
AUTOMATIC TUNING OF GRASP WITH

EVOLUTIONARY PATH-RELINKING

L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

Abstract. Heuristics for combinatorial optimization are often controlled by
discrete and continuous parameters that define its behavior. The number

of possible configurations of the heuristic can be large, resulting in a diffi-
cult analysis. Manual tuning can be time-consuming, and usually considers
a very limited number of configurations. An alternative to manual tuning is

automatic tuning. In this paper, we present a scheme for automatic tuning
of GRASP with evolutionary path-relinking heuristics. The proposed scheme
uses a biased random-key genetic algorithm (BRKGA) to determine good con-
figurations. We illustrate the tuning procedure with experiments on three op-

timization problems: set covering, maximum cut, and node capacitated graph
partitioning. For each problem we automatically tune a specific GRASP with
evolutionary path-relinking heuristic to produce fast effective procedures.

1. Introduction

Combinatorial optimization problems can often be “hard” to solve optimally
using exact methods. Heuristics have been proved to find optimal or good sub-
optimal solutions in less time than required by exact methods. An example of
this kind of heuristic is GRASP (Feo and Resende, 1989; 1995), which iteratively
builds feasible solutions, and improves them applying a local search procedure.
GRASP can be further hybridized with other intensification procedures, such as
path-relinking (Glover, 1996) and evolutionary path-relinking (Festa et al., 2002;
Resende and Werneck, 2004).

There are numerous ways to hybridize GRASP with path-relinking and/or evolu-
tionary path-relinking, resulting in a heuristic that is controlled by parameters and
configurations. Selecting these heuristic settings is usually done manually through
extensive experimentation, which in turn is time-consuming and only considers a
small number of combinations. An approach to address these difficulties is to use
an automatic tuning procedure.

Automatic tuning procedures have been proposed in the literature, and have been
shown to improve the performance of optimization algorithms when compared with
variants using manually-tuned settings (see, e.g. Adenso-Diaz and Laguna (2006)
and Hutter et al. (2007)). This paper proposes an automatic tuning procedure
for parameters in a GRASP with evolutionary path-relinking by using a biased
random-key genetic algorithm (Gonçalves and Resende, 2011).

Date: May 2013.
Key words and phrases. Randomized heuristics, GRASP, biased random-key genetic algorithm,

automatic tuning.
AT&T Labs Research Technical Report. Published in “Proceedings of Hybrid Metaheuristics

2013 (HM 2013),” Ischia, M.J. Blesa et al., (Eds.), Lecture Notes in Computer Science, vol. 7919,
pp. 62-77, 2013.

1

2 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

A BRKGA is an evolutionary algorithm based on the random-key genetic al-
gorithm of Bean (1994). It evolves a population of solutions encoded as vectors
of random keys applying genetic operators such as crossover and mutation. As a
result, the algorithm returns the fittest individual of an evolved population (i.e. a
best-valued solution). To apply a BRKGA for automatic tuning, we assume each
individual encodes a set of parameters of the algorithm being tuned, and its fitness
is a measure of the algorithm’s performance using the encoded settings.

2. GRASP with evolutionary path-relinking

A greedy randomized adaptive search procedure (GRASP) (Feo and Resende,
1989; 1995) is a multi-start heuristic for combinatorial optimization. It applies lo-
cal search to a series of solutions generated with a greedy randomized algorithm.
As initially proposed, GRASP did not have any memory mechanism.Laguna and
Mart́ı (1999) introduced a memory mechanism in GRASP, hybridizing it with path-
relinking (Glover, 1996). In the resulting heuristic, a pool of the best solutions found
during the search is maintained by the algorithm. After each GRASP local mini-
mum is produced, a solution is selected at random from the pool, and the solution
space spanned by the two solutions is explored by path-relinking. Evolutionary
path-relinking (Aiex et al., 2005; Festa et al., 2002; Resende and Werneck, 2004)
uses the path-relinking operator in an attempt to improve the pool of elite solutions.
Given a pool, evolutionary path-relinking applies path-relinking between pairs of
pool solutions, updating the pool if better solutions are found.

1 f∗ ←∞;

2 Es ← ∅;
3 it2evPR← ie;

4 while stopping criterion is not satisfied do
5 x← GreedyRandomized();

6 x← LocalSearch(x);

7 Es ← UpdateElite(Es, x);

8 if |Es| ≥ 2 then
9 xp ← SelectPoolSolution(Es, x);

10 x← PathRelinking(x, xp);

11 Es ← UpdateElite(Es, x);

12 end

13 if it2evPR = 0 then
14 Es ← evPathRelinking(Es, x);

15 it2evPR← ie + 1;

16 end

17 it2evPR← it2evPR− 1;

18 end

19 return argmin{f(x) | x ∈ Es}

Algorithm 1: GRASP with evolutionary path-relinking

The pseudo-code in Algorithm 1 illustrates a GRASP+evPR for a minimization
problem. The algorithm begins in line 1 by initializing the incumbent solution

AUTOMATIC TUNING OF GRASP WITH EVPR 3

value f∗ to a large number while in line 2 the pool Es of elite solutions is initialized
empty. The variable it2evPR, which measures the number of iterations left until
evolutionary path-relinking is called, is initialized in line 3. All GRASP+evPR
iterations take place in lines 4 to 18 until some stopping criterion is met. In line 5,
a randomized greedy solution x is constructed and local search is applied to it in
line 6. The resulting local minimum is tested for inclusion in the elite pool Es in
line 7. If Es is not yet full, then x is accepted if it differs from all solutions currently
in Es. Otherwise, if Es is full, x is accepted if it is better than at least one solution
in the pool. If x is better than all pool solutions, then replaces the worst pool
solution. Otherwise, if it is better than at least one solution but not all, then it
replaces the least different solution having worse cost. Path-relinking is not applied
until the second GRASP iteration. From then on, a solution xp is selected from Es

in line 9 and path-relinking is applied between x and xp in line 10. The resulting
solution x is tested for inclusion in the elite pool in line 11. Evolutionary path-
relinking is invoked every ie GRASP iterations. This condition is tested in line 13,
and if triggered, the updated pool is returned in line 14. The counter it2evPR is
then re-initialized in line 15. At the end of each iteration in line 17, this counter
is reduced by one unit. As a result, an elite pool solution having minimum cost is
returned by the procedure in line 19.

3. Automatic tuning using a BRKGA

Each GRASP+evPR component shown in Algorithm 1, may in fact represent
different algorithms. Discrete and continuous parameters can be used to define
which specific configuration of these components are used. Given that there may
exist a large number of these parameters and that each can potentially take on
many values, tuning the parameters manually may be time-consuming and hard
to specify, making reproduction difficult. An alternative is automatic tuning of
parameters, where an algorithm is used in the tuning process.

Adenso-Diaz and Laguna (2006) and Hutter et al. (2007) were among the first to
consider automatic tuning procedures. Adenso-Diaz and Laguna proposed CALI-
BRA, a framework which combines two different Design of Experiments approaches
along with a local search procedure to tune up to five parameters. Hutter et al.
proposed PARAMILS, a tuning methodology that combines stochastic local search
procedures and mechanisms that tackle properties found in algorithm configuration
problems. Both CALIBRA and PARAMILS have been shown to improve academic
solvers and heuristics.

Festa et al. (2010) proposed an automatic tuning procedure using a biased
random-key genetic algorithm (BRKGA). They propose the tuning procedure for
an implementation of a GRASP with path-relinking heuristic for the generalized
quadratic assignment problem (GQAP). They consider 30 parameters and show
that their tuning improves algorithm performance with respect to manually tuned
parameters on four out of five instances. Pedrola et al. (2012) recently applied
the approach of Festa et al. (2010) to automatically tune a GRASP heuristic for
the multilayer IP/MPLS-over-Flexgrid optimization problem. They use five small
traffic instances to tune a simple GRASP with three parameters.

BRKGAs evolve population of vectors of random keys (or individuals) apply-
ing Darwin’s principle of survival of the fittest (Gonçalves and Resende, 2011). A

4 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

BRKGA works with a fixed-size population P made up of |P| vectors of n ran-
domly generated numbers in the real interval (0, 1] (random keys). A decoder is a
deterministic algorithm that takes as input a vector of random keys and outputs
its fitness value.

At each generation of a BRKGA, the population is partitioned into a smaller
set Pe of elite individuals and a larger set Pē with the remaining individuals. The
evolutionary dynamics of a BRKGA are as follows. First, all elite individuals are
copied, without change, to the population of the next generation P+. Then, a set
Pm of mutant individuals (i.e. newly generated vectors of random keys) is inserted
into P+. The first two steps account for |Pe| + |Pm| individuals and therefore
px = |P|− |Pe|− |Pm| individuals are required for P+ to be complete. This is done
through mating of px pairs of individuals from the current population, one from
Pe and another from Pē. Individuals are selected for mating at random and with
replacement.

Let a and b denote the elite and non-elite individuals to be mated, and let c
denote the resulting offspring. Mating is done with parameterized uniform crossover
(Spears and DeJong, 1991), where a biased coin is tossed n times, to determine
from which parent the offspring will inherit each key. The coin has probability
ph > 0.5 to result in heads. For i = 1, . . . , n, the i-th component of c receives the
i-th component of a if the coin toss results in heads or the i-th component of b
otherwise. This way, c has a greater chance to inherit the keys of its elite parent.
Also, since such parent is selected from the smaller set Pe, it has a greater chance of
mating than a non-elite parent. Bean (1994) proposed a similar algorithm, except
that parents are selected at random from the entire population and the coin flip
does not necessarily favor the more fit parent.

A BRKGA is summarized in the pseudo-code of Algorithm 2. It takes as input
the sizes of the population P, the elite set Pe, and mutant set Pm (such that
|Pe| + |Pm| ≤ |P| and 2 × |Pe| ≤ |P|), the size of the random-key vector (n),
and the coin-toss probability of heads (ph > 0.5). In line 1 the initial population
is generated. The algorithm runs through several generations, until a stopping
criterion is met. The operations taken in each generation are expressed in lines 2
to 19. In line 3, the fitnesses of all new individuals in population P are evaluated.
Population P is then partitioned in line 4 into a set Pe of elite individuals and
a set Pē with the remaining population. The population of the next generation
P+ is initialized with the elite set of the current population in line 5. In lines 6
and 7 the mutant set Pm is generated and added to P+. The remainder of P+

is completed in lines 8 to 17. For each remaining individual, parents a and b are
selected at random in lines 9 and 10 and mating is applied in lines 11 to 15 to
produce offspring c, which is added to P+ in line 16. A generation is completed
in line 18 by making the population of the current generation that of the next
generation. Finally, the fittest individual of the final population is returned in
line 20.

3.1. Encoding and decoding. Let n denote the number of algorithm configurations and pa-
rameters. These are encoded as a vector χ of n real-valued random keys, each in the range (0, 1].

Suppose an algorithm configuration consists of a finite set of components, each of which can take
on a single state. For example, path-relinking type is a component which can take on a single
state from the set { forward, backward, back&forth, mixed }. Each state from these finite sets

correspond to a different interval in the range (0, 1]. A set with s states would associate state 1
with interval (0, 1/s], state 2 with interval (1/s, 2/s], and so on. To decide which state the i-th

AUTOMATIC TUNING OF GRASP WITH EVPR 5

Data: |P|, |Pe|, |Pm|, n, ph
1 Generate population P with individuals having n random-keys;

2 while stopping criterion is not satisfied do
3 Evaluate fitness of each new individual in P;
4 Partition P into sets Pe and Pē;

5 Initialize next population: P+ ← Pe;

6 Generate mutants Pm each having n random-keys ∈ (0, 1];

7 P+ ← P+ ∪ Pm;

8 for i← 1 to |P| − |Pe| − |Pm| do
9 Select parent a at random from Pe;

10 Select parent b at random from Pē;

11 for j ← 1 to n do
12 Toss biased coin having probability ph > 0.5 of heads;

13 if Toss is heads then c[j]← a[j];

14 else c[j]← b[j];

15 end

16 P+ ← P+ ∪ {c};
17 end

18 P ← P+;

19 end

20 return argmin{f(x) | x ∈ P}

Algorithm 2: Biased random-key genetic algorithm.

component takes, the decoder identifies which interval contains the random key χ[i] and assigns

the state corresponding to that interval to the component. A real-value parameter in the range
(l, u] and encoded as χ[i] is decoded as l + (u − l) × χ[i]. For example the i-th parameter path-
relinking truncation can take on any value in the real interval (0.2, 0.7]. Therefore, the random
key χ[i] = 0.44 is decoded as 0.2+(0.7−0.2)×0.44 = 0.42. Note that each decoding of a vector of

random keys is independent of the other, and hence can be parallelized to speed up the automatic
tuning procedure.

4. GRASP+evPR for three optimization problems

In this section, we describe three GRASP+evPR heuristics for combinatorial optimization

problems, which in turn will be tuned using BRKGA in Section 5.

4.1. Set covering. Let U = {e1, e2, . . . , en} be a set of n elements (i.e. the universe) and
let J = {J1,J2, . . ., Jm} be a collection of subsets of U with associated costs c1, c2, . . . , cm,

respectively. The set covering problem (SCP) consists in finding a minimum cost collection of sets
S from J , such that the union of the sets in S is U . The cost of the cover is defined as

∑
Jj∈S cj .

Set covering is NP-hard (Karp, 1972).

Feo and Resende (1989) introduced a GRASP for set covering. Their construction procedure
is based on the greedy algorithm of Johnson (1974). This greedy algorithm starts with an empty
cover S = ∅ and among unselected subsets, selects a subset J ∗

j that maximizes the ratio κj/cj ,

where κj is the number of uncovered elements ei ∈ U that become covered if J ∗
j is added to the

solution.
Instead of selecting an element that maximizes the ratio κj/cj , our the construction phase

creates a restricted candidate list (RCL) which consists of all unselected subsets Jj ∈ J \ S such
that κj/cj ≥ gmax − α × (gmax − gmin), where gmax = max{κj/cj : Jj ∈ J \ S}, gmin =
min{κj/cj : Jj ∈ J \ S}, and α is a real number such that 0 ≤ α ≤ 1. An element J ∗

j is selected

at random from the RCL and added to S. This is repeated until S is a complete cover.
Three variants of GRASP construction are considered. The first uses a fixed value for α,

while the second selects at random a value of α from the uniform interval [αmin, αmax] each time

construction is called. The third variant uses a value of α selected at random from a finite set
of α values with probabilities favoring those values that produced better solutions in previous

6 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

constructions. The number nα of α values varies from 2 to 10 and the values go from 0 to 0.8.

This approach, called Reactive GRASP, was proposed by Prais and Ribeiro (2000).
There are three types of moves in our local search phase of GRASP: remove one superfluous

cover element (remove-1); remove all superfluous cover elements in increasing order of cost cj
(remove-all); swap a cover element J out

j with an unselected element J in
j such that the cover is

kept complete if the swap is made (swap-2). The swapped elements J out
j and J in

j are determined

by scanning S in decreasing order of cost and J \S in increasing order of cost, respectively. Moves
are done using one of two options: first improving and best improving.

Our path-relinking strategy defines the symmetric difference δS,St between any two solutions
S and St, as the cover elements present in S but not in St. At each path-relinking step, S can
be in either one of two states: feasible or infeasible. In the feasible state, the greedy move selects
from δS,St , the element whose inclusion or removal from S results in the largest cost reduction.

On the other hand, in the infeasible state, the greedy move selects from δS,St , the element whose
inclusion or removal results in the largest reduction in infeasibility. Moves do not necessarily have
to be greedy. If path-relinking is greedy randomized, then a real parameter αp ∈ [0, 1] determines

the proportion of best elements in δS,St that are placed in a RCL so that one can be selected at
random.

Path-relinking comes in several flavors. In forward path-relinking, Sl is the local optimum
found by local search and St is a solution selected at random from the elite pool. In backward

path-relinking the roles of Sl and St are reversed. In back&forth path-relinking, backward is
applied first and then forward is applied next. In mixed path-relinking a path is started from Sl
and another from St, and both meet in the middle. Finally the entire path need not be explored
and a truncated variant is possible where γ = 20% to 80% of the path is explored.

The evolutionary path-relinking phase is triggered every ie GRASP iterations, where ie is a
tunable parameter. The algorithm produces a sequence of elite pools E0

s , E
1
s , . . ., starting from

the current elite set, i.e. E0
s = Es. At iteration k all elite solutions in pool Ek

s are copied to

pool Ek+1
s . While there are pairs {x, y} of solutions in Ek

s that have not been considered, a
path-relinking operator is applied to the pair and the resulting solution z becomes a candidate

to enter Ek+1
s . The procedure stops if the sorted solution values of Ek

s and Ek+1
s are identical,

returning set Ek+1
s as a result. Otherwise, k is incremented by one unit, and another iteration

takes place. Evolutionary path-relinking employs a greedy randomized move strategy with tunable
RCL parameter αq ∈ [0, 1].

4.2. Maximum cut. Let G = (V, E) be an undirected graph, where V = {1, . . . , n} is the set
of vertices and E is the set of edges, and let wi,j be the weights associated with edges (i, j) ∈
E. The maximum cut problem (max-cut) consists in finding a cut C ⊆ E of maximum weight

which partitions the vertices in V in two non-empty sets. The weight of the cut C is defined as∑
(i,j)∈C wi,j . The decision version of the max-cut problem was proven to be NP-Complete by

Karp (1972).
Festa et al. (2002) introduced a GRASP with path-relinking heuristic for the max-cut problem.

The construction phase of their heuristic uses a greedy function that takes into account the

contribution to the objective function achieved by assigning a particular vertex into one of the
subsets that define the cut, i.e. C and C̄. The greedy function is related to the sum of the weights
of its outgoing arcs. Their local search procedure works by starting from the first elements of
C and C̄ and in turn checks whether moving the elements from one set to the other leads to an

improvement of the objective function.
In the path-relinking phase of Festa et al. (2002), a solution y is represented as an n-dimensional

binary vector, such that yi = 1 if vertex vi ∈ C, and yi = 0 if vertex vi ∈ C̄. The procedure starts
by computing the symmetric difference between the initial solution x and the target solution t,

defined to be ∆x,t = {i | xi ̸= ti, i = 1, . . . , n}. At each path-relinking step, an index from ∆yk,t

is selected and used obtain the next solution in the path, i.e. yk+1. This is done by evaluating, for
each i ∈ ∆yk,t, the cost change gi resulting from flipping the value of yki . The greedy move selects

from ∆x,t, the index corresponding to the largest gi value. Two path-relinking flavors, forward
and backward, are considered. An evolutionary strategy is used as a post-processing phase.

Our construction phase is similar to the one of Festa et al., except that it starts by ranking edges
in decreasing order of edge weights and creates an RCL, where an edge (i, j) ∈ E is part of the RCL

if wi,j ≤ w∗−α×(w∗−w∗) where w∗ = max{wi,j : (i, j) ∈ E} and w∗ = min{wi,j : (i, j) ∈ E}.
An edge (i∗, j∗) ∈ RCL is selected at random, assigning endpoint i∗ to C and endpoint j∗ to C̄.

AUTOMATIC TUNING OF GRASP WITH EVPR 7

The remaining nodes are placed in the partitions as done in Festa et al. As with the SCP, three

variants of construction are proposed: fixed, random, and reactive.
During local search, nodes are scanned in decreasing order of their degrees. We allow three

types of moves: move-1, move-x, and move-max. In move-1, a single node is moved either from
C to C̄ or vice-versa. In move-x, a tunable portion x ∈ [1%, 20%] of the nodes are allowed to

move. Finally, in move-max, there is no limit on the number of nodes that can change partition
during the search. There are three options for scanning the nodes using the three moves described:
check-once, check-until, and variable. In check-once, each node is scanned only once during an
invocation of local search. In check-until, nodes are scanned until there is no further improving

move available. In variable, a move and an option are selected at random each time local search
is invoked.

Our path-relinking phase allows for greedy or greedy randomized moves. If greedy random-
ized, the tunable parameter αp determines the size of the RCL. We allow for forward, backward,

back&forth, and mixed configurations of path-relinking. As in the SCP, the path explored can
be either complete or truncated according to a tunable parameter γ ∈ [0.2, 0.8]. Evolutionary
path-relinking is triggered every ie GRASP iterations and the path-relinking operator is greedy
randomized with a tunable parameter αq ∈ [0, 1].

4.3. Node capacitated graph partitioning. Given a node- and edge-weighted directed graph
G = (V, E) where V is the set of nodes, and E is the set of arcs. For each node v ∈ V, let pv ∈ Z+

denote a non-negative integer node weight and for each arc (u, v) ∈ E, let qu,v ∈ Z+ denote a

non-negative integer arc weight. In the node capacitated graph partitioning problem (NCGPP)
we wish to partition the set of nodes into n clusters {C1, C2, . . . , Cn} such that, for i = 1, 2, . . . , n,
the weight sum of the nodes assigned to cluster Ci is no greater than the capacity ci ∈ Z+ of
the cluster. Furthermore, we seek the assignment that minimizes the edge weight sum Q for all

edges having endpoints assigned to different clusters. Mehrotra and Trick (1997) and Ferreira
et al. (1998) were among the first to study this problem, proposing a branch and price algorithm
and a branch and cut algorithm, respectively. Deng and Bard (2011) proposed a GRASP with
path-relinking heuristic for capacitated clustering, essentially the same problem.

The GRASP+evPR heuristic we consider for the NCGPP was proposed by Morán-Mirabal
et al. (2012). The construction phase builds a solution one node to cluster assignment at a time.
Assignments are made as long as the capacity of the cluster is not exceeded. Let V̄ be the set of
all yet-unassigned nodes. When a cluster k being scanned is empty, a node i ∈ V̄ is assigned to

k with a probability proportional to the sum of edge weights between i and all the nodes in V̄
(e.g. the greedy choice would select the node in V̄ with the maximum edge-weight sum). Once an
assignment is made, the available capacity of the cluster ck is updated.

When one node is assigned to k, the following assignments are selected using a greedy function
g(i) that considers the edge weight sum between the nodes assigned to k and a node i ∈ V̄. An RCL
is formed such that g(i) ≥ g∗−α(g∗−g∗)}, where g∗ = min{g(i) | i ∈ V̄}, g∗ = max{g(i) | i ∈ V̄},
and the tunable parameter α ∈ R is such that 0 ≤ α ≤ 1. A node in the RCL is selected uniformly

at random and is assigned to cluster k. This implementation considers the same three variants of
construction used in the SCP, i.e. fixed, random, and reactive.

Once the construction phase produces a solution, local search attempts to reduce the sum of
edge weights Q by making changes in the assignment. Morán-Mirabal et al. (2012) propose three

local search move types that scan the nodes in increasing order of their total node weight: move-1,
move-max, and swap-2. In move-1, the procedure is restarted at the first node in the permutation,
whereas in move-max it proceeds to the next node in the permutation. In swap-2, pairs of node
assignments are considered for swapping. The number of pairs considered for swapping is limited

by the tunable parameter β, where 0.01 ≤ β ≤ 0.3. Three local search options are considered:
check-once, check-until, and variable. In check-once, each node is scanned only once. In check-
until, nodes are scanned until there is no further improving moves. Finally, in variable, at each
invocation of local search a move type and an option are chosen at random.

The path-relinking phase defines the symmetric difference Γ(Πs,Πt) between solutions Πs and
Πt as the set of nodes assigned to different clusters. At each path-relinking step a greedy function
h(i) that considers the ratio between the change in the sum of edge weights Q and the capacity

utilization resulting from an assignment is used. The function penalizes moves leading to capacity
deficits.

8 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

An RCL is defined such that h(i) ≥ h∗ − αp(h∗ − h∗), where h∗ = min{h(i) | i ∈ Γ(Πs,Πg)},
h∗ = max{h(i) | i ∈ Γ(Πs,Πg)}, and the tunable parameter αp ∈ R such that 0 ≤ αp ≤ 1.
A move is selected from the RCL uniformly at random. The path-relinking operator of Morán-
Mirabal et al. (2012) generates a sequence of neighboring solutions, each of which may be feasible
or infeasible, and selects among the feasible solutions, a solution with the lowest value of Q. If

all solutions explored are infeasible, then the path-relinking phase is deemed unsuccessful and
GRASP+evPR continues to the next phase.

This implementation allows forward, backward, back&forth, and mixed path-relinking strate-
gies, each of which explores a complete or truncated path. The amount of truncation is determined

by the tunable parameter γ ∈ [0.2, 0.7]. Evolutionary path-relinking is triggered every ie GRASP
iterations, where ie is a tunable parameter. Evolutionary path-relinking applies the greedy ran-
domized path-relinking operator using a tunable parameter αq ∈ [0, 1].

5. Experimental results

In this section we define a set of benchmark instances and test the performance of the BRKGA
tuning procedure for each of the three problems presented in Section 4.

5.1. Instances. For the SCP we consider 20 benchmark instances from Beasley (1987). These
instances are from three different problem sets, ten from set 4, eight from set 5, and two from set

6. All instances have 200 rows, 1000 or 2000 columns, and a graph density of 2% or 6%.
For max-cut we consider 21 benchmark instances from Helmberg and Rendl (1997). These

instances divide into seven subsets of three which share size and structure. The subsets range
from 800 to 2000 nodes, 1600 to 19900 edges, and a graph density of 0.2% to 6.0%.

For the NCGPP we use a 20 of the synthetic instances from Morán-Mirabal et al. (2012). The
instances divide into four subsets of five which share size and structure. Each subset is created
combining number of nodes (200, 400) and number of clusters (15, 25) in the set.

5.2. The Experiments. For each problem, two types of experiments are done, automatic tuning
experiments and comparison of algorithm performance using automatically-tuned and manually-

tuned settings. All implementations of GRASP+evPR and BRKGA use an implementation of
the Mersenne Twister algorithm (Matsumoto and Nishimura, 1998) as their random-number gen-
erator. BRKGA was implemented using the API described in Toso and Resende (2012). All ex-
periments were done using the Condor job control system (University of Wisconsin, 2012) which

submitted jobs to either a cluster running Intel Xeon X5650 processors at 2.67 GHz, or a cluster
running Intel Xeon E5530 processors at 2.4 GHz.

A total of 16 tunable parameters are considered for each problem. They include the many

options for construction, local search, path-relinking, and evolutionary path-relinking described
in Section 4. To measure the fitness of individuals during BRKGA tuning, our decoder makes ns

independent GRASP+evPR runs of nit iterations using the decoded parameters, and returns the
average best solution found as its fitness. Therefore, the fittest individual of a BRKGA tuning

procedure is the combination of GRASP+evPR parameters that return a best result for a given
simulation. We take advantage of the decoding independence of individuals and use tmax parallel
threads in the tuning experiments. The actual number of threads used depends on the availability
of the cluster to which a job is submitted.

Each GRASP+evPR heuristic was programmed from the ground up and during the imple-
mentation of each of its components, a manual tuning procedure was performed. Manual tuning
considered a subset of the instances for each problem, therefore a single set of parameters and
configurations were selected as a result. For ease of notation, from now on we refer to the manually-

tuned parameters as manual and the automatically-tuned parameters as tuned. For each manual
vs. tuned experiment, we use the Wilcoxon-Mann-Whitney test with confidence level 95% to
assess the statistical significance of the results.

5.2.1. Set covering. Each SCP instance was automatically tuned using a BRKGA with |P| = 100,
|Pe| = 20, |Pm| = 15, ph = 0.7 and a stopping criterion of 20 generations. The fitness of each

set of parameters and configurations in an individual were evaluated with nit = 200, ns = 30 and
|Es| = 10. Parameter tmax was set to 30 parallel decoding threads. On average, tuning of each
instance took about 1900 minutes to complete.

Most instances are automatically tuned to either fixed or random construction. Only two
instances were tuned to reactive. All instances are tuned to remove-all as local search move and

AUTOMATIC TUNING OF GRASP WITH EVPR 9

Table 1. Manual vs. tuned GRASP+evPR performance on set
covering instances. Maximum time and average time-to-target
(TTT) values are in seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Cost Avg. TTT Avg. Cost Avg. TTT
scp41 429 3000 430.03 701.301 *430.00 38.518
scp42 512 5000 517.56 711.059 513.93 713.783
scp43 516 3000 518.78 633.946 516.36 299.205
scp44 494 400 495.13 114.815 *494.00 20.131
scp45 512 4000 514.70 200.115 512.98 706.002
scp46 560 3500 563.01 470.884 560.71 501.211
scp47 430 3500 430.96 686.634 430.35 591.294
scp48 492 4500 492.99 11.827 492.98 33.537
scp49 641 5000 648.24 1380.262 645.45 780.404
scp410 514 400 514.28 88.411 514.00 17.782
scp51 253 5500 255.00 1096.633 254.06 558.792
scp52 302 5500 307.83 1118.605 305.51 1777.903
scp53 226 4500 227.40 809.426 227.01 844.274
scp54 242 400 242.66 93.672 242.05 49.360
scp55 211 5000 211.98 70.063 211.71 659.301
scp56 213 250 213.18 69.990 213.00 19.600
scp58 288 4000 289.00 848.211 288.40 322.173
scp59 279 4000 279.61 578.748 279.46 662.917
scp61 138 5000 139.87 661.849 139.65 214.398
scp64 131 100 *131.00 8.337 *131.00 5.058
Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.
∗ indicates a Wilcoxon-Mann-Whitney test could not be applied since all runs returned the same cover cost.

Figure 1. Two examples of set covering GRASP+evPR perfor-
mance (tuned vs. manual). Times are in seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to 0.36% gap of optimal solution

scp46

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to 0.88% gap of optimal solution

scp53

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

most of them are tuned to be best improving. All instances are tuned to use back&forth path-
relinking and most of them are greedy. Also the majority are tuned to a truncated path with
length ≤ 70%. Finally all instances are tuned to use evolutionary path-relinking with αq values
that are at most 0.57.

To measure the quality of the tuned parameters, a set of experiments was run for each instance
and then compared against the results using a set of previously defined manual parameters. First
a target with gap of 1% or less with respect to the optimal solution cost was selected and a
maximum runtime to achieve such target was set. Next, a total of 300 independent runs were

made and the final solution costs and times taken were saved. Table 1 shows averages over the
300 runs. Note that in all but one instance the average solution cost is less with tuned. The
average times vary from one instance to the other but in half of them a speed up is seen when
using tuned. Also, whenever there is no significant statistical difference between both methods,

tuned tends to be faster. Figure 1 shows examples of empirical runtime distributions for two of the
instances considered. Each distribution shows how tuned GRASP+evPR either has a performance
comparable to manual (scp53)or outperforms manual noticeably (scp46).

10 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

Table 2. Manual vs. tuned GRASP+evPR performance on max-
cut instances. Maximum time and average time-to-target (TTT)
values are in seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Weight Avg. TTT Avg. Weight Avg. TTT
G1 11511 1000 11514.92 27.409 11535.12 36.629
G2 11498 11503.72 11.035 11507.74 7.724
G3 11515 11519.34 42.338 11529.15 22.635
G11 560 1000 561.56 16.539 560.86 14.343
G12 540 541.64 3.685 548.57 4.895
G13 566 566.41 3.558 567.98 4.063
G14 3030 1000 3030.98 43.272 3030.55 52.808
G15 2998 2999.59 6.628 3003.14 8.811
G16 3011 3012.3 16.155 3015.82 10.414
G22 13073 1000 13084.36 48.150 13092.49 84.789
G23 13124 13128.97 105.886 13152.98 101.529
G24 13138 13141.68 117.601 13147.13 124.904
G32 1368 1000 1371.10 45.979 1379.51 37.154
G33 1354 1358.24 131.353 1357.21 84.214
G34 1356 1360.61 123.018 1359.13 53.654
G35 7570 1000 7572.43 278.599 7575.37 212.086
G36 7564 7566.49 169.284 7567.15 137.809
G37 7549 7551.58 83.163 7558.36 99.105
G43 6568 1000 6571.14 26.686 6579.98 20.054
G44 6548 6552.32 12.877 6552.69 17.501
G45 6566 6568.71 29.672 6578.62 21.662
Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.

5.2.2. Maximum cut. Each max-cut instance was automatically tuned using a BRKGA with |P| =
100, |Pe| = 20, |Pm| = 15, ph = 0.7 and 20 generations. The fitness of each individual was
evaluated with nit = 200, ns = 5 and |Es| = 10. Parameter tmax was set to 24 threads. The
average time taken to tune each instance was about 960 minutes.

Most instances are tuned to either fixed or random construction. Only three instances are

tuned to reactive. Almost half the instances are tuned to variable local search, and the rest are
tuned to combinations of all types and options. Most are tuned to be either back&forth or forward
path-relinking, and the majority are tuned to greedy and complete path-relinking. Evolutionary
path-relinking is tuned to be used in all instances but it is mostly triggered every 100 iterations.

Figure 2. Two examples of max-cut GRASP+evPR performance
(tuned vs. manual). Times are in seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 11515 (cut weight)

G3

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 3011 (cut weight)

G16

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

For the comparison experiments, a target cut weight was selected and a maximum runtime of
1000 seconds was set. Next, a total of 300 independent runs were made and the best solution

value and time to target solution were saved. Table 2 shows the results. In all but four instances
the average cut weight with tuned is greater or equal than that with manual. Note, however, that
all four instances have an average cut weight found by tuned that is greater that the target and a

difference of less than 1% from the average cut weight found by manual. Only two instances show
no significant statistical difference when applying a Wilcoxon-Mann-Whitney text. In such two

AUTOMATIC TUNING OF GRASP WITH EVPR 11

Table 3. Manual vs. tuned GRASP+evPR performance on node
capacitated graph partitioning instances. Maximum time and av-
erage time-to-target (TTT) values are in seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Weight Avg. TTT Avg. Weight Avg. TTT
200 15 1 86730 800 87554.05 274.329 85708.98 45.051
200 15 2 94972 97211.21 317.914 94425.63 41.467
200 15 3 79510 81850.21 346.083 79401.67 63.067
200 15 4 82560 84168.06 368.786 81895.81 24.324
200 15 5 104252 103575.66 215.103 103122.56 12.683
200 25 1 141726 800 142731.91 303.349 140939.68 21.826
200 25 2 144420 144539.23 275.136 143343.53 31.732
200 25 3 146894 146399.04 222.271 145855.27 24.237
200 25 4 138962 139291.66 268.845 138128.82 29.171
200 25 5 158726 160171.68 304.802 157995.25 34.455
400 15 1 426526 1200 422238.09 37.693 419604 13.403
400 15 2 394432 399262.75 488.385 391131.88 80.310
400 15 3 393648 391614.46 234.334 389258.68 16.603
400 15 4 369764 367769.97 373.395 365058.37 51.948
400 15 5 410252 406387.12 122.615 404703.72 18.911
400 25 1 594666 1200 591782.73 207.668 591543.72 14.993
400 25 2 596240 592543.43 49.910 588863.93 4.699
400 25 3 585676 582703.92 73.369 581049.76 8.255
400 25 4 531436 528504.74 114.473 527368.74 12.457
400 25 5 610986 608108.42 168.330 606347.47 24.644
Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.

Figure 3. Two examples of node capacitated graph partitioning
GRASP+evPR performance (tuned vs. manual). Times are in
seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 141726 (edge weight)

200_25_270001

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 426526 (edge weight)

400_15_270001

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

cases, either tuned or manual performed faster, hence no dominance is noticed. Figure 2 shows
examples of empirical runtime distributions for two of the instances considered. Each distribution
shows how tuned GRASP+evPR performs similarly to manual GRASP+evPR, but tends to find
the target in shorter times.

5.2.3. Node capacitated graph partitioning. Each NCGPP instance was automatically tuned using
a BRKGA with |P| = 100, |Pe| = 20, |Pm| = 15, ph = 0.7 and 10 generations. The fitness of
each individual was evaluated with nit = 200, ns = 15 and |Es| = 10. Parameter tmax was set to

16 threads. The average tuning times for instances with 200 and 400 nodes were of 113 and 1162
minutes respectively.

The majority of instances are tuned to fixed construction, and only 5 to random construction.
Most α values are tuned to less than 0.10, which correspond to less randomized constructions.

Most instances were tuned to use check-until local search with a move-max option, except for two
instances that were tuned to use variable, and three that were tuned to move-1. Most instances
chose mixed and forward path-relinking. More than half of the instances are tuned to use greedy

randomized path-relinking with a complete path. Almost half of the instances are tuned not to
use evolutionary path-relinking.

12 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

For the comparison experiments, targets with gaps from 0.4% to 15.0% from the best known

solution were selected and a maximum runtime was defined. Next, a total of 300 independent
runs were made and the best solution edge weight and time to target solution were saved. Table 3
shows average results over the 300 runs. In all instances, the average solution edge weight is
less with tuned. Moreover, we observe a speed up of up to a factor of 16 of the average time to

target solution for tuned with respect to that of manual. Only one instance shows no significant
statistical difference when applying a Wilcoxon-Mann-Whitney test, however for such instance,
tuned proves to be much faster than manual. Figure 3 shows examples of empirical runtime
distributions for two of the instances considered. Each distribution shows how tuned outperforms

manual with respect to both time and solution quality.

6. Concluding remarks

Solving problems with heuristics involves the selection of parameters and configurations that

alter the speed and solution quality of the algorithms used. Manual tuning can be tedious and time
consuming without assuring that the tuned parameters can perform well on a different instance
of the same problem.

This paper presents an automatic-tuning procedure of GRASP with evolutionary path-relinking

heuristics by using a biased random-key genetic algorithm (BRKGA). The procedure evolves an
initial pool of sets of parameters and configurations by making short runs and learning from the
performance of each set in the pool.

The procedure is tested on benchmark instances of three optimization problems and results

show that GRASP heuristics with automatically-tuned parameters tend to have better perfor-
mance, both in terms of time to target solution and solution quality, than GRASP heuristics that
use manually-tuned parameters.

Acknowledgment

This research was partially funded by Tecnológico de Monterrey Research Fund CAT128. It
was done while the first author was a visiting scholar at AT&T Labs Research, in Florham Park,
New Jersey.

References

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental designs
and local search. Operations Research, 54:99–114, 2006.

R.M. Aiex, P.M. Pardalos, M.G.C. Resende, and G. Toraldo. GRASP with path-relinking for
three-index assignment. INFORMS J. on Computing, 17:224–247, 2005.

J.C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA Journal

On Computing, 2:154–160, 1994.
J.E. Beasley. An algorithm for set covering problem. European Journal of Operational Research,

31:85–93, 1987.
Y. Deng and J.F. Bard. A reactive GRASP with path relinking for capacitated clustering. J. of

Heuristics, 17:119–152, 2011.
T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set covering

problem. Operations Research Letters, 8:67–71, 1989.
T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. of Global

Optimization, 6:109–133, 1995.
C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey. The node capacitated

graph partitioning problem: A computational study. Mathematical Programming, 81:229–256,
1998.

P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for the MAX-
CUT problem. Optimization Methods and Software, 7:1033–1058, 2002.

P. Festa, J.F. Gonçalves, M.G.C. Resende, and R.M.A. Silva. Automatic tuning of GRASP
with path-relinking heuristics with a biased random-key genetic algorithm. In Experimental

Algorithms, 9th International Symposium (SEA 2010), Lecture Notes in Computer Science,
pages 338–349, Berlin, Heidelberg, 2010. Springer-Verlag.

F. Glover. Tabu search and adaptive memory programming – Advances, applications and chal-

lenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer
Science and Operations Research, pages 1–75. Kluwer Academic Publishers, 1996.

AUTOMATIC TUNING OF GRASP WITH EVPR 13

J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for combinatorial

optimization. J. of Heuristics, 17:487–525, 2011.
C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM

Journal on Optimization, 10:673–696, 1997.
F. Hutter, H.H. Hoos, and T. Sttzle. Automatic algorithm configuration based on local search.

In Proceedings of the Twenty-second Conference on Artificial Intelligence (AAAI07), pages
1152–1157, 2007.

D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and
System Sciences, 9:256–278, 1974.

R.M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, NY, 1972.

M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. on Computing, 11:44–52, 1999.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation,
8:3–30, 1998.

A. Mehrotra and M.A. Trick. Cliques and clustering: A combinatorial approach. Operations

Research Letters, 22:1–12, 1997.
L.F. Morán-Mirabal, J.L. Gonzalez-Velarde, and M.G.C. Resende. Randomized heuristics for

handover minimization in mobility networks. Technical report, AT&T Labs Research, Florham

Park, New Jersey, August 2012.
O. Pedrola, A. Castro, L. Velasco, M. Ruiz, J. P. Fernández-Palacios, and D. Careglio. CAPEX

study for a multilayer IP/MPLS-over-flexgrid optical network. J. of Optical Communications
and Networking, 4:639–650, 2012.

M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition problem
in TDMA traffic assignment. INFORMS J. on Computing, 12:164–176, 2000.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. J. of Heuristics,
10:59–88, 2004.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover. In Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 230–236, 1991.

R.F. Toso and M.G.C. Resende. A C++ application programming interface for biased random-key
genetic algorithms. Technical report, AT&T Labs Research, Florham Park, NJ, 2012.

University of Wisconsin. Condor high throughput computing, 2012. research.cs.wisc.edu/

condor, last visited on June 25, 2012.

(Luis F. Morán-Mirabal) Tecnológico de Monterrey, Monterrey, Mexico.
E-mail address: luismoranm@gmail.com

(José Luis González-Velarde) Tecnológico de Monterrey, Monterrey, Mexico.
E-mail address: gonzalez.velarde@itesm.mx

(Mauricio G.C. Resende) Algorithms and Optimization Research Department, AT&T

Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.
E-mail address, M.G.C. Resende: mgcr@research.att.com

