
A PARALLEL GRASP FOR THE STEINER TREE PROBLEM IN GRAPHS
USING A HYBRID LOCAL SEARCH STRATEGY

S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P.M. PARDALOS

ABSTRACT. In this paper, we present a parallel greedy randomized adaptive search pro-
cedure (GRASP) for the Steiner problem in graphs. GRASP is a two phase metaheuristic.
In the first phase, solutions are constructed using a greedy randomized procedure. Local
search is applied in the second phase, leading to a local minimum with respect to a specified
neighborhood. In the Steiner problem in graphs, feasible solutions can be characterized by
their non-terminal nodes (Steiner nodes) or by their key-paths. According to this character-
ization, two GRASP procedures are described using different local search strategies. Both
use an identical construction procedure. The first uses a node-based neighborhood for local
search, while the second uses a path-based neighborhood. Computational results compar-
ing the two procedures show that while the node-based variant produces better quality solu-
tions, the path-based variant is about twice as fast. A hybrid GRASP procedure combining
the two neighborhood search strategies is then proposed. Computational experiments with
a parallel implementation of the hybrid procedure are reported, showing that the algorithm
found optimal solutions for 45 out of 60 benchmark instances and was never off by more
than four percent of the optimal solution value. The average speedup results observed for
the test problems show that increasing the number of processors reduces elapsed times with
increasing speedups. Moreover, the main contribution of the parallel algorithm concerns
the fact that larger speedups of the same order of the number of processors are obtained
exactly for the most difficult problems.

1. INTRODUCTION

Let G = (V,E) be a connected undirected graph, where V is the set of nodes and E
denotes the set of edges. Given a non-negative weight function w : E→ �

+ associated with
its edges and a subset X ⊆V of terminal nodes, in the Steiner problem (SPG) one seeks a
minimum weighted subtree of G spanning all terminal nodes in X . The solution of SPG
is a Steiner minimum tree and the non-terminal nodes that end up in the Steiner minimum
tree are called Steiner nodes. Karp [22] showed earlier that the decision version of SPG
is NP-complete. Applications can be found in many areas, such as telecommunication
network design, VLSI design, and computational biology, among others.

The Steiner problem in graphs can be formulated as an integer linear program or a global
concave minimization problem. Many exact algorithms for small size problems are based
on these formulations [1, 3, 4, 6, 8, 18, 23, 24, 26, 27, 37].

Several heuristics are available for the approximate solution of SPG, see e.g. Duin and
Voss [11], Hwang, Richards, and Winter [19], and Voss [36] for recent surveys. Construc-
tive methods have been proposed, e.g. by Choukmane [7], Kou et al. [25], Minoux [31],
Plesnı́k [20], Rayward-Smith and Clare [32], and Takahashi and Matsuyama [34]. We also

Date: November 1999.
Key words and phrases. Combinatorial optimization, global optimization, Steiner problem in graphs, heuris-

tics, local search, GRASP, network design .
In memory of Professor P. D. Panagiotopoulos.

1

2 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

find implementations of metaheuristics such as genetic algorithms [12, 21], tabu search
[2, 33], GRASP [28, 29], and simulated annealing [9].

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combi-
natorial optimization. A GRASP [14] is an iterative process, where each iteration consists
of two phases: construction and local search. The construction phase builds a feasible solu-
tion, whose neighborhood is explored by local search. The best solution over all iterations
is returned as the result. In this paper, we present a parallel GRASP for the Steiner prob-
lem in graphs. Feasible solutions can be characterized by their non-terminal nodes called
Steiner nodes or by its key-paths. According to this characterization, two GRASP proce-
dures are described in Section 2, using different search strategies. Both use an identical
construction procedure. The first uses a vertex-based neighborhood for local search, while
the second uses a key-path based neighborhood. In Section 3, we present computational
results comparing the two procedures. A hybrid GRASP procedure combining the two
neighborhood search strategies is presented in Section 4. Computational experiments with
a parallel implementation of the hybrid procedure are reported in Section 5. Concluding
remarks are made in Section 6.

2. SEQUENTIAL GRASP FOR THE STEINER PROBLEM IN GRAPHS

Approximate solutions for the Steiner problem in graphs can be obtained by many tech-
niques, including node-based, spanning tree-based, and path-based approaches. In this
section, we apply the concepts of GRASP to the approximate solution of the Steiner prob-
lem in graphs, using a spanning tree-based construction phase. Two local search strategies
are described, the first one using a node-based neighborhood while the second uses a path-
based neighborhood. Combining the two local search strategies with the single construc-
tion phase yields two versions of GRASP.

A greedy randomized adaptive search procedure (GRASP) [13, 14] can be seen as a
metaheuristic which captures good features of pure greedy algorithms (e.g. fast local
search convergence and good quality solutions) and also of random construction proce-
dures (e.g. diversification to explore the solution space). Each iteration consists of the
construction phase, the local search phase and, if necessary, the incumbent solution up-
date. In the construction phase, a feasible solution is built, one element at a time. At each
construction iteration, the next element to be added is determined by ordering all elements
in a candidate list with respect to a greedy function that estimates the benefit of select-
ing each element. The probabilistic component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but usually not the best one.

The solutions generated by a GRASP construction are not guaranteed to be locally op-
timal. Hence, it is almost always beneficial to apply local search in an attempt to improve
each constructed solution. A local search algorithm works in an iterative fashion by suc-
cessively replacing the current solution by a better one from its neighborhood. It terminates
when there are no better solutions in the neighborhood. Success for a local search algo-
rithm depends on the suitable choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution. The GRASP construction phase plays an im-
portant role with respect to this last point, since it produces good starting solutions for local
search. The customization of these generic principles into an approximate algorithm for
the Steiner problem in graphs is described in the following.

2.1. Construction phase. In the construction phase, a feasible solution is built, one ele-
ment at a time. At each construction iteration, the next element to be added is determined
by ordering all elements in a candidate list with respect to a greedy function that estimates

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 3

the benefit of selecting each element. The probabilistic component of a GRASP is charac-
terized by randomly choosing one of the best candidates in the list, but usually not the best
one.

The construction phase of our GRASP is based on the distance network heuristic, sug-
gested by Kou, Markowsky, and Berman [25] and later improved by Mehlhorn [30]. This
heuristic consists of computing the modified distance network graph G′ = (V,E ′) proposed
by Mehlhorn and using Kruskal’s algorithm to solve the minimum spanning tree problem
for this graph [28]. In this graph, edge weights w′ correspond to weights of shortest paths
in the original graph G.

The construction phase of GRASP relies on randomization to build different solutions at
different iterations. Graph G′ = (X ,E ′) is created only once and does not change through-
out all computations. In order to add randomization to Mehlhorn’s version of the distance
network heuristic, we make the following modification in Kruskal’s algorithm. Instead of
selecting the feasible edge with the smallest weight, we build a restricted candidate list
with all edges (i, j) ∈ E ′ such that w′i j ≤ w′min + α(w′max −w′min), where 0 ≤ α ≤ 1 and
w′min and w′max denote, respectively, the least and the largest weights among all edges still
unselected to form the minimum spanning tree. Then, an edge is selected at random from
the restricted candidate list. The parameter α is either fixed or randomly selected. For a
detailed description of this construction procedure, see [28].

2.2. Local search using a node-based neighborhood. We can associate a feasible solu-
tion of SPG with each subset S ⊆ V \X of Steiner nodes such that the graph induced in
G = (V,E) by S∪X is connected, corresponding to any of its minimum spanning trees. Let
S∗ be the set of Steiner nodes in the optimal solution of SPG. Then, the optimal solution
T ∗ is a minimum spanning tree of the graph induced in G by the node set S∗∪X . Solutions
of the Steiner problem SPG may be characterized by their associated sets of Steiner nodes
and one of the corresponding minimum spanning trees. Accordingly, the search for the
Steiner minimum tree T ∗ can be reduced to the search for the optimal set S∗ of Steiner
nodes.

Let S be the set of Steiner nodes, to which we associate a solution of SPG given by one
of the minimum spanning trees T of the graph induced in G by S∪X . In the node-based
neighborhood, the neighbors of this solution are defined by all sets of Steiner nodes which
can be obtained either by adding to S a new non-terminal node, or by eliminating from S
one of its Steiner nodes.

Given any non-terminal node s ∈ (V \X)\S, the computation of the neighbor obtained
by the insertion of s into the current set S of Steiner nodes can be done in O(|V |) average
time, using the algorithm proposed by Minoux [31]. For each non-terminal node t ∈ S,
the neighbor obtained by the elimination of t from the current set S of Steiner nodes is
computed by Kruskal’s algorithm as the solution of the minimum spanning tree problem
in the graph induced in G by (S\{t})∪X .

In order to speedup the local search, since the computational time associated with the
evaluation of all insertion moves is likely to be much smaller than that of the elimination
moves, only the insertion moves are evaluated in a first pass. The evaluation of elimination
moves is performed only if there are no improving insertion moves. For more details about
local search using a node-based neighborhood, see [28, 29].

2.3. Local search using a path-based neighborhood. A key-node is a Steiner node with
degree at least three. A key-path is a path in a Steiner tree T of which all intermediate
nodes are Steiner nodes with degree two in T , and whose end nodes are either terminal or
key-nodes. A Steiner tree has at most |S|−2 key-nodes and 2|S|−3 key-paths. A minimum

4 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

Steiner tree consists of key-paths that are shortest paths between key-nodes or terminals.
We use the key-path based local search, proposed by Verhoeven, Severens, and Aarts [35].

Let T = {l1, l2, . . . , lK} be a Steiner tree, where each li, i = 1, . . . ,K, denotes a key-path.
Also, let Ci and C′i denote the two components that result from the removal of the key-path
li from T . The path-based neighborhood of the current tree T is defined as the set of trees
N(T) = {Ci ∪C′i ∪ sp(Ci,C′i) | i = 1, . . . ,K}, where sp(Ci,C′i) is the shortest path between
Ci and C′i . Observe that Ci∪C′i ∪{li}= T and N(T) contains at most 2|S|−3 neighbors.

Local search is performed by replacing a key-path by the shortest path between the two
subsets of nodes that remain after its removal, updating the key-paths and key-vertices, and
checking if the cost is improved. This procedure is done for all key-paths. If the cost of
the current solution is improved, the incumbent solution is updated by the new tree and the
above procedure is repeated for the new solution until there is no more improvement [28].

We notice that solutions only have neighbors with lower or equal cost. A replacement
of a key-path in T can lead to the same Steiner tree if no shorter path exists. This implies
that local minima have no neighbors and that the neighborhood is not connected.

3. COMPARATIVE RESULTS FOR THE TWO LOCAL SEARCH APPROACHES

In this section, we report on preliminary computational results obtained with the two
implementations of GRASP described in Section 2 using the two different local search
strategies. These experiments have been performed on a set of 40 benchmark problems
from series C and D of the OR-Library [5]. The graphs have been previously reduced
using the reduction tests proposed by Duin and Vogenant [10]. First, the special distance
test and the nearest special vertex test are applied until no further reduction is possible. The
special distance test eliminates edges which may not belong to an optimal solution, while
the nearest special vertex test contracts edges which necessarily belong to every optimal
solution. Next, all non-terminal nodes with degree one in the partially reduced graph are
also eliminated. Finally, non-terminal nodes with degree two and their adjacent edges are
contracted into a single edge. All of the above steps are repeated, until no further reduction
can be identified. Such tests are quite effective and lead to significant reductions in the
input graphs.

The two variants of GRASP have been implemented in C and were compiled on the
IBM xlC compiler version 3.1.3 with compiler options -O3 -qstrict. The experiments
were done on an IBM RS6000 model 390 computer with 256 Mbytes of memory.

Each variant of GRASP was run for 500 iterations on each test problem using a fixed
value for α = 0.1 in the construction phase. Table 1 summarizes the results. For each
instance, the table lists the instance name, its optimal value, and the value of the best
solution found along with the computation time in seconds for each variant.

We summarize in Table 2 the results from Table 1. For each series of test problems and
for each GRASP variant, we report the number of optimal solutions found, the average
and the maximum percentage of deviation from the optimal value, and the average com-
putational time in seconds. As it can be seen, both variants find very good approximate
solutions. Optimal solutions were found on a large number of problems, with average error
of less than one percent. The worst quality solution was less than five percent away from
the optimal. In general, the node-based neighborhood produced the best-quality solutions,
finding a larger number of optima and having smaller errors. However, the computation
times observed for the node-based neighborhood are approximately twice those of the path-
based neighborhood. Based on these observations, we present in the next section a hybrid
procedure combining the two local search strategies.

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 5

TABLE 1. Results for series C and D for GRASP with node-based and
path-based neighborhoods

Node-based Path-based
Problem Optimal Value Time Value Time

C.01 85 85 1.02 85 0.75
C.02 144 144 1.09 144 0.92
C.03 754 754 5.24 754 2.84
C.04 1079 1079 2.48 1079 1.95
C.05 1579 1579 0.61 1579 0.57
C.06 55 55 3.34 55 0.95
C.07 102 102 19.49 103 2.99
C.08 509 509 112.74 509 50.59
C.09 707 707 144.32 707 69.84
C.10 1093 1093 0.85 1093 0.69
C.11 32 32 3.64 33 1.00
C.12 46 46 5.21 46 1.76
C.13 258 258 161.92 258 74.91
C.14 323 323 99.27 323 48.73
C.15 556 556 8.93 556 5.33
C.16 11 11 5.97 11 1.25
C.17 18 18 7.36 18 1.98
C.18 113 116 262.98 116 146.98
C.19 146 147 184.42 147 124.16
C.20 267 267 13.88 268 2.21
D.01 106 106 1.42 106 0.93
D.02 220 220 5.07 220 2.28
D.03 1565 1565 33.66 1565 15.83
D.04 1935 1935 1.93 1935 1.36
D.05 3250 3250 1.10 3254 0.93
D.06 67 68 6.34 70 1.25
D.07 103 103 6.55 103 2.02
D.08 1072 1072 560.37 1077 257.92
D.09 1448 1448 287.95 1449 148.58
D.10 2110 2110 22.35 2111 11.68
D.11 29 29 11.58 29 1.39
D.12 42 42 17.38 42 2.49
D.13 500 501 859.21 502 395.80
D.14 667 669 384.77 667 242.31
D.15 1116 1117 16.27 1120 2.96
D.16 13 13 26.77 13 2.58
D.17 23 23 50.75 23 5.67
D.18 223 228 1098.73 228 604.97
D.19 310 313 986.76 317 528.38
D.20 537 537 131.33 539 62.75

TABLE 2. Summary of results for series C and D

Node-based Path-based
Series # opt Avg err. Max err. Time # opt Avg err. Max err. Time

C 18 0.17% 2.65% 52.23 15 0.39% 3.13% 27.02
D 14 0.26% 2.24% 225.51 10 0.54% 4.47% 114.60

6 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

4. HYBRID LOCAL SEARCH STRATEGY

In this section, we propose a hybrid local search strategy where we limit the application
of the expensive local search strategy (node-based neighborhood) only to sufficiently good
starting solutions. To accomplish this, each GRASP local search phase is divided into
two stages. In the first stage, the path-based local search procedure is applied. Let z p be
the value of the objective function of the locally optimal solution Tp with respect to the
path-based neighborhood. Given a cutoff parameter λ > 0, the node-based local search
is applied in a second stage whenever zp < (1 + λ)z∗, i.e. whenever the locally optimal
solution with respect to the path-based neighborhood is sufficiently close to the objective
function value z∗ of the best solution T ∗ found so far.

The pseudo-code with the complete description of procedure GRASP HYBR SPG for the
Steiner problem in graphs is given in Figure 1.

procedure GRASP HYBR SPG(V,E,X ,w);
1 z∗← ∞;
2 Compute the distance graph G′ = (X ,E ′) and weights w′i j ,∀(i, j) ∈ E ′;
3 for k = 1, . . . ,max iterations do
4 Apply a randomized version of Kruskal’s algorithm to obtain a

spanning tree T of G′ = (X ,E ′);
5 if T was not visited in previous iterations then do
6 Tp← PATH LS(V,E,w,X ,T);
7 if Tp was not visited in previous iterations and zp < (1 + λ)z∗

8 then do
9 Tn← NODE LS(V,E,w,X ,Tp);
10 if zn < z∗ then do
11 T ∗← Tn; z∗← zn;
12 end then;
13 end then;
14 end then;
15 end for;
16 return z∗,T ∗;
end GRASP HYBR SPG;

FIGURE 1. Pseudo-code of the sequential GRASP procedure for the
Steiner problem in graphs

The value of the best solution found is initialized in line 1. The preprocessing computa-
tions associated with Mehlhorn’s version of the distance network heuristic are performed
in line 2, as described in [29]. The loop from lines 3 to 15 is repeated max iterations
times. In each iteration, a greedy randomized solution T is constructed in line 4 using the
randomized version of Kruskal’s algorithm described in Section 2.1. Next, the two-stage
local search strategy attempts to improve this solution. In line 5, we check if this solu-
tion was already constructed. If this solution was not visited in previous iterations, the
path-based local search will be applied to it. In line 6, the path-based local search routine
PATH LS attempts to replace key-paths by shortest paths, as described in Section 2.3. In
line 7 we check if the solution Tp returned by PATH LS was not found in previous itera-
tions and if its cost zp is less than (1 + λ)z∗ to decide if a node-based local search will be
performed. If these conditions are met, procedure NODE LS performs a node-based local

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 7

search in line 9, as described in Section 2.2. If the solution Tn found at the end of the
node-based local search is better than the best solution found so far, we update in line 11
the best solution found and its value.

5. PARALLELIZATION AND COMPUTATIONAL RESULTS

The most straightforward GRASP parallelization scheme is characterized by the the
distribution of the iterations among the available processors. In a homogeneous parallel
environment, each processor performs a fixed number of GRASP iterations, equal to the
total number of iterations divided by the number of processors. Once all processors have
finished their computations, the best solution among those found by each processor is
obtained using a reduction operation.

We use this strategy in the parallelization of the GRASP HYBR SPG sequential algorithm,
whose pseudo-code was presented in Figure 1. The max iterations GRASP iterations
to be performed are uniformly distributed to the available processors. The problem data
is input by a single processor and distributed to all others. Each processor has a copy
of the hybrid GRASP procedure and keeps its own local list of already-visited solutions.
Different initial seeds for random number generation are used by each processor, so as to
avoid the repetition of random sequences.

The GRASP using the hybrid local search strategy was also implemented in C and com-
piled with the IBM xlC compiler version 3.1.3 using compiler options -O3 -qstrict. The
computational experiments have been performed on a set of 60 benchmark instances from
series C, D, and E of the OR-Library [5]. The graphs have been previously reduced us-
ing some of the reduction tests proposed by Duin and Volgenant [10] and implemented
by Ribeiro and Souza [33]. The above parallelization scheme was implemented using the
Message Passing Interface (MPI) library [15] on an IBM SP-2 computer with 32 RS6000
model 390 processors, each having 256 Mbytes of RAM. The parallel procedure was ex-
ecuted using 2, 4, 8, and 16 processors of the SP-2 machine, performing a total of 512
iterations over all processors (the number of iterations performed by each processor was
512 divided by the number of processors). The parallel GRASP was implemented with
parameters λ = 1% and α randomly generated uniformly in the interval [0,0.3] at each
iteration.

In Tables 3 to 5 we present the problem name, its optimal solution value, and the values
of the solutions found by the parallel GRASP using 1, 2, 4, 8, and 16 processors. These
results are summarized in Table 6 in which we indicate, for each series, the number of opti-
mal solutions found using up to 16 processors. We also give the average and the maximum
deviation from the optimal value for each series. As expected, solution quality (in terms of
the number of optimal solutions found) is not affected by the number of processors used,
as long as the total number of iterations is always the same. Furthermore, the three sub-
optimal solutions in series C are off of the optimal value by at most two units. For series
D, two of the five sub-optimal solutions are off by at most two units, while one is off by
five units. For series E, five of the seven sub-optimal solutions are within one percent of
optimality. For each series, the average deviation from the optimal is at most 0.32%, while
the maximum deviation is less than four percent.

Tables 7 to 9 report elapsed times in seconds observed for a total of 512 iterations using
1, 2, 4, 8, and 16 processors. For each instance in a series, the table shows the elapsed
time for a single processor (sequential algorithm), and the elapsed time and the speedup
(ratio of elapsed time of parallel algorithm to elapsed time of sequential algorithm) for 2,
4, 8, and 16 processors. These results are summarized in Table 10, where for each series,

8 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

TABLE 3. Solutions obtained by the parallel hybrid GRASP algorithm
using up to 16 processors (512 iterations over all processors) for series
C

Number of processors
Problem Optimal 1 2 4 8 16

C.01 85 85 85 85 85 85
C.02 144 144 144 144 144 144
C.03 754 754 754 754 754 754
C.04 1079 1079 1079 1079 1079 1079
C.05 1579 1579 1579 1579 1579 1579
C.06 55 55 55 55 55 55
C.07 102 102 102 102 102 102
C.08 509 509 509 509 509 509
C.09 707 707 707 707 707 707
C.10 1093 1093 1093 1093 1093 1093
C.11 32 33 33 33 33 33
C.12 46 46 46 46 46 46
C.13 258 258 258 258 258 258
C.14 323 323 323 323 323 323
C.15 556 556 556 556 556 556
C.16 11 11 11 11 11 11
C.17 18 18 18 18 18 18
C.18 113 115 115 115 115 115
C.19 146 148 148 148 148 148
C.20 267 267 267 267 267 267

TABLE 4. Solutions obtained by the parallel hybrid GRASP algorithm
using up to 16 processors (512 iterations over all processors) for series
D

Number of processors
Problem Optimal 1 2 4 8 16

D.01 106 106 106 106 106 106
D.02 220 220 220 220 220 220
D.03 1565 1565 1565 1565 1565 1565
D.04 1935 1935 1935 1935 1935 1935
D.05 3250 3250 3250 3250 3250 3250
D.06 67 67 67 67 67 67
D.07 103 103 103 103 103 103
D.08 1072 1073 1074 1075 1073 1073
D.09 1448 1448 1448 1448 1448 1448
D.10 2110 2110 2110 2110 2110 2110
D.11 29 29 29 29 29 29
D.12 42 42 42 42 42 42
D.13 500 502 502 502 502 502
D.14 667 667 667 667 667 667
D.15 1116 1116 1116 1116 1116 1116
D.16 13 13 13 13 13 13
D.17 23 23 23 23 23 23
D.18 223 229 229 229 228 228
D.19 310 316 316 316 315 315
D.20 537 538 538 538 538 538

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 9

TABLE 5. Solutions obtained by the parallel hybrid GRASP algorithm
using up to 16 processors (512 iterations over all processors) for series E

Number of processors
Problem Optimal 1 2 4 8 16

E.01 111 111 111 111 111 111
E.02 214 214 214 214 214 214
E.03 4013 4016 4015 4015 4015 4015
E.04 5101 5101 5101 5101 5101 5101
E.05 8128 8128 8128 8128 8128 8128
E.06 73 73 73 73 73 73
E.07 145 145 145 145 145 145
E.08 2640 2648 2648 2648 2648 2648
E.09 3604 3608 3608 3608 3607 3607
E.10 5600 5600 5600 5600 5600 5600
E.11 34 34 34 34 34 34
E.12 67 67 67 67 67 67
E.13 1280 1292 1292 1292 1291 1291
E.14 1732 1735 1735 1735 1735 1735
E.15 2784 2784 2784 2784 2784 2784
E.16 15 15 15 15 15 15
E.17 25 25 25 25 25 25
E.18 564 584 584 583 584 584
E.19 758 770 768 769 769 769
E.20 1342 1343 1343 1342 1342 1342

TABLE 6. Number of optimal solutions found using up to 16 processors
(512 iterations over all processors) and solution quality for 16 processors
for series C, D, and E

Number of processors % error (16 procs)
Series 1 2 4 8 16 avg max

C 17 17 17 17 17 0.31 3.13
D 15 15 15 15 15 0.23 2.24
E 12 12 13 13 13 0.32 3.54

we give the average elapsed time for the sequential algorithm, together with the average
elapsed times and the average speedups using 2, 4, 8, and 16 processors. These results are
further illustrated in Figures 2 and 3. The average speedup results show that increasing the
number of processors improves elapsed times for all three series with increasing speedups.
The figures show that the leveling-off of the speedup curves is beyond 16 processors.

We note that for some instances (for example, E.08 and E.15), the speedup is almost
linear (i.e. of the same order of the number of processors), while for others (for example,
E.05 and E.16) parallelization does not contribute much and the speedup is sometimes
even smaller than one. This behavior is mainly due to the use of the memory structures
which keep track of the solutions visited during the search. The local search phase, which
is the most time consuming part of the algorithm, is performed only at iterations in which
the constructed solution was not found in previous iterations and, consequently, is not
stored in the memory structures. In general, larger speedups are observed for more difficult
instances in which fewer repetitions of constructed solutions occur. For problems in which
many repetitions are observed, the memory structures contribute to strongly reduce the

10 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

TABLE 7. Computation times and speedups σ observed with the parallel
hybrid GRASP algorithm using up to 16 processors (512 iterations over
all processors) for series C

Processors
1 2 4 8 16

Problem secs secs σ secs σ secs σ secs σ
C.01 0.81 0.44 1.82 0.30 2.74 0.34 2.36 0.31 2.61
C.02 1.42 0.82 1.75 0.51 2.80 0.42 3.36 0.40 3.60
C.03 4.83 2.98 1.62 1.90 2.55 1.46 3.31 0.82 5.92
C.04 3.39 2.13 1.60 1.63 2.09 1.18 2.89 0.94 3.61
C.05 0.73 0.47 1.55 0.39 1.84 0.19 3.79 0.17 4.20
C.06 1.37 0.95 1.45 0.86 1.59 1.01 1.36 1.29 1.06
C.07 6.36 3.93 1.62 2.54 2.51 1.91 3.33 1.07 5.96
C.08 63.67 34.52 1.84 18.82 3.38 11.78 5.41 6.78 9.40
C.09 101.00 53.05 1.90 29.52 3.42 16.53 6.11 9.54 10.58
C.10 0.87 0.62 1.40 0.31 2.83 0.25 3.44 0.20 4.44
C.11 1.58 1.25 1.26 1.24 1.28 1.75 0.90 1.99 0.79
C.10 0.87 0.62 1.40 0.31 2.83 0.25 3.44 0.20 4.44
C.12 4.67 3.37 1.39 2.58 1.81 2.47 1.89 2.16 2.16
C.13 98.14 54.25 1.81 30.69 3.20 17.16 5.72 11.01 8.91
C.14 65.58 36.58 1.79 20.37 3.22 10.83 6.06 6.90 9.51
C.15 6.91 4.15 1.66 2.57 2.69 1.72 4.01 1.59 4.34
C.16 2.72 2.46 1.11 2.29 1.19 3.17 0.86 3.14 0.87
C.17 4.14 4.17 0.99 3.84 1.08 3.91 1.06 4.25 0.97
C.18 155.64 80.97 1.92 44.46 3.50 24.22 6.43 15.34 10.15
C.19 128.14 65.65 1.95 35.63 3.60 19.81 6.47 12.58 10.19
C.20 2.53 2.06 1.23 1.67 1.51 1.75 1.45 0.93 2.73

TABLE 8. Computation times and speedups σ observed with the parallel
hybrid GRASP algorithm using up to 16 processors (512 iterations over
all processors) for series D

Processors
1 2 4 8 16

Problem secs secs σ secs σ secs σ secs σ
D.01 1.18 0.78 1.52 0.62 1.91 0.76 1.55 0.37 3.15
D.02 3.88 2.52 1.54 1.92 2.02 1.44 2.70 1.01 3.83
D.03 21.77 12.33 1.77 7.22 3.01 4.68 4.65 3.46 6.29
D.04 2.40 1.47 1.63 1.02 2.35 0.87 2.75 0.46 5.18
D.05 1.15 0.89 1.29 0.61 1.88 0.65 1.78 0.28 4.10
D.06 2.97 2.26 1.32 2.08 1.43 2.68 1.11 2.88 1.03
D.07 3.46 2.43 1.42 1.96 1.76 1.79 1.93 1.33 2.60
D.08 365.94 200.37 1.83 110.53 3.31 60.54 6.04 41.28 8.87
D.09 394.46 210.41 1.87 109.18 3.61 59.40 6.64 32.30 12.21
D.10 15.12 8.54 1.77 4.91 3.08 2.87 5.28 1.61 9.37
D.11 6.83 6.41 1.07 6.15 1.11 6.54 1.04 6.03 1.13
D.12 28.07 25.80 1.09 24.31 1.15 22.19 1.26 20.29 1.38
D.13 553.25 300.29 1.84 179.05 3.09 107.15 5.16 68.91 8.03
D.14 324.72 176.09 1.84 121.14 2.68 72.52 4.48 41.23 7.88
D.15 10.24 6.23 1.64 3.27 3.13 2.53 4.05 2.17 4.72
D.16 27.03 26.70 1.01 29.83 0.91 30.10 0.90 30.52 0.89
D.17 15.55 14.75 1.05 14.18 1.10 14.64 1.06 16.63 0.93
D.18 655.37 369.38 1.77 208.85 3.14 136.20 4.81 95.18 6.89
D.19 582.04 301.79 1.93 160.95 3.62 93.77 6.21 67.95 8.57
D.20 66.97 34.51 1.94 19.59 3.42 12.35 5.42 7.82 8.57

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 11

TABLE 9. Computation times and speedups σ observed with the parallel
hybrid GRASP algorithm using up to 16 processors (512 iterations over
all processors) for series E

Processors
1 2 4 8 16

Problem secs secs σ secs σ secs σ secs σ
E.01 1.42 1.02 1.39 0.94 1.50 1.10 1.29 1.02 1.39
E.02 5.99 4.53 1.32 3.78 1.58 3.17 1.89 2.94 2.04
E.03 107.16 56.37 1.90 30.47 3.52 17.07 6.28 12.13 8.83
E.04 21.02 12.61 1.67 6.78 3.10 4.57 4.60 3.28 6.41
E.05 0.67 0.51 1.32 0.37 1.79 0.54 1.25 1.32 0.51
E.06 8.48 7.97 1.06 7.75 1.09 8.12 1.05 8.76 0.97
E.07 37.94 25.90 1.46 19.35 1.96 15.41 2.46 13.23 2.87
E.08 6091.43 3131.68 1.95 1595.11 3.82 810.73 7.51 466.12 13.07
E.09 2948.36 1832.04 1.61 1071.02 2.75 599.24 4.92 370.42 7.96
E.10 188.58 102.12 1.85 54.78 3.44 29.91 6.31 16.88 11.17
E.11 26.62 26.06 1.02 25.77 1.03 25.85 1.03 27.44 0.97
E.12 75.85 61.91 1.23 56.23 1.35 52.93 1.43 51.15 1.48
E.13 5644.48 3856.96 1.46 2278.27 2.48 1279.05 4.41 839.72 6.72
E.14 3233.90 2223.69 1.45 1252.86 2.58 754.90 4.28 457.39 7.07
E.15 219.97 110.32 1.99 56.49 3.89 30.19 7.29 16.43 13.39
E.16 134.64 134.99 1.00 185.64 0.73 189.35 0.71 186.54 0.72
E.17 288.90 255.16 1.13 242.58 1.19 325.25 0.89 321.10 0.90
E.18 4712.09 2527.18 1.86 1599.76 2.95 1164.09 4.05 914.32 5.15
E.19 3248.99 1883.86 1.72 1057.85 3.07 728.38 4.46 553.22 5.87
E.20 601.41 308.91 1.95 173.52 3.47 108.98 5.52 73.76 8.15

TABLE 10. Average computation times and average speedups using up
to 16 processors (512 iterations over all processors) for series C, D, and
E

Number of processors
Series 1 2 4 8 16

C 32.77 17.77 10.12 6.10 4.08 seconds
– 1.84 3.24 5.37 8.03 speedup

D 154.12 85.19 50.36 31.68 22.08 seconds
– 1.80 3.06 4.86 6.98 speedup

E 1379.90 828.19 485.97 307.44 216.86 seconds
– 1.67 2.84 4.49 6.36 speedup

computation times of the sequential algorithm, avoiding local search and leading to smaller
speedups of the parallel version (since less room is left to the reduction of computation
times through parallelization). We note that the main contribution of the parallel algorithm
concerns exactly the most difficult problems, for which larger speedups can be obtained.

6. CONCLUDING REMARKS

We described a parallel greedy randomized adaptive search procedure for the Steiner
problem in graphs, using a hybrid local search strategy combining path-based and node-
based neighborhoods. The algorithm found optimal solutions for 45 out of 60 benchmark
instances and was never off by more than four percent of the optimal solution. To illustrate
the effectiveness of this parallel approach in terms of solution quality, we point out that a

12 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of processors

Series C
Series D
Series E

FIGURE 2. Elapsed times using up to 16 processors for Series C, D, and E.

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Series C
Series D
Series E

FIGURE 3. Speedups using up to 16 processors for Series C, D, and E.

recent state-of-the-art tabu search algorithm [33] found 42 optimal solutions for the same
set of test problems. Also, an improved reactive tabu search implementation [2] found 44

A PARALLEL HYBRID GRASP FOR THE STEINER TREE PROBLEM 13

optima, with seven additional ones through the application of path-relinking [16, 17] as a
post-optimization strategy.

The average speedup results observed for each series of test problems show that increas-
ing the number of processors reduces elapsed times with increasing speedups. Moreover,
the main contribution of the parallel algorithm concerns the fact that larger speedups of the
same order of the number of processors are obtained exactly for the most difficult prob-
lems.

REFERENCES

[1] Y. P. Aneja. An integer programming approach to the Steiner problem in graphs. Networks, 10:167–178,
1980.

[2] M.P. Bastos and C.C. Ribeiro. Reactive tabu search with path-relinking for the Steiner problem in graphs.
In Proceedings of the Third Metaheuristics International Conference, pages 31–36, 1999.

[3] J. E. Beasley. An SST-based algorithm for the Steiner problem in graphs. Networks, 19:1–16, 1989.
[4] J.E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14:147–159, 1984.
[5] J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the Operational Re-

search Society, 41:1069–1072, 1990.
[6] S. Chopra, E. R. Gorres, and M. R. Rao. Solving the Steiner tree problem using branch and cut. ORSA

Journal on Computing, 4:320–335, 1992.
[7] E.-A. Choukmane. Une heuristique pour le problème de l’arbre de Steiner. RAIRO Recherche

Opérationnelle, 12:207–212, 1978.
[8] A. Claus and N. Maculan. Une nouvelle formulation du probleme de Steiner sur un graphe. Technical Report

280, Centre de Recherche sur les Transports, University of Montreal, 1983.
[9] K.A. Dowsland. Hill-climbing simulated annealing and the Steiner problem in graphs. Engineering Opti-

mization, 17:91–107, 1991.
[10] C.W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks, 19:549–567,

1989.
[11] C.W. Duin and S. Voss. Efficient path and vertex exchange in Steiner tree algorithms. Networks, 29:89–105,

1997.
[12] H. Esbensen. Computing near-optimal solutions to the Steiner problem in a graph using a genetic algorithm.

Networks, 26:173–185, 1995.
[13] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set covering problem.

Operations Research Letters, 8:67–71, 1989.
[14] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global Opti-

mization, 6:109–133, 1995.
[15] Message Passing Interface Forum. MPI: A new message-passing interface standard (version 1.1). Technical

report, University of Tennessee, 1995.
[16] F. Glover. Tabu search and adaptive memory programming – Advances, applications and challenges. Tech-

nical report, University of Colorado, 1996.
[17] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
[18] M. X. Goemans. The Steiner tree polytope and related polyhedra. Mathematical Programming, 63:157–182,

1994.
[19] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem. North-Holland, 1992.
[20] J. Plesnı́k. A bound for the Steiner problem in graphs. Math. Slovaca, 31:155–163, 1981.
[21] A. Kapsalis, V.J. Rayward-Smith, and G.D. Smith. Solving the graphical Steiner tree problem using genetic

algorithms. Journal of the Operational Research Society, 44:397–406, 1993.
[22] R.M. Karp. Reducibility among combinatorial problems. In E. Miller and J.W. Thatcher, editors, Complexity

of Computer Computations, pages 85–103. Plenum Press, 1972.
[23] B.N. Khoury, P.M. Pardalos, and D.W. Hearn. Equivalent formulations for the Steiner problem in graphs.

In D.-Z. Du and P.M. Pardalos, editors, Network Optimization Problems, pages 111–123. World Scientific,
1993.

[24] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:207–232, 1998.
[25] L.T. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 15:141–145,

1981.
[26] A. Lucena. Tight bounds for the Steiner problem in graphs. Technical report, IRC for Process Systems

Engineering, Imperial College, 1993.

14 S.L. MARTINS, M.G.C. RESENDE, C.C. RIBEIRO, AND P. M. PARDALOS

[27] F. Margot, A. Prodon, and Th. M. Liebling. Tree polyhedron on 2-tree. Mathematical Programming,
63:183–192, 1994.

[28] S.L. Martins, P.M. Pardalos, M.G. Resende, and C.C. Ribeiro. GRASP procedures for the Steiner problem in
graphs. In P. Pardalos, S. Rajasekaran, and J. Rolim, editors, Randomization Methods in Algorithm Design,
volume 43 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 133–145.
American Mathematical Society, 1998.

[29] S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem in graphs. In Pro-
ceedings of IRREGULAR’98– 5th International Symposium on Solving Irregularly Structured Problems in
Parallel, volume 1457 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, 1998.

[30] K. Mehlhorn. A faster approximation for the Steiner problem in graphs. Information Processing Letters,
27:125–128, 1988.

[31] M. Minoux. Efficient greedy heuristics for Steiner tree problems using reoptimization and supermodularity.
INFOR, 28:221–233, 1990.

[32] V.J. Rayward-Smith and A. Clare. On finding Steiner vertices. Networks, 16:283–294, 1986.
[33] C.C. Ribeiro and M.C. Souza. Tabu search for the Steiner problem in graphs. Networks, 2000. To appear.
[34] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math. Japon-

ica, 24:573–577, 1980.
[35] M.G.A. Verhoeven, M.E.M. Severens, and E.H.L. Aarts. Local search for Steiner trees in graphs. In V.J.

Rayward-Smith et al., editor, Modern Heuristics Search Methods, pages 117–129. John Wiley and Sons,
1996.

[36] S. Voss. Steiner’s problem in graphs: Heuristic methods. Discrete Applied Mathematics, 40:45–72, 1992.
[37] R. T. Wong. A dual ascent approach for Steiner tree problems on directed graphs. Mathematical Program-

ming, 28:271–287, 1984.

(S.L. Martins) DEPARTMENT OF COMPUTER SCIENCE, CATHOLIC UNIVERSITY OF RIO DE JANEIRO, R.
MARQUÊS DE SÃO VICENTE, 225, RIO DE JANEIRO, RJ 22453-900 BRAZIL

E-mail address, S.L. Martins: simone@inf.puc-rio.br

(M.G.C. Resende) INFORMATION SCIENCES RESEARCH, AT&T LABS RESEARCH, FLORHAM PARK, NJ
07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

(C.C. Ribeiro) DEPARTMENT OF COMPUTER SCIENCE, CATHOLIC UNIVERSITY OF RIO DE JANEIRO, R.
MARQUÊS DE SÃO VICENTE, 225, RIO DE JANEIRO, RJ 22453-900 BRAZIL

E-mail address, C.C. Ribeiro: celso@inf.puc-rio.br

(P. M. Pardalos) CENTER FOR APPLIED OPTIMIZATION, DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING, UNIVERSITY OF FLORIDA, GAINESVILLE, FL 32611 USA.
E-mail address, P. M. Pardalos: pardalos@ufl.edu

