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Abstra ct. A GRASP (greedy randomized adaptiv e search procedure) is a
multi-start metaheuristic for combinatorial optimization. We study the prob-
abilit y distributions of solution time to a sub-optimal target value in �v e
GRASPs that have appeared in the literature and for which source code is
available. The distributions are estimated by running 12,000 independent runs
of the heuristic. Standard metho dology for graphical analysis is used to com-
pare the empirical and theoretical distributions and estimate the parameters of
the distributions. We conclude that the solution time to a sub-optimal target
value �ts a two-parameter exponential distribution. Hence, it is possible to
approximately achieve linear speed-up by implementing GRASP in parallel.

1. Intr oduction

A greedy randomized adaptive search procedure (GRASP) [8, 9, 11] is a multi-
start or iterativ e process,in which each GRASP iteration consistsof two phases.
In a construction phase,a feasiblesolution is producedand in a local search phase,
a local optimum in the neighborhood of the constructed solution is sought. The
best overall solution is kept as the result.

In the construction phase,a feasiblesolution is iterativ ely constructed, one ele-
ment at a time. The basicGRASP construction phaseis similar to the semi-greedy
heuristic proposedindependently by Hart and Shogan[14]. At each construction
iteration, the choice of the next element to be added is determined by ordering all
candidate elements (i.e. those that can be added to the solution) in a candidate
list C with respect to a greedy function g : C ! R. This function measuresthe
(myopic) bene�t of selecting each element. The heuristic is adaptive becausethe
bene�ts associated with every element are updated at each iteration of the con-
struction phaseto re
ect the changesbrought on by the selection of the previous
element. The probabilistic component of a GRASP is characterized by randomly
choosingoneof the bestcandidatesin the list, but not necessarilythe top candidate.
The list of best candidates is called the restricted candidate list (RCL).

It is almost always bene�cial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an iterativ e fashion by
successively replacing the current solution by a better solution in the neighborhood
of the current solution. It terminates when no better solution is found in the
neighborhood.
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Table 1. CPU time (in seconds) and speed-up on MAX-SAT
problems. Average speed-up is shown for 5, 10, and 15 proces-
sors.

1 processor 5 processors 10 processors 15 processors
problem time time speed-up time speed-up time speed-up
jnh201 310.4 62.8 4.9 30.5 10.2 22.2 14.0
jnh202 312.2 59.8 5.2 31.2 10.0 23.4 13.3
jnh203 351.2 72.3 4.9 35.2 10.0 23.2 15.1
jnh205 327.8 63.4 5.2 32.1 10.2 22.5 14.6
jnh207 304.7 56.7 5.4 29.6 10.3 19.8 15.4
jnh208 355.2 65.6 5.4 33.2 10.7 21.0 16.9
jnh209 339.0 60.5 5.6 33.6 10.1 21.6 15.7
jnh210 318.5 57.6 5.5 32.5 9.8 20.8 15.3
jnh301 414.5 85.3 4.9 45.2 9.2 28.3 14.6
jnh302 398.7 88.6 4.5 48.2 8.3 27.0 14.7
averagespeed-up: 5.2 9.9 15.0

As with any multi-start heuristic for combinatorial optimization, a GRASP can
be implemented in parallel by dividing the k independent iterations among � pro-
cessors. Another approach is to give a target value � of the objective function
to each processorand execute the algorithm until the �rst processor�nds a solu-
tion with value at least as good as � , at which point all processorshalt. Some
care is neededto assurethat no two iterations start with identical random number
generator seeds[22]. These are examplesof multiple independent walk parallelism
[36].

Many parallel implementations of GRASP using the above strategieshave been
reported in the literature, e.g. [17, 18, 19, 21, 22]. In most of these papers, a
common observation was made. The speedups in the measured running times
were proportional to the number of processors.A typical example can be seenin
Pardalos, Pitsoulis, and Resende[22] where, for a PVM-based implementation of
a parallel GRASP for the MAX-SAT, average speed-upsalmost identical to the
number of processorswere measured(seeTable 1).

This observation can be explained if the random variable solution time to target
is exponentially distributed, as indicated by the following proposition [36].

Prop osition 1. Let P� (t) be the probability of not having found a given (target)
solution in t time units with � independentprocesses.If P1(t) = e� t=� with � 2 R+ ,
i.e. P1 corresponds to an exponential distribution, then P� (t) = e� �t=� .

The above proposition follows from the de�nition of the exponential distribution.
It implies that the probabilit y of �nding a solution of a given value in time �t with
a sequential processis equal to the probabilit y of �nding a solution at least asgood
as that given value in time t with � independent parallel processes.Hence, it is
possibleto achieve linear speed-up in solution time to target solution by multiple
independent processes.

An analogousproposition canbestated for a two parameter (shifted) exponential
distribution.
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Prop osition 2. Let P� (t) be the probability of not having found a given (target)
solution in t time units with � independent processes. If P1(t) = e� ( t � � )=� with
� 2 R+ and � 2 R, i.e. P1 corresponds to a two parameter exponential distribution,
then P� (t) = e� � ( t � � )=� .

Analogously, this proposition follows from the de�nition of the two parameter
exponential distribution. It implies that the probabilit y of �nding a solution of a
given value in time �t with a sequential processis equal to 1� e� ( �t � � )=� while the
probabilit y of �nding a solution at least as good as that given value in time t with
� independent parallel processesis 1 � e� � ( t � � )=� . Note that if � = 0, then both
probabilities are equal and correspond to the non-shifted exponential distribution.
Furthermore, if �� � � , then the two probabilities are approximately equal and
it is possible to approximately achieve linear speed-up in solution time to target
solution by multiple independent processes.

This behavior hasbeennoted in a number of metaheuristics. Theseinclude sim-
ulated annealing [6, 20]; iterated local search algorithms for the traveling salesman
problem [7], whereit is shown that the probabilit y of �nding a sub-optimal solution
is given by a shifted exponential distribution, allowing for the time to �nd the �rst
local optimum; tabu search, provided that the search starts from a local optimum
[1, 35]; and WalkSAT [34] on hard random 3-SAT problems [15].

The objective of this paper is to determine if the solution times for GRASP also
have this property, i.e., they �t a two parameter exponential distribution. To do
this, we consider �v e GRASPs that have been reported in the literature and for
which we have sourcecode:

(1) maximum independent set [10, 28];
(2) quadratic assignment problem [16, 29];
(3) graph planarization [32, 33];
(4) maximum weighted satis�abilit y [30, 31];
(5) maximum covering [26].

For each GRASP, we selectedfour test problems from the literature. For each
of these instances,we determined three solution target valuesspread out between
minimum and maximum values produced by GRASP. For each target value, we
measuredrunning times to �nd a solution at least asgood asthe target and studied
thesedistributions.

The remainder of this paper is organizedas follows. In Section2, we give a brief
overview of each of the �v e GRASPs used in this study. The experimental design
is described in Section 3. The experimental results are reported in Section 4. In
Section 5, we make concluding remarks.

2. Five GRASP implement ations

In this section, we brie
y describe the �v e GRASPs used in the experiments.
For each GRASP, we de�ne the combinatorial optimization problem it solves, the
construction phaseand the local search phase.

2.1. GRASP for maxim um indep enden t set. A GRASP for maximum inde-
pendent set was intro duced by Feo and Resende[10]. Fortran subroutines that
implement this GRASP are found in Resende,Feo, and Smith [28].



4 R.M. AIEX, M.G.C. RESENDE, AND C.C. RIBEIR O

2.1.1. Problem de�nition. Let G = (V; E) be an undirected graph with vertex set
V and edgeset E . Vertices u; v 2 V are nonadjacent if (u; v) 62E. A subsetof the
vertices S � V is independent if all vertices in S are pairwise nonadjacent. In the
maximum independentset problemonewants to �nd an independent set having the
largest cardinalit y.

2.1.2. Construction phase. The algorithm initializes a working graph ~G = ( ~V ; ~E)
to be the original graph, and setsthe independent setS empty. The independent set
is built up onevertex at a time. The greedyfunction that guidesthe construction is
vertex degreewith respect to the working graph. It selectsamongthe working graph
vertices, the one with minimum degreeand placesthat vertex in the independent
set. The greedy function is adaptive, since it changeswith the selection of each
independent vertex.

Let d and d be, respectively, the minimum and maximum degreesover all working
vertices, i.e.

d = minv2 ~V f d(v; ~G)g and d = maxv2 ~V f d(v; ~G)g;

where d(v; ~G) is the degreeof vertex v with respect to ~G. The restricted candidate
list (RCL) is the set of vertices

RCL = f v 2 ~V j d(v; ~G) � d + � (d � d)g;

where the parameter � controls the size of the RCL and is such that 0 � � � 1.
The vertex selection in the GRASP construction phase is random, restricted to
vertices in the RCL.

2.1.3. Local search phase. A (2; 1)-exchangelocal search heuristic for the maximum
independent set problem seeksa larger independent set by removing a singlevertex
x from the independent set S and replacing it by two nonadjacent vertices u and
v, such that u and v are not adjacent to any vertex in S nf xg. If such an exchange
is found, the procedureis recursively applied on the new larger independent set. A
locally optimal solution is detected when no further exchangeis possible.

2.2. GRASP for quadratic assignmen t. Li, Pardalos, and Resende[16] intro-
duce a GRASP for the quadratic assignment problem (QAP) and describe Fortran
subroutines for this GRASP in [29]. A specialization of this GRASP for sparse
QAPs together with Fortran subroutines are presented in [23]. A parallel version
of this GRASP can be found in [21]. Improvements to the construction and local
search phasesare described in [12, 24, 25].

2.2.1. Problem de�nition. Given a set N = f 1; 2; : : : ; ng and n � n matrices F =
(f ij ) and D = (dk l ), the quadratic assignment problem (QAP) can be stated as
follows:

min
p2 � N

nX

i =1

nX

j =1

f ij dp( i )p( j ) ;

where � N is the set of all permutations of N .
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2.2.2. Construction phase. The construction phasehas two stages. In stage1, two
assignments are produced, i.e. facilit y i is assignedto site k and facilit y j is assigned
to site l . The idea is to assignfacilities with high interaction (having high f ij values)
to nearby sites (site pairs with low dk l values). To do this, the procedure sorts
inter-site distancesin increasing order and inter-facilit y 
o ws in decreasingorder.
Let dk1 ;l 1 � dk2 ;l 2 � � � � � dkp ;l p and f i 1 ;j 1 � f i 2 ;j 2 � � � � � f i p ;j p be the sorted
values,where p = n2 � n. The products dk1 ;l 1 � f i 1 ;j 1 ; dk2 ;l 2 � f i 2 ;j 2 ; : : : ; dkp ;l p � f i p ;j p

are then sorted in increasing order. Among the smallest dk l � f ij products, one
(corresponding to the pair of stage 1 assignments) is selectedat random. Sorting
all of the p = n2 � n distances and 
o ws is ine�cien t and o�ers little bene�t.
Instead, only the best n � = � p valuesare sorted, where � is a parameter such that
0 < � � 1. Among thesen � pairs of assignments, a pair is selectedat random from
the set of � n� assignments having the smallest dk l � f ij products, where � is such
that 0 < � � 1.

In stage2 of the construction phase,the remaining n � 2 facilit y-site assignments
are madesequentially . The idea is to favor assignments that have small interaction
cost with the set of previously-madeassignments. Let � be the set of q assignments
at a given point in the construction phase, i.e. � = f (i 1; k1); (i 2; k2); : : : ; (i q; kq)g.
The cost of assigningfacilit y j to site l , with respect to the already-madeassign-
ments, is de�ned to be

cj l =
X

( i;k )2 �

f ij dk l :

All costsof unassignedfacilit y-site pairs (j ; l ) are sorted in increasingorder. Of the
pairs having the least � � j� j costs, one is selectedat random and is added to the
set �. The procedureis repeateduntil n � 1 assignments are made. The remaining
facilit y is then assignedto the remaining site.

2.2.3. Local search phase. In the local search phaseof this GRASP, a 2-exchange
neighborhood search is conducted on the constructed solution. There, all possible
2-swaps of facilit y-locations are considered. If a swap improves the cost of the
assignment, it is accepted. The procedure continues until no swap improves the
solution value.

2.3. GRASP for graph planarization. A GRASP for graph planarization was
intro duced in Resendeand Ribeiro [32]. Fortran subroutines for their algorithm
are described in [33].

2.3.1. Problem de�nition. A graph is said to be planar if it can be drawn on the
plane in such a way that no two of its edgescross. Given a graph G = (V; E)
with vertex set V and edgeset E , the objective of graph planarization is to �nd a
minimum cardinalit y subsetof edgesF � E such that the graph G0 = (V; E n F ),
resulting from the removal of the edgesin F from G, is planar. This problem is
also known as the maximum planar subgraph problem.

2.3.2. Two phaseheuristic. The GRASP described in this section is basedon the
separation of the computation into two phases[13]. The �rst phase consists in
devising a linear permutation of the nodesof the input graph, followed by placing
them along a line. The secondphase determines two sets of edgesthat may be
represented without crossingsabove and below that line, respectively.
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The GRASP construction and local search are applied to the �rst phase,where
a linear permutation of the nodes is determined.

2.3.3. Construction phase. After the �rst k nodes of the permutation have been
determined, say v1; v2; � � � ; vk , the next node vk+1 is selectedat random from the
nodes adjacent to vk in G having the lowest degreesin the subgraph Gk of G
induced by V nf v1; v2; � � � ; vk g. If there is no node of Gk adjacent to vk in G, then
vk+1 is selectedat random from a set of low degreenodes in Gk .

2.3.4. Local search phase. The local search phaseexploresthe neighborhood of the
current permutation by swapping the positions of two nodesat a time, attempting
to reducethe number of possibleedgecrossings.

2.3.5. Post-optimization. Each iteration of this GRASP producesthree edgesets:
B (blue edges,which are drawn above the line), R (red edges,which are drawn
below the line), and P (the remaining edges,which are referred to as the pale
edges). By construction, B, R, and P are such that no red or pale edgecan be
coloredblue. Likewise,pale edgescannot be colored red. However, if there exists a
pale edgep 2 P such that all blue edgesthat crosswith p (let B̂p � B be the set of
those blue edges)do not crosswith any red edger 2 R, then all blue edgesb 2 B̂p

can be colored red and p can be colored blue. In casethis reassignment of colors
is possible, then the size of the planar subgraph is increasedby one edge. This
post-optimization procedure is incorporated at the end of each GRASP iteration.

2.4. GRASP for MAX-SA T. A GRASP for satis�abilit y was �rst proposedin
Resendeand Feo[27]. This GRASP wasgeneralizedto handle MAX-SAT problems
by Resende,Pitsoulis, and Pardalos [30]. A parallel version of this algorithm is
described in [22] and Fortran subroutines are presented in [31].

2.4.1. Problemde�nition. Let C1; C2; : : : ; Cm bem clauses,involving n Booleanvari-
ablesx1, x2, : : :, xn , which can take on only the valuestrue or false (1 or 0). In
addition, for each clauseCi , there is an associated nonnegative weight wi . De�ne
clausei to be

Ci =
n i_

j =1

l ij ;

whereni is the number of literals in clauseCi , and literal l ij 2 f x i ; �x i j i = 1; : : : ; ng.
A clauseis said to be satis�ed if it evaluates to true . In the weighted Maximum
Satis�ability Problem (MAX-SA T), one is to determine the assignment of truth
values to the n variables that maximizes the sum of the weights of the satis�ed
clauses.

2.4.2. Construction phase. A feasiblesolution to a MAX-SAT instanceis described
by x 2 f 0; 1gn . Let w(x) is the sum of the weights of the clausessatis�ed by x.
The construction phasesolution is built, oneelement at a time, guided by a greedy
function and randomization. Sincein the MAX-SAT problem there are n variables
to be assigned,each construction phaseconsistsof n iterations.

The idea behind the greedy function is to maximize the total weight of yet-
unsatis�ed clausesthat becomesatis�ed after the assignment of each construction
phase iteration. For i 2 N , let � +

i be the set of unassignedclausesthat would
becomesatis�ed if variable x i were to be set to true . Likewise,let � �

i be the set



GRASP SOLUTION TIME DISTRIBUTION 7

of unassignedclausesthat would becomesatis�ed if variable x i were to be set to
false . De�ne


 +
i =

X

j 2 � +
i

wj and 
 �
i =

X

j 2 � �
i

wj :

The greedy choice is to select the variable xk with the largest 
 +
k or 
 �

k value and
set it to the corresponding truth value. If 
 +

k > 
 �
k , then the assignment xk = 1

is made, else xk = 0. Note that with every assignment made, the sets � +
i and

� �
i change for all i such that x i is not assigneda truth value, to re
ect the new

assignment. This consequently changesthe valuesof 
 +
i and 
 �

i , characterizing the
adaptive component of the heuristic.

Let

 � = maxf 
 +

i ; 
 �
i j x i yet unassignedg

and

 � = minf 
 +

i ; 
 �
i j x i yet unassignedg;

and let � (0 � � � 1) be the restricted candidate parameter. A new value for �
is selected,at random, at each iteration, from the uniform distribution U[0; 1]. A
candidate x i = true is inserted into the RCL if 
 +

i � 
 � + � � (
 � � 
 � ). Likewise,
a candidate x i = false is inserted if 
 �

i � 
 � + � � (
 � � 
 � ).

2.4.3. Local search phase. To de�ne the local search procedure, somepreliminary
de�nitions have to be made. Given a truth assignment x 2 f 0; 1gn , de�ne the 1-
ip
neighborhood N (x) to be the set of all vectors y 2 f 0; 1gn such that k x � y k2 =
1. If x is interpreted as a vertex of the n-dimensional unit hypercube, then its
neighborhood consists of the n vertices adjacent to x. If we denote by w(x) the
total weight of the clausessatis�ed by the truth assignment x, then the truth
assignment x is a local maximum if and only if w(x) � w(y), for all y 2 N (x).
Starting with a truth assignment x, the local search �nds the local maximum y in
N (x). If y 6= x, it setsx = y. This processis repeateduntil no further improvement
is possible.

2.5. GRASP for maxim um covering. A GRASP for the maximum covering
problem is described in Resende[26].

2.5.1. Problem de�nition. The maximum covering problem can be stated as: Let
J = f 1; 2; : : : ; ng denote the set of n potential facilit y locations. De�ne n �nite
sets P1; P2; : : : ; Pn , each corresponding to a potential facilit y location, such that
I = [ j 2 J Pj = f 1; 2; : : : ; mg is the set of the m demand points that can be covered
by the n potential facilities. With each demand point i 2 I , we associate a weight
wi � 0. A cover J � � J covers the demand points in set I � = [ j 2 J � Pj and has
an associated weight w(J � ) =

P
i 2 I � wi . Given the number p > 0 of facilities to

be placed, we wish to �nd the set J � � J that maximizes w(J � ), subject to the
constraint that jJ � j = p.

2.5.2. Construction phase. Since in the maximum covering problem there are p
facilit y locations to be chosen, each construction phase consists of p iterations,
with one location chosenper iteration.

To de�ne a restricted candidate list, we rank the yet unchosenfacilit y locations
accordingto an adaptive greedyfunction. Let J � denotethe set (initially empty) of
chosenfacilit y locations being built in the construction phase. At any construction
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phaseiteration, let � j be the set of additional uncovereddemandpoints that would
becomecovered if facilit y location j (for j 2 J nJ � ) were to be addedto J � . De�ne
the greedy function


 j =
X

i 2 � j

wi

to bethe incremental weight coveredby the choiceof facilit y location j 2 J nJ � . The
greedy choice is to select the facilit y location k having the largest 
 k value. Note
that with every selection made, the sets � j , for all yet unchosenfacilit y location
indices j 2 J n J � , change to re
ect the new selection. This consequently changes
the valuesof the greedy function 
 j , characterizing the adaptive component of the
heuristic.

Let


 � = maxf 
 j j facilit y location j is still unselected,i.e. j 2 J n J � g

and � be the restricted candidate parameter (0 � � � 1). We say a facilit y location
j is a potential candidate, and is added to the RCL, if 
 j � � � 
 � . A location is
selectedat random from the RCL and is added to the solution.

2.5.3. Local search phase. Two solutions (sets of facilit y locations) J 1 and J 2 are
said to be neighbors in the 2-exchange neighborhood if they di�er by exactly one
element, i.e. j J 1 \ � J j = j J 2 \ � J j = 1, where � J = (J 1 [ J 2) n(J 1 \ J 2). The
local search starts with a setJ � of p facilit y locations, and at each iteration attempts
to �nd a pair of locationss 2 J � and t 2 J nJ � such that w(J � nf sg[ f tg) > w(J � ). If
such a pair exists, then location s is replacedby location t in J � . A solution is locally
optimal with respect to this neighborhood if there exists no pairwise exchangethat
increasesthe total weight of J � .

3. Experiment al design

In this section we describe the experimental design. We analyze �v e GRASPs
that have appeared in the literature and for which source code is available. For
each of these algorithms, we select four test problems to study the probabilit y
distribution of solution time. The hypothesis of this paper is that CPU times �t
a two parameter exponential distribution. We measurethe CPU time to �nd an
objective function value at least as good as a given target value. This is done
for three di�eren t target valuesfor each test problem. Thesevaluesare spreadout
betweena value far from the optimal and the best value producedby GRASP. Each
GRASP is run n = 200 times for all instance/target combinations. For each of the
200 runs of each combination, the random number generator is initialized with a
distinct seedand therefore the runs are independent. To compare the empirical
and the theoretical distributions, we follow a standard graphical methodology for
data analysis [4]. In the remainder of this section we describe this methodology.

For each instance/target pair, the running times are sorted in increasingorder.
We associate with the i -th sorted running time (t i ) a probabilit y pi = (i � 1

2 )=n,
and plot the points zi = (t i ; pi ), for i = 1; : : : ; n. We comment on this choice of
pi later in this section. Figure 1 illustrates this cumulativ e probabilit y distribution
plot for one of the instance/target pairs.

To estimate the parameters of the two-parameter exponential distribution, we
�rst draw the theoretical quantile-quantile plot (or Q-Q plot) for the data. To



GRASP SOLUTION TIME DISTRIBUTION 9

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

 p
ro

ba
bi

lit
y

time to sub-optimal

Figure 1. Cumulativ e probabilit y distribution plot of measureddata.
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Figure 2. Q-Q plot showing �tted line.

describe Q-Q plots, we recall that the cumulativ e distribution function for the two-
parameter exponential distribution is given by

F (t) = 1 � e� ( t � � )=� ;
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Figure 3. Q-Q plot with variabilit y information.
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Figure 4. Superimposedempirical and theoretical distributions.

where � is the meanof the distribution data (and indicates the spreadof the data)
and � is the shift of the distribution with respect to the ordinate axis.
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For each valuepi , i = 1; : : : ; n, weassociate a pi -quantile Qt(pi ) of the theoretical
distribution. For each pi -quantile we have, by de�nition, that

F ((Qt(pi )) = pi :

Hence,Qt(pi ) = F � 1(pi ) and therefore, for the two-parameter exponential distri-
bution, we have

Qt(pi ) = � � ln(1 � pi ) + �:

The quantiles of the data of an empirical distribution are simply the (sorted) raw
data. Note that if we were to usepi = i=n, for i = 1; : : : ; n, then Qt(pn ) would be
unde�ned.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by
plotting the quantiles of the data of an empirical distribution against the quantiles
of a theoretical distribution. This involves three steps. First, the data (in our
case,the measuredtimes) are sorted in ascendingorder. Second,the quantiles of
the theoretical exponential distribution are obtained. Finally, a plot of the data
against the theoretical quantiles is made.

In a situation where the theoretical distribution is a close approximation of
the empirical distribution, the points in the Q-Q plot will have a nearly straight
con�guration. If the parameters � and � of the theoretical distribution that best
�ts the measureddata could be estimated a priori, the points in a Q-Q plot would
tend to follow the line x = y. Alternativ ely, in a plot of the data against a two-
parameter exponential distribution with � = 1 and � = 0, the points would tend to
follow the line y = �̂x + �̂ . This meansthat a single theoretical Q-Q plot compares
a set of data not just to one theoretical distribution, but simultaneously to a whole
family of distributions. Consequently , parameters � and � of the two-parameter
exponential distribution canbe estimated, respectively, by the slope �̂ and intercept
�̂ of the line depicted in the Q-Q plot.

The Q-Q plot shown in Figure 2 is obtained by plotting the measuredtimes in
the ordinate against the quantiles of a two-parameterexponential distribution with
� = 1 and � = 0 in the abscissa,given by � ln(1 � pi ) for i = 1; : : : ; n. To avoid
possibledistortions causedby outliers, we do not estimate the distribution mean
with the data mean or by linear regressionon the points of the Q-Q plot. Instead,
we estimate the slope �̂ of line y = �x + � using the upper quartile qu and lower
quartile ql of the data. The upper and lower quartiles are, respectively, the Q( 1

4 )
and Q( 3

4 ) quantiles, respectively. We take

�̂ = (zu � zl )=(qu � ql )

as an estimate of the slope, where zu and zl are the u-th and l-th points of the
ordered measuredtimes, respectively. This informal estimation of the distribution
of the measureddata mean is robust sinceit will not be distorted by a few outliers
[4].

To analyze the straightness of the Q-Q plots, we superimposethem with vari-
abilit y information. For each plotted point, we show plus and minus one standard
deviation in the vertical direction from the line �tted to the plot. An estimate of
the standard deviation for point zi , i = 1; : : : ; n, of the Q-Q plot is

�̂ = �̂
r

pi

(1 � pi )n
:

Figure 3 showsan exampleof a Q-Q plot with superimposedvariabilit y information.
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When observinga theoretical quantile-quantile plot with superimposedstandard
deviation information, oneshould avoid turning such information into a formal test.
One important fact that must be kept in mind is that the natural variabilit y of the
data generatesdepartures from the straightness,even if the model of the distribu-
tion is valid. The most important reasonfor portraying standard deviation is that
it givesus a senseof the relative variabilit y of the points in the di�eren t regionsof
the plot. However, sinceone is trying to make simultaneous inferencesfrom many
individual inferences,it is di�cult to use standard deviations to judge departures
from the referencedistribution. For example,the probabilit y that a particular point
deviatesfrom the referenceline by more than two standard deviations is small. But
the probabilit y that at least one of the data points deviates from the line by two
standard deviations is probably much greater. In order statistics, this is made
more di�cult by the high correlation that exists between neighboring points. If
one plotted point deviates by more than one standard deviation, there is a good
chancethat a whole bunch of them will too. Another point to keepin mind is that
standard deviations vary substantially in the Q-Q plot, as can be observed in the
Q-Q plot in Figure 3 that the standard deviations of the points near the high end
are substantially larger then the standard deviation of the other end.

Once the two parametersof the distribution are estimated, a superimposedplot
of the empirical and theoretical distributions can be made. Figure 4 shows this plot
corresponding to the Q-Q plot in Figure 2.

4. Comput ational resul ts

In this section, we present the computational results. We describe the computer
environment used to conduct the experiments, the instances selectedfor each of
the �v e GRASPs, and present for each GRASP/instance/target triplet its Q-Q
plot with variabilit y information, the two estimated parameters,and superimposed
plots of the empirical and theoretical distributions.

4.1. Computer environmen t. The experiments were done on an SGI Challenge
computer (28 196 MHz MIPS R10000processors)with 7.6 Gb of memory. Each
run useda single processor.

The algorithms were coded in Fortran and were modi�ed minimally to produce
the data neededfor the experiments. CPU times were measuredwith the system
function etime . The codeswerecompiledwith the SGI MIPSpro F77 compiler. The
GRASPs for maximum independent set and quadratic assignment were compiled
using 
ags -Ofast -u and the GRASP for maximum satis�abilit y was compiled
using 
ags -Ofast -static . The GRASP for maximum covering was compiled
using 
ags -O3 -r4 -64 and the GRASP for planarization was compiled using

ags -O3 -static .

4.2. Test problems. The test problem names, their best known solutions, and
respective target valuesare shown in Tables2{ 6.

The four problems used to study the GRASP for maximum independent set
were chosen from a much studied class of random graphs [2], denoted by Gn;p .
Such graphs have n nodes and each edge(i; j ), i; j = 1; : : : ; n; i 6= j , exists with
probabilit y p. The experiment consistedin running the algorithm on four random
instances of Gn;p (n = 1000; p = 0:5) generated with the Fortran code in the
distribution [28].
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Table 2. Maximum independent set test problems with best
known solutions (bks), target values,and parameter estimates.

estimates
problem bks target �̂ �̂
270002 15 13 0.015 0.146

14 -0.018 1.612
15 25.560 291.715

270003 15 13 0.068 0.147
14 0.142 5.797
15 1.849 223.491

270004 15 13 0.034 0.092
14 -0.035 2.024
15 1.339 30.248

270006 15 13 0.021 0.137
14 -0.013 1.383
15 38.909 516.965

Table 3. Quadratic assignment problem test problems with best
known solutions, target values,and parameter estimates.

estimates
problem bks target �̂ �̂
chr25a 3796 5023 0.016 0.221

4721 0.012 1.147
4418 0.460 8.401

kra30b 91420 94675 0.021 0.076
93590 0.024 0.261
92505 -0.041 2.045

sko42 15812 16389 0.051 0.049
16222 0.044 0.244
16055 0.173 1.955

tho40 240516 247160 0.105 0.419
245396 0.255 2.163
243632 3.397 19.413

For the GRASP for QAP, test problems chr25a, kra30b, sko42, and tho40,
were chosenfrom the suite of QAP test programs QAPLIB [3]. The problems are
pure quadratic assignment problems that have at least one symmetric distance or

o w matrix. Their dimensions(n) range from 25 to 42.

The GRASP for graph planarization wastestedfor four problems(g17, tg100.10 ,
rg100.1 , and rg150.1 ) chosenfrom a set of 75 test problems described in the lit-
erature [5, 13]. The dimensions of the selectedproblems range from 100 to 150
vertices and 261 to 742 edges.

The test problems for the MAX-SAT problem were chosenamong the instances
reported in Resende,Pitsoulis, and Pardalos [30]. Problems jnh11 and jnh12 have
100 variables and 800 clauses,problem jnh212 has 100 variables and 850 clauses,
and problem jnh306 has 100 variables and 900 clauses.
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Table 4. Graph planarization test problems with best known so-
lutions, target values,and parameter estimates.

estimates
problem bks target �̂ �̂

g17 236 222 2.564 8.723
227 -0.738 72.498
231 -19.991 763.081

tg100.10 277 215 0.575 0.690
226 0.747 5.120
236 -10.540 181.038

rg100.1 162 154 0.135 0.563
157 0.062 3.983
159 -0.148 25.954

rg150.1 231 215 0.531 0.722
220 0.368 6.961
225 3.495 286.668

Table 5. Maximum satis�abilit y test problems with best known
solutions, target values,and parameter estimates.

maximum satis�abilit y
estimates

problem bks target �̂ �̂
jnh11 420753 418851 0.061 0.136

419485 0.063 0.876
420119 0.860 24.903

jnh12 420925 417664 0.053 0.046
418751 0.044 0.233
419838 0.064 2.797

jnh212 394238 393145 0.033 0.707
393506 -0.226 4.148
393866 -0.261 46.058

jnh306 444838 441720 0.059 0.058
442759 0.062 0.219
443798 -0.198 3.509

The test problems for the GRASP for maximum covering (r24-500 , r25-250 ,
r54-100 , and r55-100 ) were generatedrandomly using the generator described in
Resende[26]. All instanceshave 1000 potential location sites and demand points
varying from 7425 to 9996. The number of facilities to be located varies from 100
to 500.

4.3. Generating the data poin ts. 200 independent runs of each GRASP were
done for each instance/target pair. In each run, the GRASP was halted after
a solution at least as good as the target was found and the total CPU time (in
seconds)was recorded. With the 200 data points generated, a Q-Q plot with
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Table 6. Maximum covering test problems with best known so-
lutions, target values,and parameter estimates.

maximum covering
estimates

problem bks target �̂ �̂
r24-500 33343542 33330441 -2.257 109.827

33334808 11.960 229.850
33339175 2.273 669.501

r25-250 20606926 20567005 1.042 3.319
20580312 0.716 14.555
20593619 4.279 101.40

r54-100 39684669 39332719 6.272 42.187
39450036 17.803 272.29
39567352 73.320 3978.427

r55-100 39504338 39037219 6.917 9.063
39192925 3.190 37.672
39348631 -10.888 279.470

variabilit y information and a superimposed plot of the empirical and theoretical
distributions were made.

4.4. Q-Q plots and theoretical distributions. In this subsection,wepresent Q-
Q plots with variabilit y information with the corresponding plots of superimposed
empirical and theoretical distributions.

Each Q-Q plot �gure is composedof 12 Q-Q plots, one for each instance/target
pair. Likewise,each superimposedempirical and theoretical distribution �gure has
12 plots, onefor each instance/target pair. Each plot is madeup of 200data points.
Each �gure has four rows of plots, each corresponding to one of the four instances.
For each instance, three increasingly di�cult target values are used. In each row
of the �gure, the di�cult y of �nding a solution with a given target value increases
from left to right.

The estimated parametersfor all GRASPs are shown in Tables2{ 6. Parameter
�̂ is the estimated mean time to target solution and parameter �̂ is the estimated
minimum time to target solution. Since the minimum time to target solution is
the time corresponding to one GRASP iterations, �̂ is an estimate of one GRASP
iteration.

Figures 7 and 8 show, respectively, the Q-Q plots and superimposedempirical
and theoretical distributions for the maximum independent set instances. For the
quadratic assignment problem instances,the Q-Q plots and superimposedempiri-
cal and theoretical distributions are shown, respectively, in Figures 9 and 10. Fig-
ures 11 and 12 depict, respectively, the Q-Q plots and superimposedempirical and
theoretical distributions for the graph planarization instances. For the maximum
satis�abilit y instances,the Q-Q plots and superimposedempirical and theoretical
distributions are depicted, respectively, in Figures 13 and 14. Figures 15 and 16
show, respectively, the Q-Q plots and superimposedempirical and theoretical dis-
tributions for the maximum covering instances.

We make the following observations regarding the experiments.
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Figure 5. Ratio of error and standard deviation for all repeti-
tions { All instances.

12,000 independent runs were carried out, each �nding a solution at least as
good as its respective target.

In general, there was no large or systematic departure from straightness in the
Q-Q plots. However, it is well known in statistics that the samplesof real data
are often contaminated by a small fraction of abnormal observations that will lie
outside the typical rangeof data. This can be observed in the experiments reported
here.

Straightnessgenerally increasedwith problem di�cult y, i.e. as the target value
approached the optimal, the �t of solution time to the theoretical distribution
improved, implying therefore that the computed parameters were good estimates.
This occurs becausethe distribution of number of GRASP iterations until target
solution is more spread out. In someof the easier instances,many runs took few
iterations. We further discussthis issuelater in this section.

The points in each Q-Q plot can be regardedasorder statistics. Due to the high
correlation that exists between neighboring order statistics, the probabilit y that
a particular point deviates from the line by more than two standard deviations
is small. However, as commented in Section 3, the probabilit y that at least one
of the points deviates from the line by two standard deviations is undoubtedly
much greater. Figures 5 and 6 plot the ratios of deviation from the �tted line to
one standard deviation, for all 2400 instancesof each GRASP and all 800 harder
instancesof each GRASP, respectively. The harder instancescorrespond to those
in the rightmost column of the Q-Q plots and superimposedplots of the empirical
and theoretical distributions. The ratios are sorted in increasingorder. About 75%
of all points in the Q-Q plots fall within one standard deviation of the �tted line
and about 88% fall within two standard deviations. When limited only to hard
instance/target pairs, then about 80% of the all points in the Q-Q plots fall within
one standard deviation of the �tted line and about 93% fall within two standard
deviations.
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As can be seenin the Q-Q plots, not many points associated with large CPU
times fall outside the one standard deviation bounds. Hence, most of the points
that fall outside the two standard deviation boundsare points associated with small
CPU times which in turn havesmall standard deviations. In fact, if weonly consider
the largest 180 (of 200) CPU times for each instance/target pair, we observe that
93% of all points in the Q-Q plots fall within two standard deviations of the �tted
line. Restricting our sample to only hard instance/target plots, then 98% of the
points fall within the bounds.

A quantile-quantile plot with horizontal segments, as observed in Figures 7
and 11, is common in practice [4]. This discrete granularit y may mean that the
data were rounded at someearlier stagebefore being plotted. In our experiments,
this is observed only for the easiestproblem/target pairs. It occurs becausein
many runs, the target solution was found in the sameGRASP iteration. In these
examples,the i -th horizontal segment depicts the solution times found in the i -th
GRASP iteration. Although this is a departure from normalit y, if theserepetitions
were eliminated and each segment turned into a single point, represented by its
median, nearly straight lines would be observed for all theseplots.

5. Concluding remarks

Though it is clear that distributing the GRASP iterations evenly amongparallel
processorsachieveslinear speedupfor total time (to run all GRASP iterations), it is
lessclear why linear speedupin time to a given target value is frequently observed.
If time to a target solution value �ts a two-parameterexponential distribution, then
the probabilit y of �nding a solution of a given value in time �t with a sequential
processis equal to the probabilit y of �nding a solution at least as good as that
given value in time t with � independent parallel processes.Hence,linear speedup
would be observed.

In this paper, we reported on an empirical investigation of the distribution of
solution time to a target value. 12,000GRASP runs were done in the experiment.
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To analyze the observations, we used a standard graphical methodology for data
analysis. Q-Q plots with variabilit y information were used to determine if the
empirical distribution �ts its theoretical counterpart. The estimated parametersof
the theoretical distribution were derived from the Q-Q plots.

The main conclusion from the experiments is that time to target value indeed
�ts well a two-parameter exponential distribution. The �t tends to improve as the
di�cult y to �nd a solution of a given target value increases.

Though this study was limited to �v e distinct GRASPs, we believe that this
characteristic is present in any GRASP implemented in a straightforward manner.
It should be noted that tric ks commonly usedto speedupa sequential GRASP, such
as hash tables to avoid repetition of local search from identical starting solutions,
can make speedupin time to target solution be sublinear in the number of proces-
sors. An example of this can be seenin Martins, Resende,Ribeiro, and Pardalos
[17], where the use of a hash table improves the speed of a sequential GRASP in
instances in which the construction phasegeneratesmany identical solutions and
the parallel GRASP repeats many of theseunnecessarylocal searches.
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Figure 7. Q-Q plots for GRASP for maximum independent set
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Figure 8. Exponential plots for GRASP for maximum indepen-
dent set
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Figure 9. Q-Q plots for GRASP for quadratic assignment
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Figure 10. Exponential plots for GRASP for quadratic assignment
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Figure 11. Q-Q plots for GRASP for graph planarization
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Figure 12. Exponential plots for GRASP for graph planarization
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Figure 13. Q-Q plots for GRASP for maximum weighted satis�abilit y
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Figure 14. Exponential plots for GRASP for maximum weighted satis�abilit y
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Figure 15. Q-Q plots for GRASP for maximum covering



GRASP SOLUTION TIME DISTRIBUTION 29

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r24-500, look4=33330441

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r24-500, look4=33334808

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r24-500, look4=33339175

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r25-250, look4=20567005

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r25-250, look4=20580312

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r25-250, look4=20593619

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r54-100, look4=39332719

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r54-100, look4=39450036

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r54-100, look4=39567352

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r55-100, look4=39037219

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r55-100, look4=39192925

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=r55-100, look4=39348631

Figure 16. Exponential plots for GRASP for maximum covering


