
Network design for OSPF routing

Luciana S. Buriol1, Paulo M. França,1

Mauricio G.C. Resende2, and Mikkel Thorup2

1 Faculdade de Engenharia Elétrica e de Computação, UNICAMP, SP, Brazil.
{buriol,franca}@densis.fee.unicamp.br,

2 Internet and Network Systems Research, AT&T Labs Research, Florham Park, NJ, USA.
{mgcr,mthorup}@research.att.com

Abstract. Internet protocol (IP) traffic follows rules established by routing pro-
tocols, such as Open Shortest Path First (OSPF). Each router computes shortest
paths using weights assigned by the network operator, and creates destination
tables used to direct each IP packet to the next router on the path to its final des-
tination. Furthermore, the routing protocol is used to establish procedures to be
taken in case of a failure in the network. In this extended abstract, we describe a
new genetic algorithm for designing a network with minimal total link capacity
necessary to route demand without overload in case of any single edge or node
failure.

The Internet is made up of many routing domains, called autonomous systems
(ASes). Internet protocol (IP) traffic flows follows rules established by routing pro-
tocols. Shortest path first protocols, such as Open Shortest Path First (OSPF), are the
most commonly used Interior Gateway Protocols (IGPs). These routing protocols direct
traffic based on link weights assigned by the network operator. Each router in the AS
computes shortest paths and creates destination tables used to direct each IP packet to
the next router on the path to its final destination.

It is also the role of the routing protocol to specify how the network should quickly
react to changes in the topology of the AS, such as when transmission lines go out of
service or come back on, routers crash, or network policies change [6]. In such situa-
tions, IP traffic is re-routed through the shortest paths not traversing the affected part of
the network. If such links have insufficient bandwidth capacity, overload occurs.

To satisfy requirements for Quality of Service (QoS) in IP routing, it is desirable
to design a network to easily handle a single link or router failure without causing
overload. One possible solution is to maintain part of the link bandwidth free in the
eventuality of failures.

This extended abstract addresses the issue of designing a OSPF-routed network
with minimum total link capacity needed to route the required demand and handle any
single (link or router) failure. We assume the topology is given but link capacities must
be determined. The capacity is limited to a discrete set of values 0,m,2m,3m, . . ., i.e.
multiples of a unit value m. For simplicity we consider m = 1. Our aim is to design
an efficient network and routing scheme, i.e. determine OSPF link weights and link
capacities such that the total capacity is minimized.

We propose a genetic algorithm for this problem, and apply it to two real-world
problem instances. To the best of our knowledge, this problem has not yet been ad-
dressed in the literature.

1 A genetic algorithm for weight and capacity assignment

Let us represent a data communication network by a directed network graph G = (V,E),
where V and E denote, respectively, the sets of routers (nodes) and transmission links
(arcs). Let us assume that each link a ∈ E has capacity ca and that we are given a
demand matrix D that, for each pair (s, t) ∈ V ×V , specifies the demand dst in traffic
flow from node s to node t.

Given a set of traffic demands between origin-destination pairs [3], the OSPF weight
setting problem consists in assigning positive integer weights wa ∈ [1,wmax] to each arc
a ∈ E, such that a cost function is optimized when the demands are routed according to
the rules of the OSPF protocol.

In this section, we propose a genetic algorithm for assigning weights and capacities
to links. Given a weight assignment w1,w2, . . . ,w|E|, the values m1,m2, . . . ,m|E| should
be defined such that a maximum link utilization restriction is satisfied. The link utiliza-
tion rate is defined as the ratio between load on the link and the link capacity. The aim
is to find a weight assignment which minimizes the total link capacity.

Let T be the set of destination nodes and let gt = (V,Et) denote the shortest path
graph associated with each destination node t ∈ T . The distance from each node to the
destination t is stored in the |V |-vector dt , while |V |-vector ρt stores the sum of the
capacities of the outgoing links a ∈ gt . For each pair (s, t) and each arc a, let la be the
total load on arc a for all pairs (i, j) with i, j ∈ V , i.e., the sum of the flows going over
a.

The genetic algorithm uses the same population structure proposed in [2] and later
used in [1]. We next present how the capacities are computed. The maximum utilization
for a network in normal operation (MU) and with failure (MUf) are given. Furthermore,
lf and rf indicate, with values 1 (up) or 0 (down), the state of link and router failure,
respectively.

Figure 1 presents a pseudo-code for determining the capacities. In the pseudo-code,
procedure defineMulti() receives as input the values of w, MU, MUf, lf and rf. As
output, the procedure returns the vector of link capacities. Initially, all links receive unit
capacity and the solution data structures are populated (line 2). Lines 4–5 update the
capacities to satisfy the maximum utilization constraint under normal operation, while
in the remaining part of the loop in lines 3–8 the capacities are increased to satisfy the
maximum utilization constraint under single-failure mode. Procedure simulateFail()
returns 1 when at least one capacity has changed and 0 otherwise. Finally, in line 11,
the capacities are summed up to determine the objective function value.

The function updateMulti() increases the capacities to satisfy the maximum uti-
lization MU required. For each link a = (−→u,v), its minimum capacity value m∗ is set to
dsol.la/(U ∗ ca)e. In case ma is less than the minimum, it is set to m∗, and the vector
ρ updated. The tail nodes of the arcs whose capacities were increased are inserted into
the set L.

procedure defineMulti(w,MU,MUf, lf,rf)
1 for a ∈ E do ma← 1;
2 sol← fillSolMemory(w,m);
3 do
4 L← updateMulti(sol,m,MU);
5 if |L|> 0 then updateSol(w,sol,m,MU,L);
6 if rf = 1 then ac1← simulateFail (sol,m,w,R, |V |,MUf);
7 if lf = 1 then ac2← simulateFail (sol,m,w,E, |E|,MUf);
8 while ac1 = 1 or ac2 = 1;
11 f it← ∑a∈E ma;
end defineMulti.

Fig. 1. Capacity determination for a weight vector w and maximum loads MU and MUf.

If the capacities are adjusted, the flow is reloaded according to the new capacity
values. The new loads can require different capacity values. This process is repeated
until no capacities or loads are adjusted, i.e. each link has at least the minimum capacity
value required to not violate any restriction. This procedure is executed by function
updateSol().

Procedure simulateFail() is called to simulate any link or router failure. Set R
is computed once and contains |V | vectors, each set Ri contains the set of disabled
links due to the failure of router i ∈ V . If there is any single link or router failure, gt

is updated [1], the load recomputed and the capacities adjusted. This procedure stops
when all failures are tested consecutively without causing the increase of any capacity.

2 Computational Results

This section presents preliminary experimental results using the genetic algorithm.
The experiments were performed on a 1.7 GHz Intel Pentium IV computer with 256

MB of RAM, running RedHat Linux 8.0. The codes were written in C, and compiled
with the gcc compiler version 3.2, using the -O3 optimization option. CPU times were
measured with the system function getrusage.

The GA parameters were set exactly as in Buriol et al. [1]. The population size was
set to 50 and maximum link weight value wmax = 20. For the experiments presented
in this extended abstract, the stopping criterion is 500 generations and the maximum
utilization for the network without failure is set to MU = 0.80.

The experiments were conducted on two real-world networks: att and attAS. In-
stance att, first used by Fortz and Thorup [4], corresponds to old data from the AT&T
Worldnet backbone network, while instance attAS corresponds to a recent snapshot of
the domestic U.S. AT&T backbone. The networks are summarized in Table 1.

Table 2 presents results for the GA applied to instance attAS using the basic objec-
tive function in the top half of the table, and another objective function in the bottom
half. This second objective favors solutions that minimize total link length, i.e. it is a

Table 1. Network characteristics.

Class Name |V | |E| |T | o-d pairs ∑duv

AT&T WorlNet backbone att 90 274 17 272 18465
AT&T AS/USA backbone attAS 54 278 18 9900 153470

Table 2. Results for GA using instance attAS and two objective functions.

∑a∈E multia
MUf = 0.85 MUf = 0.90 MUf = 1.00

lf rf best time impr best time impr best time impr
0 0 343 50 23 343 50 23 343 50 23
0 1 614 599 23 595 605 21 545 610 23
1 0 619 1735 21 593 1736 21 543 1699 24
1 1 624 1891 24 590 1824 25 548 1892 26

∑a∈E multia ∗ lengtha

MUf = 0.85 MUf = 0.90 MUf = 1.00
lf rf best time impr best time impr best time impr
0 0 112565 50 59 112565 50 59 112565 50 59
0 1 218179 631 64 206329 634 65 193031 619 65
1 0 203845 1866 67 186463 1774 77 175367 1523 75
1 1 215127 1866 70 207103 1927 70 186434 1830 73

weighted version of the basic capacity minimization problem. For each objective func-
tion, three values of MUf were tested. The rows give the combination of failures, with
the first row not considering any failure and last row considering both failures. Column
impr shows the improvement achieved after 500 generations compared to the initial
solution using random weights.

We observe that failures raise considerably the total required capacity. The required
capacity is similar for both link or router failure, while the running times are longer for
link failure. This increase in running time is understandable, since there are 278 links to
test for failure, against only 54 routers. Looking at the last row, it is possible to verify
that when both failures are considered, neither the total capacity nor the running time is
affected much as compared to the results for single link failure.

Table 3 presents results for instance att considering the objective function ma ∗
lengtha and 12 distinct demand matrices [4]. In this test the time and solution increases
with the increase of the traffic flow. The parameters are fixed at MUf = 0.90, lf=1 and
rf=0.

Analyzing these results, we conclude that both the solution quality and running time
increase with the increase of the traffic flow.

Table 3. Results for GA using instance att and objective function multia ∗ lengtha.

inst best time impr inst best time impr inst best time impr
att 1 89511 575 6 att 5 95089 1521 13 att 9 128556 1565 26
att 2 89948 672 7 att 6 97202 1507 22 att 10 144881 1581 23
att 3 90926 784 7 att 7 108824 1513 20 att 11 157154 1605 22
att 4 91672 1258 10 att 8 111820 1563 33 att 12 168583 1583 20

3 Concluding Remarks

This extended abstract presented a new network design problem and a genetic algorithm
for network design that supports single link or router failures. The computational results
were conducted using data from two real world network design problems, using differ-
ent objective functions, maximum utilization, demand matrices, and link and router
failure combinations. From the analysis of the results, we conclude that the time and
solution values increase with traffic flow. Besides, they are greater for networks with
failures. The solution values are similar when considering only link or router failure,
while the times are longer for link failure. Considering both failures does not change
much the solution value or time when compared with single link failure.

References

1. L.S. Buriol, C.C. Ribeiro M.G.C. Resende, and M. Thorup. A hibrid genetic algorithm for
the weight setting problem in ospf/is-is routing. Technical Report TD-5NTN5G, AT&T Labs
Research, 2003.

2. M. Ericsson, M. G. C. Resende, and P. M. Pardalos. A genetic algorithm for the weight setting
problem in ospf routing. J. of Comb. Opt., 6:299–333, 2002.

3. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. Deriving traffic
demands for operational IP networks: Methodology and experience. IEEE/ACM Transactions
on Networking, 9:265–279, 2001.

4. B. Fortz and M. Thorup. Increasing internet capacity using local search. Technical report,
AT&T Labs Research, 2000. Preliminary short version of this paper published as “Internet
Traffic Engineering by Optimizing OSPF weights,” in Proc. 19th IEEE Conf. on Computer
Communications (INFOCOM).

5. M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Transactions on Modeling and Computer
Simulation, 8(1):3–30, 1998.

6. J.T. Moy. OSPF, Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

