
A GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE FOR THE
FEEDBACK VERTEX SET PROBLEM ∗

PANOS M. PARDALOS†, TIANBING QIAN ‡, AND MAURICIO G.C. RESENDE§

Abstract. A Greedy Randomized Adaptive Search Procedure (GRASP) is a randomized heuristic that has pro-
duced high quality solutions for a wide range of combinatorial optimization problems. The NP-complete Feedback
Vertex Set (FVS) Problem is to find the minimum number of vertices that need to be removed from a directed graph
so that the resulting graph has no directed cycle. The FVS problem has found applications in many fields, includ-
ing VLSI design, program verification, and statistical inference. In this paper, we develop a GRASP for the the
FVS problem. We describe GRASP construction mechanisms and local search, as well as some efficient problem
reduction techniques. We report computational experience on a set of test problems using three variants of GRASP.

Key words. Combinatorial optimization, feedback vertex set, local search, GRASP, probabilistic algorithm,
computer implementation, heuristics, integer programming

1. Introduction. The feedback vertex set (FVS) problem can be stated as follows:
Given a directed graphG(V,E), whereV denotes the set ofn vertices andE the set of arcs,
find a minimum cardinality subsetSof V such that every directed cycle inG contains at least
one vertex inS. In other words, we wish to determine how to remove the minimum number
of vertices from the original graph such that the resulting graph has no directed cycle. A
cutsetis a set of vertices whose removal from the graph eliminates all directed cycles of the
graph. The minimum cardinality cutset is called thefeedback vertex set. The FVS problem is
known to be NP-complete [8, 19] and has found applications in many diverse areas, including
program verification [17], deadlock prevention [18], and Bayesian inference [20].

The FVS problem can be formulated as a set covering problem. LetCG denote the set of
all cycles in the graphG and define

xj =
{

1 if vertex j is in the feedback vertex set
0 otherwise.

The minimum number of vertices that need to be removed so that the resulting graph is cycle-
free can be found by solving the following integer programming (set covering) problem:

min
n

∑
j=1

xj

such that

∑
j∈Cj

xj ≥ 1, Cj ∈CG

xj ∈ {0,1}, j = 1, . . . ,n.

Among the classical NP-complete problems, the FVS problem has been regarded as “one
of the least understood problems” [18]. Solvable special cases are studied in [17, 18]. From

∗October 7, 1997– URL =ftp://www.research.att.com/˜mgcr/doc/gfvs.ps.Z
†Center for Applied Optimization, Department of ISE, 303 Weil Hall, University of Florida, Gainesville, FL

32611 USA. e-mail:pardalos@ufl.edu
‡Department of Management Sciences, The University of Iowa, Iowa City, IA 52242 USA. e-mail:

tqian@dollar.biz.uiowa.edu
§Information Sciences Research Center, AT&T Labs Research, Florham Park, NJ 07932 USA. e-mail:

mgcr@research.att.com

1

2

the point of view of approximation algorithms, Erd¨os and P´osa [3] proposed an algorithm
with a ratio of approximation of 2 logn, which was later improved by Monien and Schultz
[11] to a ratio of

√
logn. Recently, Bafna et al. [1] proposed an algorithm for the FVS

problem on undirected graphs with approximation ratio of 2 (see also [2]). The best approxi-
mation ratio for the directed version isO(log n log log n) and is due to Seymour [16]. Other
approximations can be found in Qian, Ye, and Pardalos [13] and references therein. Although
these approximation algorithms guarantee a solution of a certain quality, often in practice
heuristic methods can provide better quality solutions in reasonable CPU time. Since there
usually is no theoretical guarantee of the quality of the solution obtained by a heuristic, of-
ten computational experimentation is used to determine its effectiveness. In this paper, we
present and analyze empirically a Greedy Randomized Adaptive Search Procedure (GRASP)
to solve large instances of the FVS problem.

A GRASP is a randomized heuristic that has found successful applications for a variety
of combinatorial optimization problems [4, 10, 14]. GRASP is a multistart method having
two phases, a construction phase and a local search phase. During the construction phase, a
feasible solution is constructed iteratively, one element at a time. Each element of the solution
is randomly selected from a restricted candidate list (RCL) that contains elements that are
well-ranked according to some greedy function. Once the solution is constructed, there is
no guarantee that it is a locally optimal solution with respect to the adopted neighborhood
definition. The local search phase tries to improve the constructed solution and produces a
solution that is locally optimal with respect to the specified neighborhood structure. This two-
stage process is applied repeatedly, and the best solution found is kept as an approximation
of the optimal. We call this solution the GRASP solution.

In this paper, we present a new algorithm, using the GRASP metaheuristic, for finding
approximate solutions of large instances of the FVS problem. Several degree-related greedy
functions are used in the construction of the RCL. To improve the efficiency of the algorithm,
we incorporate problem reduction techniques [9] into the construction phase of GRASP. The
iterative construction of the solution alternates between the choice of a vertex from the RCL
and the optimal solution preserving reduction. The motivation is that when we add a new
vertex to the partial solution, the problem size is reduced. If there is a solution preserving
reduction that can further reduce the problem size, then the construction process may be sped
up. More importantly, we have observed empirically that the risk of the constructed solution
being trapped in a local minimum is considerably reduced. For the local search component
of GRASP, checking acyclicity of a graph is nontrivial. Thus, it is relatively expensive to
conduct local search for the FVS problem. By utilizing the graph reduction techniques, we
design some simple procedures to produce a minimal vertex set.

In addition to the new algorithm described, the large FVS instances presented in this
paper, along with the approximate solutions found by our algorithm, can serve as a suite of
benchmark problems for testing future implementations.

The remainder of the paper is organized as follows. Section 2 discusses various phases
of the proposed GRASP. Section 3 reports computational experience. Concluding remarks
are given in Section 4.

Throughout this paper, we use the following notation. For a digraphG(V,E) we define
in(i) = { j | (j, i) ∈ E}, out(i) = { j | (i, j) ∈ E}, andadj(i) = in(i)∪ out(i). G(i) is the
greedy function value of vertexi andSdenotes a feedback vertex set.

2. GRASP. As sketched in Section 1, a GRASP possesses two phases, a construction
and a local improvement phase. To describe the construction phase, we need to provide an
adaptive greedy function, a construction mechanism for the RCL, and a probabilistic selection
procedure. These components are interlinked, forming an iterative procedure that constructs

3

procedureGRASP(RCLSize, MaxIter, RandomSeed)
1 BestSolutionFound= /0;
2 do k = 1, . . . ,MaxIter →
3 x =ConstructGreedyRandomizedSolution ();
4 x =LocalSearch (x);
5 UpdateSolution (BestSolutionFound,x);
6 od;
7 return (BestSolutionFound)
end GRASP;

FIG. 2.1.A generic GRASP pseudo-code

procedureConstructGreedyRandomizedSolution ()
1 S= /0;
2 G′ =ReduceInstanceSize (G);
3 do k =1, . . . ,n→
4 MakeRCL();
5 s= SelectIndex (RandomSeed);
6 S= S∪{s};
7 G′ = UpdateGraph(G′);
8 G′ =ReduceInstanceSize (G′);
9 od;
end ConstructGreedyRandomizedSolution ;

FIG. 2.2.GRASP construction phase pseudo-code

a solution, one vertex at a time, biased by the adaptive greedy function. A local search
procedure is then applied to possibly improve the constructed solution. Figure 2.1 shows a
GRASP in pseudo code. The main loop of the GRASP consists of lines 2–6. A solution is
randomly generated by the adaptive greedy function in line 3 with local search taking place
in line 4. The best solution found is updated in line 5.

We next discuss the different components of the proposed GRASP. A new feature of
this GRASP is the introduction of reduction techniques in the construction and local search
phases. The modified generic scheme of our construction phase is outlined in Figure 2.2.
Initially, the feedback vertex setS is emptry and several of solution-preserving reductions
(described in Subsection 2.2) are applied to the input graphG. The main loop in the con-
struction phase is in lines 3–9. At mostn = |V| vertices can be selected to be in the feedback
vertex setS, so the loop is repeated at mostn times. A restricted candidate list (RCL) is set
up in line 4 containing any yet unselected vertex having a large greedy function value. The
greedy functions are defined in Subsection 2.1. A vertex is seclected, at random, from the
RCL in line 5 and the feedback vertex set is updated to include vertexs in line 6. In line 7,
UpdateGraph removes vertexs and all edges incident tos from G′. The solution preserving
reductions are applied onG′ in line 8.

In the remainder of this section, we discuss the greedy adaptive functions (Subsec-
tion 2.1), the reduction heuristics (Subsection 2.2), the construction mechanism of the re-
stricted candidate list (Subsection 2.3), and the local search phase (Subsection 2.4).

2.1. Greedy functions. Several greedy functions are tested in this study. Usually, the
greedy function of a vertex is linked to its contribution to the objective function achieved by
selecting that vertex. However, in the case of the FVS problem, it seems hard to directly link

4

procedureReduceInstanceSize (G,S)
1 Apply reduction 1;
2 Apply reduction 2;
3 Apply reduction 3;
4 for (at least one reduction succeeds)→
5 Apply reduction 1;
6 Apply reduction 2;
7 Apply reduction 3;
8 rof ;
9 return (reduced graphG′);
endReduceInstanceSize ;

FIG. 2.3.Solution preserving reduction pseudo-code

the effect of cycle reduction to any vertex. Intuitively speaking, the larger the degree of a
vertex, the more likely that the deletion of this vertex will cut off more cycles. Therefore, it is
natural to link the greedy function to the degree of a vertex in one way or another. The three
greedy functions employed in this study are as follows:

1. GA(i) = |in(i)|+ |out(i)|.
2. GB(i) = |in(i)| ∗ |out(i)|.
3. GC(i) = max(|in(i)|, |out(i)|).

Roughly speaking,GA puts equal weight on both in-degree and out-degree,GB favors the bal-
ance between in- and out-degree, andGC only considers the largest value of the two degrees.
As will be demonstrated later, there is considerable difference among these three greedy func-
tions in terms of solution quality.

2.2. Problem reduction techniques.A solution preserving reduction of a graphG is a
contraction ofG (i.e. removal of a subset of vertices and edges fromG) such that the original
graph and the reduced graph have the same FVS. Three solution preserving reductions are
used in the GRASP implementation. They are:

1. If out(i) = 0 orin(i) = 0, theni ∈ S. The reduction is
(a) V = V \{i}
(b) E = E\{(x,y) | x = i or y = i}.

2. If (i, i) ∈ E, theni ∈ S. The reduction is
(a) V = V \{i}
(b) E = E\{(i, j) or (j, i), for ∀ j ∈V}.

3. If in(i) = 1 and(j, i) ∈ E, then the reduction is
(a) V = V \{i}
(b) out(j) = out(j)∪out(i)
(c) E = E∪{(j,k) | k∈ out(i)}\{(i,k) | k∈ out(i)}

If out(i) = 1 and(i, j) ∈ E, then the reduction is
(a) V = V \{i}
(b) in(i) = in(i)∪in(j)
(c) E = E∪{(k, j) | k∈ in(i)}\{(k, i) | k∈ in(i)}.

The above reductions are implemented in the procedureReduceInstanceSize , outlined
in Figure 2.3. When a graph is acyclic, it can be shown thatReduceInstanceSize will
return an empty cutset and an empty reduced graph. Also, note that these reductions are
recursive in nature, i.e. they can be applied to a graph repeatedly. A useful application of
these reduction procedures is to determine whether a directed graph is acyclic or not. If
ReduceInstanceSize (G) = /0, thenG is acyclic. This result is used in the local search phase

5

procedureLocalSearch (G′(V ′,E′),S)
1 for (cutsetScontains redundant vertices)→
2 for i = 1, . . . , |S| →
3 V ′′ = V ′ ∪{S\{si}};
4 E′′ = E′ ∪{(v,w) ∈ E | v or w∈ {S\{si}};
5 G′′′(V ′′′,E′′′) =ReduceInstanceSize (G′′(V ′′,E′′));
6 if (V ′′′ = /0)→
7 S= S\{si};
8 break;
9 fi;
10 rof ;
11 rof ;
end LocalSearch ;

FIG. 2.4.GRASP local search phase pseudo-code

of GRASP as will be described later. For a detailed analysis of these reduction procedures,
see also Levy and Lowe [9].

2.3. Construction of the RCL. There are several ways to build an RCL. In one ap-
proach, the RCL is made up of thek candidates with the largest value of the adaptive greedy
function [4]. In another, it is made up of a variable number of well ranked elements. In this
study, since the greedy function is directly linked to the degree of the vertex, there is usually
a large number of vertices having the same greedy function value. Therefore, we choose
all vertices that have greedy function values greater thanα times the largest greedy function
value, forα such that 0≤ α≤ 1.

2.4. Local search phase.In contrast to the simplicity of the greedy functions, the local
search phase for the FVS problem is more complicated and expensive. The main difficulty
associated with the local search is verifying whether a graph is acyclic or not. Therefore, we
limit our local search to attempt to eliminate redundant elements of the cutset, thus resulting
in a minimal cutset. The pseudo-code of the local search heuristic is presented in Figure 2.4,
whereS is the FVS returned by the algorithm andsi is thei-th element in the current cutsetS.

The local search heuristic works as follows. For any given cutset, it checks whether each
vertex of the cutset is redundant. This is done by excluding each vertex from the cutset once,
then applying the reduction heuristics to each reduced graph. If in one iteration, no reduction
heuristic can be successfully applied, then the reduced graph is cyclic and therefore this vertex
is not redundant. Otherwise, the heuristic will return an empty reduced graph, indicating that
the vertex examined is redundant and can be dropped from the current cutset.

We observed empirically that the above procedure usually improves the construction
phase solution. The typical improvement is 1 – 3 vertices, with a 1-vertex improvement
occurring most often. Based on this observation and the cost of the local search, it may
be recommended that the above procedure be applied only to cutsets of high quality. One
approach is to apply this local search only to constructed solutions that are better than the
average constructed solution.

3. Experimental results. In this section, we report on computational experience with
three variants of GRASP (A, B, and C). GRASP variants A, B, and C corresponds to greedy
functionsGA, GB, andGC, respectively, as defined in Subsection 2.1.

6

20 196 MHZ IP25 Processors
CPU: MIPS R10000 Processor Chip Revision: 2.4
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Data cache size: 32 Kbytes
Instruction cache size: 32 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte
Main memory size: 1024 Mbytes, 2-way interleaved

FIG. 3.1.Hardware configuration (partial output of system commandhinv)

TABLE 3.1
Funke & Reinelt test problems

GRASP A GRASP B GRASP C
name |V| |E| sol’n itr time sol’n itr time sol’n itr time
r 25 10 25 57 3 1 0.001 3 1 0.001 3 1 0.001
r 25 20 25 127 11 1 0.003 11 2 0.004 11 4 0.010
r 25 30 25 172 12 1 0.002 12 5 0.012 12 1 0.003
r 30 10 30 84 5 1 0.001 5 1 0.001 5 1 0.001
r 30 20 30 154 11 7 0.020 11 1 0.003 11 1 0.003
r 30 30 30 238 16 2 0.011 16 1 0.007 16 12 0.060
r 35 10 35 111 7 2 0.003 7 1 0.002 7 1 0.002
r 35 20 35 246 17 1 0.009 17 2 0.010 17 1 0.008
r 35 30 35 356 21 9 0.070 21 1 0.009 21 1 0.008

sum 103 25 0.120 103 15 0.049 103 23 0.096

The experiments were carried out using two sets of test problems.1 The first data set was
used in Funke and Reinelt [7]. Those small instances are randomly generated with varying
number of vertices and varying densities and have known optimal solutions. The second set of
test problems are randomly generated, having from 50 to 1000 vertices and varying densities.

The experiment was conducted on a Silicon Graphics Power Challenge computer (196
MHz MIPS R10000 processor), whose hardware configuration is summarized in Figure 3.1.
The code was compiled on the SGI Fortran compilerf77 using compiler flags-O3 -n32
-static -mips4 . Processes were limited to a single processor. CPU times in seconds were
computed by calling the system routineetime() .

Reported CPU times exclude problem input time, which is negligible for these test prob-
lems, and give the total time taken to find the GRASP solution. The number of iterations
reported corresponds to the reported times, i.e. we report the iteration where the GRASP
solution was found. Note that the time actually taken by the GRASP is usually longer than
what is reported in the tables. This is so because each GRASP run is repeatedMaxIter= 100
iterations. Even though the CPU time for each local search may vary, a good approximation
of the total running time is to take the average time per iteration and multiply it byMaxIter.

The performance of most heuristics depends on parameter settings. GRASP requires few
parameters to be set. To facilitate reproducibility, as well as to investigate the robustness of
the approach, we limit our runs in this experiment to a single set of parameter settings. We
useMaxIter= 100 andα = 0.8. Even though, CPU time could be reduced by selectively ap-
plying the local search only to good constructed solutions, in our computational experiments,
we apply the local search at every GRASP iteration.

The runs on the Funke-Reinelt data set are summarized in Table 3.1. On this class of

1FVS datasets:ftp://www.research.att.com/˜mgcr/data/gfvs-data.tar.gz

7

TABLE 3.2
Randomly generated dense test problems with 50 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time
500 1 29 11 0.189 29 2 0.027 29 39 0.738
600 2 32 15 0.343 32 63 1.394 32 65 1.451
700 3 33 4 0.099 33 1 0.020 34 28 0.814
800 4 36 16 0.487 36 5 0.149 36 7 0.201
900 5 36 40 1.432 36 100 3.429 37 80 2.938

1000 6 38 3 0.098 38 5 0.192 38 7 0.276
1100 7 39 8 0.356 39 21 0.918 39 65 3.255
1200 8 41 17 0.931 40 41 2.226 41 10 0.540
1300 9 41 10 0.618 41 3 0.219 41 45 2.769
1400 10 42 9 0.639 42 17 0.974 42 40 2.748

sum 367 133 5.192 366 258 9.548 369 386 15.730

TABLE 3.3
Randomly generated sparse test problems with 50 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time
100 11 3 1 0.001 3 1 0.001 3 1 0.001
150 12 9 1 0.003 9 1 0.003 9 2 0.008
200 13 13 1 0.005 13 2 0.010 13 3 0.020
250 14 17 1 0.009 17 4 0.026 17 13 0.111
300 15 19 20 0.185 19 2 0.014 20 4 0.043
350 16 21 26 0.273 21 26 0.273 22 42 0.520
400 17 24 54 0.745 25 5 0.062 24 59 0.825
500 18 25 43 0.513 25 1 0.011 25 60 0.797
550 19 12 35 0.153 12 13 0.056 12 16 0.068
600 20 19 2 0.014 19 1 0.012 19 11 0.113

sum 162 184 1.901 163 56 0.468 164 211 2.506

test problems, all three GRASP variants found optimal solutions for all instances [6] in very
few GRASP iterations.2. The last row of table gives the sum of all solution values, number
of iterations, and CPU times. Observe that GRASP B required the fewest overall number of
iterations as well as the least CPU time.

To test the effectiveness of GRASP on larger instances, we generated random digraphs
with up to 1000 vertices and 50,000 edges using the FORTRAN random graph generator
mkdigraph.f . 3 This generator takes as input the number of nodes, arcs, and the random
number seed. The generator should produce the same digraphs on different computers, since
it uses the portable FORTRAN random number generator of Schrage [15]. The problem
characteristics as well as a summary of the GRASP runs are listed in Tables 3.2– 3.9.

Several observations can be made on the properties of FVS as well as the behavior of the
proposed GRASP.

• It is observed that, for a fixed number of vertices, the size of the cutset increases with
the problem density, which is expected. Also note that for relatively dense graphs
(with average more than 10 edges per vertex), more than half of the vertices need to
be removed for the reduced graph to become acyclic. Although these two observa-
tions are based on heuristic solutions, it is reasonable to conjecture the behavior of
the optimal cutset is similar.
• With regard to performance of the three heuristics, when the cardinality of the graph

2GRASP solution:ftp://www.research.att.com/˜mgcr/sol/gfvs-soln.tar.gz
3mkdigraph source code:ftp://www.research.att.com/˜mgcr/src/mkdigraph.f.gz

8

TABLE 3.4
Randomly generated dense test problems with 100 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time

1000 21 56 30 2.069 56 32 2.314 58 57 4.033
1100 22 58 84 6.922 58 34 2.548 61 8 0.610
1200 23 60 17 1.493 61 6 0.492 63 65 5.819
1300 24 63 60 5.845 63 47 4.667 66 79 7.704
1400 25 66 1 0.101 64 67 7.413 67 1 0.131
1500 26 64 8 1.002 64 40 4.680 67 45 5.018
1600 27 70 9 1.157 68 19 2.534 71 18 2.311
1700 28 68 97 14.352 68 28 3.514 71 80 10.959
1800 29 71 12 1.840 68 82 13.049 73 13 1.980
1900 30 71 79 13.514 71 8 1.280 74 85 14.099

sum 647 397 48.295 641 363 42.491 671 451 52.664

TABLE 3.5
Randomly generated sparse test problems with 100 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time
200 31 9 1 0.004 9 2 0.011 9 6 0.027
300 32 17 5 0.063 17 1 0.018 17 51 0.656
400 33 23 18 0.292 23 12 0.189 23 38 0.678
500 34 34 40 1.201 33 17 0.500 35 87 2.571
600 35 39 73 2.863 39 23 0.877 40 37 1.406
700 36 44 48 2.188 45 43 1.923 47 7 0.393
650 37 41 26 1.040 40 9 0.295 42 26 1.134
450 38 26 36 0.804 25 94 1.912 27 19 0.437
350 39 19 3 0.040 19 2 0.025 19 78 1.165
250 40 12 16 0.098 12 1 0.006 12 21 0.136

sum 264 266 8.593 262 204 5.756 271 370 8.603

is small, there is not much difference among them. As the number of vertices in-
creases, GRASP B dominates the other two variants and almost always produces
the best solutions in the least number of GRASP iterations. This suggests that the
product of in- and out-degrees (i.e. a good balance between in- and out-degrees) is a
better indicator as to whether a vertex is in the cutset or not than are the sum or the
maximum values. For a fixed number of nodes, as the number of arcs increases, the
relative performance of GRASP B with respect to both GRASP A and GRASP C
improves.
• Since the GRASP iterations are independent of each other, GRASP can be easily

parallelized [5, 12]. On the largest instance solved (1000 nodes and 50,000 arcs),
100 GRASP iterations required over 6 hours of CPU time. Since a single GRASP
iteration for that instance took little over 200 CPU seconds, if the GRASP iterations
are distributed over many processors, the total running time can be considerably
reduced.

4. Concluding remarks. In this paper, we describe three GRASP variants for finding
approximate solutions of the feedback vertex set problem on general directed graphs. The
heuristics make use of solution preserving reductions in both the construction phase and the
local search. Experimental results on a large set of test problems suggest that the procedures
produce good quality solutions in little CPU time. A parallel version of the GRASP can be
used to solve larger instances of the FVS problem.

9

TABLE 3.6
Randomly generated dense test problems with 500 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time

5000 41 267 90 175.682 262 65 133.340 285 41 86.652
5500 42 286 61 138.679 281 7 16.330 300 98 225.992
6000 43 298 32 84.170 292 62 167.989 316 2 5.508
6500 44 308 23 68.559 304 71 219.365 322 18 52.944
7000 45 324 38 127.295 317 1 3.452 339 38 134.813
7500 46 330 8 31.699 324 46 194.024 340 49 201.431
8000 47 337 66 302.234 326 31 147.918 348 88 410.672
8500 48 345 93 472.520 336 96 498.786 356 40 206.155
9000 49 351 94 537.407 344 70 413.597 365 71 404.133

10000 50 357 49 325.288 352 86 580.664 370 18 115.891
sum 3203 554 2263.530 3138 535 2375.470 3341 463 1844.190

TABLE 3.7
Randomly generated sparse test problems with 500 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time

1000 51 33 33 3.603 34 4 0.403 34 7 0.713
1500 52 74 1 0.269 71 25 7.480 78 95 27.862
2000 53 115 31 15.626 111 4 2.585 121 49 23.390
2500 54 158 19 13.795 152 70 60.324 166 30 21.994
3000 55 189 64 59.587 183 43 41.998 198 74 68.457
3500 56 213 3 3.693 208 15 20.203 222 50 58.037
4000 57 236 46 66.146 230 23 34.679 250 75 111.120
4500 58 255 97 162.414 250 17 28.882 272 86 147.536
2000 59 123 28 14.040 117 16 8.254 129 83 41.536
2500 60 188 9 8.245 183 80 73.458 201 68 64.290

sum 1584 331 347.418 1539 297 278.266 1671 617 564.935

Acknowledgments. The authors would like to thank Professor Meinrad Funke for pro-
viding one of the data sets used in our experiments and an anonymous referee for comments
that improved the presentation of this paper.

REFERENCES

[1] V. BAFNA, P. BERMAN, AND T. FUJITO, Approximating feedback vertex set for undirected graphs within
ratio 2, 1994. Manuscript.

[2] A. B ECKER AND G. GEIGER, Approximation algorithms for the loop cutset problem, in Proc. of the 10th
Conference on Uncertainty in Artificial Intelligence, 1979, pp. 60–68.

[3] P. ERDÖS AND L. PÓSA, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrechen, 9
(1962), pp. 3–12.

[4] T. A. FEO AND M. G. C. RESENDE, Greedy randomized apaptive search procedures, Journal of Global
Optimization, 6 (1995), pp. 109–133.

[5] T. A. FEO, M. G. C. RESENDE, AND S. H. SMITH, A greedy randomized adaptive search procedure for
maximum independent set, Operations Research, 42 (1994), pp. 860–878.

[6] M. FUNKE, 1996. Personal communication.
[7] M. FUNKE AND G. REINELT, A polyhedral approach to the feedback vertex set problem, 1996. Manuscript.
[8] M. R. GAREY AND D. S. JOHNSON, Computers And Reducibility – A Guide to the Theory of NP-

Completeness, W. H. Freeman, San Francisco, 1979.
[9] H. L EVY AND L. L OWE, A contraction algorithm for finding small cycle cutsets, Journal of Algorithms, 9

(1988), pp. 470–493.
[10] Y. L I , P. M. PARDALOS, AND M. G. C. RESENDE, A greedy randomized adaptive search procedure for

the quadratic assignment problem, in Quadratic Assignment and Related Problems, P. Pardalos and
H. Wolkowicz, eds., vol. 16 of DIMACS Series on Discrete Mathematics and Theoretical Computer

10

TABLE 3.8
Randomly generated dense test problems with 1000 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time

10000 61 545 16 166.831 531 6 61.532 568 46 509.558
15000 62 650 27 571.371 638 56 1216.152 684 91 2011.868
20000 63 719 88 3209.624 708 21 766.150 744 2 73.515
25000 64 764 95 5060.780 755 5 255.889 790 25 1351.301
30000 65 801 17 1213.047 792 30 2161.844 821 42 3052.569
20000 66 720 55 2063.221 713 95 3772.719 745 71 2717.697
30000 67 802 17 1142.092 791 4 304.570 819 33 2369.979
40000 68 844 96 11944.590 836 38 4816.231 857 7 856.952
50000 69 867 6 1277.027 862 36 8080.269 881 5 1057.569
45000 70 859 43 7366.830 852 64 10727.460 872 54 9186.821

sum 7571 460 34015.413 7478 355 32162.816 7781 376 23187.829

TABLE 3.9
Randomly generated sparse test problems with 1000 nodes

problem GRASP A GRASP B GRASP C
|E| seed sol’n itr time sol’n itr time sol’n itr time

3000 71 151 6 7.334 148 11 13.966 159 76 93.645
3500 72 188 43 69.292 185 72 127.191 199 94 153.218
4000 73 225 2 4.112 217 1 2.198 238 93 197.254
4500 74 274 100 283.969 261 40 105.853 283 76 190.505
5000 75 303 77 239.386 299 79 245.280 327 40 131.053
5500 76 339 78 284.014 330 30 118.884 362 66 244.803
6000 77 380 6 24.561 368 27 118.739 404 11 49.170
6500 78 407 16 77.992 394 25 128.487 430 53 264.913
7000 79 431 75 432.295 420 45 259.267 465 41 242.707
8000 80 471 15 122.550 458 7 57.529 494 43 367.425

sum 3169 418 1545.505 3080 337 1177.394 3361 593 1934.693

Science, American Mathematical Society, Providence, R.I., 1994, pp. 237–261.
[11] B. MONIEN AND R. SCHULTZ, Four approximation algorithms for the feedback vertex set problem, Proc. of

the 7th Conference on Graph Theoretic Concepts of Computer Science, (1981), pp. 315–390.
[12] P. M. PARDALOS, L. S. PITSOULIS, AND M. G. C. RESENDE, A parallel GRASP implementation for the

quadratic assignment problem, in Parallel Algorithms for Irregularly Structured Problems – Irregular’94,
A. Ferreira and J. Rolim, eds., Kluwer Academic Publishers, 1995, pp. 111–130.

[13] T. QIAN , Y. YE, AND P. M. PARDALOS, A pseudoε-approximation algorithm for FVS, in State of the Art in
Global Optimization, C. Floudas and P. Pardalos, eds., Kluwer Academic Publishers, Dordrecht, Boston,
London, 1996, pp. 341–351.

[14] M. G. C. RESENDE AND T. A. FEO, A GRASP for satisfiability, in The Second DIMACS Implementation
Challenge, M. Trick and D. Johnson, eds., vol. 26 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, 1996, pp. 499–520.

[15] L. SCHRAGE, A more portable Fortran random number generator, ACM Transactions on Mathematical Soft-
ware, 5 (1979), pp. 132–138.

[16] P. D. SEYMOUR, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp. 182–188.
[17] A. SHAMIR, A linear time algorithm for finding minimum cutsets in reduced graphs, SIAM Journal On

Computing, 8 (1979), pp. 654–655.
[18] C. WANG, E. LLOYD, AND M. SOFFA, Feedback vertex sets and cyclically reducible graphs, Journal of the

ACM, 32 (1985), pp. 296–313.
[19] M. YANNAKAKIS , Node and edge-deletion NP-complete problems, in Proc. of the 10th Annual ACM Symp.

on Theory of Computing, 1978, pp. 253–264.
[20] B. YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for the vertex feedback set

problem with applications to constraint satisfaction and Bayesian inference, in Proc. of the 5th Annual
ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 344–354.

