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ABSTRACT. This paper presents a genetic algorithm (GA) for the Resource Constrained
Multi-Project Scheduling Problem (RCMPSP). The chromosome representation of the
problem is based on random keys. The schedules are constructed using a heuristic that
builds parameterized active schedules based on priorities, delay times, and release dates
defined by the genetic algorithm. The approach is tested on a set of randomly generated
problems. The computational results validate the effectiveness of the proposed algorithm.

1. INTRODUCTION

Project management is a complex decision making process involving the unrelenting
pressures of time and cost. A project management problem typically consists of planning
and scheduling decisions. The planning decision is essentially a strategic process wherein
planning for requirements of several resource types in every time period of the planning
horizon is carried out. Usually, a Gantt chart of projects is developed to generate resource
profiles and perform the required leveling of resources by hiring, firing, subcontracting,
and allocating overtime resources.

Scheduling involves the allocation of the given resources to projects to determine the
start and completion times of the detailed activities. There may be multiple projects con-
tending for limited resources, which makes the solution process more complex. The al-
location of scarce resources then becomes a major objective of the problem and several
compromises have to be made to solve the problem to the desired level of near-optimality.
Tools to aid in project scheduling, once activity durations, precedence relationships, and
the levels of each resource are known, have existed for some time. Such tools include
Gantt charts and networking tools, such as the Critical Path Method (CPM) and the Pro-
gram Evaluation and Review Technique (PERT). These tools are so well understood that
they are incorporated in most, if not all, popular project scheduling software packages.
As valuable as these tools are, they have serious limitations for project activity schedul-
ing in practice. Their use assumes unlimited resources for assignment to project activities
exactly when required. Furthermore, they are applied to only one project at a time. In
many practical environments where project scheduling is an important activity, resources
are constrained in number and more than one project is active at any one time.

In this paper, we present a new genetic algorithm (GA) approach to solve the Resource
Constrained Multi-Project Scheduling Problem (RCMPSP). The remainder of the paper is
organized as follows. Section 2 describes the problem and presents the conceptual model
and Section 3 presents a literature review. Section 4 describes our approach to solve the
RCMPSP and Section 5 introduces the model used. Section 6 presents a newly developed
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FIGURE 1. Multi-project network example. Artificial (or dummy) ac-
tivities mark the start and end of each project as well as of the multi-
project.

schedule generation procedure and Section 7 describes the genetic algorithm. Section 8 de-
tails the problem instance generator and Section 9 reports the computational experiments.
Concluding remarks are make in Section 10, along with a discussion about further research.

2. PROBLEM DESCRIPTION AND CONCEPTUAL MODEL

The problem and the conceptual model will be described using Figure 1. The problem
consists of a set of I projects, where each project i ∈ I is composed of activities j =
{Ni−1 + 1, . . . ,Ni}, where activities Ni−1 + 1 and Ni are dummy and represent the initial
and final activities of project i. J is the set of activities. There exists a set of renewable
resources types K = {1, . . . ,k}. The activities are interrelated by two kinds of constraints.
First, the precedence constraints, which force each activity j ∈ J to be scheduled after all
predecessor activities, P j, are completed. Second, processing of the activities is subject to
the availability of resources with limited capacities. While being processed, activity j ∈ J
requires r j,k units of resource type k ∈ K during every time instant of its non-preemptable
duration d j. Resource type k ∈ K has a limited availability of Rk at any point in time.
Parameters d j, r j,k, and Rk are assumed to be non-negative and deterministic. For start and
end activities of project i, we have, for all i ∈ I , that

d(Ni−1+1) = dNi = 0 and rNi−1+1,k = rNi,k = 0 (∀k ∈ K ).

Activities 0 and N + 1 are dummy activities, have no duration, and correspond to the start
and end of all projects (see Figure 1).
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The Resource Constrained Multi-Project Scheduling Problem (RCMPSP) consists in
finding a schedule of the activities (i.e. to determine the start and completion times of the
detailed activities) taking into account resource availabilities and precedence constraints,
while minimizing some performance measure. Let Fj represent the finish time of activity
j ∈ J . A schedule can be represented by a vector of finish times (F1, . . . ,FN+1). Let A(t)
be the set of activities being processed at time instant t. The conceptual model of the
RCMPSP can be described as

Minimize performance measure (F1, . . . ,FN )(1)

Subject to:

Fl ≤ Fj − d j, j = 1, ... , N + 1 ; l ∈ P j ,(2)

∑
j∈A(t)

r j,k ≤ Rk, k ∈ K ; t ≥ 0,(3)

Fj ≥ 0, j = 1, ... , N + 1.(4)

The objective function (1) seeks to minimize the performance measure. Constraints (2)
impose the precedence relations between activities, and constraints (3) limit the resource
demand imposed by the activities being processed at time t to the available capacity. Fi-
nally, constraints (4) force the finish times to be non-negative.

3. LITERATURE REVIEW

The RCMPSP is a generalization of the resource constrained project scheduling prob-
lem (RCPSP). The RCPSP has been treated by multiple approaches. In contrast, for the
RCMPSP, there are only few studies involving the scheduling of several projects. It has
been shown by Blazewicz et al. (1983) that the RCPSP, as a generalization of the classi-
cal job shop scheduling problem, belongs to the class of NP-hard optimization problems
(Garey and Johnson, 1979). The RCMPSP, as a generalization of the RCPSP, is therefore
also NP-hard.

Exact methods to solve the RCMPSP are proposed in the literature. The pioneering
work of multi-project scheduling by Pritsker et al. (1969) proposed a zero-one program-
ming approach. Mohanthy and Siddiq (1989) studied the problem of assigning due dates
to the projects in a multi-project environment. That study presents an integer program-
ming model and simulation mechanism. The integer program generates the schedules.
The simulation allows testing some heuristic rules and the system chooses the best sched-
ule. Drexl (1991) considered a non-preemptive variant of the resource constrained assign-
ment problem using a hybrid branch and bound / dynamic programming algorithm with
a Monte Carlo-type upper bounding heuristic. Deckro et al. (1991) formulated the multi-
project scheduling problem as a block angular general integer programming model and
employed a decomposition approach to solve large problems. Vercellis (1994) describes
a Lagrangean decomposition technique for solving multi-project planning problems with
resource constraints and alternative modes of performing each activity in the projects. The
decomposition can be useful in several ways, such as providing bounds on the optimum
so that the quality of approximate solutions can be evaluated. Furthermore, in the context
of branch-and-bound algorithms, it can be used for more effective fathoming of the tree
nodes. Finally, in the modeling perspective, the Lagrangean optimal multipliers can pro-
vide insights to project managers as prices for assigning the resources to different projects.

Most of the heuristics methods used for solving resource constrained multi-project
scheduling problems belong to the class of priority rule based methods. Several approaches
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in this class have been proposed in the literature. For example, Fendley (1968) used multi-
projects with three and five projects and considered three efficiency measurements in the
computational analysis: project slippage, resource utilization, and in-process inventory.
The most important conclusion of Fendley is that the priority rule Minimum Slack First
(MINSLK) obtained the best efficiency with the three response variables. Kurtulus and
Davis (1982) designed multi-project instances whose projects have between 34 and 63
activities and resource requirements for each activity between 2 and 6 units. They show
six new priority rules and Maximum Total Work Content (MAXTWK) and Shortest Activity
from the Shortest Project (SASP) were the best algorithms to schedule multi-projects when
the objective was to minimize the mean project delays, where the delays were measured in
relation to the unconstrained critical path duration.

Kurtulus and Narula (1985) studied penalties due to project delay. They analyze this
problem with multi-project instances of three projects in which activities number between
24 and 33 for small-sized problems and between 50 and 66 activities for large-sized prob-
lems. The priority rules used in previous papers were modified by adding penalties to
the delays. Six penalty functions and four new priority rules based on penalties were
analyzed: Maximum Duration and Penalty, Maximum Penalty, Maximum Total Duration
Penalty, and simultaneously Slack and Penalty. As one of the most important conclusions,
the priority rule Maximum Penalty was considered the best algorithm to minimize the sum
of the project weight delay.

Dumond and Mabert (1988) studied the problem of assigning due dates to the projects
in a multi-project environment. Each project has between 6 and 49 activities with 24
activities on average whose resource requirements were between one and three types of
resources simultaneously. In that paper, five resource allocation heuristics and four strate-
gies to assign due dates to the projects were analyzed: Mean Flow, Number of Activities,
Critical Path Time, and Scheduled Finish Time. The computational results show that the
priority rule First Come First Served (FCFS) with the strategy Scheduled Finish Time Due
Date rule was the best algorithm for minimizing the mean completion time, the mean late-
ness, the standard deviation of lateness and minimizing the total tardiness. Tsubakitani and
Deckro (1990) proposed a heuristic for multi-project scheduling with resource constraints
using the Kurtulus and Davis (1982) approach to select appropriate heuristic decision rules.
They coded the SASP priority rule to schedule multi-projects with more than 50 projects
which could have more than 100 activities. The model has an UPDATE routine that al-
lows the project manager to update the projects when they are in execution. Bock and
Patterson (1990) designed a computational experiment based on the work of Dumond and
Mabert (1988) with three factors: Due Date Setting Strategy, Algorithm based on Priority
Rule, and Resource Preemption Strategy. That paper shows that the priority rules FCFS
and MINSLK had the best performance, minimizing mean weighted lateness and mean
absolute lateness.

Lawrence and Morton (1993) studied the due date setting problem of scheduling mul-
tiple resource-constrained projects with the objective of minimizing weighted tardiness
costs. They develop an efficient and effective means of generating low cost schedules re-
quiring multiple resources and a cost-benefit scheduling policy with resource pricing which
balances the marginal cost of delaying the start of an eligible activity with the marginal
benefit of such a delay. A central part of this policy is the heuristic estimation of implicit
resource prices, which forms the basis for calculating marginal delay costs. The resulting
policies are tested against a number of dispatch scheduling rules taken from the literature,
and against several new scheduling rules with good results. Shankar and Nagi (1996) pro-
posed a two-level hierarchical approach consisting of the planning and scheduling stages.
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The planning stage was formulated as a linear program, which gives the choice of select-
ing among multiple objective functions. The scheduling stage uses simulated annealing to
calculate the solution.

Wiley et al. (1998) developed a method utilizing Work Breakdown Structure (WBS) and
Dantzig-Wolfe decomposition to generate feasible aggregate level multi-project program
plans and schedules. The Dantzig-Wolfe procedure provides a means of generating interim
solutions and their appropriate funding profile. The decision maker may then choose any
one of these solutions based upon their own experience and risk tolerance. Ozdamar et al.
(1998) examined different dispatching rules for the tardiness and the net present value ob-
jective embedded in a multi-pass heuristic. Ash (1999) proposed a deterministic simulation
scheme using available project data to choose an activity scheduling heuristic which not
only allows for the establishment of good project schedules, but determines a priori which
resources will be assigned to specific project activities. A graphical interface is updated as
the simulation runs and the ability to stop and modify decision-making while a simulation
is in progress could be useful to project managers. Such extensions might lead to insights
into project progress and resource utilization, while allowing project schedulers to apply
judgment that a pure heuristic approach lacks.

Lova et al. (2000) developed a multi-criteria heuristic that improves lexicographically
two criteria: one time type (mean project delay in relation to the unconstrained critical
path duration or multi-project duration increase) and one no time type (project splitting,
in-process inventory, resource leveling or idle resources) that can be chosen by the user.
The multi-criteria heuristic algorithm consists of several algorithms based on the improve-
ment of multi-project feasible schedules. Through an extensive computational study, they
have shown that this method improves the feasible multi-project schedule obtained from
heuristic methods based on the priority rules coded Maximum Total Work Content (MAX-
TWK) and Minimum Latest Finish Time (MINLFT) as well as project management soft-
ware – Microsoft Project, CA-SuperProject, Time Line, and Project Scheduler. Lova and
Tormos (2002) developed combined random sampling and backward-forward heuristics
for the objectives of mean project delay and multi-project duration increase.

Mendes (2003) presents a genetic algorithm that uses a random key representation and
a modified parallel Schedule Generation Scheme (SGS). The modified parallel SGS deter-
mines all activities to be eligible which can be started up to the schedule time plus a delay
time. This genetic algorithm minimizes simultaneously the tardiness, earliness, and flow
time deviation criteria.

4. NEW APPROACH

The new approach presented in this paper combines a new measure of performance,
a genetic algorithm based on random keys, and, as described Section 6, a new schedule
generation procedure that creates parameterized active schedules (Gonçalves and Beirão,
1999; Gonçalves et al., 2005). In general terms, the approach innovates in the following
two fundamentals areas:

1. The model. A new measure of performance is developed. This measure attempts to
capture reality by integrating due dates, work in process, and inventory. Constraints
enforcing the release date concept are also introduced.

2. Solution method. Considering the difficulty to solve real-world problems by exact
methods, a new solution approach is developed that combines a genetic algorithm
with a schedule generation procedure that creates parameterized active schedules.
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FIGURE 2. Architecture of the new approach. Genetic algorithm
evolves chromosomes, which are passed to the decoder. Decoder de-
termines schedule generation parameters (priorities, delays, and dates)
and passes them to solution generator, which builds parametrized active
schedules. Schedules are evaluated and fitnesses are fedback to the ge-
netic allgorithm.

The genetic algorithm is responsible for evolving the chromosomes which represent prior-
ities of the activities, delay times, and release dates. For each chromosome, the following
two phases are applied:

1. Decoding of priorities, delay times, and release dates. This phase is responsible for
transforming the chromosome supplied by the genetic algorithm into the priorities
of the activities, delay times, and release dates.

2. Schedule generation. This phase makes use of the priorities and the delay times
defined in the first phase and constructs parameterized active schedules.

After a schedule is obtained, the corresponding quality (performance measure) is fed back
to the genetic algorithm. Figure 2 illustrates the sequence of steps applied to each chromo-
some generated by the genetic algorithm.

Unlike with tabu search or simulated annealing, genetic algorithms, in general, require
that the search space be connected. Since our genetic algorithm uses random numbers in
the interval [0,1], it searches an n-dimensional hypercube, which is, of course, connected.
The mutation procedure guarantees that, if a sufficiently large number of generations are
carried out, the genetic algorithm will sample the entire hypercube and consequently find
the best set of random keys.
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5. THE NEW MODEL

The conceptual model presented in Section 2 is refined in two ways. A new measure
of performance and constraints enforcing the release date concept are introduced. The
following subsections describe the details of the refinements of the model.

5.1. Performance measure. Project management is a complex decision making process
involving due date (tardiness), start (earliness), and work in process (flow time) constraints.
The new performance measure incorporates simultaneously three criteria: tardiness, earli-
ness, and flow time. The following notation will be used:

Di: Ideal duration for project i.

DDi: Due date for project i.

CDi: Conclusion date for project i in generated schedule.

BDi: Start date for project i in generated schedule.

Ti: Tardiness of project i = max {CDi − DDi , 0}.

Ei: Earliness of project i = max {DDi − CDi , 0}.

FDi: Flow time deviation for project i = max {CDi − BDi − Di, 0}.

CPDi: Critical path duration of project i.

The new performance measure is defined as

a ∑
i

T 3
i + b ∑

i
E2

i + c ∑
i

FD2
i ,(5)

where a, b, and c are parameters defined by the decision maker. To overcome the problem
of not knowing the ideal duration of a project in a real-world situation, we replace

c ∑
i

FD2
i by c ∑

i

(CDi − BDi)
2

CPDi
.

5.2. Release dates. In the conceptual model presented in Section 2, the constraints for the
resources are expressed by condition (3). However, there are others types of constraints
related with the start of a project which cannot be modeled by condition (3). To be able to
model this kind of constraint, we add the constraints

FNi−1 + 1 ≥ MDLi, i = 1, . . . , I ,

to the model, where MDLi represents earliest release date for project i. These constraints
are enforced in the model implicitly by assigning a duration DLi ≥ MDLi to the initial
activity of each project, i.e.,

dNi−1 + 1 = DLi ≥ MDLi, i = 1, . . . , I .
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Semi-Actives

Actives

Non-Delay

Delay Time 1 Delay Time 2 

Semi-Actives

Actives

Non-Delay

ParametrizedActives

Delay Time 2 > Delay Time 1 

FIGURE 3. Parameterized active schedules for different values of the
delay time.

6. SCHEDULE GENERATION PROCEDURE

The schedule generation procedure constructs active schedules. However, the set of
active schedules is usually very large and contains many schedules with relatively large
delay times, having therefore poor quality in terms of the performance measure. To reduce
the solution space, we used the concept of parameterized active schedules introduced by
Gonçalves and Beirão (1999) and Gonçalves et al. (2005). The basic idea of parameter-
ized active schedules consists in controlling the delay times that each activity is allowed.
By controlling the maximum delay time allowed, one can reduce or increase the solution
space. A maximum delay time equal to zero is equivalent to restricting the solution space
to non-delay schedules and a maximum delay time equal to infinity is equivalent to allow-
ing active schedules. Figure 3 illustrates where the set of parameterized active schedules
is located relative to the class of semi-active, active, and non-delay schedules.

The procedure used to construct parameterized active schedules is based on a scheduling
generation scheme that does time-incrementing. For each iteration g, there is a scheduling
time tg. The active set comprises all activities which are active at tg, i.e.

A(tg) =
{

j ∈ J |Fj−d j ≤ tg < Fj
}
.

The remaining resource capacity of resource k at instant time tg is given by

RDk(tg) = Rk(tg) − ∑
j∈A(tg)

r j,k.

The set Sg comprises all activities which have been scheduled up to iteration g, and Fg
comprises the finish times of the activities in Sg. Let Delayg be the delay time associated
with iteration g, and let the set Eg comprise all activities which are precedence-feasible in
the interval [ tg, tg + Delayg ], i.e.

Eg =
{

j ∈ J \ Sg−1 | Fi ≤ tg + Delayg (i ∈ P j)
}
.
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The algorithmic description of the scheduling generation scheme used to create parame-
terized active schedules is given by the pseudo-code shown in Figure 4. The basic idea of

procedure CONSTRUCT-PARAMETRIZED-ACTIVE-SCHEDULES
1 Initialization: g← 1; t1← 0; A0←{0} ; Γ0← {0};

S0←{0} ; RDk (0)← Rk, (k ∈ K );
2 while |Sg| < n + 2 repeat
3 Update: Eg;
4 while Eg 6= {} repeat
5 Select activity with highest priority:

j∗← argmax
j∈Eg

{
PRIORITY j

}
;

6 Calculate earliest finish time (in terms of precedence only):
EF j∗ = maxi∈P j {Fi} + d j∗ ;

7 Calculate earliest finish time (in terms of precedence and capacity):
Fj∗ ← d j∗ + min

{
t ∈ [FMC j∗−d j∗ ,∞]∩Γg | r j∗,k ≤ RDk(τ) ,

k ∈K |r j∗,k > 0, τ ∈ [t, t + d j∗]
}

;
8 Update: Sg← Sg−1 ∪ { j∗ } ; Γg ← Γg−1 ∪

{
Fj∗
}

;
9 Iteration increment: g← g + 1;
10 Update: Ag, Eg, RDk(t) | t ∈ [Fj∗ − d j∗ , Fj∗ ] , k ∈ K | r j∗,k > 0;
11 end while;
12 Determine the time associated with activity g;

tg←min {t ∈ Γg−1 | t > tg−1};
13 end while;
end CONSTRUCT-PARAMETRIZED-ACTIVE-SCHEDULES;

FIGURE 4. Pseudo-code to construct parameterized active schedules.

parameterized active schedules is incorporated in the selection step of the procedure,

j∗← argmax
j∈Eg

{
PRIORITY j

}
.

The set Eg is responsible for forcing the selection to be made only amongst activities which
will have a delay smaller or equal to the maximum allowed delay. Figure 5a illustrates the
different queue sizes in the selection step according to the type of schedule, i.e., non-
delay, parameterized active, and active schedules. Figure 5b depicts a Gantt chart where
activities A1, A2, A3, and A4 are being processed. Let A1-N, A2-N, A3-N, and A4-N denote
the activities that depend on the end of activities A1, A2, A3, and A4, respectively, and are
to be processed on the same resource. The table below the Gantt chart shows the queue
of eligible activities at the resource when t = 25 and when the delay parameter is equal to
0, 3, 8, and 9 time units. The parameters PRIORITY j (priority of activity j) and Delayg
(delay used at each g) are supplied by the genetic algorithm. The next section describes
the genetic algorithm and shows how it generates the above parameters.

7. GENETIC ALGORITHM

Genetic algorithms are adaptive methods, which may be used to solve search and opti-
mization problems (Beasley et al., 1993). They are based on the genetic process of biolog-
ical organisms. Over many generations, natural populations evolve according to the prin-
ciples of natural selection, i.e. survival of the fittest, first clearly stated by Charles Darwin
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(1859) in The Origin of Species by Natural Selection. By mimicking this process, genetic
algorithms, if suitably encoded, are able to evolve solutions to real world problems. Before
a genetic algorithm can be run, an encoding (or representation) for the problem must be
devised. A fitness function, which assigns a figure of merit to each encoded solution, is also
required. During the run, parents are selected for reproduction and recombined to generate
offspring (see high-level pseudo-code in Figure 6).

procedure GENETIC-ALGORITHM
1 Generate initial population P0;
2 Evaluate population P0;
3 Initialize generation counter g← 0;
4 while stopping criteria not satisfied repeat
5 Select some elements from Pg to copy into Pg+1;
6 Crossover some elements of Pg and put into Pg+1;
7 Mutate some elements of Pg and put into Pg+1;
8 Evaluate new population Pg+1;
9 Increment generation counter: g← g + 1;
10 end while;
end GENETIC-ALGORITHM;

FIGURE 6. Pseudo-code of a standard genetic algorithm.

It is assumed that a potential solution to a problem may be represented as a set of pa-
rameters. These parameters (known as genes) are joined together to form a string of values
(chromosome). In genetic terminology, the set of parameters represented by a particular
chromosome is referred to as an individual. The fitness of an individual depends on its
chromosome and is evaluated by the fitness function. During the reproductive phase, the
individuals are selected from the population and recombined, producing offspring, which
comprise the next generation. Parents are randomly selected from the population using a
scheme, which favors fitter individuals. Having selected two parents, their chromosomes
are recombined, typically using mechanisms of crossover and mutation. Mutation is usu-
ally applied to some individuals, to guarantee population diversity.

7.1. Chromosome representation. The genetic algorithm described in this paper uses a
random key alphabet which is comprised of random numbers between 0 and 1. The evo-
lutionary strategy used is similar to the one proposed by Bean (1994), the main difference
occurring in the crossover operator. The important feature of random keys is that all off-
spring formed by crossover are feasible solutions. This is accomplished by moving much
of the feasibility issue into the objective function evaluation. If any random key vector can
be interpreted as a feasible solution, then any crossover vector is also feasible. Through
the dynamics of the genetic algorithm, the system learns the relationship between random
key vectors and solutions with good objective function values.

A chromosome represents a solution to the problem and is encoded as a vector of ran-
dom keys. In a direct representation, a chromosome represents a solution of the original
problem, and is usually called genotype, while in an indirect representation it does not and
special procedures are needed to derive a solution from it usually called phenotype.

In the present context, the direct use of schedules as chromosomes is too complicated
to represent and manipulate. In particular, it is difficult to develop corresponding crossover
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and mutation operations. Instead, solutions are represented indirectly by parameters that
are later used by a schedule generator to obtain a solution. To obtain the solution (phe-
notype) we use the parameterized active schedule generator described in Section 6. Each
solution chromosome is made of 2n + m genes, where n is the number of activities and m
is the number of projects:

Chromosome = (gene1, . . . ,genen︸ ︷︷ ︸
Priorities

,genen+1, . . . ,gene2n︸ ︷︷ ︸
Delay Times

,gene2n+1, . . . ,gene2n+m︸ ︷︷ ︸
Release Dates

)

The first n genes are used to determine the priorities of each activity. The genes between
n + 1 and 2n are used to determine the delay time used at each of the n iterations of sched-
uling procedure which schedules one activity per iteration. The last m genes are used to
determine the release dates of each of the m projects.

7.2. Decoding. We next describe how the chromosomes supplied by the genetic algo-
rithm are decoded (transformed) into activity priorities, delays, and release dates. In our
approach, we consider the following three solution alternatives:

1. GA-Basic: A basic decoding procedure;
2. GA-SlackNd: A decoding procedure where the priorities of the activities are static

(i.e., the activities priorities are not evolved by the genetic algorithm) and the sched-
ules are non-delay;

3. GA-SlackMod: A more sophisticated decoding procedure in which problem specific
information is included.

The next subsection presents the decoding procedures for the activity priorities, delays,
and release dates for each of the above solution alternatives.

7.2.1. Decoding of the activity priorities. As mentioned in Section 7.1, the first n genes
are used to obtain activity priorities. Activity priorities are values between 0 and 1. The
higher the value, the higher the priority will be. Below, we present the decoding procedures
for the activity priorities according to each of the above proposed solution alternatives.

GA-Basic: For this solution alternative, the priority of each activity j ∈ J is given by the
gene value, i.e.

Priority j = Gene j.

GA-SlackNd: For this solution alternative, the priority of each activity j ∈ J is given by
the normalized slack calculated by the expression

Priority j =
Slack j

MaxSlack
,

where MaxSlack is the maximum slack for all activities amongst all projects, Slack j =
DDi | j∈ i − LLP j, where DDi | j∈ i is the due date of the project i to which activity j belongs
and LLP j is the longest length path from the beginning of activity j to the end of the project
i to which activity j belongs.

GA-SlackMod: For this solution alternative, the priority of each activity j is given by an
expression which modifies the normalized slack to produce priority values that are between
70% and 100% of the normalized slack. The priority values are obtained by the expression

Priority j =
Slack j

MaxSlack
× (0.7 + 0.3 × Gene j) .
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Crossover

Randomly generated

Current  Population Next  Population

Copy bestBest

W orst

TOP

BOT

FIGURE 7. Transitional process between consecutive generations. Cur-
rent population is sorted from best to worst. Top (TOP) individuals from
current population are copied unchanged to next population. Bottom
(BOT) individuals in current population are replaced by randomly gen-
erated individuals in the next population. The remaining individuals of
the next population are generated by applying crossover operator to ran-
domly selected individual from TOP individuals of current population
and randomly selected individual from entire current population.

7.2.2. Decoding of the delays. The genes between n + 1 and 2n are used to determine the
delay times Delayg, used by each scheduling iteration g. Below we present the decoding
procedures for the delay times according to each of the above proposed solution alterna-
tives.

GA-Basic and GA-SlackMod: For these solutions alternatives, the delay schedules gener-
ated are given by

Delayg = Geneg×1.5×MaxDur,

where MaxDur is the maximum duration amongst all activity durations. The factor 1.5 was
obtained after experimenting with values between 1.0 and 2.0 in increments of 0.1.

GA-SlackNd: For this solution alternative, the delay schedules generated are non-delay.
Therefore, all delays are zero, i.e.

Delayg = 0.

7.2.3. Decoding of the release dates. The last m genes of each the chromosome, (genes
2n + 1 to 2n + m) are used to determine the release dates of each project i ∈ I . All of the
above solution alternatives (GA-Basic, GA-SlackNd, and GA-SlackMod) use the following
decoding expression to obtain the release date of each project i ∈ I = {1, . . . ,m}:

DLi = MDLi + Gene2n+i× (DDi−MDLi) .
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7.3. Evolutionary strategy. To breed good solutions, the random key vector population is
operated upon by a genetic algorithm. Many variations of GAs can be obtained by varying
the reproduction, crossover, and mutation operators. The reproduction and crossover oper-
ators determine which parents will have offspring, and how genetic material is exchanged
between the parents to create those offspring. Reproduction and crossover operators tend
to increase the quality of the populations and force convergence. Mutation opposes con-
vergence since it allows for random alteration of genetic material.

Each individual of the initial population is initialized with a random key vector. Given
a current population, we perform the following three steps in order to obtain the next
generation (see Figure 7):

1. Reproduction: Some of the best individuals are copied from the current generation
into the next (see TOP in Figure 7). This strategy is called elitist (Goldberg, 1989)
and its main advantage is that the best solution is monotonically improving from one
generation to the next. However, it can lead to a rapid population convergence to a
local minimum. Nevertheless, this can be overcome by using high mutation rates as
described below.

2. Crossover: Regarding the crossover operator, parameterized uniform crossovers
(DeJong and Spears, 1991) are used as opposed to the traditional one-point or two-
point crossover. Two individuals are randomly chosen to act as parents to produce
an offspring. One of the parents is chosen amongst the best individuals in the popu-
lation (TOP in Figure 7), while the other is randomly chosen from the whole current
population (including TOP). For each gene, a random number in the interval [0,1 ]
is generated. If the random number obtained is smaller than a threshold value (for
example 0.7) called crossover probability (CProb), then the allele of the first parent
is inherited (or selected) by the offspring. Otherwise, the allele selected is that of the
second parent. An example of a crossover outcome is given in Figure 8.

3. Mutation. Mutation, in this scheme, is used in a broader sense than usual. The oper-
ator we define acts like a mutation operator and its purpose is to prevent premature
convergence of the population. Instead of performing gene-by-gene mutation, with
very small probability at each generation, we introduce some new individuals into
the next generation (see BOT in Figure 8). These new individuals (mutants) are ran-
domly generated from the same distribution as the original population and thus, no
genetic material of the current population is brought in. One can think of these mu-
tants as being immigrants. This process prevents premature convergence of the pop-
ulation, like in a mutation operator, and leads to a simple statement of convergence.
Figure 7 depicts the transitional process between two consecutive generations.

8. PROBLEM INSTANCE GENERATOR

In this section, we describe the problem generator used to produce test problems for
the computational experiments. In the literature, we could not find any standard problem
instances for the RCMPSP. To overcome this, we used the problem generator developed
in Mendes (2003). The remainder of this section describes the problem generator. The
problem generator creates problem instances for which the optimal value (for the measure
of performance described in Section 5.1) is zero (i.e. tardiness = 0, earliness = 0, and
flow time deviation= 0). It is possible that these instances are easy to solve. Nevertheless,
we use them to measure the performance of our approach. The problem generator has the
following input parameters:
• Number of problems to generate;
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Chromosome 1 0.32 0.77 0.53 0.85

Chromosome 2 0.26 0.15 0.91 0.44

Random Number 0.58 0.89 0.68 0.25
Relation to crossover probability of 0.7 < > < <

Offspring chromosome 0.32 0.15 0.53 0.85

FIGURE 8. Example of parameterized uniform crossover with crossover
probability equal to 0.7. For each allele, a random number in the inter-
val [0,1 ] is generated. With probability 0.7 the offspring inherits the
allele of Chromosome 1 and with probability 0.3, it inherits the one of
Chromosome 2.

• Number of projects to include in each problem;
• Average number of projects to be simultaneously in execution.

Each multi-project problem instance is generated using the following rules:
1. Each single-project instance to be included in the multi-project instance problem is

chosen at random from the 600 single-project instances of type J120 given in Kolisch
et al. (1998);

2. The ideal duration of each single-project instance is equal to the best known makespan
value obtained from the PSPLIB library (http://129.187.106.231/psplib/);

3. The average number of projects to be simultaneously in execution is imposed in-
directly by forcing all the single-project instances included in the multi-project in-
stance to have a due date randomly chosen in the interval given by its critical path
duration and the value given by the due date upper bound obtained by the expression

Sum of ideal duration of each single-project instance
Number of single-projects to be simultaneously in execution

;

4. The start date of each project is randomly generated in the interval

[0,problem due date− ideal duration ].

5. The resource capacity in the interval [0,due date upper bound ] is calculated by the
adding the resource capacities of each single-project instance from its start date up
until its due date computed in Rule 3. Note that this procedure assigns resource
capacities that make it possible to complete each single-project with tardiness = 0,
earliness = 0, and flowtime deviation = 0, i.e. it guaranties that the optimal value of
measure performance defined in Section 5.1 is zero.

9. COMPUTATIONAL EXPERIMENTS

To illustrate the effectiveness of the algorithms described in this paper (and since there
are no benchmark problems instances available for the RCMPSP where the measure of
performance includes tardiness, earliness, and flowtime deviation) we used multi-project
instances generated by the problem instance generator described in the previous section.

Five types of multi-project instances where generated, respectively, with 10, 20, 30, 40,
and 50 single-project instances. For each problem type, we generated 20 instances. Since
each single-project instance has 120 activities, we have that each multi-project instance
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has 1200, 2400, 3600, 4800, and 6000 activities, respectively. Each activity can use up to
four resources. The average number of overlapping projects in execution can be 3, 6, 9,
12, and 15. Table 2 shows the combinations of the number of overlapping projects used
for the problems with 10, 20, 30, 40, and 50 single-projects.

9.1. GA configuration. Though there is no straightforward way to configure the param-
eters of a genetic algorithm, our past experience with genetic algorithms based on the
same evolutionary strategy (see Gonçalves and Almeida (2002), Ericsson et al. (2002),
Gonçalves and Resende (2004), Gonçalves et al. (2005), and Buriol et al. (2005)) has
shown that good results can be obtained with the values of TOP, BOT, and Crossover Prob-
ability (CProb) shown in Table 3.

For the population size we obtained good results by indexing it to the size of the prob-
lem, i.e., use small size populations for small problems and larger populations for larger
problems. Having this past experience in mind and in order to obtain a reasonable config-
uration, we conducted a factorial analysis on a small pilot set of 12 problem instances not
included in the experimental tests. The factorial analysis combines the following values
TOP = (0.10, 0.15, 0.20), BOT = (0.15, 0.20, 0.25, 0.30), and CProb = (0.70, 0.75, 0.80).
We tried population sizes with 0.1 to 0.5 (in intervals of 0.1) times the number of activities
in the multi-project problem instance. The total factorial analysis included 180 possible
configurations of the GA

For all the 60 possible combinations of TOP, BOT, and population sizes and for all
problem instances in the pilot set the GA obtained the same fitness values for all tested
values of CProb = (0.70, 0.75, 0.80). Also, for population sizes greater than 0.2 times
the number of activities in the multi-project problem instance, the results were equal for
all combinations of TOP, BOT and CProb. This last point reduced our statistical analysis
only to population sizes smaller or equal to 0.2 times the number of activities in the multi-
project problem instance. Table 1 presents summary results of factorial analysis for the
GA parameters. Each configuration is represented by the tuple

population size factor – TOP – BOT,

where the population size equals the population size factor times the number of activities
in the multi-project problem instance. We exclude the CProb value from the configuration
representation since the GA obtained the same fitness values for all tested values of CProb.

Configuration 0.2–10–20 is the best in terms of the sum of fitness values and the number
of best results (7 out 12). To test if the differences between configuration 0.2–10–20 and
the other 23 configurations were statistically significant, we used the Wilcoxon’s signed
rank test since the differences between the configurations were not normally distributed.
The last column in Table 1 presents the P-value of the signed rank test for each the 23
paired comparisons. The five P-values starting with an ∗ indicate that we cannot consider
the results obtained by two configurations to be significantly different at a 5% confidence
level. Nevertheless, and since configuration 0.2–10–20- obtains the best number of best
results, we used it to configure our GA for the experimental tests.

The configuration shown in Table 4 was held constant for all experiments and all prob-
lem instances. The experimental results demonstrate that this configuration provides high-
quality solutions and that it is very robust.

9.2. Experimental results. Table 2 summarizes the experimental results. It lists the fit-
ness, earliness, tardiness, and flow time deviation. Let N be the number of projects in
each problem instance. Averages and standard deviation were computed for 20 problem
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TABLE 1. Results of the factorial analysis for the GA parameters. For each parameter configuration, the GA was run on 12 test
problems. The fitness of the best solution found for each configuration/problem pair is given in the table as are the sums of the
fitness values for each configuration, the number of best solutions found by each configuation, and the P-values found by applying
Wilcoxon’s signed rank test to the differences between configuration 0.2–10–20 and the other 23 configurations.

Problems Sum of Num. of
Configuration P10-3-1 P10-3-2 P20-3-1 P20-3-2 P20-6-1 P20-6-2 P30-3-1 P30-3-2 P30-6-1 P30-6-2 P30-9-1 P30-9-2 Fitness Best P-Value

0.1-10-15 44.00 28.70 88.80 206.00 0.45 2.10 1915.73 1325.99 45.29 0.33 0.57 0.50 3658.46 0 0.00326385
0.1-10-20 42.10 2.70 1.65 187.25 0.50 65.40 3314.63 1438.43 42.24 0.37 0.57 0.50 5096.33 1 0.00533770
0.1-10-25 10.00 1.50 94.80 63.85 0.45 32.65 1254.23 1317.76 48.63 0.30 0.57 0.53 2825.27 1 0.00535537
0.1-10-30 10.00 0.40 6.75 63.60 0.40 42.65 3142.03 1992.04 67.13 0.30 0.53 0.43 5326.27 4 0.02514460

0.1-15-15 78.00 37.10 33.00 49.35 0.50 29.35 972.40 1246.43 43.49 0.33 0.57 0.50 2491.02 1 ∗ 0.107666
0.1-15-20 9.90 24.70 22.70 689.05 0.45 6.30 1117.13 1465.65 43.56 0.33 0.53 0.43 3380.74 2 0.02514460
0.1-15-25 0.40 19.10 26.25 508.00 0.40 2.70 1306.13 2543.34 56.17 0.40 0.57 0.50 4463.96 1 0.00326385
0.1-15-30 10.10 3.10 22.25 348.10 0.50 0.55 1590.63 1269.31 33.86 0.37 0.57 0.50 3279.84 0 0.01078750

0.1-20-15 10.20 11.90 204.50 363.55 0.45 4.05 1574.37 1506.65 50.41 0.40 0.57 0.47 3727.51 0 0.00252631
0.1-20-20 5.30 4.10 173.95 606.85 0.50 55.55 1448.10 1219.93 29.49 0.37 0.53 0.50 3545.17 3 ∗ 0.0542413
0.1-20-25 14.30 0.30 139.05 436.20 0.45 4.80 1270.83 2339.89 59.27 0.33 0.57 0.50 4266.49 1 0.00535537
0.1-20-30 70.20 0.50 237.15 261.30 0.45 4.05 1887.03 2341.21 54.18 0.37 0.53 0.50 4857.47 1 0.00533770

0.2-10-15 1.00 0.90 154.75 59.90 0.50 0.60 1915.73 1325.99 45.29 0.33 0.57 0.50 3506.06 0 0.01078750
0.2-10-20 0.10 0.30 1.65 49.35 0.40 0.95 1117.13 1246.43 29.49 0.37 0.53 0.43 2447.13 7 –
0.2-10-25 12.00 0.60 163.75 128.60 0.45 0.95 1254.23 1317.76 48.63 0.30 0.57 0.53 2928.37 1 0.00859001
0.2-10-30 2.30 0.30 8.15 431.55 0.45 3.60 3142.03 1992.04 29.49 0.30 0.5 30.43 5658.62 5 0.03733890

0.2-15-15 3.10 3.20 104.70 129.60 0.45 0.35 972.40 1246.43 43.49 0.33 0.57 0.50 2505.12 2 ∗ 0.16981
0.2-15-20 0.10 13.80 31.55 542.50 0.45 126.40 1117.13 1465.65 43.56 0.33 0.53 0.43 3342.44 3 ∗ 0.0642234
0.2-15-25 0.20 1.10 34.20 119.70 0.45 0.35 1306.13 2543.34 56.17 0.40 0.57 0.50 4063.11 1 0.01078750
0.2-15-30 0.30 2.30 91.20 310.50 0.45 0.40 1590.63 1269.31 33.86 0.37 0.57 0.50 3300.39 0 0.01347120

0.2-20-15 10.00 3.00 566.45 1040.60 0.45 60.40 1574.37 1506.65 50.41 0.40 0.57 0.47 4813.76 0 0.00252631
0.2-20-20 1.20 14.70 15.95 304.95 0.40 2.65 1448.10 1219.93 29.49 0.37 0.53 0.50 3038.77 4 ∗ 0.145151
0.2-20-25 0.40 2.10 43.10 308.40 0.45 8.50 1270.83 2339.89 59.27 0.33 0.57 0.50 4034.34 0 0.00326385
0.2-20-30 0.20 13.10 27.55 379.90 0.45 3.10 1887.03 2341.21 54.18 0.37 0.53 0.50 4708.12 1 0.00533770
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TABLE 2. Experimental results. Each of the three algorithms (GA-
SlackMod, GA-SlackND, and GA-Basic) was run on 20 instances of
five problem types (having 10, 20, 30, 40, and 50 projects). For each
problem type, algorithm, and different value of overlapping projects,
the table shows averages and standard deviations for fitness, tardiness,
earliness, and flow time deviations, as well as the number of best
solutions found and the percentage improvement of the average last
generation fitness values to those of the first generation, i.e. 100×
(Fitness at 1st gen. − Fitness at last gen.)/(Fitness at 1st gen.)

Overl’ng Fitness Tardiness Earliness Flow Deviation Best Percentage
Proj’s. Proj’s. Algorithm Avg1 SD1 Avg2 SD2 Avg3 SD3 Avg4 SD4 sol’n Improvement

GA-SlackMod 10.35 18.56 0.00 0.00 1.20 1.41 0.38 0.54 17 99.98900
10 3 GA-SlackND 89.79 334.90 0.02 0.07 1.97 1.19 0.32 0.49 3

GA-Basic 621.40 691.98 0.12 0.18 8.91 5.63 3.43 3.47 1

GA-SlackMod 73.14 117.52 0.00 0.00 2.57 2.91 1.07 1.97 17 99.99947
3 GA-SlackND 131.27 117.33 0.01 0.02 5.25 3.22 0.76 0.74 3

20 GA-Basic 27400.19 949504.86 2.37 2.54 20.91 10.89 5.84 4.49 0

GA-SlackMod 0.95 2.10 0.00 0.00 0.42 0.27 0.03 0.07 20 99.99998
6 GA-SlackND 21.12 59.53 0.00 0.00 1.25 1.31 0.16 0.32 0

GA-Basic 612.51 882.51 0.08 0.16 8.38 4.48 0.66 0.81 0

GA-SlackMod 210.13 202.81 0.01 0.02 3.92 2.88 1.74 1.45 18 99.99688
3 GA-SlackND 459.93 295.66 0.10 0.08 6.97 3.97 2.21 1.62 2

GA-Basic 279192.26 256884.49 4.34 1.66 30.77 13.03 5.29 3.51 0

GA-SlackMod 3.89 7.11 0.00 0.00 0.60 0.40 0.09 0.20 20 99.99998
30 6 GA-SlackND 29.47 49.86 0.00 0.01 1.50 0.98 0.24 0.35 0

GA-Basic 3164.16 3766.42 0.35 0.34 14.25 9.21 0.64 0.53 0

GA-SlackMod 0.48 0.37 0.00 0.00 0.38 0.12 0.02 0.05 19 99.99999
9 GA-SlackND 11.23 33.13 0.00 0.01 0.60 0.38 0.03 0.07 2

GA-Basic 304.92 311.37 0.01 0.02 5.00 3.78 0.23 0.26 0

GA-SlackMod 1324.14 1282.69 0.06 0.06 9.45 7.29 6.15 4.77 15 99.99949
3 GA-SlackND 1741.61 1044.50 0.20 0.08 13.31 14.64 6.50 3.20 5

GA-Basic 1670572.27 1890484.11 7.74 3.29 37.49 14.64 5.18 3.11 0

GA-SlackMod 6.18 15.00 0.00 0.00 0.59 0.35 0.11 0.22 18 99.99998
6 GA-SlackND 41.00 43.02 0.02 0.02 1.47 0.84 0.19 0.34 2

40 GA-Basic 7736.26 590.32 0.73 0.44 15.02 9.61 0.74 0.75 0

GA-SlackMod 4.48 16.52 0.00 0.00 0.50 0.25 0.06 0.21 18 99.99999
9 GA-SlackND 11.41 29.82 0.01 0.02 0.74 0.30 0.02 0.06 2

GA-Basic 919.64 921.75 0.07 0.12 7.83 4.95 0.13 0.12 0

GA-SlackMod 2.00 4.28 0.00 0.00 0.52 0.26 0.04 0.08 17 100.00000
12 GA-SlackND 6.36 8.63 0.01 0.01 0.62 0.22 0.05 0.11 2

GA-Basic 223.80 250.23 0.00 0.02 4.00 3.89 0.08 0.11 2

GA-SlackMod 2584.49 2887.14 0.07 0.04 14.68 5.68 7.40 6.42 11 99.91177
3 GA-SlackND 2441.51 691.81 0.22 0.10 14.81 5.68 6.60 6.54 9

GA-Basic 2613944.26 3101743.13 8.79 3.72 38.15 16.38 5.96 2.80 0

GA-SlackMod 25.87 57.23 0.00 0.00 0.87 0.60 0.23 0.39 17 99.99996
6 GA-SlackND 68.61 47.68 0.04 0.03 1.69 0.76 0.31 0.31 3

GA-Basic 25674.75 30128.67 1.33 0.70 19.41 13.10 0.86 0.65 0

GA-SlackMod 0.73 0.79 0.00 0.00 0.43 0.11 0.02 0.05 20 99.99999
50 9 GA-SlackND 11.43 25.26 0.00 0.00 0.81 0.35 0.13 0.13 0

GA-Basic 1580.02 1190.59 0.22 0.20 8.90 4.79 0.20 0.18 0

GA-SlckMod 1.35 2.16 0.00 0.00 0.50 0.17 0.02 0.05 18 100.00000
12 GA-SlackND 4.22 8.07 0.00 0.00 0.62 0.20 0.04 0.05 1

GA-Basic 412.25 355.36 0.03 0.05 4.53 2.74 0.10 0.09 1

GA-SlackMod 1.07 1.98 0.00 0.00 0.50 0.15 0.01 0.04 13 100.00000
15 GA-SlackND 1.45 2.47 0.00 0.00 0.52 0.11 0.02 0.02 8

GA-Basic 214.77 243.85 0.01 0.02 3.57 3.25 0.08 0.11 3
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TABLE 3. Range of parameters that produced good results in previous
implementations of this evolutionary strategy.

Parameter Interval
TOP 0.10 – 0.20
BOT 0.15 – 0.30
Crossover Probability (CProb) 0.70 – 0.80

TABLE 4. GA configuration for computational experiments. These val-
ues were used in the computational experiments on all three algorithms
on all test instances.

Population size: min ( 0.2 × Number of activities in the multi-project, 250 )
Crossover Probability: 0.7
Selection: The top 10% from the previous population chromosomes are

copied to the next generation.
Mutation: The bottom 20% of the population chromosomes are replaced

with randomly generated chromosomes.
Fitness: See Equation (5)
Stopping Criterion: 50 Generations

instances. Columns Avg1 and SD1 list averages and standard deviations for the expression

a
N
∑

i=1
T 3

i + b
N
∑

i=1
E2

i + c
N
∑

i=1
FD2

i

N
;

Avg2 and SD2 list averages and standard deviations for the expression
N
∑

i=1
Ei

N
;

Avg3 and SD3 list averages and standard deviations for the expression
N
∑

i=1
Ti

N
;

and Avg4 and SD4 list averages and standard deviations for the expression
N
∑

i=1
FDi

N
.

Algorithm GA-SlackMod was the winner in all aspects relative to the other two. For
all instances, in absolute terms, algorithm GA-SlackMod obtained earliness, tardiness, and
flow time deviation close to the optimum value (i.e. near zero). To test if the differences
between GA-SlackMod and the other two (GA-Basic and GA-SlackND) were statistically
significant, we again used Wilcoxon’s signed rank test. Table 5 presents the P-values of
the paired comparisons. As can be observed, GA-SlackMod was significantly better than
any of the other two at a confidence level smaller than 1%.
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TABLE 5. P-values of the paired comparisons. Obtained by applying
Wilcoxon’s signed rank test to the differences between algorithm GA-
SlackMod and the other two.

Paired comparison P-value
GA-Basic vs GA-SlackMod 0.000000
GA-SlackND vs GA-SlackMod 0.000000

The last column of Table 2 presents percentage improvement of the average last gen-
eration fitness values to those of the first generation. It is clear that the GA is responsible
for a big improvement in the quality of the solution. Sometimes the average percentage
improvement is as large as 100%. As expected, the fitness obtained gets smaller, and is
thus better, as the number of overlappings of projects increases. This is due to the fact
that as the number of overlappings of projects increases so does the flexibility in terms of
capacity, therefore allowing for more possibilities of finding a good schedule.

TABLE 6. Experimental results for the algorithm GA-SlackMod. For
each problem type (10, 20, 30, 40, and 50 projects) and number of over-
lapping projects, the table lists averages for fitness, tardiness, earliness,
and flow time deviations for two performance measures.

Overlapping Fitness Tardiness Earliness Flow Time
Projects Projects 1) 2) 1) 2) 1) 2) 1) 2)

10 3 10.35 53.58 0.00 0.00 1.20 0.71 105.63 106.60

20 3 73.14 118.62 0.00 0.00 2.57 4.52 103.84 116.01
6 0.95 41.03 0.00 0.00 0.42 0.36 96.57 96.89

30 3 210.16 23.41 0.01 0.02 3.92 12.67 104.30 143.77
6 3.89 34.25 0.00 0.00 0.60 0.57 97.01 97.44
9 0.48 40.38 0.00 0.00 0.38 0.41 95.14 95.20

40 3 1324.14 2637.71 0.06 0.04 9.45 30.17 109.26 187.46
6 6.18 48.24 0.00 0.00 0.59 0.84 96.19 96.57
9 4.48 33.94 0.00 0.00 0.50 0.39 96.01 95.89
12 2.00 41.19 0.00 0.00 0.52 0.44 96.89 5.26

50 3 2584.49 6638.50 0.07 0.03 14.68 55.21 110.10 262.52
6 25.87 43.04 0.00 0.00 0.87 1.01 96.14 97.04
9 0.73 29.06 0.00 0.00 0.43 0.39 95.67 95.83
12 1.35 42.65 0.00 0.00 0.50 0.54 95.24 95.21
15 1.07 39.40 0.00 0.00 0.50 0.43 94.56 94.60

1) Average obtained using ∑
i

FD2
i 2) Average obtained using c ∑

i

(CDi−BDi)
2

CPDi
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TABLE 7. Average elapsed time for 50 generations. This table lists av-
erage elapsed running time for all three algorithms on all test instances
in each test problem class.

Problem instance type (number of projects): 10 20 30 50

Average elapsed time for 50 generations: 178 s 449 s 840 s 1860 s

Table 6 presents the results obtained by algorithm GA-SlackMod with the performance
measure (5), where ∑

i
FD2

i is replaced by

c ∑
i

(CDi − BDi)
2

CPDi
.

The algorithms were implemented in Visual Basic 6.0 and the tests were run on a PC
with a 1.33 GHz AMD Thunderbird CPU on the MS Windows Me operating system. The
average computational times, in seconds, for each problem instance and for 50 generations
are presented in Table 7.

10. CONCLUSIONS AND FURTHER RESEARCH

This paper presents a genetic algorithm for the resource constrained multi-project sched-
uling problem (RCMPSP). The chromosome representation of the problem is based on
random keys. The schedules are constructed using a heuristic that generates parameterized
active schedules based on priorities, delay times, and release dates defined by the genetic
algorithm.

The approach was tested on a set of test problem with 10, 20, 30, 40, and 50 projects
(having 1200, 2400, 3600, 4800, and 6000 activities, respectively). In the computational
experiments, the algorithm GA-SlackMod had better results than any of the other two ap-
proaches and obtained values very close to the optimum value (zero), therefore validating
the effectiveness of the proposed approach.

Further work could be conducted to explore the possibility of using activities with multi-
mode usage of resources. Furthermore, the genetic algorithm could be used to determine
the level of availability of each resource within a certain predefined range of values.
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