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Abstract. A GRASP (greedy randomized adaptive search procedure) is a

multi-start metaheuristic for combinatorial optimization. We study the prob-

ability distributions of solution time to a sub-optimal target value in five

GRASPs that have appeared in the literature and for which source code is

available. The distributions are estimated by running 12,000 independent runs
of the heuristic. Standard methodology for graphical analysis is used to com-

pare the empirical and theoretical distributions and estimate the parameters of

the distributions. We conclude that the solution time to a sub-optimal target
value fits a two-parameter exponential distribution. Hence, it is possible to

approximately achieve linear speed-up by implementing GRASP in parallel.

1. Introduction

A greedy randomized adaptive search procedure (GRASP) [8, 9, 11] is a multi-
start or iterative process, in which each GRASP iteration consists of two phases.
In a construction phase, a feasible solution is produced and in a local search phase,
a local optimum in the neighborhood of the constructed solution is sought. The
best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one ele-
ment at a time. The basic GRASP construction phase is similar to the semi-greedy
heuristic proposed independently by Hart and Shogan [14]. At each construction
iteration, the choice of the next element to be added is determined by ordering all
candidate elements (i.e. those that can be added to the solution) in a candidate
list C with respect to a greedy function g : C → R. This function measures the
(myopic) benefit of selecting each element. The heuristic is adaptive because the
benefits associated with every element are updated at each iteration of the con-
struction phase to reflect the changes brought on by the selection of the previous
element. The probabilistic component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but not necessarily the top candidate.
The list of best candidates is called the restricted candidate list (RCL).

It is almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an iterative fashion by
successively replacing the current solution by a better solution in the neighborhood
of the current solution. It terminates when no better solution is found in the
neighborhood.
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Table 1. CPU time (in seconds) and speed-up on MAX-SAT
problems. Average speed-up is shown for 5, 10, and 15 proces-
sors.

1 processor 5 processors 10 processors 15 processors
problem time time speed-up time speed-up time speed-up
jnh201 310.4 62.8 4.9 30.5 10.2 22.2 14.0
jnh202 312.2 59.8 5.2 31.2 10.0 23.4 13.3
jnh203 351.2 72.3 4.9 35.2 10.0 23.2 15.1
jnh205 327.8 63.4 5.2 32.1 10.2 22.5 14.6
jnh207 304.7 56.7 5.4 29.6 10.3 19.8 15.4
jnh208 355.2 65.6 5.4 33.2 10.7 21.0 16.9
jnh209 339.0 60.5 5.6 33.6 10.1 21.6 15.7
jnh210 318.5 57.6 5.5 32.5 9.8 20.8 15.3
jnh301 414.5 85.3 4.9 45.2 9.2 28.3 14.6
jnh302 398.7 88.6 4.5 48.2 8.3 27.0 14.7
average speed-up: 5.2 9.9 15.0

As with any multi-start heuristic for combinatorial optimization, a GRASP can
be implemented in parallel by dividing the k independent iterations among ρ pro-
cessors. Another approach is to give a target value τ of the objective function
to each processor and execute the algorithm until the first processor finds a solu-
tion with value at least as good as τ , at which point all processors halt. Some
care is needed to assure that no two iterations start with identical random number
generator seeds [22]. These are examples of multiple independent walk parallelism
[36].

Many parallel implementations of GRASP using the above strategies have been
reported in the literature, e.g. [17, 18, 19, 21, 22]. In most of these papers, a
common observation was made. The speedups in the measured running times
were proportional to the number of processors. A typical example can be seen in
Pardalos, Pitsoulis, and Resende [22] where, for a PVM-based implementation of
a parallel GRASP for the MAX-SAT, average speed-ups almost identical to the
number of processors were measured (see Table 1).

This observation can be explained if the random variable solution time to target
is exponentially distributed, as indicated by the following proposition [36].

Proposition 1. Let Pρ(t) be the probability of not having found a given (target)

solution in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ R
+,

i.e. P1 corresponds to an exponential distribution, then Pρ(t) = e−ρt/λ.

The above proposition follows from the definition of the exponential distribution.
It implies that the probability of finding a solution of a given value in time ρt with
a sequential process is equal to the probability of finding a solution at least as good
as that given value in time t with ρ independent parallel processes. Hence, it is
possible to achieve linear speed-up in solution time to target solution by multiple
independent processes.

An analogous proposition can be stated for a two parameter (shifted) exponential
distribution.
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Proposition 2. Let Pρ(t) be the probability of not having found a given (target)

solution in t time units with ρ independent processes. If P1(t) = e−(t−µ)/λ with
λ ∈ R

+ and µ ∈ R, i.e. P1 corresponds to a two parameter exponential distribution,
then Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two parameter
exponential distribution. It implies that the probability of finding a solution of a
given value in time ρt with a sequential process is equal to 1− e−(ρt−µ)/λ while the
probability of finding a solution at least as good as that given value in time t with
ρ independent parallel processes is 1 − e−ρ(t−µ)/λ. Note that if µ = 0, then both
probabilities are equal and correspond to the non-shifted exponential distribution.
Furthermore, if ρµ � λ, then the two probabilities are approximately equal and
it is possible to approximately achieve linear speed-up in solution time to target
solution by multiple independent processes.

This behavior has been noted in a number of metaheuristics. These include sim-
ulated annealing [6, 20]; iterated local search algorithms for the traveling salesman
problem [7], where it is shown that the probability of finding a sub-optimal solution
is given by a shifted exponential distribution, allowing for the time to find the first
local optimum; tabu search, provided that the search starts from a local optimum
[1, 35]; and WalkSAT [34] on hard random 3-SAT problems [15].

The objective of this paper is to determine if the solution times for GRASP also
have this property, i.e., they fit a two parameter exponential distribution. To do
this, we consider five GRASPs that have been reported in the literature and for
which we have source code:

(1) maximum independent set [10, 28];
(2) quadratic assignment problem [16, 29];
(3) graph planarization [32, 33];
(4) maximum weighted satisfiability [30, 31];
(5) maximum covering [26].

For each GRASP, we selected four test problems from the literature. For each
of these instances, we determined three solution target values spread out between
minimum and maximum values produced by GRASP. For each target value, we
measured running times to find a solution at least as good as the target and studied
these distributions.

The remainder of this paper is organized as follows. In Section 2, we give a brief
overview of each of the five GRASPs used in this study. The experimental design
is described in Section 3. The experimental results are reported in Section 4. In
Section 5, we make concluding remarks.

2. Five GRASP implementations

In this section, we briefly describe the five GRASPs used in the experiments.
For each GRASP, we define the combinatorial optimization problem it solves, the
construction phase and the local search phase.

2.1. GRASP for maximum independent set. A GRASP for maximum inde-
pendent set was introduced by Feo and Resende [10]. Fortran subroutines that
implement this GRASP are found in Resende, Feo, and Smith [28].
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2.1.1. Problem definition. Let G = (V,E) be an undirected graph with vertex set
V and edge set E. Vertices u, v ∈ V are nonadjacent if (u, v) 6∈ E. A subset of the
vertices S ⊆ V is independent if all vertices in S are pairwise nonadjacent. In the
maximum independent set problem one wants to find an independent set having the
largest cardinality.

2.1.2. Construction phase. The algorithm initializes a working graph G̃ = (Ṽ , Ẽ)
to be the original graph, and sets the independent set S empty. The independent set
is built up one vertex at a time. The greedy function that guides the construction is
vertex degree with respect to the working graph. It selects among the working graph
vertices, the one with minimum degree and places that vertex in the independent
set. The greedy function is adaptive, since it changes with the selection of each
independent vertex.

Let d and d be, respectively, the minimum and maximum degrees over all working
vertices, i.e.

d = minv∈Ṽ {d(v, G̃)} and d = maxv∈Ṽ {d(v, G̃)},

where d(v, G̃) is the degree of vertex v with respect to G̃. The restricted candidate
list (RCL) is the set of vertices

RCL = {v ∈ Ṽ | d(v, G̃) ≤ d + α(d − d)},

where the parameter α controls the size of the RCL and is such that 0 ≤ α ≤ 1.
The vertex selection in the GRASP construction phase is random, restricted to
vertices in the RCL.

2.1.3. Local search phase. A (2, 1)-exchange local search heuristic for the maximum
independent set problem seeks a larger independent set by removing a single vertex
x from the independent set S and replacing it by two nonadjacent vertices u and
v, such that u and v are not adjacent to any vertex in S \ {x}. If such an exchange
is found, the procedure is recursively applied on the new larger independent set. A
locally optimal solution is detected when no further exchange is possible.

2.2. GRASP for quadratic assignment. Li, Pardalos, and Resende [16] intro-
duce a GRASP for the quadratic assignment problem (QAP) and describe Fortran
subroutines for this GRASP in [29]. A specialization of this GRASP for sparse
QAPs together with Fortran subroutines are presented in [23]. A parallel version
of this GRASP can be found in [21]. Improvements to the construction and local
search phases are described in [12, 24, 25].

2.2.1. Problem definition. Given a set N = {1, 2, . . . , n} and n × n matrices F =
(fij) and D = (dkl), the quadratic assignment problem (QAP) can be stated as
follows:

min
p∈ΠN

n
∑

i=1

n
∑

j=1

fijdp(i)p(j),

where ΠN is the set of all permutations of N .



GRASP SOLUTION TIME DISTRIBUTION 5

2.2.2. Construction phase. The construction phase has two stages. In stage 1, two
assignments are produced, i.e. facility i is assigned to site k and facility j is assigned
to site l. The idea is to assign facilities with high interaction (having high fij values)
to nearby sites (site pairs with low dkl values). To do this, the procedure sorts
inter-site distances in increasing order and inter-facility flows in decreasing order.
Let dk1,l1 ≤ dk2,l2 ≤ · · · ≤ dkp,lp and fi1,j1 ≥ fi2,j2 ≥ · · · ≥ fip,jp

be the sorted

values, where p = n2 − n. The products dk1,l1 · fi1,j1 , dk2,l2 · fi2,j2 , . . . , dkp,lp · fip,jp

are then sorted in increasing order. Among the smallest dkl · fij products, one
(corresponding to the pair of stage 1 assignments) is selected at random. Sorting
all of the p = n2 − n distances and flows is inefficient and offers little benefit.
Instead, only the best nβ = βp values are sorted, where β is a parameter such that
0 < β ≤ 1. Among these nβ pairs of assignments, a pair is selected at random from
the set of αnβ assignments having the smallest dkl · fij products, where α is such
that 0 < α ≤ 1.

In stage 2 of the construction phase, the remaining n−2 facility-site assignments
are made sequentially. The idea is to favor assignments that have small interaction
cost with the set of previously-made assignments. Let Γ be the set of q assignments
at a given point in the construction phase, i.e. Γ = {(i1, k1), (i2, k2), . . . , (iq, kq)}.
The cost of assigning facility j to site l, with respect to the already-made assign-
ments, is defined to be

cjl =
∑

(i,k)∈Γ

fijdkl.

All costs of unassigned facility-site pairs (j, l) are sorted in increasing order. Of the
pairs having the least α · |Γ| costs, one is selected at random and is added to the
set Γ. The procedure is repeated until n− 1 assignments are made. The remaining
facility is then assigned to the remaining site.

2.2.3. Local search phase. In the local search phase of this GRASP, a 2-exchange
neighborhood search is conducted on the constructed solution. There, all possible
2-swaps of facility-locations are considered. If a swap improves the cost of the
assignment, it is accepted. The procedure continues until no swap improves the
solution value.

2.3. GRASP for graph planarization. A GRASP for graph planarization was
introduced in Resende and Ribeiro [32]. Fortran subroutines for their algorithm
are described in [33].

2.3.1. Problem definition. A graph is said to be planar if it can be drawn on the
plane in such a way that no two of its edges cross. Given a graph G = (V,E)
with vertex set V and edge set E, the objective of graph planarization is to find a
minimum cardinality subset of edges F ⊆ E such that the graph G′ = (V,E \ F ),
resulting from the removal of the edges in F from G, is planar. This problem is
also known as the maximum planar subgraph problem.

2.3.2. Two phase heuristic. The GRASP described in this section is based on the
separation of the computation into two phases [13]. The first phase consists in
devising a linear permutation of the nodes of the input graph, followed by placing
them along a line. The second phase determines two sets of edges that may be
represented without crossings above and below that line, respectively.
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The GRASP construction and local search are applied to the first phase, where
a linear permutation of the nodes is determined.

2.3.3. Construction phase. After the first k nodes of the permutation have been
determined, say v1, v2, · · · , vk, the next node vk+1 is selected at random from the
nodes adjacent to vk in G having the lowest degrees in the subgraph Gk of G
induced by V \ {v1, v2, · · · , vk}. If there is no node of Gk adjacent to vk in G, then
vk+1 is selected at random from a set of low degree nodes in Gk.

2.3.4. Local search phase. The local search phase explores the neighborhood of the
current permutation by swapping the positions of two nodes at a time, attempting
to reduce the number of possible edge crossings.

2.3.5. Post-optimization. Each iteration of this GRASP produces three edge sets:
B (blue edges, which are drawn above the line), R (red edges, which are drawn
below the line), and P (the remaining edges, which are referred to as the pale
edges). By construction, B, R, and P are such that no red or pale edge can be
colored blue. Likewise, pale edges cannot be colored red. However, if there exists a
pale edge p ∈ P such that all blue edges that cross with p (let B̂p ⊆ B be the set of

those blue edges) do not cross with any red edge r ∈ R, then all blue edges b ∈ B̂p

can be colored red and p can be colored blue. In case this reassignment of colors
is possible, then the size of the planar subgraph is increased by one edge. This
post-optimization procedure is incorporated at the end of each GRASP iteration.

2.4. GRASP for MAX-SAT. A GRASP for satisfiability was first proposed in
Resende and Feo [27]. This GRASP was generalized to handle MAX-SAT problems
by Resende, Pitsoulis, and Pardalos [30]. A parallel version of this algorithm is
described in [22] and Fortran subroutines are presented in [31].

2.4.1. Problem definition. Let C1, C2, . . . , Cm be m clauses, involving n Boolean vari-
ables x1, x2, . . ., xn, which can take on only the values true or false (1 or 0). In
addition, for each clause Ci, there is an associated nonnegative weight wi. Define
clause i to be

Ci =

ni
∨

j=1

lij ,

where ni is the number of literals in clause Ci, and literal lij ∈ {xi, x̄i | i = 1, . . . , n}.
A clause is said to be satisfied if it evaluates to true. In the weighted Maximum
Satisfiability Problem (MAX-SAT), one is to determine the assignment of truth
values to the n variables that maximizes the sum of the weights of the satisfied
clauses.

2.4.2. Construction phase. A feasible solution to a MAX-SAT instance is described
by x ∈ {0, 1}n. Let w(x) is the sum of the weights of the clauses satisfied by x.
The construction phase solution is built, one element at a time, guided by a greedy
function and randomization. Since in the MAX-SAT problem there are n variables
to be assigned, each construction phase consists of n iterations.

The idea behind the greedy function is to maximize the total weight of yet-
unsatisfied clauses that become satisfied after the assignment of each construction
phase iteration. For i ∈ N , let Γ+

i be the set of unassigned clauses that would
become satisfied if variable xi were to be set to true. Likewise, let Γ−

i be the set
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of unassigned clauses that would become satisfied if variable xi were to be set to
false. Define

γ+
i =

∑

j∈Γ+

i

wj and γ−
i =

∑

j∈Γ−

i

wj .

The greedy choice is to select the variable xk with the largest γ+
k or γ−

k value and

set it to the corresponding truth value. If γ+
k > γ−

k , then the assignment xk = 1

is made, else xk = 0. Note that with every assignment made, the sets Γ+
i and

Γ−
i change for all i such that xi is not assigned a truth value, to reflect the new

assignment. This consequently changes the values of γ+
i and γ−

i , characterizing the
adaptive component of the heuristic.

Let

γ∗ = max{γ+
i , γ−

i | xi yet unassigned}

and

γ∗ = min{γ+
i , γ−

i | xi yet unassigned},

and let α (0 ≤ α ≤ 1) be the restricted candidate parameter. A new value for α
is selected, at random, at each iteration, from the uniform distribution U [0, 1]. A
candidate xi = true is inserted into the RCL if γ+

i ≥ γ∗ + α · (γ∗ − γ∗). Likewise,
a candidate xi = false is inserted if γ−

i ≥ γ∗ + α · (γ∗ − γ∗).

2.4.3. Local search phase. To define the local search procedure, some preliminary
definitions have to be made. Given a truth assignment x ∈ {0, 1}n, define the 1-flip
neighborhood N(x) to be the set of all vectors y ∈ {0, 1}n such that ‖ x − y ‖2 =
1. If x is interpreted as a vertex of the n-dimensional unit hypercube, then its
neighborhood consists of the n vertices adjacent to x. If we denote by w(x) the
total weight of the clauses satisfied by the truth assignment x, then the truth
assignment x is a local maximum if and only if w(x) ≥ w(y), for all y ∈ N(x).
Starting with a truth assignment x, the local search finds the local maximum y in
N(x). If y 6= x, it sets x = y. This process is repeated until no further improvement
is possible.

2.5. GRASP for maximum covering. A GRASP for the maximum covering
problem is described in Resende [26].

2.5.1. Problem definition. The maximum covering problem can be stated as: Let
J = {1, 2, . . . , n} denote the set of n potential facility locations. Define n finite
sets P1, P2, . . . , Pn, each corresponding to a potential facility location, such that
I = ∪j∈JPj = {1, 2, . . . ,m} is the set of the m demand points that can be covered
by the n potential facilities. With each demand point i ∈ I, we associate a weight
wi ≥ 0. A cover J∗ ⊆ J covers the demand points in set I∗ = ∪j∈J∗Pj and has
an associated weight w(J∗) =

∑

i∈I∗ wi. Given the number p > 0 of facilities to
be placed, we wish to find the set J∗ ⊆ J that maximizes w(J∗), subject to the
constraint that |J∗| = p.

2.5.2. Construction phase. Since in the maximum covering problem there are p
facility locations to be chosen, each construction phase consists of p iterations,
with one location chosen per iteration.

To define a restricted candidate list, we rank the yet unchosen facility locations
according to an adaptive greedy function. Let J∗ denote the set (initially empty) of
chosen facility locations being built in the construction phase. At any construction
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phase iteration, let Γj be the set of additional uncovered demand points that would
become covered if facility location j (for j ∈ J \J∗) were to be added to J∗. Define
the greedy function

γj =
∑

i∈Γj

wi

to be the incremental weight covered by the choice of facility location j ∈ J\J ∗. The
greedy choice is to select the facility location k having the largest γk value. Note
that with every selection made, the sets Γj , for all yet unchosen facility location
indices j ∈ J \ J∗, change to reflect the new selection. This consequently changes
the values of the greedy function γj , characterizing the adaptive component of the
heuristic.

Let

γ∗ = max{γj | facility location j is still unselected, i.e. j ∈ J \ J∗}

and α be the restricted candidate parameter (0 ≤ α ≤ 1). We say a facility location
j is a potential candidate, and is added to the RCL, if γj ≥ α × γ∗. A location is
selected at random from the RCL and is added to the solution.

2.5.3. Local search phase. Two solutions (sets of facility locations) J 1 and J2 are
said to be neighbors in the 2-exchange neighborhood if they differ by exactly one
element, i.e. | J1∩∆J | = | J2∩∆J | = 1, where ∆J = (J1∪J2)\ (J1∩J2). The
local search starts with a set J∗ of p facility locations, and at each iteration attempts
to find a pair of locations s ∈ J∗ and t ∈ J\J∗ such that w(J∗\{s}∪{t}) > w(J∗). If
such a pair exists, then location s is replaced by location t in J∗. A solution is locally
optimal with respect to this neighborhood if there exists no pairwise exchange that
increases the total weight of J∗.

3. Experimental design

In this section we describe the experimental design. We analyze five GRASPs
that have appeared in the literature and for which source code is available. For
each of these algorithms, we select four test problems to study the probability
distribution of solution time. The hypothesis of this paper is that CPU times fit
a two parameter exponential distribution. We measure the CPU time to find an
objective function value at least as good as a given target value. This is done
for three different target values for each test problem. These values are spread out
between a value far from the optimal and the best value produced by GRASP. Each
GRASP is run n = 200 times for all instance/target combinations. For each of the
200 runs of each combination, the random number generator is initialized with a
distinct seed and therefore the runs are independent. To compare the empirical
and the theoretical distributions, we follow a standard graphical methodology for
data analysis [4]. In the remainder of this section we describe this methodology.

For each instance/target pair, the running times are sorted in increasing order.
We associate with the i-th sorted running time (ti) a probability pi = (i − 1

2 )/n,
and plot the points zi = (ti, pi), for i = 1, . . . , n. We comment on this choice of
pi later in this section. Figure 1 illustrates this cumulative probability distribution
plot for one of the instance/target pairs.

To estimate the parameters of the two-parameter exponential distribution, we
first draw the theoretical quantile-quantile plot (or Q-Q plot) for the data. To
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Figure 1. Cumulative probability distribution plot of measured data.
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Figure 2. Q-Q plot showing fitted line.

describe Q-Q plots, we recall that the cumulative distribution function for the two-
parameter exponential distribution is given by

F (t) = 1 − e−(t−µ)/λ,
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Figure 3. Q-Q plot with variability information.
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Figure 4. Superimposed empirical and theoretical distributions.

where λ is the mean of the distribution data (and indicates the spread of the data)
and µ is the shift of the distribution with respect to the ordinate axis.
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For each value pi, i = 1, . . . , n, we associate a pi-quantile Qt(pi) of the theoretical
distribution. For each pi-quantile we have, by definition, that

F ((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distri-
bution, we have

Qt(pi) = −λ ln(1 − pi) + µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw
data. Note that if we were to use pi = i/n, for i = 1, . . . , n, then Qt(pn) would be
undefined.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by
plotting the quantiles of the data of an empirical distribution against the quantiles
of a theoretical distribution. This involves three steps. First, the data (in our
case, the measured times) are sorted in ascending order. Second, the quantiles of
the theoretical exponential distribution are obtained. Finally, a plot of the data
against the theoretical quantiles is made.

In a situation where the theoretical distribution is a close approximation of
the empirical distribution, the points in the Q-Q plot will have a nearly straight
configuration. If the parameters λ and µ of the theoretical distribution that best
fits the measured data could be estimated a priori, the points in a Q-Q plot would
tend to follow the line x = y. Alternatively, in a plot of the data against a two-
parameter exponential distribution with λ = 1 and µ = 0, the points would tend to

follow the line y = λ̂x+ µ̂. This means that a single theoretical Q-Q plot compares
a set of data not just to one theoretical distribution, but simultaneously to a whole
family of distributions. Consequently, parameters λ and µ of the two-parameter

exponential distribution can be estimated, respectively, by the slope λ̂ and intercept
µ̂ of the line depicted in the Q-Q plot.

The Q-Q plot shown in Figure 2 is obtained by plotting the measured times in
the ordinate against the quantiles of a two-parameter exponential distribution with
λ = 1 and µ = 0 in the abscissa, given by − ln(1 − pi) for i = 1, . . . , n. To avoid
possible distortions caused by outliers, we do not estimate the distribution mean
with the data mean or by linear regression on the points of the Q-Q plot. Instead,

we estimate the slope λ̂ of line y = λx + µ using the upper quartile qu and lower
quartile ql of the data. The upper and lower quartiles are, respectively, the Q( 1

4 )

and Q( 3
4 ) quantiles, respectively. We take

λ̂ = (zu − zl)/(qu − ql)

as an estimate of the slope, where zu and zl are the u-th and l-th points of the
ordered measured times, respectively. This informal estimation of the distribution
of the measured data mean is robust since it will not be distorted by a few outliers
[4].

To analyze the straightness of the Q-Q plots, we superimpose them with vari-
ability information. For each plotted point, we show plus and minus one standard
deviation in the vertical direction from the line fitted to the plot. An estimate of
the standard deviation for point zi, i = 1, . . . , n, of the Q-Q plot is

σ̂ = λ̂

√

pi

(1 − pi)n
.

Figure 3 shows an example of a Q-Q plot with superimposed variability information.
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When observing a theoretical quantile-quantile plot with superimposed standard
deviation information, one should avoid turning such information into a formal test.
One important fact that must be kept in mind is that the natural variability of the
data generates departures from the straightness, even if the model of the distribu-
tion is valid. The most important reason for portraying standard deviation is that
it gives us a sense of the relative variability of the points in the different regions of
the plot. However, since one is trying to make simultaneous inferences from many
individual inferences, it is difficult to use standard deviations to judge departures
from the reference distribution. For example, the probability that a particular point
deviates from the reference line by more than two standard deviations is small. But
the probability that at least one of the data points deviates from the line by two
standard deviations is probably much greater. In order statistics, this is made
more difficult by the high correlation that exists between neighboring points. If
one plotted point deviates by more than one standard deviation, there is a good
chance that a whole bunch of them will too. Another point to keep in mind is that
standard deviations vary substantially in the Q-Q plot, as can be observed in the
Q-Q plot in Figure 3 that the standard deviations of the points near the high end
are substantially larger then the standard deviation of the other end.

Once the two parameters of the distribution are estimated, a superimposed plot
of the empirical and theoretical distributions can be made. Figure 4 shows this plot
corresponding to the Q-Q plot in Figure 2.

4. Computational results

In this section, we present the computational results. We describe the computer
environment used to conduct the experiments, the instances selected for each of
the five GRASPs, and present for each GRASP/instance/target triplet its Q-Q
plot with variability information, the two estimated parameters, and superimposed
plots of the empirical and theoretical distributions.

4.1. Computer environment. The experiments were done on an SGI Challenge
computer (28 196 MHz MIPS R10000 processors) with 7.6 Gb of memory. Each
run used a single processor.

The algorithms were coded in Fortran and were modified minimally to produce
the data needed for the experiments. CPU times were measured with the system
function etime. The codes were compiled with the SGI MIPSpro F77 compiler. The
GRASPs for maximum independent set and quadratic assignment were compiled
using flags -Ofast -u and the GRASP for maximum satisfiability was compiled
using flags -Ofast -static. The GRASP for maximum covering was compiled
using flags -O3 -r4 -64 and the GRASP for planarization was compiled using
flags -O3 -static.

4.2. Test problems. The test problem names, their best known solutions, and
respective target values are shown in Tables 2– 6.

The four problems used to study the GRASP for maximum independent set
were chosen from a much studied class of random graphs [2], denoted by Gn,p.
Such graphs have n nodes and each edge (i, j), i, j = 1, . . . , n, i 6= j, exists with
probability p. The experiment consisted in running the algorithm on four random
instances of Gn,p (n = 1000, p = 0.5) generated with the Fortran code in the
distribution [28].
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Table 2. Maximum independent set test problems with best
known solutions (bks), target values, and parameter estimates.

estimates

problem bks target µ̂ λ̂
270002 15 13 0.015 0.146

14 -0.018 1.612
15 25.560 291.715

270003 15 13 0.068 0.147
14 0.142 5.797
15 1.849 223.491

270004 15 13 0.034 0.092
14 -0.035 2.024
15 1.339 30.248

270006 15 13 0.021 0.137
14 -0.013 1.383
15 38.909 516.965

Table 3. Quadratic assignment problem test problems with best
known solutions, target values, and parameter estimates.

estimates

problem bks target µ̂ λ̂
chr25a 3796 5023 0.016 0.221

4721 0.012 1.147
4418 0.460 8.401

kra30b 91420 94675 0.021 0.076
93590 0.024 0.261
92505 -0.041 2.045

sko42 15812 16389 0.051 0.049
16222 0.044 0.244
16055 0.173 1.955

tho40 240516 247160 0.105 0.419
245396 0.255 2.163
243632 3.397 19.413

For the GRASP for QAP, test problems chr25a, kra30b, sko42, and tho40,
were chosen from the suite of QAP test programs QAPLIB [3]. The problems are
pure quadratic assignment problems that have at least one symmetric distance or
flow matrix. Their dimensions (n) range from 25 to 42.

The GRASP for graph planarization was tested for four problems (g17, tg100.10,
rg100.1, and rg150.1) chosen from a set of 75 test problems described in the lit-
erature [5, 13]. The dimensions of the selected problems range from 100 to 150
vertices and 261 to 742 edges.

The test problems for the MAX-SAT problem were chosen among the instances
reported in Resende, Pitsoulis, and Pardalos [30]. Problems jnh11 and jnh12 have
100 variables and 800 clauses, problem jnh212 has 100 variables and 850 clauses,
and problem jnh306 has 100 variables and 900 clauses.
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Table 4. Graph planarization test problems with best known so-
lutions, target values, and parameter estimates.

estimates

problem bks target µ̂ λ̂
g17 236 222 2.564 8.723

227 -0.738 72.498
231 -19.991 763.081

tg100.10 277 215 0.575 0.690
226 0.747 5.120
236 -10.540 181.038

rg100.1 162 154 0.135 0.563
157 0.062 3.983
159 -0.148 25.954

rg150.1 231 215 0.531 0.722
220 0.368 6.961
225 3.495 286.668

Table 5. Maximum satisfiability test problems with best known
solutions, target values, and parameter estimates.

maximum satisfiability
estimates

problem bks target µ̂ λ̂
jnh11 420753 418851 0.061 0.136

419485 0.063 0.876
420119 0.860 24.903

jnh12 420925 417664 0.053 0.046
418751 0.044 0.233
419838 0.064 2.797

jnh212 394238 393145 0.033 0.707
393506 -0.226 4.148
393866 -0.261 46.058

jnh306 444838 441720 0.059 0.058
442759 0.062 0.219
443798 -0.198 3.509

The test problems for the GRASP for maximum covering (r24-500, r25-250,
r54-100, and r55-100) were generated randomly using the generator described in
Resende [26]. All instances have 1000 potential location sites and demand points
varying from 7425 to 9996. The number of facilities to be located varies from 100
to 500.

4.3. Generating the data points. 200 independent runs of each GRASP were
done for each instance/target pair. In each run, the GRASP was halted after
a solution at least as good as the target was found and the total CPU time (in
seconds) was recorded. With the 200 data points generated, a Q-Q plot with



GRASP SOLUTION TIME DISTRIBUTION 15

Table 6. Maximum covering test problems with best known so-
lutions, target values, and parameter estimates.

maximum covering
estimates

problem bks target µ̂ λ̂
r24-500 33343542 33330441 -2.257 109.827

33334808 11.960 229.850
33339175 2.273 669.501

r25-250 20606926 20567005 1.042 3.319
20580312 0.716 14.555
20593619 4.279 101.40

r54-100 39684669 39332719 6.272 42.187
39450036 17.803 272.29
39567352 73.320 3978.427

r55-100 39504338 39037219 6.917 9.063
39192925 3.190 37.672
39348631 -10.888 279.470

variability information and a superimposed plot of the empirical and theoretical
distributions were made.

4.4. Q-Q plots and theoretical distributions. In this subsection, we present Q-
Q plots with variability information with the corresponding plots of superimposed
empirical and theoretical distributions.

Each Q-Q plot figure is composed of 12 Q-Q plots, one for each instance/target
pair. Likewise, each superimposed empirical and theoretical distribution figure has
12 plots, one for each instance/target pair. Each plot is made up of 200 data points.
Each figure has four rows of plots, each corresponding to one of the four instances.
For each instance, three increasingly difficult target values are used. In each row
of the figure, the difficulty of finding a solution with a given target value increases
from left to right.

The estimated parameters for all GRASPs are shown in Tables 2– 6. Parameter

λ̂ is the estimated mean time to target solution and parameter µ̂ is the estimated
minimum time to target solution. Since the minimum time to target solution is
the time corresponding to one GRASP iterations, µ̂ is an estimate of one GRASP
iteration.

Figures 7 and 8 show, respectively, the Q-Q plots and superimposed empirical
and theoretical distributions for the maximum independent set instances. For the
quadratic assignment problem instances, the Q-Q plots and superimposed empiri-
cal and theoretical distributions are shown, respectively, in Figures 9 and 10. Fig-
ures 11 and 12 depict, respectively, the Q-Q plots and superimposed empirical and
theoretical distributions for the graph planarization instances. For the maximum
satisfiability instances, the Q-Q plots and superimposed empirical and theoretical
distributions are depicted, respectively, in Figures 13 and 14. Figures 15 and 16
show, respectively, the Q-Q plots and superimposed empirical and theoretical dis-
tributions for the maximum covering instances.

We make the following observations regarding the experiments.



16 R.M. AIEX, M.G.C. RESENDE, AND C.C. RIBEIRO

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 400 800 1200 1600 2000 2400

ra
tio

 b
et

w
ee

n 
er

ro
r 

an
d 

st
d 

de
v

repetitions

graph planarization
max covering

QAP
independent sets
max satisfiability

1/2 std dev
1 std devs
2 std devs

Figure 5. Ratio of error and standard deviation for all repeti-
tions – All instances.

12,000 independent runs were carried out, each finding a solution at least as
good as its respective target.

In general, there was no large or systematic departure from straightness in the
Q-Q plots. However, it is well known in statistics that the samples of real data
are often contaminated by a small fraction of abnormal observations that will lie
outside the typical range of data. This can be observed in the experiments reported
here.

Straightness generally increased with problem difficulty, i.e. as the target value
approached the optimal, the fit of solution time to the theoretical distribution
improved, implying therefore that the computed parameters were good estimates.
This occurs because the distribution of number of GRASP iterations until target
solution is more spread out. In some of the easier instances, many runs took few
iterations. We further discuss this issue later in this section.

The points in each Q-Q plot can be regarded as order statistics. Due to the high
correlation that exists between neighboring order statistics, the probability that
a particular point deviates from the line by more than two standard deviations
is small. However, as commented in Section 3, the probability that at least one
of the points deviates from the line by two standard deviations is undoubtedly
much greater. Figures 5 and 6 plot the ratios of deviation from the fitted line to
one standard deviation, for all 2400 instances of each GRASP and all 800 harder
instances of each GRASP, respectively. The harder instances correspond to those
in the rightmost column of the Q-Q plots and superimposed plots of the empirical
and theoretical distributions. The ratios are sorted in increasing order. About 75%
of all points in the Q-Q plots fall within one standard deviation of the fitted line
and about 88% fall within two standard deviations. When limited only to hard
instance/target pairs, then about 80% of the all points in the Q-Q plots fall within
one standard deviation of the fitted line and about 93% fall within two standard
deviations.
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Only harder instances.

As can be seen in the Q-Q plots, not many points associated with large CPU
times fall outside the one standard deviation bounds. Hence, most of the points
that fall outside the two standard deviation bounds are points associated with small
CPU times which in turn have small standard deviations. In fact, if we only consider
the largest 180 (of 200) CPU times for each instance/target pair, we observe that
93% of all points in the Q-Q plots fall within two standard deviations of the fitted
line. Restricting our sample to only hard instance/target plots, then 98% of the
points fall within the bounds.

A quantile-quantile plot with horizontal segments, as observed in Figures 7
and 11, is common in practice [4]. This discrete granularity may mean that the
data were rounded at some earlier stage before being plotted. In our experiments,
this is observed only for the easiest problem/target pairs. It occurs because in
many runs, the target solution was found in the same GRASP iteration. In these
examples, the i-th horizontal segment depicts the solution times found in the i-th
GRASP iteration. Although this is a departure from normality, if these repetitions
were eliminated and each segment turned into a single point, represented by its
median, nearly straight lines would be observed for all these plots.

5. Concluding remarks

Though it is clear that distributing the GRASP iterations evenly among parallel
processors achieves linear speedup for total time (to run all GRASP iterations), it is
less clear why linear speedup in time to a given target value is frequently observed.
If time to a target solution value fits a two-parameter exponential distribution, then
the probability of finding a solution of a given value in time ρt with a sequential
process is equal to the probability of finding a solution at least as good as that
given value in time t with ρ independent parallel processes. Hence, linear speedup
would be observed.

In this paper, we reported on an empirical investigation of the distribution of
solution time to a target value. 12,000 GRASP runs were done in the experiment.
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To analyze the observations, we used a standard graphical methodology for data
analysis. Q-Q plots with variability information were used to determine if the
empirical distribution fits its theoretical counterpart. The estimated parameters of
the theoretical distribution were derived from the Q-Q plots.

The main conclusion from the experiments is that time to target value indeed
fits well a two-parameter exponential distribution. The fit tends to improve as the
difficulty to find a solution of a given target value increases.

Though this study was limited to five distinct GRASPs, we believe that this
characteristic is present in any GRASP implemented in a straightforward manner.
It should be noted that tricks commonly used to speedup a sequential GRASP, such
as hash tables to avoid repetition of local search from identical starting solutions,
can make speedup in time to target solution be sublinear in the number of proces-
sors. An example of this can be seen in Martins, Resende, Ribeiro, and Pardalos
[17], where the use of a hash table improves the speed of a sequential GRASP in
instances in which the construction phase generates many identical solutions and
the parallel GRASP repeats many of these unnecessary local searches.
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[15] H.H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local

search algorithms for sat. Artificial Intelligence, 112:213–232, 1999.

[16] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure

for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic

assignment and related problems, volume 16 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science, pages 237–261. American Mathematical Society, 1994.

[17] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos. A parallel GRASP for

the Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global

Optimization, 2000. To appear.

[18] S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem in

graphs. In A. Ferreira and J. Rolim, editors, Proceedings of IRREGULAR’98 – 5th Inter-

national Symposium on Solving Irregularly Structured Problems in Parallel, volume 1457 of

Lecture Notes in Computer Science, pages 285–297. Springer-Verlag, 1998.
[19] R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data associa-

tion multidimensional assignment problem. In P.M. Pardalos, editor, Parallel processing of

discrete problems, volume 106 of The IMA Volumes in Mathematics and Its Applications,

pages 159–180. Springer-Verlag, 1998.

[20] L.J. Osborne and B.E. Gillett. A comparison of two simulated annealing algorithms applied
to the directed Steiner problem on networks. ORSA J. on Computing, 3:213–225, 1991.

[21] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation for the
quadratic assignment problem. In A. Ferreira and J. Rolim, editors, Parallel Algorithms for

Irregularly Structured Problems – Irregular’94, pages 111–130. Kluwer Academic Publishers,

1995.
[22] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT prob-

lems. Lecture Notes in Computer Science, 1184:575–585, 1996.

[23] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: Fortran subroutines for
approximate solution of sparse quadratic assignment problems using GRASP. ACM Trans-

actions on Mathematical Software, 23:196–208, 1997.
[24] M.C. Rangel, N.M.M. Abreu, and P.O. Boaventura Netto. GRASP in the QAP: An accep-

tance bound for initial solution. In Proc. of the Third Metaheuristics International Confer-

ence, pages 381–386, July 1999.

[25] M.C. Rangel, N.M.M. de Abreu, P.O. Boaventura Netto, and M.C.S. Boeres. A modified
local search for GRASP in the quadratic assignment problem. Technical report, Production

Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ
Brazil, 1998.

[26] M.G.C. Resende. Computing approximate solutions of the maximum covering problem using
GRASP. J. of Heuristics, 4:161–171, 1998.

[27] M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A. Trick,
editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Chal-

lenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer

Science, pages 499–520. American Mathematical Society, 1996.

[28] M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines for approx-
imate solution of maximum independent set problems using GRASP. ACM Trans. Math.

Software, 24:386–394, 1998.

[29] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approxi-

mate solution of dense quadratic assignment problems using GRASP. ACM Transactions on

Mathematical Software, 22:104–118, 1996.
[30] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-

SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability problems,
volume 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,

pages 393–405. American Mathematical Society, 1997.

[31] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing ap-

proximate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathematics,

100:95–113, 2000.

[32] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–189,
1997.



20 R.M. AIEX, M.G.C. RESENDE, AND C.C. RIBEIRO

[33] C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approximate

solution of graph planarization problems using GRASP. ACM Transactions on Mathematical

Software, 25:341–352, 1999.

[34] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In Pro-

ceedings of the AAAI-94, pages 337–343. MIT Press, 1994.

[35] E.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Comput-

ing, 17:443–455, 1991.

[36] M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. J. of Heuristics, 1:43–66, 1995.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270002, look4=13

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270002, look4=14

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270002, look4=15

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270003, look4=13

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270003, look4=14

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270003, look4=15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270004, look4=13

-2

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270004, look4=14

0

50

100

150

200

250

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270004, look4=15

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270006, look4=13

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270006, look4=14

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es

exponential quantiles

prob=270006, look4=15

Figure 7. Q-Q plots for GRASP for maximum independent set
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Figure 8. Exponential plots for GRASP for maximum indepen-
dent set
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Figure 9. Q-Q plots for GRASP for quadratic assignment
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Figure 10. Exponential plots for GRASP for quadratic assignment
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Figure 11. Q-Q plots for GRASP for graph planarization
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Figure 12. Exponential plots for GRASP for graph planarization
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Figure 13. Q-Q plots for GRASP for maximum weighted satisfiability
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Figure 14. Exponential plots for GRASP for maximum weighted satisfiability
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Figure 15. Q-Q plots for GRASP for maximum covering
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Figure 16. Exponential plots for GRASP for maximum covering


