A RANDOM KEY BASED GENETIC ALGORITHM FOR THE RESOURCE
CONSTRAINED PROJECT SCHEDULING PROBLEM

J.J.M. MENDES, J.F. GONCALVES, AND M, G. C. RESENDE

ABSTRACT. This paper presents a genetic algorithm for the Resource Constrained Project
Scheduling Problem (RCPSP). The chromosome representation of the problem is based on
random keys. The schedule is constructed using a heuristic priority rule in which the
priorities of the activities are defined by the genetic algorithm. The heuristic generates
parameterized active schedules. The approach was tested on a set of standard problems
taken from the literature and compared with other approaches. The computational results
validate the effectiveness of the proposed algorithm.

1. INTRODUCTION

The Resource Constrained Project Scheduling Problem (RCPSP) can be stated as fol-
lows. A project consists of n+ 2 activities where each activity has to be processed in order
to complete the project. Let J = {0, 1,...,n,n+ 1} denote the set of activities to be sched-
uled and K = {1,...,k} the set of resources. Activities 0 and n+ 1 are dummies, have no
duration, and represent the initial and final activities. The activities are interrelated by two
kinds of constraints:

(1) Precedence constraints force each activity j to be scheduled after all predecessor
activities P; are completed;
(2) Activities require resources with limited capacities.

While being processed, activity j requires 7 units of resource type k € K during every
time instant of its non-preemptable duration d;. Resource type k has a limited capacity of
Ry at any point in time. The parameters d;, r;, and Ry are assumed to be integer, non-
negative, and deterministic. For the project start and end activities, we have dy = d,+1 =0
and rox = rpy14 = 0, for all k € K. The problem consists in finding a schedule of the
activities, taking into account the resources and the precedence constraints, that minimizes
the makespan Cryax.-

Let F; represent the finish time of activity j. A schedule can be represented by a vector
of finish times (Fi,...,Fy,...,F,+1). Figure 1 shows an example of a project comprising
n = 6 activities which have to be scheduled, subject to two renewable resource types with a
capacity of four and two units, respectively. A feasible schedule with an optimal makespan
of 15 time-periods is represented in Figure 2.

Several exact methods to solve the RCPSP are proposed in the literature. Currently, the
most competitive exact algorithms seem to be the ones of Demeulemeester and Herroe-
len (1997), Brucker et al. (1998), Klein and Scholl (1998a,b), Mingozzi et al. (1998), and

Date: June 30, 2005. Revised November 8, 2006.
Key words and phrases. Project management, scheduling, genetic algorithms, random keys, RCPSP.
AT& Labs Research Technical Report TD-6DUK2C.

1

2 J.JM. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

3/2/1 6/2/1 1/3/0

FIGURE 1. Project network example. Activities are represented as
boxes and precedences by directed arcs. Parameters d;/rj/rj, are
given for each activity j.

Resource 2

Resource 1

FIGURE 2. Feasible schedule with an optimal makespan of 15 for the
project network example of Figure 1.

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 3

Sprecher (2000). Stork and Uetz (2005) present several complexity results related to gen-
eration and counting of all circuits of an independence system, and study their relevance in
the solution of RCPSP.

It has been shown by Blazewicz et al. (1983) that the RCPSP, as a generalization of
the classical job shop scheduling problem, belongs to the class of NP-hard optimization
problems, therefore justifying the use of heuristics when solving large problem instances.

Several authors propose procedures for computing lower bounds on the makespan. De-
massey et al. (2005) propose a cooperation method between constraint programming and
integer programming. Brucker and Knust (2003) present a destructive lower bound for the
multi-mode resource-constrained project scheduling problem with minimal and maximal
time-lags. Brucker and Knust (2000) developed a destructive lower bound for the RCPSP,
where the lower bound calculations are based on two methods for proving infeasibility of
a given threshold value for the makespan. The first uses constraint propagation techniques,
while the second is based on a linear programming formulation.

Most of the heuristics methods used for solving resource-constrained project scheduling
problems either belong to the class of priority rule based methods or to the class of meta-
heuristic based approaches (Kolisch and Hartmann, 1999). The first class of methods starts
with none of the jobs being scheduled. Subsequently, a single schedule is constructed by
selecting a subset of jobs in each step and assigning starting times to these jobs until all
jobs have been considered. This process is controlled by the scheduling scheme as well
as priority rules with the latter being used for ranking the jobs. Several approaches of this
class have been proposed in the literature, e.g. Alvarez-Valdez and Tamarit (1989), Boc-
tor (1990), Cooper (1976, 1977), Davis and Patterson (1975), Lawrence (1985), Kolisch
(1996a,b), Kolisch and Hartmann (1999), and Tormos and Lova (2001, 2003). The second
class of methods improves upon an initial solution. This is done by successively execut-
ing operations which transform one or several solutions into others. Several approaches
of this class have been proposed in the literature, e.g. genetic algorithms (Leon and Ra-
mamoorthy (1995), Lee and Kim (1996), Hartmann (1998), Kohlmorgen et al. (1999),
Hartmann (2002), Kochetov and Stolyar (2003), Mendes (2003), Valls et al. (2003, 2005),
and Debels and Vanhoucke (2005)), simulated annealing (Slowinski et al. (1994), Boctor
(1996), and Bouleimen and Lecocq (2003)), tabu search (Pinson et al. (1994), Baar et al.
(1998), Thomas and Salhi (1998), Nonobe and Ibaraki (2002), and Gagnon et al. (2004)),
local search-oriented approaches (Fleszar and Hindi (2004) and Palpant et al. (2004)), and
population-based approaches (Debels et al. (2006) and Valls et al. (2003)).

Some surveys are provided by Icmeli et al. (1993), Herroelen et al. (1998), Brucker
et al. (1999), Klein (1999), Kolisch and Hartmann (1999), Hartmann and Kolisch (2000),
Kolisch and Padman (2001), and Demeulemeester and Herroelen (2002). Kolisch and Hart-
mann (2005) and Brucker and Knust (2006) present models and algorithms for complex
scheduling problems and discuss the RCPSP.

In this paper, we present a new genetic algorithm for finding cost-effective solutions
for the resource constrained project scheduling problem. The remainder of the paper is
organized as follows. Section 2 presents the different classes of schedules. In Section 3, we
present our hybrid approach to solve the resource constrained project scheduling problem:
genetic algorithm and schedule generation procedure. Section 4 reports computational
results and concluding remarks are made in Section 5.

2. TYPES OF SCHEDULES

Schedules can be classified into one of following three types of schedules:

4 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

parametrized active

semi-active semi-active

active

non-delay non-delay

delay time 1 delay time 2

delay time 1 < delay time 2

FIGURE 3. Parameterized active schedules for different values of the
delay time.

(1) Semi-active schedules. These are feasible schedules obtained by sequencing ac-
tivities as early as possible. In a semi-active schedule, no activity can be started
earlier without altering the processing sequences.

(2) Active schedules. These are feasible schedules in which no activity could be
started earlier without delaying some other activity or breaking a precedence con-
straint. Active schedules are also semi-active schedules. An optimal schedule is
always active, so the search space can be safely limited to the set of all active
schedules.

(3) Non-delay schedules. These are feasible schedules in which no resource is kept
idle when it could start processing some activity. Non-delay schedules are active
and hence are also semi-active.

Later in this paper we extend the use of parameterized active schedules as proposed in
Gongalves and Beirdo (1999) and Gongalves et al. (2005). This type of schedule consists
of schedules in which no resource is kept idle for more than a predefined period if it could
start processing some activity. If the predefined period is set to zero, then we obtain a
non-delay schedule. The basic concepts of this type of schedule are presented in the next
section.

2.1. Parameterized active schedules. As mentioned above, the optimal schedule is in
the set of all active schedules. However, the set of active schedules is usually very large
and contains many schedules with relatively large delay times, hence with poor quality in
terms of makespan. To reduce the solution space and to control the delay times, we use the
concept of parameterized active schedules.

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 5

\ 4

Chromosome
Phases
............................. e ———e-
Evolutionary Decoding of priorities and delays DEterm.mmg schedule
generation parameters
process of
the genetic v --
a|gorithm Construction of a

parametrized active schedule

Feedback of quality of chromosome
(modified makespan)

A

FIGURE 4. Architecture of the new approach.

Figure 3 illustrates where the set of parameterized active schedules is located relative
to the class of semi-active, active, and non-delay schedules. By controlling the maximum
delay time allowed, one can reduce or increase the size of the solution space. A maximum
delay time equal to zero is equivalent to restricting the solution space to non-delay sched-
ules. Section 3.2 presents the pseudo-code to generate parameterized active schedules.

3. NEW APPROACH

The new approach combines a genetic algorithm and a schedule generator procedure
that generates parameterized active schedules and a novel measure of merit that computes
a modified makespan value which is used as fitness measure (quality measure) to feedback
to the genetic algorithm. The genetic algorithm evolves the chromosomes which represent
the priorities of the activities and delay times. For each chromosome the following two
phases are applied:

(1) Decoding of priorities, delay times. This phase is responsible for transforming the
chromosome supplied by the genetic algorithm into the priorities of the activities
and delay times.

(2) Schedule generation. This phase makes use of the priorities and the delay times
defined in the first phase and constructs parameterized active schedules.

After a schedule is obtained, the corresponding measure of quality (modified makespan)
is feedback to the genetic algorithm. Figure 4 illustrates the sequence of steps applied to
each chromosome generated by the genetic algorithm. Details about each of these phases
will be presented in the next sections.

3.1. Genetic algorithm. Genetic algorithms are adaptive methods, which may be used
to solve search and optimization problems (Beasley et al., 1993). Before a genetic algo-
rithm can be run, a suitable encoding (or representation) for the problem must be devised.

6 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

A fitness function is also required, which assigns a figure of merit to each encoded solu-
tion. During the execution of the algorithm, parents must be selected for reproduction, and
recombined to generate offspring.

It is assumed that a potential solution to a problem may be represented as a set of
parameters. These parameters (known as genes) are joined together to form a string of
values (chromosome). The set of parameters represented by a particular chromosome is
referred to as an individual. The fitness of an individual depends on its chromosome and
is evaluated by the fitness function.

The individuals, during the reproductive phase, are selected from the population and
recombined, producing offspring, which comprise the next generation. Parents are ran-
domly selected from the population using a scheme, which favors fitter individuals. Hav-
ing selected two parents, their chromosomes are recombined, typically using mechanisms
of crossover and mutation. Mutation is usually applied to some individuals to guarantee
population diversity.

3.1.1. Chromosome representation. The genetic algorithm described in this paper uses a
random-key alphabet which is comprised of real random numbers between 0 and 1. The
evolutionary strategy used is similar to the one proposed by Bean (1994), the main dif-
ference occurring in the crossover operator. The important feature of random keys is that
all offspring formed by crossover are feasible solutions. This is accomplished by moving
much of the feasibility issue into the objective function evaluation. If any random-key
vector can be interpreted as a feasible solution, then any crossover vector is also feasible.
Through the dynamics of the genetic algorithm, the system learns the relationship between
random-key vectors and solutions with good objective function values.

A chromosome represents a solution to the problem and is encoded as a vector of ran-
dom keys. In a direct representation, a chromosome represents a solution of the original
problem, and is called genotype, while in an indirect representation it does not and special
procedures are needed to derive a solution from it called phenotype.

In the present context, the direct use of schedules as chromosomes is too complicated
to represent and manipulate. In particular, it is difficult to develop corresponding crossover
and mutation operations. Instead, solutions are represented indirectly by parameters that
are later used by a schedule generator to obtain a solution. To obtain the solution, we use
the parameterized active schedule generator described in Section 3.2.

Each solution chromosome is made of 2n genes, where #n is the number of activities.

chromosome = (geney,...,gene,, gene, ,...,gene,,)

priorities delay times

The first n genes are used to determine the priority of each of the n activities. The genes
between n + 1 and 27 are used to determine the delay times used at each of the # iterations
of the scheduling procedure.

3.1.2. Decoding the priorities of the activities. In a earlier version of the algorithm, the
priorities of the activities were given directly by the genetic algorithm, i.e.

PRIORITY j = gene;, forall j=1,...,n.

Though this approach worked quite well, we conjectured that it could be improved if we
could somehow provide the genetic algorithm with information about the structure of the
problem. The priority decoding expression used in the current version of the algorithm
combines what we consider the ideal priority under infinite capacity and a factor that cor-
rects this value to account for the real resource load and capacity availability. For the ideal

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 7

priority under infinite capacity we use the term LLP;/LCP, where LLP; is the longest-
length path from the beginning of activity j to the end of the project and LCP is length
along the critical path of the project. It is clear that 0 < LLP;/LCP < 1.

The factor that adjusts the priority to account for capacity is given by (1 + gene /2
Therefore, the final decoding expression is given by

LLP; " [1 —i—genej}

PRIORITY ; = j=1,..,n.

LCP 2
3.1.3. Decoding the delay times. The genes between positions n + 1 and 2n are used to
determine the delay times used when scheduling an activity. The delay time delay, used
by each scheduling iteration g is given by

delay, = gene, , X 1.5 X maxDur,

where maxDur is the maximum duration of all activities. The factor 1.5 was obtained after
some experimental tuning.

3.1.4. Fitness function. Different schedules can have the same value of the makespan.
However, the potential for improvement of schedules with the same makespan value might
not be the same. To differentiate the potential for improvement between schedules hav-
ing the same makespan we developed a new measure of fitness, that we call modified
makespan.

The modified makespan combines the makespan of the schedule with a measure of the
potential for improvement of the schedule. This measure of potential for improvement of
the schedule will have values in the interval]0,1]. The rationale for this new measure is
that if we have two schedules with the same makespan value, then the one with a smaller
number of activities ending close to the makespan will have more potential for improve-
ment.

To define the modified makespan, we introduce the concept of the distance of one activ-
ity to the final activity (activity n+ 1). The distance dist(j) of activity j to activity n+1 is
equal to the number of activities in the path connecting them that has the smallest number
of activities, including activity j and excluding activity n+1.

The modified makespan of distance L is given by

L
F;
d=1 i|dist(i)=d
(1) Fut + 1 .
Z Z Fot1
d=1 i|dist(i)=d

Note that when L = 0, we get a modified makespan equal to the usual makespan. We will
use the project network example given in Figure 1 and the schedule presented in Figure 2
2 to illustrate the calculation of the modified makespan. The distances of activities 1 to 6
are:

activity i | 1
dist(i) |3

2 3 45 6
322 11

The makespan of the project is 15 (see Figure 2). The modified makespan of distance L = 1
is
(15 + 11)

15+ 1)
T 5T 15)

= 15.867.

J.JM. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

Relation to crossover < < <
probabibility of 0.7

FIGURE 5. Example of parameterized uniform crossover with crossover
probability equal to 0.7. For each gene, a random number in the inter-
val [0,1] is generated. With probability 0.7 the offspring inherits the
gene of Chromosome 1 and with probability 0.3, it inherits the one of
Chromosome 2.

The modified makespan of distance L = 2 is

(15 4+ 11) + (6 + 10)

1
ST 15 - (15 15)

= 15.7.

3.1.5. Evolutionary strategy. To breed good solutions, the random-key vector population
is operated upon by a genetic algorithm. Many variations of genetic algorithms can be
obtained by varying the reproduction, crossover, and mutation operators. The reproduc-
tion and crossover operators determine which parents will have offspring, and how genetic
material is exchanged between the parents to create those offspring. Reproduction and
crossover operators tend to increase the quality of the populations and force convergence.
Mutation opposes convergence since it allows for random alteration of genetic material.

Given a current population, we perform the following three steps to obtain the next gener-

ation:

ey

€3

Reproduction. Some of the best individuals are copied from the current generation
into the next (see TOP in Figure 6). This strategy is called elitist (Goldberg, 1989)
and its main advantage is that the best solution is monotonically improving from
one generation to the next. However, it can lead to a rapid population convergence
to a local minimum. Nevertheless, this can be overcome by using high mutation
rates as described below.

Crossover. Regarding the crossover operator, parameterized uniform crossovers
(Spears and Dejong, 1991) are used as opposed to the traditional one-point or
two-point crossover. Two individuals are randomly chosen to act as parents. One
of the parents is chosen amongst the best individuals in the population (TOP in
Figure 6), while the other is randomly chosen from the whole current population
(including TOP). For each gene, a real random number in the interval [0,1] is

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 9

most .
. Copy best solutions
fit
TOP TOP
Select one
parent from TOP
Randomly
generated
solutions
Select one
parent from entire
population
least BOT
fit

FIGURE 6. Transitional process between consecutive generations. Cur-
rent population is sorted from best to worst fitness. Top (TOP) individ-
uals from current population are copied unchanged to next population.
Bottom (BOT) individuals in next population are randomly generated.
The remaining individuals are generated by applying crossover operator
to randomly selected individual from TOP individuals of current popu-
lation and randomly selected individual from the entire current popula-
tion.

generated. If the random number obtained is smaller than a threshold value, called
crossover probability (CProb), for example 0.7, then the allele of the first parent
is used. Otherwise, the allele used is that of the second parent. An example of a
crossover outcome is given in Figure 5.

(3) Mutation. In this scheme, mutation is used in a broader sense than usual. The op-
erator we define acts like a mutation operator and its purpose is to prevent prema-
ture convergence of the population. Instead of performing gene-by-gene mutation,
with very small probability at each generation, we introduce some new individuals
into the next generation (see BOT in Figure 6). These new individuals (mutants)
are randomly generated from the same distribution as the original population and
thus, no genetic material of the current population is brought in. This process pre-
vents premature convergence of the population, like in a mutation operator, and
leads to a simple statement of convergence, i.e. if a sufficiently large number of
generations is carried out, then the entire solution space will be sampled.

Figure 6 depicts the transitional process between two consecutive generations.

The initial population is randomly generated. However, to ensure that some non-delay
solutions are included in the initial population, we changed the corresponding delay genes
of some chromosomes to zero to make the delay equal to zero, i.e. non-delay. The per-
centage of non-delay chromosomes in the initial population was set to 25% after some
experimentation on a small set of problems.

3.2. Schedule generation procedure. The procedure used to construct parameterized ac-
tive schedules is based on a scheduling generation scheme that does time incrementing.
For each iteration g, there is a scheduling time #,. The active set comprises all activities

10 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

procedure CONSTRUCT-SCHEDULES(EY)
1 Initialize g — 1; 1; < 0; Ag « {0}; T, — {0}; So — {0};
2 for k € K do initialize RDy(0) < Ry;
3 while [S,| <n+2do
4 while Eg #0do // update E,
5 /] select activity with highest priority
J* «— argmax{PRIORITY ; | j € E,};

6 /I compute earliest finish time (in terms of precedence only)
EF j» — max{F; | i € P} +d;;
7 /I compute earliest finish time (in terms of precedence and capaciy)

Fjo «—min{t € [EF j» —dj+,0o|NTg | rj x < RDx(),
' keK|rjx>0t€t,t+dp] }+dj;
8 Update S, < S, 1 U{j*}; Ty — Dy 1 U{Fj};

9 g < g+1; Ilincrement iteration counter

10 Update A, and E,;

11 Update RDy(t) |t € [Fjc — dj+ , Fjr] , k€K |rjs g > 0;
12 end while

13 /I determine time associated with activity g

. to—min{r €Ty [t >1,1};
14 end while
end CONSTRUCT-SCHEDULES;

FIGURE 7. Pseudo-code of parametrized active schedule construction procedure.

which are active at z,, i.e
Ag={jEJ|F—d;j <ty <F}.
The remaining resource capacity of resource k at instant time 7, is given by
RD (1) = Re(ty) — Y ri
JEA,
S, comprises all activities which have been scheduled up to iteration g, and F, comprises
the finish times of the activities in Sg. Let delay, be the delay time associated with iteration
g, and let E, comprise all activities which are precedence feasible in the interval [ty,7, +
delay,], i.e.
E; = {jeJ\Sg 1| F; < ty + delay,,for i€ P; } .

The algorithmic description of the scheduling generation scheme used to generate param-
eterized active schedules is shown in the pseudo-code in Figure 7. The makespan of
the solution is given by the maximum of all predecessor activities of activity n+ 1, i.e.
For1 =max{F |l € Pyy1}.

The basic idea of parameterized active schedules is incorporated in the selection step of
the procedure,

j* = argmax {PRIORITY ;} .
JEE,

The set E, is responsible for forcing the selection to be made only amongst activities
which will have a delay smaller or equal to the maximum allowed delay. The parame-

ters PRIORITY ; and delay, (priority of activity j and delays used at each g) are supplied
by the genetic algorithm.

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 11

For nGen generations this procedure generates
nCrom+ [nCrom x (1 — TOP)] x (nGen—1)

parameterized active schedules, where nCrom is the number of chromosomes and TOP is
the percentage of previous population copied to the next generation.

4. COMPUTATIONAL EXPERIMENTS

This section presents results of the computational experiments done with the algo-
rithm proposed in this paper. We call this algorithm GAPS (Genetic Algorithm for Project
Scheduling). The algorithm was implemented in Visual Basic 6.0 and the tests were car-
ried out on a computer with a 1.333 GHz AMD Thunderbird CPU on the MS Windows Me
operating system.

To illustrate its effectiveness, we consider a total of 1560 instances from three classes
of standard RCPSP test problems: J30 (480 instances each with 30 activities), J60 (480
instances each with 60 activities), and J120 (600 instances each with 120 activities). All
problem instances require four resource types. Instance details are described by Kolisch
et al. (1995). The modified makespan with distance L = 2 was used because it gave the
best results in a small pilot test.

The proposed algorithm is compared with the following algorithms:

(1) Local search-oriented approaches:
e Fleszar and Hindi (2004)
e Palpant et al. (2004)
(2) Population-based approaches:
e Debels et al. (2006)
e Valls et al. (2004)
(3) Problem and heuristic space:
e [eon and Ramamoorthy (1995)
(4) Priority-rule based sampling methods:
e Tormos and Lova (2003) — sampling LFT, forward-backward improvement
(FBI)
Schirmer and Riesenberg (1998)
Kolisch and DrexlI (1996)
Kolisch (1996b) — single pass LFT (serial)
Kolisch (1996b) — single pass LFT (parallel)
Kolisch (1996a,b) — single pass WCS
Kolisch (1995) — random (serial)
Kolisch (1995) — random (parallel)
(5) Genetic algorithms:
Valls et al. (2005) — GA - forward-backward improvement (FBI)
Debels and Vanhoucke (2005) — GA — DBH
Valls et al. (2003) — GA — hybrid, forward-backward improvement (FBI)
Kochetov and Stolyar (2003) — GA, tabu search, path-relinking
Hartmann (2002) — GA self adapting
Hartmann (1998) — GA activity list
Hartmann (1998) — GA random key
Hartmann (1998) — GA priority rule

12 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

(6) Simulated annealing:
e Bouleimen and Lecocq (2003)
(7) Tabu search:
e Nonobe and Ibaraki (2002)
e Baar et al. (1998)
(8) Other type heuristics:
e Mbohring et al. (2003) — Lagrangian Relaxation Heuristic

4.1. GA configuration. The present state-of-the-art theory on genetic algorithms pro-
vides little insight on how to configure them. In our past experience with genetic algo-
rithms based on the same evolutionary strategy (see e.g. Gongalves and Almeida (2002),
Gongalves et al. (2005), Gongalves and Resende (2004), Buriol et al. (2005), and Gongalves
(2006)), we obtained good results with values of TOP, BOT, and crossover probability
(CProb) in the following intervals:

Parameter Interval
TOP 0.10-0.20
BOT 0.15-0.30

CProb 0.70 - 0.80

For the population size, we obtained good results by indexing it to the size of the
problem, i.e. use small size populations for small problems and larger populations for
larger problems. Having this past experience in mind and to obtain a reasonable configu-
ration, we conducted a small pilot experiment with combinations of the following values
TOP € {0.10,0.15,0.20}, BOT € {0.15,0.20,0.25,0.30}, and CProb € {0.70,0.75,0.80}.
We tried population sizes with 1, 2, 5, and 10 times the number of activities in the project.

The following configuration was held constant for all experiments and all problem in-
stances:

Population Size 5x number of activities in the problem
CProb 0.7
TopP The top 15% from the previous population chromosomes

are copied to the next generation.

BOT The bottom 20% of the population chromosomes are
replaced with randomly generated chromosomes.

Fitness Modified makespan (L = 2) (to minimize)

Stopping Criterion 250 generations

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 13

The experimental results demonstrate that this configuration provides high-quality so-
lutions and that it is robust.

4.2. Experimental results. Table 1 shows the CPU time (in seconds) spent for 250 gen-
erations of the genetic algorithm. Tables 2 and 3 (for algorithms reporting the number of

TABLE 1. CPU time for 250 generations.

Instance class | 130 J60 7120

Average CPU time | 5.02s 20.11s 112.46s

schedules generated) and Table 4 (for algorithms not reporting the number of schedules
generated) summarize the average percentage deviation from the optimal makespan D ppr
for instance set J30. GAPS obtained Dppyr = 0.01. The number of instances for which our
algorithm obtains the optimal solution is 477, i.e. for 99.74% of the instances. The number
of generated schedules was 31,773 (= 5 x 304249 x INT(0.85 x 5 x 30)). GAPS ranks
first for 1,000 and 5,000 schedules and ranks second for 50,000 schedules. We use only
31,773 schedules which is the number that corresponds to 250 generations.

Tables 5 and 6 (for algorithms reporting the number of schedules generated) and Table 7
(for algorithms not reporting the number of schedules generated) summarize the average
percentage deviation from the well-known critical path-based lower bound (D;p) for in-
stance set J60. These lower bound values are reported by Stinson et al. (1978). For the J60
instances, GAPS obtained D;p = 10.67. The number of generated schedules was 63,546
(=5x60+249 x INT(0.85 x 5 x 60)). GAPS outperformed all other heuristics for 50,000
schedules, ranks second for 5,000, and ranks fourth for 1,000 schedules.

Tables 8 and 9 (for algorithms reporting the number of schedules generated) and Ta-
ble 10 (for algorithms not reporting the number of schedules generated) summarize the
average percentage deviation from the well-known critical path-based lower bound (DLB)
for instance set J120. This lower bound values are reported by Stinson et al. (1978). For
the J120 instances, GAPS obtained DLB = 31.20. The number of generated schedules was
127,341 (=5 x 120+ 249 x INT(0.85 x 5 x 60)). GAPS ranks seventh for 1,000 schedules
and ranks third for 5,000 and 50,000 schedules (we use only 49,464 which is the number
that corresponds to 250 generations).

From the above results it is clear that no algorithm dominates GAPS. The approach of
Debels et al. (2006) is the one that seems to have similar performance. When 50,000 or
more schedules are allowed, GAPS seems to have the best performance. Given that GAPS
uses an evolutionary strategy that depends on the number of generations, it is not surprising
that, for problems with large number of activities, it does not perform so well when only a
small number of schedules generated is allowed.

To demonstrate the contribution of the parameterized active generation scheme to the
overall performance of GAPS we also run GAPS using the parallel and serial schedule
generation schemes (SGSs). Table 11 presents the results. It is clear that in all cases the
parameterized active generation scheme performs considerably better.

Additionally, to demonstrate the contribution of the parameter L in the overall perfor-
mance of GAPS, we ran GAPS using L =0, 1, 2, 3. Table 12 presents the results. It is
clear that the results obtained by using the modified makespan outperform, in all cases, the

TABLE 2. Average percent deviations from optimal makespan — ProGen set J = 30. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for 1000,
5000, and 50,000 schedules. The table also lists the number of GAPS generations as well as the number of schedules generated

by GAPS. Continues on Table 3.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000

7 39 250
Algorithm SGS Reference 915) (4976) (31773)
GA, TS - path relinking Serial Kochetov and Stolyar (2003) 0.10 0.04 0.00
GAPS Param. Active This paper 0.06 0.02 0.01
Scatter Search — FBI Serial Debels et al. (2006) 0.27 0.11 0.01
GA - DBH Serial Debels and Vanhoucke (2005) 0.15 0.04 0.02
GA — hybrid, FBI Serial Valls et al. (2003) 027 0.06 0.02
GA - FBI Serial Valls et al. (2005) 034 0.20 0.02
Sampling — LFT, FBI Both Tormos and Lova (2003) 0.25 0.13 0.05
TS — activity list Serial Nonobe and Ibaraki (2002) 0.46 0.16 0.05
GA - self adapting Serial Hartmann (2002) 0.38 0.22 0.08
GA - activity list Serial Hartmann (1998) 0.54 0.25 0.08
SA — activity list Serial Bouleimen and Lecocq (2003) 0.38 0.23 -

4!

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

TABLE 3. Average percent deviations from optimal makespan — ProGen set J = 30. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for 1000,
5000, and 50,000 schedules. The table also lists the number of GAPS generations as well as the number of schedules generated
by GAPS. Continued from Table 2.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000

7 39 250
Algorithm SGS Reference 915) (4976) (31773)
Sampling — adaptative Both Schirmer and Riesenberg (1998) 0.65 0.44 -
TS — schedule scheme Related Baar et al. (1998) 0.86 0.44 -
Sampling — adaptative Both Kolisch and Drexl (1996) 0.74 053 -
Sampling — LFT Serial Kolisch (1996b) 0.83 0.53 0.27
GA —random key Serial Hartmann (1998) 1.03 0.56 0.23
Sampling — random Serial Kolisch (1995) 1.44 1.00 0.51
GA - priority rule Serial Hartmann (1998) 1.38 1.12 0.88
Sampling - WCS Parallel Kolisch (1996a,b) 1.40 1.28 -
Sampling — LFT Parallel Kolisch (1996b) 1.40 1.29 1.13
Sampling — random Parallel Kolisch (1995) 1.77 1.48 1.22

GA —problem space Mod. Par. Leon and Ramamoorthy (1995) 2.08 1.59 -

ONITNAIHDS LOAI0dd AANIVILSNOD OYNOSHY Y04 VO

ST

TABLE 4. Average percent deviations from optimal makespan — ProGen set J = 30. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, the average percent deviation, average and
maximum CPU times, and the frequency of the CPU used in the experiments.

CPU time
Algorithm SGS Reference Avg. % deviation Avg. Max. CPU freq.
Decomp. & local opt. Serial Palpant et al. (2004) 0.00 10.26s 123.0s 2.3 Ghz
VNS-activity list Serial Fleszar and Hindi (2004) 0.01 0.64s 5.9s 1.0 Ghz
Local search — critical Serial Valls et al. (2003) 0.06 1.61s 6.2s 400 MHz
Population-based Serial Valls et al. (2004) 0.10 1.16s 5.5s 400 MHz

91

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

TABLE 5. Average percent deviations from critical path lower bound — ProGen set J = 60. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for 1000,
5000, 50,000, and 63,546 schedules. The table also lists the number of GAPS generations as well as the number of schedules
generated by GAPS. Continues on Table 6.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000 63546

3 19 196 250

Algorithm SGS Reference (808) (4872) (49830) (63546)
GAPS Param. Active This paper 11.72 11.04 10.67 10.67
GA - DBH Serial Debels and Vanhoucke (2005) 11.45 10.95 10.68 -
Scatter Search - FBI Serial Debels et al. (2006) 11.73 11.10 10.71 -
GA - hybrid, FBI Serial Valls et al. (2003) 11.56 11.10 10.73 -
GA, TS — path relinking Both Kochetov and Stolyar (2003) 11.71 11.17 10.74 -
GA - FBI Serial Valls et al. (2005) 1221 11.27 10.74 -
GA - self adapting Both Hartmann (2002) 1221 11.70 11.21 -
GA - activity list Serial Hartmann (1998) 12.68 11.89 11.23 -
Sampling — LFT, FBI Both Tormos and Lova (2003) 11.88 11.62 11.36 -
SA - activity list Serial Bouleimen and Lecocq (2003) 12.75 11.90 - -

TS — activity list Serial Nonobe and Ibaraki (2002) 1297 12.18 11.58 -

ONITNAIHDS LOAI0dd AANIVILSNOD OYNOSHY Y04 VO

L1

TABLE 6. Average percent deviations from critical path lower bound — ProGen set J = 60. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for 1000,
5000, 50,000, and 63,546 schedules. The table also lists the number of GAPS generations as well as the number of schedules
generated by GAPS. Continued from Table 5.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000 63546

3 19 196 250
Algorithm SGS Reference (808) (4872) (49830) (63546)
Sampling - adaptative ~ Both Schirmer and Riesenberg (1998) 1294 12.58 - -
Sampling — adaptative Both Kolisch and Drexl (1996) 13.51 13.06 - -
TS - schedule scheme Related Baar et al. (1998) 13.80 13.48 - -
GA - random key Serial Hartmann (1998) 14.68 13.32 12.25 -
GA - priority rule Serial Hartmann (1998) 13.30 12.74 12.26 -
Sampling - LFT Parallel Kolisch (1996b) 13.59 13.23 12.85 -
Sampling — LFT Serial Kolisch (1996b) 1396 13.53 12.97 -
Sampling - random Parallel Kolisch (1995) 14.89 14.30 13.66 -
Sampling — WCS Parallel Kolisch (1996a,b) 13.66 13.21 - -
Sampling - random Serial Kolisch (1995) 1594 15.17 14.22 -

GA —problem space ~ Mod. Par. Leon and Ramamoorthy (1995) 1433 13.49 - -

81

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

TABLE 7. Average percent deviations from critical path lower bound — ProGen set J = 60. For each algorithm, the table lists its
schedule generation scheme (SGS), the reference in which the results are published, the average percent deviation, average and
maximum CPU times, and the frequency of the CPU used in the experiments.

CPU time
Algorithm SGS Reference Avg. % deviation Avg. Max. CPU freq.
Decomp. & local opt. Serial Palpant et al. (2004) 10.81 38.8s 223.0s 2.3 Ghz
Population-based Serial Valls et al. (2004) 10.89 3.7s 22.6s 400 MHz
Local search — critical ~ Serial Valls et al. (2003) 11.45 2.8s 14.6s 400 MHz
Lagrangian Relax. Both, Mohring et al. (2003) 15.60 6.9s 57s 200 MHz

heuristic Mod. parallel

ONITNAIHDS LOAI0dd AANIVILSNOD OYNOSHY Y04 VO

61

TABLE 8. Average percent deviations from critical path lower bound — ProGen set J = 120. For each algorithm, the table lists
its schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for
1000, 5000, 50,000, 100,000, and 127,341 schedules. The table also lists the number of GAPS generations as well as the number
of schedules generated by GAPS. Continues on Table 9.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000 100000 127341

2 9 97 196 250

Algorithm SGS Reference (1109) (4672) (49464) (99855) (127341)
GA - DBH Serial Debels and Vanhoucke (2005) 34.19 32.34 30.82 - -
GA - hybrid, FBI Serial Valls et al. (2003) 34.07 3254 31.24 - -
GAPS Param. Active This paper 35.87 33.03 31.44 31.32 31.20
Scatter Search — FBI Serial Debels et al. (2006) 3522 33.10 31.57 - -
GA - FBI Serial Valls et al. (2005) 3539 3324 31.58 - -
GA, TS — path relinking Both Kochetov and Stolyar (2003) 34.74 33.36 32.06 - -
GA - self adapting Both Hartmann (2002) 37.19 35.39 33.21 - -
Sampling — LFT, FBI Both Tormos and Lova (2003) 35.01 3441 33.71 - -
GA - activity list Serial Hartmann (1998) 3937 36.74 34.03 - -
SA — activity list Serial Bouleimen and Lecocq (2003) 42.81 37.68 - - -

TS — activity list Serial Nonobe and Ibaraki (2002) 40.86 37.88 35.85 - -

0T

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

TABLE 9. Average percent deviations from critical path lower bound — ProGen set J = 120. For each algorithm, the table lists
its schedule generation scheme (SGS), the reference in which the results are published, and the average percent deviations for
1000, 5000, 50,000, 100,000, and 127,341 schedules. The table also lists the number of GAPS generations as well as the number
of schedules generated by GAPS. Continued from Table 8.

Maximum number of schedules
Number of generations of GAPS
(Number of schedules of GAPS)

1000 5000 50000 100000 127341

2 9 97 196 250
Algorithm SGS Reference (1109) (4672) (49464) (99855) (127341)
GA - priority rule Serial Hartmann (1998) 39.93 38.49 36.51 - -
Sampling — adaptative Both Schirmer and Riesenberg (1998) 39.85 38.70 - - -
Sampling — LFT Parallel Kolisch (1996b) 39.60 38.75 37.74 - -
Sampling - WCS Parallel Kolisch (1996a,b) 39.65 38.77 - - -
Sampling — adaptative Both Kolisch and Drexl (1996) 4137 4045 - - -

GA —problem space Mod. Par. Leon and Ramamoorthy (1995) 4291 40.69 - - -

GA - random key Serial Hartmann (1998) 4582 42.25 38.83 - -
Sampling — LFT Serial Kolisch (1996b) 42.84 41.84 40.63 - -
Sampling — random Parallel Kolisch (1995) 4446 43.05 41.44 - -

Sampling — random Serial Kolisch (1995) 49.25 47.61 45.60 - -

ONITNAIHDS LOAI0dd AANIVILSNOD OYNOSHY Y04 VO

1

TABLE 10. Average percent deviations from critical path lower bound — ProGen set J = 120. For each algorithm, the table lists
its schedule generation scheme (SGS), the reference in which the results are published, the average percent deviation, average
and maximum CPU times, and the frequency of the CPU used in the experiments.

CPU time
Algorithm SGS Reference Avg. % deviation Avg. Max. CPU freq.
Population-based Serial Valls et al. (2004) 31.58 59.4s 264.0s 400 MHz
Decomp. & local opt. Serial Palpant et al. (2004) 32.41 207.9s 501.0s 2.3 Ghz
Local search - critical ~ Serial Valls et al. (2003) 34.53 17.0s 43.9s 400 MHz
Lagrangian Relax. . Both, Mohring et al. (2003) 36.00 729s 654s 200 MHz

heuristic Mod. parallel

[#4

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

TABLE 11. Average percent deviations using the parallel, serial, and parameterized active schedule generation schemes (SGS).
For problem set J30 the deviation is from the optimal makespan while for sets J60 and J120 it is from the critical path lower
bound. The fitness function used is the modified makespan with L = 2.

Maximum number of schedules

Prob. set SGS 1000 5000 31773 50000 63546 100000 127341
J30 Parallel 1.23 1.13 1.11 - - - -
Serial 0.58 0.20 0.14 - - - -

Param. Active 0.06 0.02 0.01 - - - -

J60 Parallel 13.71 1258 - 12.15 12.12 - -
Serial 13.68 12.05 - 11.38 11.35 - -
Param. Active 11.72 11.04 - 10.67 10.67 - -

J120 Parallel 40.20 37.93 - 34.09 - 33.57 33.45
Serial 43.22 39.93 - 34.31 - 33.99 33.92
Param. Active 35.87 33.03 - 31.44 - 31.32 31.20

ONITNAIHDS LOAI0dd AANIVILSNOD OYNOSHY Y04 VO

€C

TABLE 12. Average percent deviation of GAPS using the modified makespan fitness function with different values of L for
increasing number of schedules generated. For problem set J30 the deviation is from the optimal makespan while for sets J60
and J120 it is from the critical path lower bound.

Maximum number of schedules

Prob.set L 1000 5000 31773 50000 63546 100000 127341

J30 0 082 038 029 - - - -

1 076 034 025 - - - -

2 006 002 0.01 - - - -

3 021 015 007 - - - -

J60 0 1376 12.63 - 1245 1241 - -
1 1289 12.10 - 1192 11.44 - -
2 1172 11.04 - 10.67 10.67 - -
3 1187 11.25 - 10.89 10.88 - -
J120 0 4194 40.45 - 38.81 - 38.29 38.11
1 3956 3745 - 3541 - 34.95 34.67
2 3587 34.53 - 31.44 - 31.32 31.20

3 3771 3599 - 33.71 - 3322 32.96

T

HANASHY OO ANV ‘SHATVINOD i [‘SHANAN N[’

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 25

ones obtained by using the makespan (L = 0). Additionally, the results confirm that GAPS
obtains the best results using the modified makespan when L = 2.

5. CONCLUSIONS

This paper presents a genetic algorithm for the resource constrained project scheduling
problem. The chromosome representation of the problem is based on random keys. The
schedules are constructed using a priority rule in which the priorities are defined by the ge-
netic algorithm. Schedules are constructed using a procedure that generates parameterized
active schedules.

The approach was tested on a set of 1560 standard instances taken from the literature and
compared with 14 other approaches. The algorithm produced good results when compared
with other approaches therefore validating the effectiveness of the proposed algorithm.

ACKNOWLEDGEMENTS

We would to thank Prof. Rainer Kolisch of the Technical University of Munich, Ger-
many, for supplying the problem sets data.

REFERENCES

R. Alvarez-Valdez and J.M. Tamarit. Heuristic algorithms for resource-constrained project
scheduling: A review and empirical analysis. In R. Slowinski and J. Weglarz, editors,
Advances in project scheduling, pages 113—134. Elsevier, 1989.

T. Baar, P. Brucker, and S. Knust. Tabu-search algorithms and lower bounds for the
resource-constrained project scheduling problem. In S. Voss, S. Martello, I. Osman, and
C. Roucairol, editors, Meta-heurisitics: Advances and trends in local search paradigms
for optimization, pages 1-8. Kluwer, 1998.

J.C. Bean. Genetics and random keys for sequencing and optimization. ORSA Journal on
Computing, 6:154-160, 1994.

D. Beasley, D.R. Bull, and R.R. Martin. An overview of genetic algorithms: Part 1, Funda-
mentals. University Computing, 15(2):58-69, 1993. Department of Computing Mathe-
matics, University of Cardiff, UK.

J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5:11-24,
1983.

EF. Boctor. Some efficient multi-heuristic procedures for resource-constrained project
scheduling. European Journal of Operational Research, 49:3—13, 1990.

FEF. Boctor. An adaptation of the simulated annealing algorithm for solving resource-
constrained project scheduling problems. International Journal of Production Research,
34:2335-2351, 1996.

K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for the
resource-constrained project scheduling problem and its multiple mode version. Eu-
ropean Journal of Operational Research, 149:268-281, 2003.

P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling : Notation, classification, models, and methods. European Journal
of Operational Research, 112:3-41, 1999.

P. Brucker and S. Knust. A linear programming and constraint propagation-based lower
bound for the RCPSP. European Journal of Operational Research, 127:355-362, 2000.

P. Brucker and S. Knust. Lower bounds for resource-constrained project scheduling prob-
lems. European Journal of Operational Research, 149:302-313, 2003.

26 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

P. Brucker and S. Knust. Complex scheduling. Springer, 2006.

P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational Re-
search, 107:272-288, 1998.

L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A hybrid genetic algorithm
for the weight setting problem in OSPF/IS-IS routing. Networks, 46(1):36-56, 2005.
D.F. Cooper. Heuristics for scheduling resource-constrained projects: An experimental

investigation. Management Science, 22:1186—1194, 1976.

D.F. Cooper. A note on serial and parallel heuristics for resource-constrained project sched-
uling. Foundations of Control Engineering, 2:131-133, 1977.

E.W. Davis and J.H. Patterson. A comparison of heuristic and optimum solutions in
resource-constrained project scheduling. Management Science, 21:944-955, 1975.

D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter search / elec-
tromagnetism meta-heuristic for project scheduling. European Journal of Operational
Research, 169:638—-653, 2006.

D. Debels and M. Vanhoucke. A decomposition-based heuristic for the resource-
constrained project scheduling problem. Technical Report 2005/293, Faculty of Eco-
nomics and Business Administration, University of Ghent, Ghent, Belgium, 2005.

S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-base cutting planes :
An application to the resource-constrained project scheduling problem. INFORMS Jour-
nal of Computing, 17:52-65, 2005.

E. Demeulemeester and W. Herroelen. New benchmark results for the resource-constrained
project scheduling problem. Management Science, 43:1485-1492, 1997.

E. Demeulemeester and W. Herroelen. Project scheduling — A research handbook. Kluwer
Academic Publishers, 2002.

K. Fleszar and K.S. Hindi. Solving the resource-constrained project scheduling problem
by a variable neighbourhood search. European Journal of Operational Research, 155:
402413, 2004.

M. Gagnon, F.F. Boctor, and G. d’Avignon. A tabu search algorithm for the resource-
constrained project scheduling problem. In Proceedings of Administrative Sciences As-
sociation of Canada Annual Conference (ASAC 2004), 2004.

D.E. Goldberg. Genetic algorithms in search optimization and machine learning. Addison-
Wesley, 1989.

JF. Gongalves and J.R. Almeida. A hybrid genetic algorithm for assembly line balancing.
Jornal of Heuristics, 8:629-642, 2002.

J F. Gongalves, J.J.M. Mendes, and M.G.C. Resende. A hybrid genetic algorithm for the
job shop scheduling problem. European Journal of Operational Research, 167:77-95,
2005.

J.F. Gongalves. A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem. European Journal of Operational Research, 2006. To appear.

J.E. Gongalves and N.C. Beirdo. Um algoritmo genético baseado em chaves aleatdrias
para sequenciamento de operacdes. Revista Associa¢do Portuguesa Investigacdo Op-
eracional, 19:123-137, 1999. In Portuguese.

J.E. Gongalves and M.G.C. Resende. An evolutionary algorithm for manufacturing cell
formation. Computers & Industrial Engineering, 47:247-273, 2004.

S. Hartmann. A competitive genetic algorithm for resource-constrained project scheduling.
Naval Research Logistics, 45:279-302, 1998.

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 27

S. Hartmann. A self-adapting genetic algorithm for project scheduling under resource
constraints. Naval Research Logistics, 49:433-448, 2002.

S. Hartmann and R. Kolisch. Experimental evaluation of state-of-the-art heuristics for
the resource-constrained project scheduling problem. European Journal of Operational
Research, 127:394-407, 2000.

W. Herroelen, B. De Reyck, and E. Demeulemeeste. Resource-constrained project schedul-
ing: A survey of recent developments. Computers & Operations Research, 25:279-302,
1998.

O. Icmeli, S.S. Erenguc, and C.J. Zappe. Project scheduling problems: A survey. Interna-
tional Journal of Operations & Production Management, 13:80-91, 1993.

R. Klein. Scheduling of resource-constrained projects. Kluwer, 1999.

R. Klein and A. Scholl. Progress: Optimally solving the generalized resource-constrained
project scheduling problem. Technical report, University of Technology, Darmstadt,
1998a.

R. Klein and A. Scholl. Scattered branch and bound: An adaptative search strategy applied
to resource-constrained project scheduling problem. Technical report, University of
Technology, Darmstadt, 1998b.

Y. Kochetov and A. Stolyar. Evolutionary local search with variable neighborhood for the
resource constrained project scheduling problem. In Proceedings of the 3rd Interna-
tional Workshop of Computer Science and Information Technologies, 2003.

U. Kohlmorgen, H. Schmeck, and K. Haase. Experiences with fine-grained parallel genetic
algorithms. Annals of Operations Research, 90:203-219, 1999.

R. Kolisch. Project scheduling under resource constraints: Efficient heuristics for several
problem classes. Physica-Verlag, 1995.

R. Kolisch. Efficient priority rules for the resource-constrained project scheduling problem.
Journal of Operations Management, 14:179-192, 1996a.

R. Kolisch. Serial and parallel resource-constrained project scheduling methods revis-
ite : Theory and computation. European Journal of Operational Research, 90:320-333,
1996b.

R. Kolisch and A. Drexl. Adaptative search for solving hard project scheduling problems.
Naval Research Logistics, 43:43-23, 1996.

R. Kolisch and S. Hartmann. Heuristic algorithms for solving the resource-constrained
project scheduling problem: Classification and computational analysis. In J. Weglarz,
editor, Handbook on recent advances in project scheduling, pages 147-178. Kluwer,
1999.

R. Kolisch and S. Hartmann. Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Research,
2005. To appear.

R. Kolisch and R. Padman. An integrated survey of deterministic project scheduling. The
International Journal of Management Science, Omega, 29:249-272, 2001.

R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a general class
of resource-constrained project scheduling problems. Management Science, 41:1693—
1703, 1995.

S.R. Lawrence. Resource constrained project scheduling — A computational comparison
of heuristic scheduling techniques. Technical report, Graduate School of Industrial Ad-
ministration, Carnegie-Mellon University, Pittsburgh, 1985.

J.-K. Lee and Y.-D. Kim. Search heuristics for resource constrained project scheduling.
Journal of the Operational Research Society, 47:678—689, 1996.

28 J.J.M. MENDES, J. F. GONCALVES, AND M.G.C. RESENDE

V.J. Leon and B. Ramamoorthy. Strength and adaptability of problem-space based neigh-
borhoods for resource constrained scheduling. Operations Research Spektrum, 17:173—
182, 1995.

J.J.M. Mendes. Sistema de apoio a decisdo para planeamento de sistemas de produgdo
do tipo projecto. PhD thesis, Departamento de Engenharia Mecanica e Gestao Indus-
trial, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2003. In
Portuguese.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Man-
agement Science, 44:714-729, 1998.

R.H. Mohring, A.S. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems
by minimum cut computations. Management Science, 49:330-350, 2003.

K. Nonobe and T. Ibaraki. Formulation and tabu search algorithm for the resource con-
strained project scheduling problem. In C.C. Ribeiro and P. Hansen, editors, Essays and
surveys in metaheuristics, pages 557-588. Kluwer Academic Publishers, 2002.

M. Palpant, C. Artigues, and P. Michelon. LSSPER: Solving the resource—constrained
project scheduling problem with large neighbourhood search. Amnnals of Operations
Research, 131:237-257, 2004.

E. Pinson, C. Prins, and F. Rullier. Using tabu search for solving the resource constrained
project scheduling problem. Technical report, Universite Catholique de I’Ouest, Angers,
1994.

A. Schirmer and S. Riesenberg. Case-based reasoning and parameterized random sampling
for project scheduling. Technical report, University of Kiel, Germany, 1998.

R. Slowinski, B. Soniewicki, and J. Weglarz. DSS for multiobjective project scheduling.
European Journal of Operational Research, 79:220-229, 1994.

W.M. Spears and K.A. Dejong. On the virtues of parameterized uniform crossover. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 230—
236, 1991.

A. Sprecher. Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46:710-723, 2000.

J.P. Stinson, E.W. Davis, and B.M. Khumawala. Multiple resource-constrained scheduling
using branch and bound. AIIE Transactions, 10:252-259, 1978.

F. Stork and M. Uetz. On the generation of circuits and minimal forbidden sets. Mathe-
matical Programming, 102:185-203, 2005.

PR. Thomas and S. Salhi. A tabu search approach for the resource constrained project
scheduling problem. Journal of Heuristics, 4:123—-139, 1998.

P. Tormos and A. Lova. A competitive heuristic solution technique for Resource-
Constrained Project Scheduling. Annals of Operations Research, 102:65-81, 2001.

P. Tormos and A. Lova. Integrating heuristics for resource constrained project scheduling:
One step forward. Technical report, Department of Statistics and Operations Research,
Universidad Politecnica de Valencia, 2003.

V. Valls, F. Ballestin, and M.S. Quintanilla. A population-based approach to the resource-
constrained project scheduling problem. Annals of Operations Research, 131:305-324,
2004.

V. Valls, F. Ballestin, and M.S. Quintanilla. Justification and RCPSP: A technique that
pays. European Journal of Operational Research, 165:375-386, 2005.

GA FOR RESOURCE CONSTRAINED PROJECT SCHEDULING 29

V. Valls, J. Ballestin, and M.S. Quintanilla. A hybrid genetic algorithm for the RCPSP.
Technical report, Department of Statistics and Operations Research, University of Va-
lencia, 2003.

(Jorge José de Magalhdes Mendes) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO, INSTITUTO POLITECNICO
DO PORTO, RUA DR. ANTONIO BERNARDINO DE ALMEIDA, 431, 4200-072 PORTO, PORTUGAL.
E-mail address: jjm@isep.ipp.pt

(José Fernando Gongalves) FACULDADE DE ECONOMIA DA UNIVERSIDADE DO PORTO, RUA DR. ROBERTO
FRrIAS, 4200-464 PORTO, PORTUGAL.
E-mail address: jfgoncal@fep.up.pt

(Mauricio G. C. Resende) ALGORITHMS AND OPTIMIZATION RESEARCH DEPARTMENT, AT&T LABS
RESEARCH, 180 PARK AVENUE, ROOM C241, FLORHAM PARK, NJ 07932 USA.
E-mail address: mgcr@research.att.com

