 20 5 0.1 4.1s 1222 1222 0.0
la12 20 5 0.1 3.9s 1039 1039 0.0
la13 20 5 0.1 4.3s 1150 1150 0.0
la14 20 5 0.1 3.9s 1292 1292 0.0
la15 20 5 0.1 4.1s 1207 1207 0.0

la16 10 10 50.1 3.1s 945 946 0.1
la17 10 10 20.1 3.0s 784 784 0.0
la18 10 10 20.1 2.9s 848 848 0.0
la19 10 10 10.1 3.1s 842 842 0.0
la20 10 10 50.1 3.2s 902 907 0.6

la21 15 10 50.1 6.5s 1047 1091 4.2
la22 15 10 50.1 6.3s 927 960 3.6
la23 15 10 10.1 6.5s 1032 1032 0.0
la24 15 10 10.1 6.4s 935 978 4.6
la25 15 10 10.1 6.4s 977 1028 5.2

la26 20 10 10.1 10.8s 1218 1271 4.4
la27 20 10 10.1 10.9s 1235 1320 6.9
la28 20 10 10.1 10.9s 1216 1293 6.3
la29 20 10 10.1 11.1s 1157 1293 11.8

la30 20 10 10.1 10.5s 1355 1368 1.0

la31 30 10 10.1 22.9s 1784 1784 0.0
la32 30 10 10.1 23.9s 1850 1850 0.0
la33 30 10 10.1 23.9s 1719 1719 0.0
la34 30 10 10.1 23.8s 1721 1753 1.9
la35 30 10 10.1 22.0s 1888 1888 0.0

la36 15 15 11.2 10.3s 1268 1334 5.2
la37 15 15 11.2 10.3s 1397 1457 4.3
la38 15 15 11.2 10.6s 1196 1267 5.9
la39 15 15 11.2 10.3s 1233 1290 4.6
la40 15 15 11.2 11.0s 1222 1259 3.0

made in the construction phase. Local search is the standard two-exchange based
on the disjunctive graph model. In general, the GRASP with intensification and
POP was slightly better than a variant without those schemes.

The algorithm was evaluated on 66 standard test problems and was shown to
produce optimal or near-optimal solutions on all instances. Though we verified

A GRASP FOR JOB SHOP SCHEDULING 17

Table 3. Experimental results: Overall solution quality by prob-
lem class. Sum of all best known solutions (BKS) for each class is
compared with sum of best GRASP solutions. Relative error is of
GRASP solution with respect to BKS.

sum of sum of relative
problem BKS GRASP sol. error (%)

abz 4203 4395 4.56
car 60356 60410 0.09
mt 2150 2162 0.56
orb 9028 9119 1.01
la 44297 45168 1.97

Table 4. Experimental results: Percentage of GRASP solutions
within a tolerance of the best known solution (BKS).

percentage of GRASP solutions within
problem BKS 0.5% of BKS 1% of BKS 2% of BKS 5% of BKS 10% of BKS

abz 0.0 40.0 40.0 40.0 40.0 100.0
car 87.5 87.5 100.0 100.0 100.0 100.0
mt 33.3 66.6 100.0 100.0 100.0 100.0
orb 10.0 40.0 60.0 90.0 100.0 100.0
la 44.4 57.5 62.5 67.5 85.0 97.5

that the time to target sub-optimal solution fits well a two-parameter exponential
distribution for only two instances, we feel that this is the case in general. Hence,
as discussed in [2], this algorithm can achieve linear speed-up with a parallel im-
plementation.

To find better solutions on some of the notoriously difficult instances, such as
abz9 and la29, where the algorithm found solutions about 10% off of the best
known solution, an intensification scheme may be required to search the solution
space around the elite solutions. One way in which this can be done is via path
relinking, as described by Laguna and Mart́ı [27].

References

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop scheduling.
Management Science, 34:391–401, 1988.

[2] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time
in GRASP: An experimental investigation. Technical report, Information Sciences Research
Center, AT&T Labs Research, Florham Park, NJ 07932 USA, 2000. To appear in J. of
Heuristics.

[3] D. Applegate and W.Cook. A computational study of the job-shop scheduling problem. ORSA
Journal on Computing, 3:149–156, 1991.

[4] J.F. Bard and T.A. Feo. Operations sequencing in discrete parts manufacturing. Management
Science, 35:249–255, 1989.

[5] J.F. Bard, T.A. Feo, and S. Holland. A GRASP for scheduling printed wiring board assembly.
I.I.E. Trans., 28:155–165, 1996.

[6] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41:1069–1072, 1990.

[7] J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the AAAI-96, pages
271–278, 1996.

[8] P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics, 49:105–127, 1994.

18 S. BINATO, W.J. HERY, D.M. LOEWENSTERN, AND M.G.C. RESENDE

[9] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management Sci-
ence, 35:164–176, 1989.

[10] J. Carlier and E. Pinson. A practical use of Jackson’s preemptive schedule for solving the
job-shop problem. Annals of Operations Research, 26:269–287, 1990.

[11] L. Davis. Job shop scheduling with genetic algorithms. In Proceedings of the First Inter-
national Conference on Genetic Algorithms and their Applications, pages 136–140. Morgan
Kaufmann, 1985.

[12] P. De, J.B. Ghosj, and C.E. Wells. Solving a generalized model for con due date assignment
and sequencing. International J. of Production Economics, 34:179–185, 1994.

[13] T.A. Feo, J. Bard, and S. Holland. Facility-wide planning and scheduling of printed wiring
board assembly. Operations Research, 43:219–230, 1995.

[14] T.A. Feo and J.F. Bard. Flight scheduling and maintenance base planning. Management
Science, 35:1415–1432, 1989.

[15] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set

covering problem. Operations Research Letters, 8:67–71, 1989.
[16] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6:109–133, 1995.
[17] T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine scheduling with se-

quence dependent setup costs and linear delay penalties. Computers & Operations Research,
23:881–895, 1996.

[18] T.A. Feo, K. Venkatraman, and J.F. Bard. A GRASP for a difficult single machine scheduling
problem. Computers & Operations Research, 18:635–643, 1991.

[19] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. Technical report, AT&T
Labs Research, Florham Park, NJ 07733, 2000.

[20] H. Fisher and G. L. Thompson. Probabilistic learning combinations of local job-shop schedul-
ing rules. In J. F. Muth and G. L. Thompson, editors, Industrial Scheduling, pages 225–251.
Prentice Hall, Englewood Cliffs, NJ, 1963.

[21] C. Fleurent and F. Glover. Improved constructive multistart strategies for the quadratic
assignment problem using adaptive memory. INFORMS Journal on Computing, 11:198–204,
1999.

[22] S. French. Sequencing and scheduling:An introduction to the mathematics of the job-shop.
Horwood, 1982.

[23] B. Giffler and G. L. Thompson. Algorithms for solving production scheduling problems.
Operations Research, 8:487–503, 1960.

[24] F. Glover and M. Laguna. Tabu search. In C. R. Reeves, editor, Modern Heuristic Techniques
for Combinatorial Problems, pages 70–141. Blackwell Scientific Publications, Oxford, 1993.

[25] A. S. Jain and S. Meeran. A state-of-the-art review of job-shop scheduling techniques. Tech-
nical report, Department of Applied Physics, Electronic and Mechanical Engineering, Uni-
versity of Dundee, Dundee, Scotland, 1998.

[26] M. Laguna and J.L. González-Velarde. A search heuristic for just-in-time scheduling in parallel
machines. Journal of Intelligent Manufacturing, 2:253–260, 1991.

[27] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing mini-
mization. INFORMS J. on Computing, 11:44–52, 1999.

[28] J. K. Lenstra and A. H. G. Rinnooy Kan. Computational complexity of discrete optimization
problems. Annals of Discrete Mathematics, 4:121–140, 1979.

[29] H. Ramalhinho Lourenço, J.P. Paixão, and R. Portugal. Metaheuristics for the bus-driver
scheduling problem. Technical report, Department of Economics and Management, Universi-
tat Pompeu Fabra, Barcelona, Spain, 1998.

[30] H.R. Lourenço. Local optimization and the job-shop scheduling problem. European Journal
of Operational Research, 83:347–364, 1995.

[31] H.R. Lourenço and M. Zwijnenburg. Combining the large-step optimization with tabu-search:
Application to the job-shop scheduling problem. In I.H. Osman and J.P. Kelly, editors, Meta-
Heuristics: Theory and Apllications, pages 219–236. Kluwer Academic Publishers, 1996.

[32] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem. Man-
agement Science, 42:797–813, 1996.

[33] E. Pinson. The job shop scheduling problem: A concise survey and some recent developments.
In P. Chrétienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors, Scheduling theory and
its application, pages 277–293. John Wiley and Sons, 1995.

A GRASP FOR JOB SHOP SCHEDULING 19

[34] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. Technical report, Department of Computer Science,
Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22453-900 Brazil, January 1998.

[35] R.Z. Ŕıos-Mercado and J.F. Bard. Heuristics for the flow line problem with setup costs.
European J. of Operational Research, pages 76–98, 1998.

[36] R.Z. Ŕıos-Mercado and J.F. Bard. An enhanced TSP-based heuristic for makespan minimiza-
tion in a flow shop with setup costs. J. of Heuristics, 5:57–74, 1999.

[37] B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes disjonctives,
1964.

[38] E. D. Taillard. Parallel taboo search techniques for the job shop scheduling problem. ORSA
Journal on Computing, 6:108–117, 1994.

[39] R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by local search.
INFORMS Journal on Computing, 8:302–317, 1996.

[40] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by simulated

annealing. Operations Research, 40:113–125, 1992.
[41] J. Xu and S. Chiu. Effective heuristic procedure for a field technician scheduling problem.

Technical report, US WEST Advanced Technologies, Boulder, CO 80303 USA, 1998.

(S. Binato) Electrical Energy Research Center (CEPEL), P.O. Box 68007, Rio de
Janeiro, RJ 21944-970 Brazil.

E-mail address, S. Binato: silvio@cepel.br

(W.J. Hery) Bell Laboratories, Lucent Technologies, Whippanny, NJ 07981 USA.
E-mail address, W.J. Hery: wjh@lucent.com

(D.M. Loewenstern) Department of Computer Science, Rutgers University, Piscat-
away, NJ 08855 USA.

E-mail address, D.M. Loewenstern: loewenst@paul.rutgers.edu

(M.G.C. Resende) Information Sciences Research, AT&T Labs Research, Florham
Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

