
A GRASP for the Biquadratic Assignment

Problem�

T� Mavridouy P�M� Pardalosy L� Pitsoulisy

M�G�C� Resendez

Abstract

The biquadratic assignment problem �BiQAP� is a generalization of the
quadratic assignment problem �QAP�� It is a nonlinear integer program�
ming problem where the objective function is a fourth degree multivariable
polynomial and the feasible domain is the assignment polytope� BiQAP
problems appear in VLSI synthesis� Due to the di�culty of this problem�
only heuristic solution approaches have been proposed� In this paper�
we propose a new heuristic for the BiQAP� a greedy randomized adaptive
search procedure �GRASP�� Computational results on instances described
in the literature indicate that this procedure consistently �nds better so�
lutions than previously described algorithms�

Keywords	 Heuristics� combinatorial optimization� nonlinear assignment
problem� local search� GRASP

� Introduction

The biquadratic assignment problem �BiQAP� is a generalization of the quadratic
assignment problem �QAP�� It is a nonlinear integer programming problem
where the objective function is a fourth degree multivariable polynomial and
the feasible domain is the assignment polytope� Motivated by a practical prob	
lem arising in VLSI synthesis� the problem was �rst introduced and studied by
Burkard� C� ela and Klinz ����
The BiQAP can be stated as follows�

min
nX

i��

nX

j��

nX

k��

nX

l��

nX

m��

nX

p��

nX

s��

nX

t��

aijklbmpstximxjpxksxlt

�May �� ����
yCenter of Applied Optimization� Department of Industrial and Systems Engineering� Uni�

versity of Florida� Gainesville� FL ����� USA
zInformation Sciences Research Center� AT�T Research� Murray Hill� NJ �
�
� USA

�

�

subject to�

nX

i��

xij � �� j � �� �� � � � � n�

nX

j��

xij � �� i � �� �� � � � � n�

xij � f�� �g� i� j � �� �� � � �� n�

where the fourth	dimensional arrays A � �aijkl� and B � �bmpst� each have n�

elements� Equivalently� the BiQAP can be stated as�

min
p��N

nX

i��

nX

j��

nX

k��

nX

l��

aijklbp
i�p
j�p
k�p
l��

where �N denotes the set of all permutations of N � f�� �� � � � � ng� The latter
formulation of the BiQAP will be used throughout this paper�
Burkard� C� ela and Klinz ��� showed that the BiQAP is NP	hard� They

computed lower bounds for BiQAP derived from lower bounds of the QAP� The
computational results showed that these bounds are weak and deteriorate as
the dimension of the problem increases� This observation suggests that branch
and bound methods will only be e�ective on very small instances� For larger
instances� e�cient heuristics� that �nd good	quality approximate solutions� are
needed�
Burkard and C�ela ��� developed several heuristics for the BiQAP� in particu	

lar deterministic improvement methods and variants of simulated annealing and
tabu search� Computational experiments on test problems with known optimal
solutions ���� suggest that one version of simulated annealing is best among those
tested�
In this paper� we describe a Greedy Randomized Adaptive Search Procedure

�GRASP� for the BiQAP and examine its performance on the set of BiQAP in	
stances considered in ���� A GRASP �
� is an iterative randomized metaheuristic
that has been applied to many combinatorial optimization problems� including
the QAP ��� �� ��
��
The remainder of the paper is organized as follows� In Section �� we describe

the GRASP for BiQAP and discuss the relation of this heuristic to GRASPs
for other nonlinear assignment problems� Experimental results are presented in
Section
� Concluding remarks are made in Section ��

� GRASP for the BiQAP

GRASP is an iterative procedure consisting of two phases at each iteration� a
construction phase and a local search phase� In the �rst phase� the randomized

procedure GRASP�ListSize�MaxIter�RandomSeed�
� InputInstance��"
� do k � �� � � � � MaxIter 	

 ConstructGreedyRandomizedSolution�ListSize�RandomSeed�"
� LocalSearch�BestSolutionFound�"
� UpdateSolution�BestSolutionFound�"
� od"
� return BestSolutionFound

end GRASP"

Figure �� Pseudo	code for a generic GRASP

algorithm constructs a solution� guided by a greedy function� In the second
phase� local search is applied in the neighborhood of the constructed solution�
for possible further improvement� This process is repeated until a stopping
criterion� such as maximum number of iterations� is satis�ed� GRASP can be
viewed as a procedure that samples �greedily	biased� high	quality points from
the solution space� searching the neighborhood of each point for a local optimum�
For a tutorial and survey of GRASP� see Feo and Resende �
�� Figure � shows
pseudo	code for a generic GRASP�
GRASP has been implemented to solve QAPs with dense ���
� and sparse

coe�cient matrices ���� A parallel implementation of a GRASP for QAP is
described in ����
The feasible space for a BiQAP of size n is the same as for a QAP of that size�

i�e� the set of all possible n# permutations of the set N � f�� �� � � �� ng� Each
of the n components of the permutation vector corresponds to an assignment�
During the GRASP construction phase a complete permutation is constructed�
Initially� four assignments are made simultaneously� After that� one assign	
ment is made at a time� Each new assignment added to a partial permutation
contributes to the total cost of the assignment the cost of its interaction with
already	made assignments� To construct the permutation� costs are computed
for each feasible assignment and among those with small cost� one is randomly
selected to be added to the partial permutation� As is the case in the GRASP
for QAP� the construction phase of the GRASP for BiQAP has two stages� The
�rst stage makes the four initial assignments simultaneously� while the second
stage makes the remaining n��� one assignment at a time� In the GRASP local
search phase� �	exchange local search is applied to the permutation constructed
in the �rst phase�
In the remainder of this section� we provide a detailed description of the

components of the GRASP for the BiQAP�

�

��� Stage � of the Construction Phase

Stage � of the GRASP construction phase makes the �rst four assignments
simultaneously� For these assignments� the greedy choice is the set of four
assignments with the minimum cost of interaction� Note that the minimum
feasible number of initial assignments is four� since the BiQAP is only de�ned
for problems with dimension n � � and costs can only be computed if at least
four assignments are made�
To select the four assignments� the interaction cost of each set of four assign	

ments must be computed� The sets of assignments with small costs are placed
in a restricted candidate list �RCL� and one set is selected at random from the
RCL� Consider the computation of the interaction cost of four assignments in
a BiQAP instance with input coe�cient arrays A � �aijkl� and B � �bmpst� of
n� elements each� More speci�cally� the interaction cost of the set A of four
assignments is

CA �
�X

i��

�X

j��

�X

k��

�X

l��

apA
i�pA
j�pA
k�pA
l�bqA
i�qA
j�qA
k�qA
l�� ���

where the injections pA� qA are de�ned as the quadruples�

pA� qA � K � f�i� j� k� l� j i� j� k� l � �� �� � � � � n� i �� j� k� l� j �� k� l� k �� lg�

The number of feasible sets of four assignments is jKj�� and it is easily seen that
jKj � n�n� ���n� ���n�
�� The RCL contains all sets A of four assignments
that have small interaction costs CA� This RCL for Stage � needs only to be
setup once� since it does not change from one GRASP iteration to the next�
The following procedure is used to create the RCL� Let �� � �� � �� � � ��

be the RCL parameters� bxc denote the largest integer smaller or equal to x� and
� �� � � � jKj�� be the maximumnumber of generated cost parameters� Since
there are O�n�� sets of four assignments� generation of all sets is time consuming�
Instead� the algorithm generates � random permutation pairs� and for each pair
pA and qA it computes the associated interaction cost CA� The costs are sorted
in increasing order� and the b��c smallest elements are considered as potential
candidates� The RCL is made up of the b���c smallest elements� Note again
that no change will be made in the order of these elements during the GRASP
iterations� and therefore this phase of the GRASP can be performed in constant
time� since it simply consists of selecting� at random� an element from a set�
The procedure described above is implemented e�ciently using heap sort�

��� Stage � of the Construction Phase

In Stage � of the GRASP construction phase� the �nal n � � assignments are
made� one assignment at a time� De�ne the set !r as the set of already	made

�

assignments prior to making the r	th assignment �r � ���

!r � f�j�� p��� �j�� p��� � � � � �jr��� pr���g�

At the start of Stage �� j!	j � �� since four assignments are made in Stage � of
the construction phase� Throughout the stage� r � j!rj ��
The U � �n� r ��� possible assignments of m to s need to be examined to

include in the RCL only those with small cost with respect to the assignments
in set !r� One assignment in the RCL will be selected at random� One trivial
way to determine the cost of assigning m to s is to compute the sum

Cms �
X

i�j�k�l��T

ap
i�p
j�p
k�p
l�bq
i�q
j�q
k�q
l�� ���

where
T � f�i� j� k� l� j i� j� k� l � �� �� � � �� rg�

p
r� � m� and q
r� � s� One can easily check that jT j � r�� so to compute ���
requires O�r�� time� A more e�cient way is to compute the sum

C �
ms �

X

i�j�k�l��T �

ap
i�p
j�p
k�p
l�bq
i�q
j�q
k�q
l�� �
�

where

T � � f�i� j� k� l� j i� j� k� l � �� �� � � �� r� and fi� j� k� lg � frg �� �g�

p
r� � m� and q
r� � s� Since jT �j �
��
�

�
�r � ���

��
�

�
�r � ���

��
�

�
�r � �� ��

then each sum C�
ms can be calculated in O�r

�� time� T � contains the quadruples
of all combinations of indices that correspond to the order of the already	made
assignments� having at least one occurrence of the index r� Note that C�

ms �
Cms and the di�erence Cms � C�

ms is the same for all possible assignments
m 	 s� which implies that that the smallest C�

ms corresponds to the smallest
Cms�
The greedy function in Stage � selects the assignment that has the minimum

cost of interaction with respect to the already	made assignments� i�e� the assign	
ment m to s that has the smallest sum Cms� Consider a GRASP iteration and
let � be the RCL parameter de�ned in Stage � of the construction phase� The
U costs are sorted and the smallest b�Uc are placed in RCL� One assignment
�say m to s� is selected at random from the RCL and the set !r is updated� i�e�

!r � !r
 f�m� s�g�

Stage � of the construction phase is presented in pseudo	code in Figure ��
Procedure ConstructStage� takes as input the RCL parameter � and the

four initial assignments made in Stage � and makes the remaining n� � assign	
ments� In lines � to ��� the costs �Cms� of all unassigned pairs are computed

�

procedure ConstructionStage���� �j�� p��� �j�� p��� �j�� p��� �j�� p���
� ! � f�j�� p��� �j�� p��� �j�� p��� �j�� p��g�
� do r � �� � � � � n� � 	
� U � ��
� do m � �� � � � � n	
� do s � �� � � � � n	
	 if �m� s� �� !	

 Cms �

P

i�j�k�l��T � ap
i�p
j�p
k�p
l�bq
i�q
j�q
k�q
l��

� inheap�Cms��

� U � U ��
�� ��

�� od�

�� od�

�� t �random��� b�Uc��
�� do i � �� � � � � t	
�� Cms �outheap���
�	 od�

�
 ! � !
 f�m� s�g�
�� od�

�� return !
end ConstructStage��

Figure �� Pseudo	code for Stage � of GRASP construction phase

�

and inserted into the heap to be sorted� Procedure inheap insert an element
into the head and updates the heap� In lines �
 to ��� a number t is randomly
generated in the interval ��� b�Uc� and the t	th smallest cost is retrieved from
the heap� The procedure outheap deletes the smallest element from the heap
and updates the heap� In line �� the set ! of already	made assignments is up	
dated� The algorithm continues its iterations until j!j � n � �� in which case
the solution is completed by adding the n	th remaining assignment�

��� Local Search Phase

The second phase of each GRASP iteration is local search� Given a neigh	
borhood de�nition� the neighborhood N �s� of a solution s is searched in an
attempt to identify a better solution s�� If a better solution s� exists in N �s��
the current solution is replaced by s�� The procedure is repeated until no further
improvement is possible�
In the implementation described in this paper� the local search implemented

is the �	exchange� similar to the local search for the QAP used in ��� �� ��
��
We next describe k	exchange� a generalization of �	exchange�
Let the di�erence between two permutations p and q be ��p� q� � fi j p�i� ��

q�i�g� and de�ne the distance between the two permutations to be d�p� q� �
j��p� q�j� The k	exchange neighborhood Nk�p� for a permutation p � �N is

Nk�p� � fq j d�p� q� � k� � � k � ng�

Pseudo	code for the k	exchange local search is shown in Figure
�
The size of the neighborhood used in the k	exchange local search is

�
n

k

�
�

n�
k�
n�k��� Let p be the starting permutation� The algorithm examines the set of

permutations obtained by interchanging k elements of p� In line
 of the pseudo	
code� procedure ProducePermutation�q�m�Nk�p�� generates a permutation q

by exchanging k elements of the current permutation p� Which elements are
selected for exchange is a function of the value of m where � � m �

�
n

k

�
� Once a

neighboring permutation that improves the objective function is found �line ���
the current solution is updated and the procedure is restarted� searching the
new neighborhood� This is repeated until no further improvement is possible�
This type of search is called �rst decrement search� Another type� called com�

plete enumeration� examines all possible solutions that can be generated by the
exchange of k elements� i�e� examines the complete set of

�
n

k

�
exchanges in the

neighborhood and picks the best ����
In our implementation� we choose �rst decrement �	exchange search� The

neighborhood N��p� of a �xed permutation p consists of all those permutations
that di�er from p in exactly two places� i�e�� that can be obtained by applying
a transposition to p�
As we see in line � of the pseudo	code� the calculation of the objective

function value of a permutation q � N �p� where p is the current permutation�

�

procedure procedure kexchange�k� p�
� StopFlag�false�

� do StopFlag�false 	
� StopFlag�true�

� do m � �� � � � �
�
n

k

�
	

� ProducePermutation�q�m�Nk�p���
	 if cost�q� � cost �p�	

 p � q�

� StopFlag�false�

� break�

�� ��

�� od�

�� od�

�� return p

end kexchange�

Figure
� Pseudo	code of k	exchange local search

is repeated at each iteration of the local search� In the worst case� there are�
n

�

�
repetitions� i�e� as many as the size of the neighborhood� Since there may

be numerous repetitions� it is desirable to have an e�cient procedure to decide
if permutation q is better than permutation p� Denote by Z�q� the objective
function value of a permutation q� A straightforward evaluation of the gain
�Z � Z�p�� Z�q� requires O�n�� time� since the computation of Z�q�� for any
q � �N � takes O�n�� time�
However� as shown in ���� �Z may be computed in O�n�� time� using the

following procedure� Suppose that d�p� q� � �� i�e�

p�ko� � q�lo� and p�lo� � q�ko��

To compute the gain �Z � Z�p�� Z�q�� we evaluate the sum

�Z �
X

i�j�k�l��K�

aijkl�bp
i�p
j�p
k�p
l� � bq
i�q
j�q
k�q
l��

where

K� � f�i� j� k� l� j i� j� k� l � �� �� � � � � n� fi� j� k� lg� fko� log �� �g�

Since jK�j � ��
�
�
�

�
�n� ��� ��

��
�

�
�n� ��� ��

��
�

�
�n� ��� ��

��
�

�
�n� ���� then

it follows that the gain can be calculated in O�n�� time�

��� Relating GRASP for QAP� BiQAP� and N�adic assign�
ment problem

As aforementioned� the QAP is a special case of the BiQAP� It is natural to
assume then� that the GRASP for BiQAP can be reduced to the GRASP for
QAP described in ���� If we consider Stage � of the construction phase as applied
to a QAP of size n� we must make the two initial assignments from the available
n� each with an interaction cost

CA �
�X

i��

�X

j��

apA
i�pA
j�bqA
i�qA
j�

as de�ned in ���� where a and b are n�n arrays and the permutations pA� qA �
K � f�i� j� j i� j � �� �� � � �� n� i �� jg� Note that jKj � n�n� �� and the number
of feasible sets of two assignments is jKj�� However� for a symmetric QAP� the
cost for each pair of assignments reduces to

CA � �apA
��pA
��bqA
��qA
���

One way to compute the sum CA is to sort the nondiagonal elements of a in
increasing order and of b in decreasing order� and then sort their corresponding
products in increasing order� This will produce a set of the smallest CA values
that constitutes the RCL� exactly as de�ned in ����
For Stage � of the construction phase� following the de�nition in �
�� the

cost of making the r	th assignment �of m to s� for a QAP is

Cms �
X

i�j��T �

ap
i�p
j�bq
i�q
j�� ���

where
T � � f�i� j� j i� j � �� �� � � � � r� fi� jg� frg �� �g�

Considering the fact that the QAP is symmetric and that p�r� � m and q�r� � s�
the cost in ��� can be rewritten as

Cms � �
r��X

i��

amp
j�bsq
j�� ���

which is how the Stage � costs are computed in the GRASP for QAP of ����
Finally� the local search procedure used in ��� is a �	exchange neighborhood

search where the gain from exchanging ko with lo in a given solution is computed
in O�n� time� More speci�cally� given two permutations p and q that di�er in
only two positions� i�e�

p�ko� � q�lo� and p�lo� � q�ko��

��

�� ��� MHZ IP�� Processors

CPU� MIPS R���� Processor Chip Revision� ���

FPU� MIPS R���� Floating Point Chip Revision� ���

Data cache size� �	 Kbytes

Instruction cache size� �	 Kbytes

Secondary unified instruction
data cache size� � Mbyte

Main memory size� ��	� Mbytes� ��way interleaved

Figure �� Hardware con�guration �partial output of system command hinv�

we can compute their di�erence in the objective function cost by evaluating the
summation X

i�j��K�

aij�bp
i�p
j� � bq
i�q
j���

where
K� � f�i� j� j i� j � �� �� � � �� n� fi� jg � fko� log �� �g�

The above analysis shows that it is very natural to extend the GRASP for
QAP to a GRASP for BiQAP� In a similar fashion� GRASP can be extended to
solve instances of the n	adic assignment problem ��� �e�g� for n �
 we have the

	dimensional assignment problem��

� Computational Results

In this section� we report on a computational experiment to evaluate the accu	
racy and e�ciency of a Fortran �� implementation of the GRASP described in
Section ��
The experiment was done on a ���MHz Silicon Graphics �SGI� Challenge

computer� whose hardware con�guration is summarized in Figure �� The code
was compiled on the SGI Fortran compiler f

 using compiler �ags �O� �Olimit

��� �static� The SGI Irix ��
 operating system was in use during the exper	
iments� Though the machine used in the experiments is con�gured with ��
processors� processes were limited to run on at most one processor at a time�
CPU times in seconds were computed by calling the system routine etime� Re	
ported CPU times exclude problem input and output report times� The portable
Fortran pseudo number generator of Schrage ���� was used�
The GRASP for BiQAP has several parameters that need to be set� We �xed

these parameters throughout all runs in the experiment� The RCL parameters
used were � � ����� � � ��
� and � � ����� A maximum of ��� GRASP
iterations were allowed per run�

��

Table �� Statistics summarizing GRASP runs

computational e�ort to �nd optimal permutation

iterations CPU time

problem n opt value min avg max min avg max

biQAP �� �� ������ � �	
 � �	� �	� �	�

biQAP �� �� ������ �
	� ��
	� ��	�
�	�

biQAP �� �� �
��
� � �	� � �	� ��	� ��	

biQAP �� �� ������ � ��	� �� ��	� ���	�
��	

biQAP �� �� ������ � �	�
 ��	
 ���	
 ���	�

biQAP �� �� ���
��� � �	�

�	� ���	� ���	�

biQAP �� �� ����
�� � �	
 � ���	� ��
	� ���	

biQAP �� �� �
���
� � ��	� ��
��	
 ����	� ����
	

biQAP �� ��
��
�
� � �	� � �
�	
 ����	� �
�
	�

biQAP �� �� ����
�� � �	
 �

��	� ����	� �����	�

biQAP �� �� ������� � �
	� ���
�
�	
 �����	� �
�
��	�

biQAP �� �� ������
 � �	� �� ����	
 ��
�
	� �
���	�

biQAP �� �� ���
��� � ��	� �� ����	� �����	
 ���
�
	�

biQAP �� �� ����

�� � ��	�
� ����	�
����	� ������	�

To test the accuracy of the GRASP� i�e� how the solution found by GRASP
compares with an optimal solution� we tested our code on �� test problems hav	
ing known optimal solutions� whose generator is described in ���� In addition
to the limit of ��� GRASP iterations� the algorithm stops if an optimal per	
mutation is found� The instances varied in dimension from n � �� to n �
��
the largest having ����
���� entries in each of its two matrices� These instances
were also used by Burkard and C�ela ��� to test several heuristics for the BiQAP�
The GRASP uses two random number streams� The �rst is used to select the
� initial assignments� while the second is used to build the restricted candidate
lists during GRASP construction phase� In our experiment� ten replications of
the GRASP runs were done for each test problem� each one using a di�erent
seed to generate the pseudo random number stream used to select the initial �
assignments� The seeds used are ������� ������� � � �� ������� For determining
the RCL� the seed used is ������
For all �� test problems considered� the GRASP found an optimal permu	

tation on every single replication� in as few as one GRASP iteration� and in as
many as �
� iterations� Table � summarizes the computational experiments�
For each test problem instance� the table lists its name� dimension� cost of an
optimal permutation� and the minimum� average� and maximum number of it	
erations and CPU time to �nd an optimal permutation� Figure � shows the
distribution of GRASP iterations for all test problem replications� along with
the average number of iterations taken� Figure � shows the distribution of CPU
time together with average CPU time�
Our results indicate that the GRASP compares well with the heuristics de	

scribed and tested in Burkard and C�ela ���� That paper investigated the perfor	

��

�

��

���

�� �� �� ��
�
�

iter

dim

bbbbb

bb

b

b

b

b
b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

bb

b

b

bbb

b

bb

b

b

b

b

bbb

b

bb

b

b

bb

b

b

bbb

b b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

bb

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Figure �� Number of GRASP iterations to �nd optimal solution as a function
of the dimension of the BiQAP� Dotted line is average number of iterations� All
instances included�

���

�

��

���

����

�����

������

�� �� �� ��
�
�

time

dim

b
b
b

bb

bb

b

b

b

bb

b

b

b

b

b

b

bb

b

bb

b

b

b
b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

b
bb
b

bb

bbb
b

bb
b

b

bb b
bb

b

b

b

b
bb

b

b

b

bb
b

b

b

b

b

b

b
b

b

b

b

b

b
bb
b

b

b

b

b
b

b

b

b

b

b

b

bb

b

bb

b
b

b

b

b

b

b

b
b

b

bb

bb

b
b

b

b

b
b
b

b

b

b

b

b
b

b
b

b

b
b

b

b

r

r r

r

r
r

r

r

r

r

r

r

r

r

Figure �� GRASP time �in seconds� to �nd optimal solution as a function of
the dimension of the BiQAP� Dotted line is average solution time� All instances
included�

�

mance of Heider�s method ���� the �rst and best improvement methods� three
versions of simulated annealing� two versions of tabu search and a combination of
tabu search with simulated annealing� In that paper� each heuristic is repeatedly
tested on seven BiQAP instances of dimensions n � ��� ��� ��� ���������
�� Ad	
ditionally� Heider�s method� and the �rst and best improvement heuristics were
tested on an instance of size n �
�� The third version of simulated annealing
�SimAnn�� proved to be the best among all heuristics tested by Burkard and
C�ela� SimAnn� solved almost all of the instances of sizes n � ��� ��� ��� while
the average percentage of optimally solved instances for the remaining problems
is about ���� None of the nine heuristics tested by Burkard and C�ela solved
the entire set of instances of dimension n � �� to optimality�
Although our GRASP code solved all ten replications of all �� test problems�

it often required a large amount of CPU time to �nd an optimal permutation�
The longest run in our experiment took over two days of CPU time� This can�
however� be remedied with distributed parallel computing� Suppose we have ten
processors to run concurrently� and allocate to each processor a copy of the code�
a copy of the data� and a di�erent random number seed to generate the random
number stream used to select the initial � assignment� stopping when the �rst
processor �nds the optimal permutation� The running time of the ��	processor
system would correspond to the minimum CPU time in Table �� Those range
from ��
 seconds for the n � �� problem� to a little under three hours of CPU
time for the n �
� instance� The largest �n �
�� test problem would be solved
in less than two hours�
On the �� instances considered in this experiment� �� were solved in a min	

imum of one GRASP iteration� two in a minimum of two iterations� and two in
a minimum of four iterations� It is easy to see that no matter how many pro	
cessors are used in a distributed parallel implementation of GRASP of the kind
described above� the GRASP running time is bounded below by the running
time of one GRASP iteration� Figure � shows� for the �� test problems used
in the experiment� average CPU time per GRASP iteration� as a function of
BiQAP size� as well as estimated running times for larger instances� The �gure
suggests that one GRASP iteration on an instance of dimension n �
� would
take over �� CPU days�
Finally� it is interesting to note that for each instance� all GRASP replica	

tions produced identical optimal permutations� suggesting that these solutions
are unique� Table � lists the optimal permutations found�

� Concluding Remarks

In this paper we describe a GRASP for �nding approximate solutions of the
biquadratic assignment problem and test a Fortran �� implementation of the
algorithm on a set of test problems with known optimal solutions� Computa	
tional experience with the code indicates that the GRASP is e�ective in �nding

��

�

��

���

����

�����

������

�������

�� ��
� �� ��
�

seconds
iteration

problem dimension

r

r

r

r

r

r

r

r

r

r
r

r
r

r

Figure �� CPU time per GRASP iteration as a function of BiQAP dimension�
Computed values for n �
�� Estimated time per iteration for n �
��

the optimal permutation for these test problems� On all test problems con	
sidered� the optimal solution was found on all ten runs� each starting with a
di�erent seed for the pseudo random number generator�
Solution times can be long on the larger problems� with a single GRASP

iteration requiring� for an instance of dimension n �
�� as much as one hour of
CPU time on a SGI Challenge computer� To mitigate this problem� we suggest
three directions� Firstly� a version of the code that takes advantage of sparsity in
the problemmatrices can be developed� as was done for the GRASP for QAP ����
This could make it easier to solve large sparse problems that occur in practice�
Secondly� as we discussed in Section
� a distributed parallel GRASP could be
implemented� as was done in ��� for the QAP� Finally� it may be possible to
parallelize parts of the computation in each GRASP iteration�

Acknowledgement

The authors would like to thank R� Burkard and E� C� ela for providing the test
data used in the computational experiments�

��

Table �� Optimal permutations found by all replications of GRASP

n optimal permutation
�� �������������	�
����
�� ��������������	�
���������
�� ��������������	�
���������������
�
 �
��	���������	�
���������������������
�� ��������������	�
�����������������������	��

�� ��������������	�
�����������������������	��
������
�� ��������������	�
�����������������������	��
������������
�� ��
���������	�����
���������	�������������������������������
�
 �
��	���������	�
�����������������������	��
������������������������
�� ������	�����������
����������	���
���������������
�����������	������������
�� ����	����������������
���������������������������������
�����������
�����	���	��
�� ���������������
�����������������������	��	���������
������������������	��
�����������
�� �
����	��������
�������������������������������������	��������������
����������	���������
�
 �
��
������������������������	�����
������������	����
����������������	�������������	�������������

References

��� R� Burkard and E� C�ela� Heuristics for biquadratic assignment prob�

lems and their computational comparison� European Journal of Operational
Research� �
 ��

��� pp� ��
�
���

��� R� Burkard� E� C�ela� and B� Klinz� On the biquadratic assignment

problem� in Quadratic assignment and related problems� P� Pardalos and
H� Wolkowicz� eds�� vol� �� of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science� American Mathematical Society� �

��
pp� ��������

�
� T� Feo and M� Resende� Greedy randomized adaptive search procedures�
Journal of Global Optimization� �� ��

��� pp� ��
��

�

��� C� Heider� A computationally simpli�ed pair exchange algorithm for the

quadratic assignment problem� Tech� Rep� ���� Center for Naval Analyses�
Arlington� VA� �
���

��� E� Lawler� The quadratic assignment problem� Management Science�

��
�
�� pp� �����

�

��� Y� Li� P� Pardalos� and M� Resende� A greedy randomized adaptive

search procedure for the quadratic assignment problem� in Quadratic assign	
ment and related problems� P� Pardalos and H� Wolkowicz� eds�� vol� �� of
DIMACS Series on Discrete Mathematics and Theoretical Computer Sci	
ence� American Mathematical Society� �

�� pp� �
������

��� P� Pardalos� L� Pitsoulis� and M� Resende� Fortran subroutines

for approximate solution of sparse quadratic assignment problems using

GRASP� tech� rep�� AT�T Bell Laboratories� Murray Hill� NJ� �

��

��

��� � A parallel GRASP implementation for the quadratic assignment

problem� in Solving Irregular Problems in Parallel� State of the Art� A� Fer	
reira and J� Rolim� eds�� Kluwer Academic Publishers� �

�� pp� �����
��

�
� M� Resende� P� Pardalos� and Y� Li� Algorithm ���� Fortran sub�

routines for approximate solution of dense quadratic assignment problems

using GRASP� ACM Transactions on Mathematical Software� �� ��

���
pp� ��������

���� L� Schrage� A more portable Fortran random number generator� ACM
Transactions on Mathematical Software� � ��
�
�� pp� �
���
��

