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ABSTRACT. Ad-hoc networks are a new paradigm for communications systems in which

wireless nodes can freely connect to each other without the need of a pre-specified struc-

ture. Difficult combinatorial optimization problems are associated with the design and

operation of these networks. In this paper, we consider the problem of maximizing the

connection time between a set of mobile agents in an ad-hoc network. Given a network

and a set of wireless agents with starting nodes and target nodes, the objective is to find a

set of trajectories for the agents that maximizes connectivity during their operation. This

problem, referred to as the COOPERATIVE COMMUNICATION ON AD-HOC NETWORKS is

known to be NP-hard. We look for heuristic algorithms that are able to efficiently com-

pute high quality solutions to instances of large size. We propose the use of a greedy

randomized adaptive search procedure (GRASP) to compute solutions for this problem.

The GRASP is enhanced by applying a path-relinking intensification procedure. Extensive

experimental results are presented, demonstrating that the proposed strategy provides near

optimal solutions for the 900 instances tested.

1. INTRODUCTION

Cooperative control has received a significant amount of attention by researchers [6, 7,

21, 25]. In many situations, multiple “agents” collaborate to achieve a shared goal. Co-

operation between the agents is important to improve the efficiency and effectiveness by

which their goal is reached. In wireless networks, groups of agents are often employed

to perform a number of cooperative tasks, including the synchronization of information

among a set of users and the accomplishment of missions in remote areas. In such situa-

tions, it is useful to maintain collaboration among the agents performing the cooperative

tasks to maximize the probability of success.

There are many applications of this described system. These include situations where

communication in a region is required, but no topologically fixed transmission system ex-

ists. Specific examples include emergency/rescue operations, disaster relief, and battlefield

operations [27]. In each of these examples the goals and objectives are fixed in advance

and communication is important for the attainment of these goals. The current technologies

used in these types of applications allow improved communication systems that rely on ad-

hoc wireless protocols. However, it is computationally difficult to decide how to maintain

communication for the maximum possible time when faced with the inherent restrictions

of wireless systems.

Ad-hoc networks are composed of a set of wireless units that can communicate directly,

without the use of a pre-established server infrastructure. In this respect, ad-hoc systems

Date: January 2, 2007.

AT&T Labs Research Technical Report TD-6X3U73.

1



2 C.W. COMMANDER, P. FESTA, C.A.S. OLIVEIRA, P.M. PARDALOS, M.G.C. RESENDE, AND M. TSITSELIS

are fundamentally different from traditional cellular systems, where each user has an as-

signed base station which connects it to the wired telephony system. In an ad-hoc network,

each client has the capacity of accessing network nodes that are within its reach. This

connectivity model allows for the existence of networks without a predefined topology,

reaching a different state every time a node changes its position. Due to this inherent vari-

ability, ad-hoc networks present serious challenges for the design of efficient protocols.

The optimization of activities in such networks is subject to the lack of global information.

Furthermore, optimal solutions may be short-lived, due to the dynamics of the agents’

positions and connectivity status.

In this paper, we study a problem involving the coordination of wireless users involved

in a mission of tasks that requires each user to go from an initial location to a target lo-

cation. The problem consists in maximizing the amount of connectivity among the set of

users, subject to constraints on the maximum distance traveled by each user, as well as re-

strictions on what types of movements can be performed. This problem is referred to as the

COOPERATIVE COMMUNICATION PROBLEM ON MOBILE AD-HOC NETWORKS (CCPM)

[13, 27].

The CCPM is a path-planning problem and has numerous military applications. For

example, suppose a force is planning a reconnaissance mission over a battle space and will

be using a set of so-called unmanned aerial vehicles (UAVs) for this task. It may also be

required that the UAVs maintain connectivity with each other in order to share information

that is being gathered. Before the mission begins, the mission planner could solve an

instance of the CCPM using the knowledge of the battle space to determine a set of optimal

paths for the UAVs. In the CCPM, a set of paths is said to be optimal if the communication

between all pairs of agents is maximized, subject to the agents arriving at their respective

destinations within the specified time horizon. After briefly reviewing some related work

from the literature, we will provide a mathematical model of the CCPM and describe an

effective algorithm for solving large instances.

1.1. Related work. Ad-hoc networks represent an extremely active area of research [30].

Several problems related to routing, power control, and accurate position update have been

studied in the last few years [26]. In terms of routing, one of the main problems in ad-

hoc networks is the computation of a network backbone. The objective is to find a subset

of nodes with a small number of elements that can be used to send routing information.

Such a structure is useful to simplify the management tasks required by a routing protocol.

The backbone computation problem can be modeled as a CONNECTED DOMINATING SET

(CDS) problem. Here, the objective is to find a set of minimum size forming a connected

backbone, with the additional property that each network client can directly reach this set.

The CDS problem, which can be modeled using unit graphs, has several approximation

algorithms [4, 5, 9], all of which are based on approximation properties of the MAXIMUM

INDEPENDENT SET problem on planar unit graphs [3]. The use of optimization techniques

to maximize connectivity in ad-hoc systems was studied by Oliveira and Pardalos in [27].

Until now, only local search heuristics have been applied to the CCPM [13].

Given the difficulty of solving the CCPM exactly, we are interested in studying the ap-

plication of metaheuristic methods for the problem. In particular, we propose a greedy

randomized adaptive search procedure (GRASP) for the CCPM. In addition, path-relinking

[20] is applied to increase the effectiveness of GRASP. We show that the resulting algo-

rithm is able to efficiently provide high quality solutions for large scale instances of the

problem.
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1.2. Problem definition. An ad-hoc network is composed of a set of autonomous clients

that can connect to each other using their own wireless capabilities. This includes using

scarce resources such as computational processing and battery power. We model this situ-

ation using a special type of graph called a unit graph [10]. A unit graph is a planar graph

G = (V,E) with associated positions for each node v ∈ V . In a unit graph an edge occurs

between nodes v,w ∈V if dist(v,w)≤ 1, where dist : V ×V →R is the Euclidean distance.

Unit graphs occur as a natural model in ad-hoc networks and are used in this paper to

represent the set of configurations of nodes that share connections.

Let G = (V,E) be a graph representing the set of valid positions for network clients.

Suppose this graph has the property that each node is connected only to nodes that can

be reached in one unit of time. Therefore, the graph can be used to represent all possible

trajectories of a node. Each such trajectory is a path P = {v1, . . . ,vk} where v1 ∈ V is the

starting node and vk ∈V is the destination node. We also consider a set U of wireless units,

a set of initial positions S ⊆ V , such that |S| = |U |, and a set of destinations D ⊆ V , with

|D| = |U |. We assume that, to perform its task, each wireless unit ui ∈ U starts from a

position si ∈ S, and ends at position di ∈ D. We are given a time limit T such that all units

must reach their destinations by time T .

The trajectory of users in the system occurs as follows. For v ∈ V , let η(v)⊆ V be the

set of all nodes in the neighborhood of v, i.e. the set of nodes w ∈ V such that (v,w) ∈ E.

Let pt : U → V be a function returning the position of a wireless unit at time t. Then, at

each time step t, a wireless unit u ∈U can stay in its previous position pt−1 or move to

one of its neighboring nodes v ∈ η(pt−1). More formally, at time step t, position pt(u) ∈

pt−1(u)∪ η(pt−1). Let {Pi}
|U |
i=1 be the set of paths representing the trajectories of the

wireless units in U (obviously, the first node of Pi is si and its last node is di). Let Li, for

i ∈ {1, . . . , |V |}, be a threshold on the total cost of path Pi. Define ω : V ×V →R to be the

weight of the edge between two nodes. Then, for each path Pi = {v1, . . . ,vni
}, we require

that
ni

∑
i=2

ω(vi−1,vi)≤ Li. (1)

With this, we can define the COOPERATIVE COMMUNICATION PROBLEM ON MOBILE

AD-HOC NETWORKS (CCPM) as follows. Given a network G = (V,E), a set U of wireless

agents, a set S ⊆ V of starting nodes, a set D ⊆V of destination nodes, a maximum travel

time T , and distance thresholds Li, for i ∈ {1, . . . , |V |}, a feasible solution for the CCPM

consists of a set of positions pt(u), for t ∈{1, . . . ,T} and u∈U , such that the initial position

satisfies p1(u) = s(u) for u ∈U , the final position is pT (u) = d(u), a set positions given

by pt(u) ∈ pt−1(u)∪η(pt−1), ∀ t ∈ {2, . . . ,T −1}, and the inequalities in (1) are satisfied.

The objective is to maximize the connectivity among the users in U over all time steps,

which is measured by

max
T

∑
t=1

∑
u,v∈U
u 6=v

c(pt(u), pt(v)),

where c : V ×V → {0,1} is a function returning 1 if and only if dist(p(u), p(v)) ≤ 1.

The reader is referred to the paper by Oliveira and Pardalos [27] for additional integer

programming formulations in which other objectives are considered and discussed. We

finish this section by providing two results related to the computational complexity of the

problem.

Theorem 1. Finding an optimal solution for an instance of the COOPERATIVE COMMU-

NICATION PROBLEM ON MOBILE AD-HOC NETWORKS is NP-hard.
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procedure GRASP(MaxIter,RandomSeed)
 X∗← /0

 for i = 1 to MaxIter do

 X ← ConstructionSolution(G,g,X)
 X ← LocalSearch(X ,MaxIterLS)
 if f (X)≥ f (X∗) then

 X∗← X

 end

 end

 return X∗

end procedure GRASP

Figure 1: GRASP for maximization.

This result, due to Oliveira and Pardalos [27], follows by a reduction from MAXIMUM

3-SAT [18]. We now extend this result in the following theorem.

Theorem 2. Consider an instance of the CCPM, with T as the time-horizon. Finding an

optimal solution at each time-step t ∈ [1,T ] is NP-hard.

Proof. We will show this result by reducing CLIQUE to CCPM at an arbitrary time-step.

Recall that the CLIQUE problem is as follows. Given a graph G = (V,E) and an integer

J ≤ |V |, does G contain a clique, or complete subgraph, of size J or more [18]?

Consider an instance of CCPM at any time step t. An optimal solution is one in which

all the agents are pairwise connected. Thus, for n agents the number of connections in

an optimal solution is n(n− 1)/2. Notice that this is equivalent to finding clique on n

nodes of the graph. Therefore, given an instance of CLIQUE, by letting J = n, we have the

result. Thus there is a bijection between optimal configurations of agents and cliques in

the graph. �

Corollary 1. For any instance of CCPM, an upper bound on the optimal solution is given

by

T ·
u(u−1)

2
, (2)

where T is the time horizon and u = |U | is the number of agents.

Proof. This proof follows directly from Theorem 2. If all u agents communicate at a given

time, then they form a clique on u nodes. The clique will contain u(u− 1)/2 vertices

representing the communication links. If the agents maintain the clique formation over all

time steps, then the number of communication connections will be

T ·
u(u−1)

2
(3)

and the lemma is proved. �

2. GRASP FOR CCPM

A greedy randomized adaptive search procedure (GRASP) [14] is a multi-start meta-

heuristic that has been used widely to provide solutions for several difficult combinatorial

optimization problems [17], including SATISFIABILITY [29], JOB SHOP SCHEDULING [2],

VEHICLE ROUTING [8], and QUADRATIC ASSIGNMENT [24, 28].
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GRASP is a two-phase procedure which generates solutions through the controlled use

of random sampling, greedy selection, and local search. For a given problem Π, let F be the

set of feasible solutions for Π. Each solution X ∈ F is composed of k discrete components

a1, . . . ,ak. GRASP constructs a sequence {X1,X2, . . .} of solutions for Π, such that each

Xi ∈ F . The algorithm returns the best solution found after all iterations. The GRASP

procedure is described in the pseudo-code shown in Figure 1. The construction phase

receives as parameters an instance G of the problem and a ranking function g : A(X)→R,

where A(X) is the domain of feasible components a1, . . . ,ak for a partial solution X . The

construction phase begins with an empty partial solution X . Assuming that |A(X)| = k,

the algorithm creates a so-called Restricted Candidate List (RCL) containing the α %

best ranked components in A(X). The parameter α ∈ [0,1] · 100 can be fixed by the user

or chosen randomly. An element x ∈ RCL is uniformly chosen and the current partial

solution is augmented to include x. This procedure is repeated until the solution is feasible,

i.e., until X ∈ F .

The intensification phase consists of a local search which could include gradient descent

methods, swap based methods, and even the use of other metaheuristics. Our local search

consists of an implementation of a hill-climbing procedure. Given a solution X ∈ F , let

N(X) be the set of solutions that can found from X by changing one of the components

a ∈ X . Then, N(X) is called the neighborhood of X . The improvement algorithm consists

in finding, at each step, the element X∗ such that

X∗ = arg max
X ′∈N(X)

f (X ′),

where f : F→R is the objective function of the problem. At the end of each step we make

X∗← X if f (X) > f (X∗). The algorithm will eventually achieve a local optimum, in which

case the solution X∗ is such that f (X∗) ≥ f (X ′) for all X ′ ∈ N(X∗). X∗ is returned as the

best solution from the iteration and the best solution from all iterations is returned as the

overall GRASP solution.

We discuss in this section how the above algorithm can be specialized to solve the

CCPM. In the following subsection, we describe an algorithm for the GRASP construction

phase that provides initial solutions for instances of the CCPM problem. Then, in Subsec-

tion 2.2 we provide a local search algorithm for the improvement phase.

2.1. Construction Phase. The first task in a GRASP algorithm is to build good feasible

solutions in terms of a given objective function. To do this, we need to specify the set A,

the greedy function g, and, for X ∈ F , the neighborhood N(X). The components of each

solution X are feasible moves of a member of the ad-hoc network from a node v to a node

w ∈ N(v)∪ {v}. For an agent ui ∈ U located at node v in the graph, Pi(v) represents a

shortest path from the current node v to the destination for agent ui, namely node di.

The complete solution is constructed according to the following procedure outlined in

the pseudo-code shown in Figure 2. In the pseudo-code, ah refers to the current location of

an agent. First, the solution which is initially empty is augmented to include the starting

locations for all agents. Then, the time variable t is initialized to 1, and in line 6 an agent

ui ∈ U is selected at random and routed from its along a shortest path Pi(si) from its

source node si to its destination node di. If the total distance of Pi(si) is greater than Li,

then the instance is clearly infeasible and the algorithm ends. Otherwise, the procedure

continues and the remaining agents are scheduled in the loop beginning at line 8. The

procedure considers each feasible move (q,w,u) before scheduling an agent. A feasible

move connects the final node q of a sub-path Pu, for u∈U , to another node w, such that the
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procedure ConstructionSolution(G,g,X)
 X ← /0

 for i = 1 to k do

 X ← X ∪{si}
 end

 t← 1

 Select randomly ui ∈U and route ui on shortest-path Pi(si)
 X ← X ∪{Pi(si)}
 while t < T and ∃ ui ∈U \X do

 L← /0

 RCL← /0

 for uh ∈U \X do

 if ah = dh do

 X ← X ∪{dh}
 end

 if dist(ah,dh) = Lh−∑e∈Ph
dist(e) do

 Route uh on shortest path Ph(ah)
 X ← X ∪{Ph(ah)}
 end

 while ∃ (lq, lw,uh) do

 L←{(lq, lw,uh)}
 end

 end

 α← RealRandomNumber(0,1)
 δ← (MaxContribute− (α∗ (MaxContribute−MinContribute)))
 for all (li, l j,ue) such that g((li, l j,ue))≥ δ do

 RCL← RCL∪{(li, l j,ue)}
 end

 (li, l j,ue)← Get randomly from RCL

 Add (li, l j,ue) into the path of agent ue in the solution

 t← t +1

 end

 return(X)
end procedure ConstructionSolution

Figure 2: Greedy randomized constructor for CCPM.

shortest path from w to du has distance at most Lu−∑e∈Pu
dist(e). The set of all feasible

moves in a solution is defined as A(X).
The loop in lines 12–14 ensures that a node currently at its destination remains there.

Likewise, the loop in lines 15–17 schedules an agent h on a shortest path Ph(ah) from its

current position ah to dh if the maximum allowed travel time for agent h is equal to the

|Ph(ah)|. In lines 19–21, the set L⊆ A(X) is formed and consists of all feasible moves for

agents not yet scheduled. Then, in line 25, the greedy function g returns for each move

k ∈ L the number of additional connections created by that move. As described above, the

construction procedure will rank the elements of L according to g. The α % best-ranked

elements are then added to the RCL and in lines 28–29, a move is selected at random and

added to the solution. This is repeated until a complete feasible solution for the problem is

obtained.
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2.2. Improvement phase. In the local search phase, GRASP attempts to improve the

solution built in the construction phase. As mentioned above, we use a hill-climbing pro-

cedure where the objective is to improve the solution as much as possible until a local

optimal solution is found as described in the pseudo-code provided in Figure 3.

procedure LocalSearch(X ,MaxIterLS)
 X ′← /0

 t← 1

 LastImprove← 1

 i← 2

 iter← 0

 while i 6= LastImprove and iter < MaxIterLS do

 Remove current path from si to di for agent ui

 while ai 6= di do

 if dist(ai,di) = Li−∑e∈Pi
dist(e) then

 Route user ui using its shortest path Pi(ai)
 else

 BestMove←{(ai, lw,ui) | g((ai, lw,ui)) > g((ai, l j,ui)),∀ (ai, l j,ui)}
 end

 Add BestMove into the new path for ui in solution X ′

 t← t +1

 end

 if f (X ′) > f (X) then

 X ← X ′

 LastImprove← i

 end

 i← i+1 mod k

 iter← iter +1

 end

 return(X ′)
end procedure LocalSearch

Figure 3: Local search for CCPM.

The local search receives the construction phase solution X and a parameter MaxIterLS

as input. In each iteration, the neighborhood N(X) of X is explored in search of a solution

X ′ such that f (X ′) > f (X). In order to explore N(X), a perturbation function is defined as

follows. In the loop in lines 5–21, agents are re-routed using a greedy method similar to

that of the construction phase. In line 6, the current construction phase path for agent ui

is removed from the solution. Then each feasible move is considered and the move which

adds the greatest increase to the objective function, BestMove, is added to the new path for

agent ui. This is repeated for all agents until a new feasible solution X ′ ∈ N(X)⊆ A(X) is

created. If f (X ′) > f (X), then in line 17, X ′ is set as the new current solution. The process

returns to line 5 and repeats until no agent can be re-routed according to this greedy method

and improve the current solution or until some maximum number of iterations MaxIterLS

are completed.

2.3. Complexity of the heuristic. The following theorems address the computational

complexity of the proposed algorithm.
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procedure PathRelinking(xs,E)
 xg← randSelect(y ∈ E : ∆(xs,y) > δ)
 f ∗←max{ f (xs), f (xg)}
 x∗← argmax{ f (xs), f (xg)}
 x← xs

 while ∆(xs,xg) 6= /0 do

 m∗← argmax{ f (x⊕m) : m ∈ ∆(x,xg)}
 ∆(x⊕m∗,xg)← ∆(x,xg)\{m

∗}
 x← x⊕m∗

 if f (x) > f ∗ then

 f ∗← f (x)
 x∗← x

 end

 end

 return x∗

end procedure PathRelinking

Figure 4: A path-relinking subroutine adapted from [31].

Theorem 3. The construction phase finds a feasible solution for the CCPM in O(Tmu2)
time, where T is the time horizon, u = |U |, and m = |E|.

Proof. Notice that the while loop in lines 8–31 will require T (|U |−1) iterations to com-

plete. Likewise, the loop in lines 11–22 requires |U | iterations. Within the loop, the most

time consuming step is the construction of the shortest path. However, this can be done

using a breadth-first search in O(m) time [1]. Thus, we have the result. �

Theorem 4. The time complexity of the local search phase is O(kTu2m), where T is the

time horizon, u = |U |, m = |E|, and k = MaxIterLS.

Proof. The proof is similar to Theorem 3. Notice that the while loop in lines 5–22 per-

form local improvements according the greedy re-routing scheme. Again, the most time

consuming step is the construction of a shortest path which can be accomplished in O(m)
time. Each improvement can require up to k iterations of the loop, and we have the proof.

�

Corollary 2. The overall time complexity of the proposed GRASP is O(lTu2m(k + 1)),
where where T is the time horizon, u = |U |, m = |E(G)|, k = MaxIterLS, and l = MaxIter

is the overall number of GRASP iterations.

Proof. The proof is immediate from Theorem 3 and Theorem 4. �

3. PATH-RELINKING

First introduced by Glover in [19], path-relinking (PR) was used as an enhancement for

tabu search heuristics. PR was first combined with GRASP by Laguna and Martı́ [23].

When applied to GRASP, path-relinking introduces a memory to the heuristic which usu-

ally results in improvements in solution quality. This is because in the standard GRASP

framework, the multi-start nature of the heuristic does not include any long-term mem-

ory mechanism for saving traits of good solutions generated by the algorithm. Path-

relinking allows GRASP to remember these traits and favor them in successive iterations.
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GRASP with path-relinking has been successfully applied to problems such as MAXIMUM

CUT [16], QUADRATIC ASSIGNMENT [28], TDMA MESSAGE SCHEDULING [12], and

originally for LINE CROSSING MINIMIZATION [23]. For a survey of GRASP with path-

relinking, the reader is referred to [31].

Path-relinking works by maintaining a set of elite solutions E , known as guides and

examines point-to-point trajectories between a guiding solution and an incumbent solution

in search of an optimum. Pseudo-code for a generic path-relinking procedure is provided

in Figure 4. To perform path-relinking, we begin with a guiding solution xg ∈ E , and an

initial starting solution xs. The guiding solution xg is selected at random from the pool of

elite solutions E , so long as the symmetric difference ∆(xs,xg) between the two solutions

xs and xg is sufficiently large. The symmetric difference is defined as the set of pairwise

exchanges needed to transform xs in to xg. Recall that all solutions in E are local optima,

and we are trying to discover solutions which are not located in the neighborhoods of xs or

xg. Therefore this constraint prevents us from applying path-relinking to solutions which

are too similar to each other, and would not likely yield an improved solution [15].

At each step, the procedure examines all moves m ∈ ∆(x,xg), and greedily selects the

move which results in the maximum increase in the objective of the current solution. This

occurs in line 6 of the pseudo-code in which the move m∗ is selected as the move which

maximizes f (x⊕m), where x⊕m is the solution which results from incorporating m in

to x. In line 7, the symmetric difference is updated, and if necessary the best solution is

updated in lines 9-12. The procedure ends when ∆(x,xg) = /0, i.e. when x = xg [31].

Path-relinking can be applied to a pure GRASP in a straightforward manner, which can

be visualized in the pseudo-code of Figure 5. First, the set of elite solutions E is initialized

to the empty set in line 2 and is built by including the solutions from the first MaxElite

iterations. After a standard GRASP iteration of greedy randomized construction and local

search produces a local optimal solution X , the PathRelinking procedure is called on

line 7. For the CCPM, the elements in the symmetric difference are the agent paths which

differ between the initial and guiding solutions. The value of m∗ from Figure 4 is the path

for an agent in the symmetric difference which results in the maximum increase in the

total number of communications between the agents. In line 8, a function UpdateElite

is called in which the elite pool is possibly updated. The solution returned from path-

relinking is included in the elite pool if it is better than the best solution in E or if it worse

than the best but better than the worst and is sufficiently different from all elite solutions

[31]. Finally, the optimal solution is updated in lines 12 to 14 if necessary.

4. COMPUTATIONAL EXPERIMENTS

The proposed procedure was implemented in the C programming language and com-

piled using the Microsoft R© Visual C++ 6.0. It was tested on a PC equipped with a

1800MHz Intel R© Pentium R© 4 processor and 256 megabytes of RAM operating under the

Microsoft R© Windows R© 2000 Professional environment.

Both the pure GRASP and the GRASP with path-relinking were tested on a set of 60

random unit graphs with varying densities 20 each having 50, 75, and 100 nodes. The

radius of communication varies from 1 to 5 units (miles) in unit increments. We tested

each case with three sets of mobile agents to achieve better comparisons and model real-

world scenarios. Thus, in total 900 test cases were examined. The graphs were created by

a generator used by Butenko et al. [11] on the TDMA MESSAGE SCHEDULING PROBLEM.
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procedure GRASP+PR(MaxIter,RandomSeed)
 X∗← /0

 E← /0

 for i = 1 to MaxIter do

 X ← ConstructionSolution(G,g,X)
 X ← LocalSearch(X ,MaxIterLS)
 if |E|= MaxElite then

 X ← PathRelinking(X ,E)
 UpdateElite(X ,E)
 else

 E ← E ∪{X}
 end

 if f (X)≥ f (X∗) then

 X∗← X

 end

 end

 return X∗

end procedure GRASP+PR

Figure 5: GRASP with path-relinking for maximization [15].

Since any instance of the CCPM is composed of several parameters, i.e. the number

of mobile agents, their respective source and destination nodes, the radius of communica-

tion, and the maximum time horizon, each of which impacts the optimal solution for the

instance, we will provide our numerical results in several sets of tables. First, we report

solutions for several representative instances and provide all input parameters in order to

establish an inference base for the overall experiment. Then we will summarize the overall

results by providing the average solutions for each problem set1.

In Table 1, we report solutions for three different instances on 50 node graphs. The

Source vector and Destination vector provide the respective (si,di) pair for each agent

respectively. The specific values of si were randomly selected from the first 20% of the

nodes of the graph. Likewise, the di values were chosen randomly from the last 20% of

nodes. This method of selection is preferred over a completely randomized design because

in real-world situations such as a combat scenario, the available entry and exit points from a

battle space are likely to be limited. However, using a random selection from the available

subset of nodes allows for more thorough testing and helps avoid unintentional biases.

The column MaxTime is the maximum time horizon T . Recall that all agents must

reach their destination node by this time. The GRASP column provides the solution from

GRASP after 1000 iterations and UBound is the upper bound on the solution value and

was calculated by the equation in Corollary 1. Notice that as the radius value increases,

the number of connections between the agents tends to converge to the value of the upper

bound. Recall that the upper bound value from Corollary 1 is not an upper bound on the

optimal solution for the given graph per se; it is an upper bound on the solution for the

given time horizon and number of agents. Thus, the more dense the graph, the tighter the

bound.

1Complete results for all experiments are at http://www.research.att.com/∼mgcr/doc/gccpmdata.pdf.

http://www.research.att.com/~mgcr/doc/gccpmdata.pdf
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Table 1: Three instances with different sets of agents on 50 node graphs are given. The

value in the UBound column was found using Corollary 1.

Instance: 50r30i1 Nodes: 50 Agents: 10 MaxTime: 10

Source: [ 6 10 10 3 5 7 4 2 10 6 ]

Destination: [ 49 47 44 48 46 40 48 42 47 47 ]

Radius GRASP GRASP+PR UBound

1 291 303 450

2 365 373 450

3 412 423 450

4 443 443 450

5 449 449 450

(a)

Instance: 50r30i1 Nodes: 50 Agents: 15 MaxTime: 10

Source: [ 10 9 8 9 6 8 1 7 2 5 5 5 2 1 1 ]

Destination: [ 49 47 44 48 46 40 48 42 47 47 ]

Radius GRASP GRASP+PR UBound

1 756 757 1050

2 881 909 1050

3 963 972 1050

4 1029 1029 1050

5 1050 1050 1050

(b)

Instance: 50r40i4 Nodes: 50 Agents: 25 MaxTime: 10

Source: [ 8 9 8 4 5 4 4 6 2 7 4 2 1 7 5 8 9 3 8 11 8 7 5 6 8 ]

Destination: [ 49 48 44 48 46 42 49 40 48 49 45 46 49 45 48 44 42 41 48 43 40 49 45 49 43 ]

Radius GRASP GRASP+PR UBound

1 2613 2653 3000

2 2896 2918 3000

3 3000 3000 3000

4 3000 3000 3000

5 3000 3000 3000

(c)

Table 2 presents the specific parameters and related solutions for three instances of the

CCPM on 75 node graphs. On these networks, the number of agents varied from 10 to

30, and the maximum time horizon was 15. Again, we see that as the communication

radius increases the solutions tend to the upper bound values. Similar results for three

graphs having 100 nodes are provided in Table 3. For the 100 node instances, the number

of agents varied from 15 to 35 and the maximum travel time was 20 units. The results

for these instances also indicate that the heuristic is robust and able to provide excellent

solutions for large instances.

Tables 4, 5, and 6 show the evolution of the average solution values as the communica-

tion range increases for the 50, 75, and 100 node graphs, respectively. Notice once more

that as the communication range increases, the average solution converges to the value of
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Table 2: Three instances with different sets of agents on 75 node graphs are given. The

value in the UBound column was found using Corollary 1.

Instance: 75r30i2 Nodes: 75 Agents: 10 MaxTime: 15

Source: [ 7 6 13 3 10 13 15 6 6 2 ]

Destination: [ 68 68 71 73 68 68 73 70 74 62 ]

Radius GRASP GRASP+PR UBound

1 571 575 675

2 614 621 675

3 658 658 675

4 670 670 675

5 675 675 675

(a)

Instance: 75r40i4 Nodes: 75 Agents: 20 MaxTime: 15

Source: [ 11 5 7 15 3 8 9 4 6 13 14 3 8 3 10 14 11 15 9 3 ]

Destination: [ 63 66 69 61 62 68 62 67 68 66 62 60 61 66 63 73 72 64 71 71 ]

Radius GRASP GRASP+PR UBound

1 2535 2554 2850

2 2746 2758 2850

3 2842 2842 2850

4 2850 2850 2850

5 2850 2850 2850

(b)

Instance: 75r30i1 Nodes: 75 Agents: 30 MaxTime: 15

Source: [ 14 15 2 8 10 4 13 3 4 5 12 6 4 9 2 3 15 8 5 12 9 3 7 7 11 3 4 1 15 4 ]

Destination: [ 68 69 63 62 65 72 62 62 67 71 65 69 63 64 60 64 60 60 66 64 74 63 73 64 64 63 65 65 60 63 ]

Radius GRASP GRASP+PR UBound

1 4721 4870 6525

2 6002 6012 6525

3 6265 6285 6525

4 6497 6497 6525

5 6525 6525 6525

(c)

the upper bound given by Corollary 1. In these tables we also report the average comput-

ing time required by both the pure GRASP and the GRASP+PR to find their best solutions

within the specified number of iterations. For all of the experiments, the GRASP+PR

found solutions at least as good as the pure GRASP, finding superior solutions for 45% of

the instances tested.

In Figures 6, 7, and 8, we provide plots of the average objective function value versus

communication range found using GRASP with path-relinking. The upper bound values

for each case as computed by Corollary 1 are also plotted in the charts. These graphs

indicate that on average, as the radius of communication increases, the objective function

values tend to the upper bound values.

5. CONCLUDING REMARKS

In this paper, we extended the work of Commander et al. [13] by providing a greedy

randomized adaptive search procedure (GRASP) for the COOPERATIVE COMMUNICATION
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Table 3: A 100 node instance with solutions with radius varying from 1 to 5 units. The

value in UBound was found using Corollary 1.

Instance: 100r30i2 Nodes: 100 Agents: 15 MaxTime: 20

Source: [ 9 19 10 18 13 18 12 18 15 8 6 6 20 18 1 ]

Destination: [ 84 88 83 84 96 96 81 95 83 82 93 80 90 85 81 ]

Radius GRASP GRASP+PR UBound

1 1819 1821 2100

2 1960 1974 2100

3 2065 2067 2100

4 2100 2100 2100

5 2100 2100 2100

(a)

Instance: 100r30i1 Nodes: 100 Agents: 25 MaxTime: 20

Source: [ 17 6 9 19 9 12 2 15 7 8 1 2 8 6 3 13 16 17 13 13 17 19 2 5 21 ]

Destination: [ 81 89 84 82 88 99 93 89 93 97 84 96 96 91 90 86 98 86 81 89 82 89 81 80 99 ]

Radius GRASP GRASP+PR UBound

1 5183 5186 6000

2 5577 5647 6000

3 5898 5909 6000

4 5992 5992 6000

5 6000 6000 6000

(b)

Instance: 100r30i2 Nodes: 100 Agents: 35 MaxTime: 20

Source: [ 3 5 11 2 14 4 4 5 10 12 14 13 17 4 17 8 16 7 15 7 15 13 12 9 5 6 19 18 3 16 18 19 10 5 2 ]

Destination: [ 89 95 89 91 84 99 88 91 92 82 98 84 85 89 85 98 92 80 81 85 98 94 82 89 90 96 91 92 90 96 96 96 99 81 82 ]

Radius GRASP GRASP+PR UBound

1 10222 10255 11900

2 11108 11224 11900

3 11660 11704 11900

4 11842 11845 11900

5 11900 11900 11900

(c)

PROBLEM ON MOBILE AD-HOC NETWORKS. This is a new problem in cooperative con-

trol [21], which has many applications in path-planning for multiple autonomous agents.

Since this problem is NP-hard, the need for efficient heuristics which quickly provide high-

quality solutions arises. The proposed GRASP is one such heuristic. Extensive computa-

tional experiments indicate that this method is superior to the shortest path protocol and

one-pass local search heuristic presented in [13]. Furthermore, the method finds near op-

timal solutions for the 900 cases tested and converges to the derived upper bound as the

communication range increases. Future research efforts include developing an algorithm

to find optimal solutions for small CCPM instances such as a branch and cut or a column

generation method [22]. This will help evaluate the performance of heuristics whose so-

lutions for certain instances are not verifiably optimal, i.e. the solutions that are not at the

computed upper bound.



14 C.W. COMMANDER, P. FESTA, C.A.S. OLIVEIRA, P.M. PARDALOS, M.G.C. RESENDE, AND M. TSITSELIS

Table 4: Average solution values for GRASP and GRASP with path-relinking on 50 node

graphs.

Nodes Agents Radius GRASP GRASP+PR Bound

50 10 1 347 352.21 450

50 10 2 404.58 407.58 450

50 10 3 428.32 429.47 450

50 10 4 437.84 438.53 450

50 10 5 444.37 444.58 450

50 15 1 813.11 817.32 1050

50 15 2 937.74 945.47 1050

50 15 3 1001.11 1003.58 1050

50 15 4 1025.37 1026.21 1050

50 15 5 1037.16 1037.53 1050

50 25 1 2272.79 2315.58 3000

50 25 2 2686.26 2704.53 3000

50 25 3 2850.84 2861.95 3000

50 25 4 2924.05 2927.68 3000

50 25 5 2959 2959.26 3000

Average Comp Time (s) 2.89 4.29 –

Table 5: Average solution values for GRASP and GRASP with path-relinking on 75 node

graphs.

Nodes Agents Radius GRASP GRASP+PR Bound

75 10 1 574.95 577.42 675

75 10 2 629.42 631.37 675

75 10 3 653.53 654.63 675

75 10 4 665.42 665.89 675

75 10 5 669.47 669.84 675

75 20 1 2288 2319.63 2850

75 20 2 2639.37 2651.5 2850

75 20 3 2756.69 2762 2850

75 20 4 2805.53 2807.68 2850

75 20 5 2827.42 2828.42 2850

75 30 1 5349.84 5391.26 6525

75 30 2 6037.47 6064 6525

75 30 3 6310.90 6332.37 6525

75 30 4 6422.11 6430.80 6525

75 30 5 6472.42 6478.84 6525

Average Comp Time (s) 6.16 7.43 –
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