A GRASP for the Biquadratic Assignment

Problem®

T. Mavridout P.M. Pardalos' L. Pitsoulis’
M.G.C. Resende?

Abstract

The biquadratic assignment problem (BiQAP) is a generalization of the
quadratic assignment problem (QAP). It is a nonlinear integer program-
ming problem where the objective function is a fourth degree multivariable
polynomial and the feasible domain is the assignment polytope. BiQAP
problems appear in VLSI synthesis. Due to the difficulty of this problem,
only heuristic solution approaches have been proposed. In this paper,
we propose a new heuristic for the BIQAP, a greedy randomized adaptive
search procedure (GRASP). Computational results on instances described
in the literature indicate that this procedure consistently finds better so-
lutions than previously described algorithms.

Keywords: Heuristics, combinatorial optimization, nonlinear assignment

problem, local search, GRASP

1 Introduction

The biquadratic assignment problem (BiQAP) is a generalization of the quadratic
assignment problem (QAP). It is a nonlinear integer programming problem
where the objective function is a fourth degree multivariable polynomial and
the feasible domain is the assignment polytope. Motivated by a practical prob-
lem arising in VLSI synthesis, the problem was first introduced and studied by
Burkard, Cela and Klinz [2].

The BiQAP can be stated as follows:

n n n n n n n n
min E E E E g g g Eaijklbmpstimjp$ksxlt

i=1 j=1k=11=1 m=1p=1s=11t=1

*May 1, 1996

tCenter of Applied Optimization, Department of Industrial and Systems Engineering, Uni-
versity of Florida, Gainesville, FL 32611 USA

{Information Sciences Research Center, AT&T Research, Murray Hill, NJ 07974 USA

subject to:

n
Sy o= 1, j=12...n,
i=1

n
E Li; = 1, i:l,?,...,n,
j=1

Lig € {Oal}a iaj:1a2a"'ana
where the fourth-dimensional arrays A = (a;;1;) and B = (byps¢) each have n?
elements. Equivalently, the BIQAP can be stated as:

plélri& Z Z Z Z i kibp(i)p(i (K)p(D),

i=1 j=1k=11=1

where T denotes the set of all permutations of N = {1,2,...,n}. The latter
formulation of the BiIQAP will be used throughout this paper.

Burkard, Cela and Klinz [2] showed that the BiQAP is NP-hard. They
computed lower bounds for BiQAP derived from lower bounds of the QAP. The
computational results showed that these bounds are weak and deteriorate as
the dimension of the problem increases. This observation suggests that branch
and bound methods will only be effective on very small instances. For larger
instances, efficient heuristics, that find good-quality approximate solutions, are
needed.

Burkard and Cela [1] developed several heuristics for the BIQAP, in particu-
lar deterministic improvement methods and variants of simulated annealing and
tabu search. Computational experiments on test problems with known optimal
solutions [2], suggest that one version of simulated annealing is best among those
tested.

In this paper, we describe a Greedy Randomized Adaptive Search Procedure
(GRASP) for the BiQAP and examine its performance on the set of BIQAP in-
stances considered in [1]. A GRASP [3] is an iterative randomized metaheuristic
that has been applied to many combinatorial optimization problems, including
the QAP [6, 7, 8, 9].

The remainder of the paper is organized as follows. In Section 2, we describe
the GRASP for BiIQAP and discuss the relation of this heuristic to GRASPs
for other nonlinear assignment problems. Experimental results are presented in
Section 3. Concluding remarks are made in Section 4.

2 GRASP for the BiQAP

GRASP is an iterative procedure consisting of two phases at each iteration, a
construction phase and a local search phase. In the first phase, the randomized

procedure GRASP(ListSize,MaxIter,RandomSeed)

1 InputInstance();

2 dok=1,... MaxIter —

3 ConstructGreedyRandomizedSolution(ListSize,RandomSeed);
4 LocalSearch(BestSolutionFound);

5 UpdateSolution(BestSolutionFound);

6 od;

7 return BestSolutionFound

end GRASP;

Figure 1: Pseudo-code for a generic GRASP

algorithm constructs a solution, guided by a greedy function. In the second
phase, local search 1s applied in the neighborhood of the constructed solution,
for possible further improvement. This process is repeated until a stopping
criterion, such as maximum number of iterations, is satisfied. GRASP can be
viewed as a procedure that samples (greedily-biased) high-quality points from
the solution space, searching the neighborhood of each point for a local optimum.
For a tutorial and survey of GRASP, see Feo and Resende [3]. Figure 1 shows
pseudo-code for a generic GRASP.

GRASP has been implemented to solve QAPs with dense [6, 9] and sparse
coefficient matrices [7]. A parallel implementation of a GRASP for QAP is
described in [8].

The feasible space for a BIQAP of size n 1s the same as for a QAP of that size,
i.e. the set of all possible n! permutations of the set N = {1,2,... n}. Each
of the n components of the permutation vector corresponds to an assignment.
During the GRASP construction phase a complete permutation is constructed.
Initially, four assignments are made simultaneously. After that, one assign-
ment is made at a time. Each new assignment added to a partial permutation
contributes to the total cost of the assignment the cost of its interaction with
already-made assignments. To construct the permutation, costs are computed
for each feasible assignment and among those with small cost, one is randomly
selected to be added to the partial permutation. As is the case in the GRASP
for QAP, the construction phase of the GRASP for BIQAP has two stages. The
first stage makes the four initial assignments simultaneously, while the second
stage makes the remaining n —4, one assignment at a time. In the GRASP local
search phase, 2-exchange local search is applied to the permutation constructed
in the first phase.

In the remainder of this section, we provide a detailed description of the

components of the GRASP for the BiQAP.

2.1 Stage 1 of the Construction Phase

Stage 1 of the GRASP construction phase makes the first four assignments
simultaneously. For these assignments, the greedy choice is the set of four
assignments with the minimum cost of interaction. Note that the minimum
feasible number of initial assignments is four, since the BiQAP is only defined
for problems with dimension n > 4 and costs can only be computed if at least
four assignments are made.

To select the four assignments, the interaction cost of each set of four assign-
ments must be computed. The sets of assignments with small costs are placed
in a restricted candidate list (RCL) and one set is selected at random from the
RCL. Consider the computation of the interaction cost of four assignments in
a BIQAP instance with input coefficient arrays A = (a;551) and B = (bpypst) of
n? elements cach. More specifically, the interaction cost of the set A of four
assignments 1s

4 4
Ca=)_ Z Dy a i atwaDbga(igaaak)ealn)s (1)

i=1 j=1k=11=1

where the injections p4, g4 are defined as the quadruples:

pa,qa € K ={(6, 5,k 04,5, k1=12...on, i£ k1, j £k k#I}
The number of feasible sets of four assignments is | K |?, and it is easily seen that
|K|=n(n—1)(n—2)(n—3). The RCL contains all sets A of four assignments
that have small interaction costs C'4. This RCL for Stage 1 needs only to be
setup once, since it does not change from one GRASP iteration to the next.

The following procedure is used to create the RCL. Let o, 8 (0 < o, 5 < 1)
be the RCL parameters, || denote the largest integer smaller or equal to z, and
A (1 < A < |K?) be the maximum number of generated cost parameters. Since
there are O(n®) sets of four assignments, generation of all sets is time consuming.
Instead, the algorithm generates A random permutation pairs, and for each pair

pa and g4 1t computes the associated interaction cost C'4. The costs are sorted
in increasing order, and the | SA] smallest elements are considered as potential
candidates. The RCL is made up of the |aSA] smallest elements. Note again
that no change will be made in the order of these elements during the GRASP
iterations, and therefore this phase of the GRASP can be performed in constant
time, since it simply consists of selecting, at random, an element from a set.
The procedure described above is implemented efficiently using heap sort.

2.2 Stage 2 of the Construction Phase

In Stage 2 of the GRASP construction phase, the final n — 4 assignments are
made, one assignment at a time. Define the set I', as the set of already-made

assignments prior to making the r-th assignment (r > 5):

Ly ={(j1,p1), (G2, p2), -, (Gr=1,Pr—1) }-

At the start of Stage 2, |T's| = 4, since four assignments are made in Stage 1 of
the construction phase. Throughout the stage, r = |T',| + 1.

The U = (n—r+1)? possible assignments of m to s need to be examined to
include in the RCL only those with small cost with respect to the assignments
in set I';y. One assignment in the RCL will be selected at random. One trivial
way to determine the cost of assigning m to s is to compute the sum

Cms = Z Ap(i)p(§)p(k)p(D)Da()i a(k)a (1) (2)
(i,4,k,)ET

where

T={04,k0]|65kl=1,2...r}

pry = m, and q(,) = 5. One can easily check that |T'| = rt, so to compute (2)
requires O(r?) time. A more efficient way is to compute the sum

Chs =" > Gip()etp0ba(i)a(a(k)a()) (3)
(i,j,k‘,l)ET’

where
T =10, j, k)| i,5,k, 1 =1,2,...,r, and {i,j,k, 1} n{r}# 0},

pery = m, and gy = s. Since [T"| = (All) (r—173+ (;1) (r—1)2 + (g) (r—1+1,
then each sum C” . can be calculated in @(r?) time. T contains the quadruples
of all combinations of indices that correspond to the order of the already-made
assignments, having at least one occurrence of the index r. Note that C/, . <
Cpms and the difference Cp,s — C7 . is the same for all possible assignments
m — s, which implies that that the smallest C/ . corresponds to the smallest
Crs.

The greedy function in Stage 2 selects the assignment that has the minimum
cost of interaction with respect to the already-made assignments, i.e. the assign-
ment m to s that has the smallest sum C),,. Consider a GRASP iteration and
let & be the RCL parameter defined in Stage 1 of the construction phase. The
U costs are sorted and the smallest |aU| are placed in RCL. One assignment

(say m to s) is selected at random from the RCL and the set T, is updated, i.e.
I, =T,U{(m,s)}.

Stage 2 of the construction phase is presented in pseudo-code in Figure 2.
Procedure ConstructStage2 takes as input the RCL parameter o and the

four initial assignments made in Stage 1 and makes the remaining n — 4 assign-

ments. In lines 4 to 12, the costs (Cp,;) of all unassigned pairs are computed

procedure ConstructionStage2(«, (j1,p1), (J2,p2), (J3,p3), (Ja, P4))

1 ' ={(j1,p1), (J2,p2), (3, p3), (Ja, pa)};
2 dor=5....n—-1 —

3 U=0;

4 dom=1,....n—

5 do s=1,...,n—

8 if (m,s)gl' —

7 Cms = Z(z’,j,k,l)ET’ ap(iyp(j k(D Pa(i)ati)a(k)a(1)
8 inheap(Cis);

9 U=U+1;

10 fi;

11 od;

12 od;

13 t =random[l, [aU|[];

14 doi=1,....t—

15 Cims =outheap();

16 od;

17 F=Tu{(m,s)};

18 od;

19 return I
end ConstructStage2;

Figure 2: Pseudo-code for Stage 2 of GRASP construction phase

and inserted into the heap to be sorted. Procedure inheap insert an element
into the head and updates the heap. In lines 13 to 16, a number ¢ is randomly
generated in the interval [1, |aU]] and the ¢-th smallest cost is retrieved from
the heap. The procedure outheap deletes the smallest element from the heap
and updates the heap. In line 17 the set I' of already-made assignments is up-
dated. The algorithm continues its iterations until |I'| = n — 1, in which case
the solution is completed by adding the n-th remaining assignment.

2.3 Local Search Phase

The second phase of each GRASP iteration is local search. Given a neigh-
borhood definition, the neighborhood N(s) of a solution s is searched in an
attempt to identify a better solution s’. If a better solution s’ exists in N(s),
the current solution is replaced by s’. The procedure is repeated until no further
improvement is possible.

In the implementation described in this paper, the local search implemented
is the 2-exchange, similar to the local search for the QAP used in [6, 7, 8, 9].
We next describe k-exchange, a generalization of 2-exchange.

Let the difference between two permutations p and ¢ be §(p,¢) = {i | p(i) #
q(9)}, and define the distance between the two permutations to be d(p,¢) =
|6(p, ¢)|. The k-exchange neighborhood N (p) for a permutation p € My is

Ni(p) ={q | d(p,q) < k,2 <k <n}.

Pseudo-code for the k-exchange local search is shown in Figure 3.

The size of the neighborhood used in the k-exchange local search is (Z) =

#Lk), Let p be the starting permutation. The algorithm examines the set of
permutations obtained by interchanging k& elements of p. In line 3 of the pseudo-
code, procedure ProducePermutation(q, m, Ny(p)) generates a permutation ¢
by exchanging k elements of the current permutation p. Which elements are
selected for exchange is a function of the value of m where 1 < m < (Z) Once a
neighboring permutation that improves the objective function is found (line 6),
the current solution is updated and the procedure is restarted, searching the
new neighborhood. This is repeated until no further improvement is possible.
This type of search is called first decrement search. Another type, called com-
plete enumeration, examines all possible solutions that can be generated by the
exchange of k elements, i.e. examines the complete set of (Z) exchanges in the
neighborhood and picks the best [8].

In our implementation, we choose first decrement 2-exchange search. The
neighborhood Ny(p) of a fixed permutation p consists of all those permutations
that differ from p in exactly two places, i.e., that can be obtained by applying
a transposition to p.

As we see in line 6 of the pseudo-code, the calculation of the objective
function value of a permutation ¢ € N(p) where p is the current permutation,

procedure procedure kexchange(k, p)
1 StopFlag=false;

2 do StopFlag=false —

3 StopFlag=true;

4 dom=1,...,(3}) —

5 ProducePermutation(q, m, Nix(p));
6 if cost(q) < cost (p) —
7 P=4q;

8 StopFlag=false;
9 break;

10 fi;

11 od;

12 od;

13 return p

end kexchange;

Figure 3: Pseudo-code of k-exchange local search

is repeated at each iteration of the local search. In the worst case, there are
(g) repetitions, 1.e. as many as the size of the neighborhood. Since there may
be numerous repetitions, it is desirable to have an efficient procedure to decide
if permutation ¢ is better than permutation p. Denote by Z(q) the objective
function value of a permutation ¢q. A straightforward evaluation of the gain
AZ = Z(p) — Z(q) requires O(n?) time, since the computation of Z(q), for any
q € Iy, takes O(n*) time.

However, as shown in [1], AZ may be computed in @(n?) time, using the
following procedure. Suppose that d(p,¢) = 2, i.e.

p(ko) = Q(lo) and p(lo) = Q(ko)~

To compute the gain AZ = Z(p) — Z(q), we evaluate the sum

AZ =3 agrilbpip(wp) — bati)alatk)a))
(i,j,k‘,l)EKg

where
[(2 = {(Zajakal) | iajakal: 1a2a""n’{iajakal}m{koalO} ;é @}

Since |[Ka| =21 () (n =22 +22(D) (n = 2)2 +23(5) (n — 2)' +24(}) (n — 2)°, then

it follows that the gain can be calculated n (’)(n?’) tlme

2.4 Relating GRASP for QAP, BiQAP, and N-adic assign-
ment problem

As aforementioned, the QAP is a special case of the BiIQAP. It is natural to
assume then, that the GRASP for BiIQAP can be reduced to the GRASP for
QAP described in [6]. If we consider Stage 1 of the construction phase as applied
to a QAP of size n, we must make the two initial assignments from the available
n, each with an interaction cost

2 2

Ca = Z Z p (i) a(5)Paa(i)ans)

i=1 j=1

as defined in (1), where a and b are n x n arrays and the permutations p4, g4 €
K=A{(,7)47=1,2,...,n,i# j}. Note that |K| = n(n — 1) and the number
of feasible sets of two assignments is |K|?. However, for a symmetric QAP, the
cost for each pair of assignments reduces to

Ca = 20,4 (1)pa(2)bga(1)gac2)-

One way to compute the sum C4 is to sort the nondiagonal elements of a in
increasing order and of b in decreasing order, and then sort their corresponding
products in increasing order. This will produce a set of the smallest C'4 values
that constitutes the RCL, exactly as defined in [6].

For Stage 2 of the construction phase, following the definition in (3), the
cost of making the r-th assignment (of m to s) for a QAP is

Cons = 3 piyp(irbatirati, (4)
(i,j)ET’

where
T =1,) |4,5=12,....,r,{i, 530 {r} £ 0}.

Considering the fact that the QAP is symmetric and that p(r) = m and ¢(r) = s,
the cost in (4) can be rewritten as

r—1

Coms =2 dmp(i)bag(i)s (5)

i=1

which is how the Stage 2 costs are computed in the GRASP for QAP of [6].

Finally, the local search procedure used in [6] is a 2-exchange neighborhood
search where the gain from exchanging k, with [, in a given solution is computed
in O(n) time. More specifically, given two permutations p and ¢ that differ in
only two positions, i.e.

plko) = q(lo) and p(l,) = q(k,),

10

12 150 MHZ IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 5.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0
Data cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction/data cache size: 1 Ubyte
Main memory size: 2560 Mbytes, 2-way interleaved

Figure 4: Hardware configuration (partial output of system command hinv)

we can compute their difference in the objective function cost by evaluating the

summation
Y iyt — bativati):
(i,j)EKz

where
[(2 = {(Zaj) | Za.] = 1a2a"'an’{iaj}m{k0’10} ;é @}

The above analysis shows that it is very natural to extend the GRASP for
QAP to a GRASP for BiQAP. In a similar fashion, GRASP can be extended to
solve instances of the n-adic assignment problem [5] (e.g. for n = 3 we have the
3-dimensional assignment problem).

3 Computational Results

In this section, we report on a computational experiment to evaluate the accu-
racy and efficiency of a Fortran 77 implementation of the GRASP described in
Section 2.

The experiment was done on a 150MHz Silicon Graphics (SGI) Challenge
computer, whose hardware configuration is summarized in Figure 4. The code
was compiled on the SGI Fortran compiler £77 using compiler flags -02 -01limit
800 -static. The SGI Irix 5.3 operating system was in use during the exper-
iments. Though the machine used in the experiments is configured with 12
processors, processes were limited to run on at most one processor at a time.
CPU times in seconds were computed by calling the system routine etime. Re-
ported CPU times exclude problem input and output report times. The portable
Fortran pseudo number generator of Schrage [10] was used.

The GRASP for BiQAP has several parameters that need to be set. We fixed
these parameters throughout all runs in the experiment. The RCL parameters
used were a = 0.25, 8 = 0.3, and A = 1000. A maximum of 150 GRASP

iterations were allowed per run.

11

Table 1: Statistics summarizing GRASP runs

computational effort to find optimal permutation

iterations CPU time
problem n opt value | min avg max min avg max
biQAP_10 | 10 133216 1 1.7 2 1.3 2.3 3.4
biQAP12 | 12 120600 1 7.2 18 5.3 23.1 56.9
biQAP_14 | 14 251356 1 2.2 4 8.3 23.9 41.5
biQAP_16 | 16 441696 2 134 34 44.4 289.6 749.5
biQAP_18 | 18 811338 1 2.8 5 38.5 138.7 281.2
biQAP_20 | 20 1487296 1 2.0 5 74.8 184.2 468.1
biQAP 22 | 22 3118716 1 1.5 2 133.6 267.1 431.5
biQAP 24 | 24 1780378 1 28.2 66 509.7 8092.2 19047.7
biQAP 26 | 26 5305872 1 3.1 9 471.7 1664.3 4717.1
biQAP 28 | 28 4606532 1 4.7 15 568.8 4130.4 13683.0
biQAP 30 | 30 4468860 4 273 138 | 5370.5 30344.0 152500.1
biQAP 32 | 32 8088327 1 6.6 16 | 2644.5 12585.1 27822.8
biQAP 34 | 34 9445329 4 14.3 63 | 99229 36936.5 161505.3
biQAP 36 | 36 11297520 2 218 58 | 6102.4 79281.6 208924.6

To test the accuracy of the GRASP, i.e. how the solution found by GRASP
compares with an optimal solution, we tested our code on 14 test problems hav-
ing known optimal solutions, whose generator is described in [2]. In addition
to the limit of 150 GRASP iterations, the algorithm stops if an optimal per-
mutation is found. The instances varied in dimension from n = 10 to n = 36,
the largest having 1,679,616 entries in each of its two matrices. These instances
were also used by Burkard and Cela [1] to test several heuristics for the BiQAP.
The GRASP uses two random number streams. The first is used to select the
A initial assignments, while the second is used to build the restricted candidate
lists during GRASP construction phase. In our experiment, ten replications of
the GRASP runs were done for each test problem, each one using a different
seed to generate the pseudo random number stream used to select the initial A
assignments. The seeds used are 270001, 270002, ...,270010. For determining
the RCL, the seed used is 12444.

For all 14 test problems considered, the GRASP found an optimal permu-
tation on every single replication, in as few as one GRASP iteration, and in as
many as 138 iterations. Table 1 summarizes the computational experiments.
For each test problem instance, the table lists 1ts name, dimension, cost of an
optimal permutation, and the minimum, average, and maximum number of it-
erations and CPU time to find an optimal permutation. Figure b shows the
distribution of GRASP iterations for all test problem replications. along with
the average number of iterations taken. Figure 6 shows the distribution of CPU
time together with average CPU time.

Our results indicate that the GRASP compares well with the heuristics de-
scribed and tested in Burkard and Cela [1]. That paper investigated the perfor-

12

I
o
100 F E
F ° o °]
o 3 9 8]
L4 ®
° ° . s _
] 8 o 8 -9 o .-
1ter g Do ° . o E s °
= 5. o g . 3 4
. o . . C e E
o -0 o * o o]
R o o o g o o a
o o o .0 o o o g
oo Q o] L] o B
o o & o ‘e. o o o o o g
L] . ‘e
1E 9 o o | o o] o o | o o) | o) | —
10 15 20 25 30 35
dim

Figure 5: Number of GRASP iterations to find optimal solution as a function
of the dimension of the BiQAP. Dotted line is average number of iterations. All
instances included.

o—]
o

100000

om e
®O O OEWO

10000

I
o o. .o'qa@o
@oo@o
o mo o
00000
oo o&_:;o

1000

time

00 0 OO

o mo
wap o
cooem

100 F

@o'® @
[eXt X0

10 F

LE

0.1 L ! ! ! ! ! !
10 15 20 25 30 35

dim

Figure 6: GRASP time (in seconds) to find optimal solution as a function of
the dimension of the BiIQAP. Dotted line is average solution time. All instances
included.

13

mance of Heider’s method [4], the first and best improvement methods; three
versions of simulated annealing, two versions of tabu search and a combination of
tabu search with simulated annealing. In that paper, each heuristic is repeatedly
tested on seven BiQAP instances of dimensions n = 10, 14, 16, 20, 24, 28, 32. Ad-
ditionally, Heider’s method, and the first and best improvement heuristics were
tested on an instance of size n = 36. The third version of simulated annealing
(SIMANN3) proved to be the best among all heuristics tested by Burkard and
(Cela. SIMANN3 solved almost all of the instances of sizes n = 14,16, 20, while
the average percentage of optimally solved instances for the remaining problems
is about 46%. None of the nine heuristics tested by Burkard and Cela solved
the entire set of instances of dimension n > 12 to optimality.

Although our GRASP code solved all ten replications of all 14 test problems,
it often required a large amount of CPU time to find an optimal permutation.
The longest run in our experiment took over two days of CPU time. This can,
however, be remedied with distributed parallel computing. Suppose we have ten
processors to run concurrently, and allocate to each processor a copy of the code,
a copy of the data, and a different random number seed to generate the random
number stream used to select the initial A assignment, stopping when the first
processor finds the optimal permutation. The running time of the 10-processor
system would correspond to the minimum CPU time in Table 1. Those range
from 1.3 seconds for the n = 10 problem, to a little under three hours of CPU
time for the n = 34 instance. The largest (n = 36) test problem would be solved
in less than two hours.

On the 14 instances considered in this experiment, 10 were solved in a min-
imum of one GRASP iteration, two in a minimum of two iterations, and two in
a minimum of four iterations. It is easy to see that no matter how many pro-
cessors are used in a distributed parallel implementation of GRASP of the kind
described above, the GRASP running time is bounded below by the running
time of one GRASP iteration. Figure 7 shows, for the 14 test problems used
in the experiment, average CPU time per GRASP iteration, as a function of
BiQAP size, as well as estimated running times for larger instances. The figure
suggests that one GRASP iteration on an instance of dimension n = 90 would
take over 10 CPU days.

Finally, it is interesting to note that for each instance, all GRASP replica-
tions produced identical optimal permutations, suggesting that these solutions
are unique. Table 2 lists the optimal permutations found.

4 Concluding Remarks

In this paper we describe a GRASP for finding approximate solutions of the
biquadratic assignment problem and test a Fortran 77 implementation of the
algorithm on a set of test problems with known optimal solutions. Computa-
tional experience with the code indicates that the GRASP is effective in finding

14

1000000

100000

10000

1000 o —
seconds
1teration .

100 . i

10 - . .

10 20 30 50 70 90

problem dimension

Figure 7: CPU time per GRASP iteration as a function of BIQAP dimension.
Computed values for n < 36. Estimated time per iteration for n > 36.

the optimal permutation for these test problems. On all test problems con-
sidered, the optimal solution was found on all ten runs, each starting with a
different seed for the pseudo random number generator.

Solution times can be long on the larger problems, with a single GRASP
iteration requiring, for an instance of dimension n = 36, as much as one hour of
CPU time on a SGI Challenge computer. To mitigate this problem, we suggest
three directions. Firstly, a version of the code that takes advantage of sparsity in
the problem matrices can be developed, as was done for the GRASP for QAP [7].
This could make 1t easier to solve large sparse problems that occur in practice.
Secondly, as we discussed in Section 3, a distributed parallel GRASP could be
implemented, as was done in [8] for the QAP. Finally, it may be possible to
parallelize parts of the computation in each GRASP iteration.

Acknowledgement

The authors would like to thank R. Burkard and E. Cela for providing the test
data used in the computational experiments.

15

Table 2: Optimal permutations found by all replications of GRASP

n optimal permutation

10 | 10,9,1,2,3,45,6,7,8

12 | 12,11,1,2,3,4,5,6,7,8,9,10

14 | 14,131,2,3,4,5,6,7,8,9,10,11,12

16 | 16,15,1,2,3,4,5,6,7,8,9,10,11,12,1314

18 | 18,17,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

20 | 20,19,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

22 | 22,21,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

24 | 7,6,917,4,15,22,16,8,13,21,5,1,3,12,24,20,10,14,19,18,11,23

26 | 26,251,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24

28 | 24,14,5,10,1,7,4,26,2,17,23,15,8,6,21,3,27,9,20,16,22,11,13,25,18,28 12,19

30 | 17,15,14,18,4,27,30,16,23,19,24,7,11,8,21,9,3,28 22,29 6 20,10,12,26,13,25,2 5,1

32 | 2,22,11,29,32,16,14,7,20,17,18,9,31,19,5,15,21,12,4,6,8,28,30,10,1,24,25,26 23 3 27,13

34 | 26,10,5,21,34,16,19,9,22 31,24 3,30,27,14,29,4,7,17,25 28,118 33,2,6,32,8,12,15,13,20,11

36 | 26,36,11,24,8,21,33,32,14,31,5,22,16,2,18,9,29,35 20 6,7,27,19,17,10,25 34,1,30,12,15,13 4,28,3 23

References

[1] R. BURKARD AND E. CELA, Heuristics for biquadralic assignment prob-
lems and their computational comparison, European Journal of Operational

Research, 83 (1995), pp. 283-300.

[2] R. BurRkaRrD, E. CELA, AND B. KLINZ, On the biquadratic assignment
problem, in Quadratic assignment and related problems, P. Pardalos and
H. Wolkowicz, eds., vol. 16 of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science, American Mathematical Society, 1994,
pp. 117-146.

[3] T. FEo AND M. RESENDE, Greedy randomized adaplive search procedures,
Journal of Global Optimization, 16 (1995), pp. 109-133.

[4] C. HEIDER, A computationally simplified pair exchange algorithm for the
quadratic assignment problem, Tech. Rep. 101, Center for Naval Analyses,
Arlington, VA, 1972.

[6] E. LAWLER, The quadralic assignment problem, Management Science, 9
(1963), pp. 586-599.

[6] Y. Li, P. PARDALOS, AND M. RESENDE, A greedy randomized adaplive
search procedure for the quadratic assignment problem, in Quadratic assign-
ment and related problems, P. Pardalos and H. Wolkowicz, eds., vol. 16 of
DIMACS Series on Discrete Mathematics and Theoretical Computer Sci-
ence, American Mathematical Society, 1994, pp. 237-261.

[7] P. ParpaLOs, L. PiTsouLis, AND M. RESENDE, Fortran subroulines
for approximate solution of sparse quadratic assignment problems using

GRASP, tech. rep., AT&T Bell Laboratories, Murray Hill, NJ, 1995.

(8]

[9]

[10]

16

— A parallel GRASP implementation for the quadratic assignment
problem, in Solving Irregular Problems in Parallel: State of the Art, A. Fer-
reira and J. Rolim, eds., Kluwer Academic Publishers, 1995, pp. 111-130.

M. RESENDE, P. PArDALOS, AND Y. L1, Algorithm 754: Fortran sub-
routines for approrimate solution of dense quadratic asstignment problems
using GRASP, ACM Transactions on Mathematical Software, 22 (1996),
pp. 104-118.

L. SCHRAGE, A more portable Fortran random number generator, ACM
Transactions on Mathematical Software, 5 (1979), pp. 132-138.

