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Abstract. With the growth of the Internet, Internet Service Providers (ISPs)
try to meet the increasing traffic demand with new technology and improved
utilization of existing resources. Routing of data packets can affect network
utilization. Packets are sent along network paths from source to destination
following a protocol. Open Shortest Path First (OSPF) is the most commonly
used intra-domain Internet routing protocol (IRP). Traffic flow is routed along
shortest paths, splitting flow at nodes with several outgoing links on a shortest
path to the destination IP address. Link weights are assigned by the network
operator. A path length is the sum of the weights of the links in the path.
The OSPF weight setting (OSPFWS) problem seeks a set of weights that
optimizes network performance. We study the problem of optimizing OSPF
weights, given a set of projected demands, with the objective of minimizing
network congestion. The weight assignment problem is NP-hard. We present
a genetic algorithm (GA) to solve the OSPFWS problem. We compare our
results with the best known and commonly used heuristics for OSPF weight
setting, as well as with a lower bound of the optimal multi-commodity flow
routing, which is a linear programming relaxation of the OSPFWS problem.
Computational experiments are made on the AT&T Worldnet backbone with
projected demands, and on twelve instances of synthetic networks.

1. Introduction

With the growth of the Internet, traffic is approximately doubling each year [8].
Today, Internet Service Providers (ISPs) try to meet tomorrow’s escalating traffic
demand with new technologies, but primarily with a massive capacity expansion of
already existing links. There have been spectacular growth rates of traffic, doubling
every three months in the 1995–96 boom, caused by the emerging graphic-intensive
web browsers. In 2000, the growth rate has recessed to doubling each year. In the
near future, we are likely to see another data traffic boom due to the worldwide
spread of the Internet and its use for an increasing number of purposes. These
developments highlight the importance of Internet traffic engineering, which seeks
more efficient use of existing network resources.

The Internet on a network level is built up of approximately twelve major Internet
Service Providers (ISPs) worldwide [25]. An ISP is a company that provides access
to the Internet and lets other companies lease bandwidth from their high-speed
lines. AT&T Worldnet is an example of a large ISP. The larger ISPs arrange
peering agreements to exchange traffic. Connected to these major backbones are
the regional providers with thousands of local providers. Individual users can also
get access through online service providers.
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When one sends or receives data over the Internet, the information is divided
into small chunks called packets or datagrams. A header, containing the necessary
transmission information, such as the destination Internet Protocol (IP) address, is
attached to each packet. The data packets are sent along links between routers on
Internet. When a data packet reaches a router, the incoming datagrams are stored
in a queue to await processing. The router reads the datagram header, takes the
IP destination address and determines the best way to forward this packet for it
to reach its final destination [4]. As each packet is treated individually, the order
in which they arrive may not be the same order in which they were sent out. The
Internet Protocol (IP) simply delivers them and it is up to the Transmission Control
Protocol (TCP) to reorder the datagrams.

Routing is a fundamental engineering task on the Internet. It consists in finding
a path from a source to a destination host. Routing is complex in large networks
because of the many potential intermediate destinations a packet might traverse
before reaching its destination [26]. To decrease complexity, the network is divided
into smaller domains. Considering each domain individually makes the network
more manageable. Routing domains in today’s Internet are called autonomous
systems (AS). Interior Gateway Protocols (IGP) are used within the AS, while
Exterior Gateway Protocols (EGP) are used to route traffic flow between them [4].

The TCP/IP suite has many routing protocols, such as OSPF, BGP, RIP, IGRP,
and Integrated IS-IS, all in use in today’s Internet [4, 23]. OSPF, RIP, IGRP, and
IS-IS are categorized as IGPs, while BGP is an EGP. A routing table instructs the
router how to forward packets. The routing protocols employ different operations to
analyze different incoming update messages to produce their routing tables. Given
a packet with an IP destination address in its header, the router performs a routing
table lookup which returns the IP address of the packet’s next hop.

Open Shortest Path First (OSPF) is the most commonly used intra-domain In-
ternet routing protocol [12, 26]. OSPF requires routers to exchange routing infor-
mation with all other routers in the AS. Complete network topology knowledge, i.e.
the arrangement of all routers and links in the domain, is required. Because each
router knows the complete topology, each router can compute all needed shortest
paths [4]. OSPF is a dynamic protocol and quickly detects topological changes in
the AS and calculates new loop-free routes after a short period of convergence [16].

OSPF calculates routes as follows. Each link is assigned a dimensionless metric,
called cost or weight. This integer cost ranges from 1 to 65535 (= 216 − 1) and is
shown in the link-state database. The cost of a path in the directed graph is the
sum of the link costs. Using Dijkstra’s shortest path algorithm [9], OSPF mandates
that each router computes a tree of shortest paths with itself as the root [16]. This
tree shows the best routes to all destinations in the AS. The destination router in
the first hop is extracted into the IP routing table. In the case of multiple shortest
paths, some vendors have implemented OSPF so that it will use load balancing and
split the traffic flow over several shortest paths [23].

The link weights are assigned by the network operator. The lower the weight, the
greater the chance that traffic will get routed on that link [4]. Recommendations
have been suggested as to how to assign link weights. Cisco, a major router vendor,
by default, assigns OSPF metrics as the inverse of the interface available bandwidth
[26]. If each link cost is set to 1, the cost of a path is equal to the number of links
(hops) in the path [23]. In this paper, we propose a technique to find good OSPF
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routing weight settings for a given network and router-to-router traffic requirements
(demand).

OSPF is an IGP and, therefore, is designed to run internal to a single AS. There
are evolving guidelines on how to best design an OSPF network. In 1991, the
guideline was at most 200 routers in a single area [22]. To date, Cisco’s guideline
recommends no more than six router hops from source to destination, and 30 to
100 routers per area [26]. There is no limit in the number of routers per area, but
for OSPF to scale well, less than 40 routers in an area is recommended [26]. As
OSPF uses a CPU-intensive shortest-path algorithm, experience has shown that
40 to 50 routers per area is the optimal upper limit for OSPF. Our test problems
range very realistically from 50 routers (148 links) to 100 routers (503 links). Our
only real-world network is a realistic version of the AT&T Worldnet backbone. The
instance we use is a few years old and has 90 routers and 274 links.

The mathematical model of a data communications network is the general rout-
ing problem, defined as follows. Consider the capacitated directed graph G =
(N,A, c), A ∈ N ×N, c : A → �

, where N and A denote, respectively, the sets of
nodes and arcs. The nodes and arcs represent routers and the capacitated network
links, respectively. Given the demand matrix D = (dst), with origin-destination
pairs (s, t), where dst is the amount of data traffic to be sent from IP source ad-
dress s to IP target address t, the problem is to route this demand on paths in the
network while minimizing congestion.

We use the congestion measure proposed by Fortz and Thorup [12]. With each
arc a ∈ A, we associate a cost Φa as a function of the utilization la/ca, i.e. how
close the load la is to the link capacity ca. Our objective is to distribute the flow
so as to minimize the sum of the costs over all arcs

Φ =
∑

a∈A
Φa(la).(1)

Generally, Φ favors sending flow over arcs with small utilization. The cost in-
creases progressively as the utilization approaches 100% and then explodes when
maximum capacity is reached. This approach of heavily penalizing congestion gives
us our formal objective.

The cost function Φ is piecewise linear and convex. For each arc a ∈ A, Φa is
the continuous function with Φa(0) = 0 and derivative

Φ′a(la) =





1 for 0 ≤ la/ca < 1/3,
3 for 1/3 ≤ la/ca < 2/3,

10 for 2/3 ≤ la/ca < 9/10,
70 for 9/10 ≤ la/ca < 1,

500 for 1 ≤ la/ca < 11/10,
5000 for 11/10 ≤ la/ca < ∞.

(2)

Function Φa is depicted in Figure 1. Because of the explosive increase in cost as
loads exceed capacities, our objective is to keep the maximum utilization maxa∈A la/ca
below 1, if possible.

In the general routing problem, there are no constraints on how flow can be
distributed along the paths, and the problem can be formulated and solved in
polynomial time as a multi-commodity flow problem. Other choices of the objective
function are possible, see e.g. Awduche et al. [2].
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Figure 1. Arc congestion function Φa.

In this model, the most controversial issue is the demand matrix D. An estima-
tion of future demands can be based, as in the case of the AT&T Worldnet back-
bone, on concrete measures of flow between source-destination pairs [10, 11]. The
demand matrix could also be predicted from a concrete set of consumer subscrip-
tions to virtual leased lines. Our demand matrix assumption does not accommodate
unpredicted bursts in traffic. However, one could deal with more predictable peri-
odic changes. From observed Internet traffic activity, one could divide the day into
different parts and consider the parts as independent routing problems.

Given a network topology and predicted traffic demands, the OSPF weight set-
ting (OSPFWS) problem is to find a set of OSPF weights that optimizes network
performance. More precisely, given a directed network G = (N,A), where N is the
set of nodes and A is the set of arcs, with capacity ca for each a ∈ A, and a demand
matrix D that, for each pair (s, t) ∈ N ×N , specifies the demand dst in traffic flow
between s and t, we want to determine a positive integer weight wa ∈ [1, 65535] for
each arc a ∈ A such that the objective function Φ is minimized.

The chosen arc weights determine the shortest paths, which in turn completely
determine the routing of traffic flow, the loads on the arcs, and the value of the
cost function Φ. Fortz and Thorup [12] prove that it is NP-hard to find not only
the optimal setting of OSPF weights for the OSPFWS problem, but even finding
an approximate solution is NP-hard.

To the best of our knowledge, the only previous work on optimizing OSPF
weights with even splitting of flow is Fortz and Thorup [12]. They describe a
local search heuristic for the problem. Other papers on optimizing OSPF weights
[5, 20, 24] have either chosen weights so as to avoid multiple shortest paths from
source to destination, or applied a protocol for breaking ties, thus selecting a unique
shortest path for each source-destination pair. Rodrigues and Ramakrishnan [24]
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present a local search procedure similar to that of Fortz and Thorup. They con-
sider only a single descent and work with small networks having at most 16 nodes
and 18 links. Bley et al. [5] use local search with single descent and consider
small networks with at most 13 links. They simultaneously deal with the problem
of designing the network. Lin and Wang [20] present a completely different ap-
proach based on Lagrangian relaxation, and consider networks up to 26 nodes. We
tested our algorithm on the test problems used by Fortz and Thorup. The AT&T
Worldnet backbone, as well as the other test problems, are described in Section 4.

In this paper, we present a genetic algorithm, which we call GAOSPF, for op-
timizing OSPF weights for intra-domain Internet routing. We use similar objec-
tive, modeling of the OSPFWS problem, and measure of algorithm performance
as Fortz and Thorup. GAOSPF is tested on the AT&T Worldnet backbone, as
well as on twelve instances of synthetic networks, from three different theoretical
network models. Results are compared to a linear programming (LP) relaxation
lower bound and to other commonly used heuristics for weight setting. We also
compare our results with the local search heuristic of Fortz and Thorup [12]. For
most network instances, GAOSPF finds solutions within a few percent of the LP
lower bound. Compared to the commonly used heuristic recommended by Cisco,
we are able to increase network capacity by 70% for the AT&T Worldnet back-
bone, and over 100% for the most realistic 2-level hierarchical graphs before the
network becomes congested. The average possible traffic increase is 52% for all test
problems.

2. Mathematical formulation

In a data communication network, nodes and arcs represent routers and trans-
mission links, respectively. Let N and A denote, respectively, the sets of nodes
and arcs. Data packets are routed along links, which have fixed capacities. In the
OSPFWS problem, we relax the capacity constraint and penalize congestion with
a cost function Φ, defined in (1). Each demand from source to destination router
represents a commodity. This way, the problem of determining the minimum cost
routing of all demands is an uncapacitated multicommodity flow problem [1].

Given a directed network graph G = (N,A) with a capacity ca for each a ∈ A,
and a demand matrix D that, for each pair (s, t) ∈ N ×N , gives the demand dst
in traffic flow between nodes s and t, then for each pair (s, t) and each arc a, we

associate a variable f
(st)
a that indicates how much of the traffic flow from s to t

goes over a. Variable la represents the total load on arc a, i.e. the sum of the flows
going over a, and Φa is used to model the piecewise linear cost function of arc a
[12].

With this notation, the multi-commodity flow problem with increasing linear
costs is formulated as the following linear program:

min Φ =
∑

a∈A
Φa
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subject to

∑

u:(u,v)∈A
f

(st)
(u,v) −

∑

u:(v,u)∈A
f

(st)
(v,u) =




−dst if v = s,
dst if v = t,
0 otherwise,

v, s, t ∈ N,(3)

la =
∑

(s,t)∈N×N
f (st)
a , a ∈ A,(4)

Φa ≥ la, a ∈ A,(5)

Φa ≥ 3la − 2/3ca, a ∈ A,(6)

Φa ≥ 10la − 16/3ca, a ∈ A,(7)

Φa ≥ 70la − 178/3ca, a ∈ A,(8)

Φa ≥ 500la − 1468/3ca, a ∈ A,(9)

Φa ≥ 5000la − 19468/3ca, a ∈ A,(10)

f (st)
a ≥ 0, a ∈ A; s, t ∈ N.(11)

Constraints (3) are flow conservation constraints that ensure routing of the de-
sired traffic. Constraints (4) define the load on each arc and constraints (5–10)
define the cost on each arc according to the cost function Φ.

This linear program is a relaxation of OSPF routing, as it allows for arbitrary
splitting of flow. It can be solved optimally in polynomial time [17, 18]. In our
computational experiments, we solve this LP relaxation optimally to obtain a lower
bound of the optimal OSPFWS solution. We denote this lower bound by LPLB.

Fortz and Thorup [12] show that the largest gap between LPLB and the value
of an optimal solution of the OSPFWS problem is at most 5000. They show that,
for a specific family of networks, this gap can approach 5000.

3. GA for the OSPFWS problem

Genetic algorithms (GA) are global optimization techniques derived from the
principles of natural selection and evolutionary theory [13, 14]. Genetic algorithms
have been theoretically and empirically proven to be robust search techniques [13].
Each possible point in the search space of the problem is encoded into a represen-
tation suitable for applying the GA. A GA transforms a population of individual
solutions, each with an associated fitness (or objective function value), into a new
generation of the population, using the Darwinian principle of survival of the fittest.
By applying genetic operators, such as crossover and mutation, a GA successively
produces better approximations to the solution. At each iteration, a new generation
of approximations is created by the process of selection and reproduction [19].

A simple genetic algorithm is described by the pseudo-code in Figure 2. In this
pseudo-code, the population at time t is represented by P (t).

The three steps of a GA, according to the pseudo code, are:

1. Randomly create an initial population P (0) of individuals.
2. Iteratively perform the following substeps on the current generation of the

population until the termination criterion has been satisfied.
(a) Assign fitness value to each individual using the fitness function.
(b) Select parents to mate.
(c) Create children from selected parents by crossover and mutation.
(d) Identify the best-so-far individual for this iteration of the GA.
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begin
t = 0
initialize P (0)
evaluate P (0)
while(not termination-criteria) do

t = t+ 1
select P (t) from P (t− 1)
alter P (t)
evaluate P (t)

end
end

Figure 2. Pseudo-code for a simple genetic algorithm

3.1. Implementation of GA for the OSPFWS problem. Next, we describe
how the above principles were tailored to produce a genetic algorithm for the
OSPFWS problem.

3.1.1. Representation. Since the representation of a solution should be such that
the genetic operators produce feasible offsprings, encoding is often difficult when
tailoring a genetic algorithm for an optimization problem. However, this is not the
case for the OSPFWS problem. A solution to the OSPFWS problem is represented
by a point in the discrete search space [1, 65535]|A|. We used the representation of
weights w = 〈w1, w2, . . . , w|A|〉, where wi ∈ [1, 65535] for each arc i = 1, . . . , |A|.
All points in the search space represent feasible solutions. As we note later, instead
of using the upper limit of 65535, in our implementation we use a user-defined
upper limit MAXWEIGHT.

3.1.2. Initial population. The initial population is generated by randomly choosing
feasible points in the search space [1, 65535]|A|, represented as integer vectors. In
addition to these randomly generated solutions, we also add the weight settings of
two other common heuristics. We add UnitOSPF , represented by the unit vector,
and InvCapOSPF , represented by the weight vector where each arc weight is set
inversely proportional to its arc capacity. Both heuristics are described later.

3.1.3. Evaluation function. The association of each solution to a fitness value is
done through the fitness function. We associate a cost to each individual through
the cost function Φ. The evaluation function is complex and computationally de-
manding, as it includes the process of OSPF routing, needed to determine the arc
loads resulting from a given set of weights. This evaluation function is the com-
putational bottleneck of the algorithm. Another basic computation needed by the
genetic algorithm is the comparison of different solutions. The fitness value is the
same as the cost value. In other words, “cost” and “fitness” are used in the same
sense, i.e. less fitness is better. We now show how we calculate the cost function Φ
for a given weight setting {wa}a∈A, and a given graph G = (N,A) with capacities
{ca}a∈A, and demands dst ∈ D. We follow closely the procedure given in Fortz and
Thorup [12].

A given weight setting will completely determine the shortest paths, which in
turn determine the OSPF routing, and how much of the demand is sent over which
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arcs. The load on each arc gives us the arc utilization, which in turn gives us a
cost from the cost function Φa. The total cost Φ for all arcs in the network is the
fitness value.

We show, in more detail, how to compute the cost function Φ =
∑
a∈A Φa(la/ca).

The basic problem is to compute the arc loads la resulting from the given weight
setting {wa}a∈A. The arc loads are computed in five steps [12]. For all demand
pairs dst ∈ D, consider one destination t at a time and compute partial arc loads
lta ∀ t ∈ Ñ ⊆ N , where Ñ is the set of destination nodes.

1. Compute the shortest distances dtu to t from each node u ∈ N , using Dijk-
stra’s shortest path algorithm [9]. Dijkstra’s algorithm usually computes the
distances away from source s, but since we want to compute distance to sink
node t, we apply the algorithm on the graph obtained by reversing all arcs in
G.

2. Compute the set At of arcs on shortest paths to t as,

At = {(u, v) ∈ A : dtu − dtv = w(u,v)}.

3. For each node u, let δtu denote its out degree in Gt = (N,At), i.e.

δtu = |{v ∈ N : (u, v) ∈ At}|.
If δtu > 1, then traffic flow is split at node u.

4. The partial loads lta are computed as:
(a) Nodes v ∈ N are visited in order of decreasing distance dtv to t.
(b) When visiting a node v, for all (v, w) ∈ At, set

lt(v,w) =
1

δtv
(dvt +

∑

(u,v)∈At
lt(u,v)).

5. The arc load la is now summed from the partial loads as,

la =
∑

t∈Ñ
lta.

The evaluated costs are normalized to allow us to compare costs across different
sizes and topologies of networks. We applied the same normalizing scaling factor
as introduced by Fortz and Thorup [12]. The uncapacitated measure is defined as

Φuncap =
∑

(s,t)∈N×N
dst · hst,

where hst is the distance measured with unit weights (hop count) between nodes s
and t. The scaled cost is defined as

Φ∗ = Φ/Φuncap.

Note that Φ∗ = 1 implies that the traffic flow is routed along unit weight shortest
paths with all loads staying below 1/3 of the capacity.

3.1.4. Population partitioning. After sorting the individuals according to their fit-
ness values, the population is divided into three classes. The top α × 100% (class
A) is called the upper class, or elite. The next β × 100% (class B) is called the
middle class. The remaining population (class C) constitutes the lower class.
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3.1.5. Parent selection. GAOSPF uses a combined selection method from Holl-
stein’s five selection methods [15]. It combines family selection and individual
selection, so that it randomly chooses one parent from the elite class (class A)
and the other parent from a non-elite class (either class B or C). Using the fam-
ily size control parameters α and β, one can control the elitist property, and thus
the balance of convergence and diversity. To create the next generation, GAOSPF
promotes all class A solutions without change, replaces all class C solutions by ran-
domly generated solutions, and chooses β ×PopSize pairs of parents, as described
above, where PopSize is the size of the population.

This selection method follows three principles [19]:

1. Better individuals are more likely to reproduce.
2. Re-selection is allowed as better individuals can be selected for breeding more

than once.
3. Selection is probabilistic. This way, the selection process will do a significant

amount of hill climbing, but it is not entirely greedy.

3.1.6. Crossover. Crossover is done on the selected pairs of parents. The crossover
procedure used is called random keys, first proposed by Bean [3]. To cross and
combine two parent solutions p1 (elite) and p2 (non-elite), first generate a random
|A|-vector r of real numbers between 0 and 1. Let K be a cutoff real number
between 0.5 and 1, which will determine if a gene is inherited from p1 or p2. A
child c is generated as follows:

for all genes i = 1, . . . , |A| do
if r[i] < K

c[i] = p1[i]
else

c[i] = p2[i]
end.

With this strategy, the best convergence results are experimentally obtained
with K = 0.7. However, the GA often experienced premature convergence to local
optima. To escape this convergence problem and diversify the search, an additional
mutation is implemented in the crossover procedure. The mutation simply inserts
a random integer in the interval between 1 and 65535 in the gene. The single gene
mutation probability pg determines if a gene will be randomly mutated. To do this,
generate an additional |A|-vector s of real numbers between 0 and 1. A child c is
generated as follows:

for all genes i = 1, ..., |A| do
if s[i] < pg

c[i] = random[1...65535]
else if r[i] < K

c[i] = p1[i]
else

c[i] = p2[i]
end

Good convergence results are obtained with pg = 0.01.
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4. Computational results

We describe computational experiments with a C language implementation of
GAOSPF. The genetic algorithm is compared with several heuristics as well as the
linear programming lower bound. Most of the experiments were done on an IBM
SP RS6000 system, running AIX v4.3. An additional experiment was done on an
SGI Challenge computer (196-MHz MIPS R10000).

The objective of the experiments was to study the performance of the genetic
algorithm on the test problems used in Fortz and Thorup [12]. These problems con-
sist of instances on the AT&T Worldnet backbone network with projected demands,
and three flavors of synthetic networks. Problem characteristics are summarized in
Table 1. For each problem, the table lists its type, number of nodes (N), number of
arcs (A), number of demand pairs (Ds), sum of demands (

∑
D), time (in seconds)

to make one cost evaluation, and product of time for a single cost evaluation (time
eval.) and the total number of evaluations made in the experiments (tot. time).

The AT&T Worldnet backbone is a real-world network of 90 routers and 274
links. The 2-level hierarchical networks are generated using the GT-ITM generator
[28], based on a model of Calvert et al. [6] and Zegura et al. [29]. Arcs are of two
types. Local access arcs have capacities equal to 200, while long distance arcs have
capacities equal to 1000. For the random networks, the probability of having an arc
between two nodes is given by a constant parameter that controls the density of the
network. All arc capacities are set to 1000. In the Waxman networks, the nodes
are points uniformly distributed in the unit square. The probability of having an
arc between nodes u and v is ηe−δ(u,v)/(2θ), where η is a parameter used to control
the density of the network, δ(u, v) is the Euclidean distance between u and v, and
θ is the maximum distance between any two nodes in the network [27]. All arc
capacities are set to 1000. Fortz and Thorup generated the demands to force some
nodes to be more active senders or receivers than others, thus modeling hot spots
on the network. Their generation assigns higher demands to closely located nodes
pairs. Details can be found in [12].

The cost evaluation of a solution is the computational bottleneck of the al-
gorithm. The cost evaluation includes the shortest path evaluations, as well as
the OSPF routing. Recall that in Table 1, the average time (time/eval.), in sec-
onds, for each cost evaluation is listed. For example, the total expected running
time for a run with population size (PopSize) of 200, maximum number of gen-
erations (MaxGen) of 700, and elite population parameter α of 0.2, results in
(1− α)× PopSize× (MaxGen− 1) + PopSize = 112040 cost evaluations. Under
these parameter settings, on the AT&T Worldnet backbone network, the algorithm
will run for approximately 672 seconds on the IBM SP RS6000 system.

GAOSPF requires that seven parameters be specified:

1. POPSIZE denotes the size of the population. This variable affects the running
time of the GA. We ran tests with moderate population sizes of 50 up to 500.
In the experiments, we set POPSIZE to 200 for the AT&T Worldnet backbone
instance and all 50-node instances, and to 100 for all 100-node instances. This
setting was arbitrary. Increasing population size usually improves the quality
of the genetic algorithm’s solution.

2. MAXGEN denotes the number of generations. The genetic algorithm uses
this parameter as a stopping criterion. GAOSPF finds good solutions after
only about 100 generations, but continues to find improvements afterwards.
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Table 1. Problem characteristics (times are in IBM SP RS6000 seconds.

Network type N A Ds
∑
D time/eval. tot. time

AT&T Worldnet backbone 90 274 272 18465 0.006 672.
2-level hierarchical graph 100 280 9900 921 0.054 2161.
2-level hierarchical graph 100 360 9900 1033 0.055 2201.
2-level hierarchical graph 50 148 2450 276 0.011 1232.
2-level hierarchical graph 50 212 2450 266 0.011 1232.
Random graph 100 403 9900 994 0.054 2161.
Random graph 100 503 9900 1026 0.055 2201.
Random graph 50 228 2450 249 0.011 1232.
Random graph 50 245 2450 236 0.011 1232.
Waxman graph 100 391 9900 1143 0.055 2201.
Waxman graph 100 476 9900 858 0.057 2281.
Waxman graph 50 169 2450 277 0.011 1232.
Waxman graph 50 230 2450 264 0.011 1232.

We ran the experiments for 700 generations for the AT&T Worldnet backbone
instance and the 50-node instances, and for 500 generations for the 100-node
instances. This setting was arbitrary. As we note later in this section, increas-
ing the maximum number of generations improves the quality of the genetic
algorithm’s solution.

3. The parameter α is the proportion of the population of solutions that are
elite, or upper class. In the experiments, we set α = 0.2.

4. The parameter β is the proportion of the population of solutions that are mid-
dle class. In the experiments, we set β = 0.7. Consequently, the proportion
of lower class solutions is 1− α− β = 0.1.

5. XOVERCUTOFF is the crossover cutoff value. This is the probability that
the child inherits the gene from its elite parent. We found that a cutoff value
of 0.7 resulted in a good balance between convergence and diversity.

6. XOVERMUTATIONPROB is the crossover mutation probability. This is the
probability that a gene of a child will be mutated instead of inherited from
any parent. A probability of 0.01 is used.

7. MAXWEIGHT is the maximum arc weight. We implemented GAOSPF for
the original OSPF metric of weights, i.e. from 1 to 65535. As in Fortz and
Thorup [12], we set MAXWEIGHT to 20 in the experiments. This decreases
the search space and increases the probabilities of even flow splitting. Flow
splitting can be desirable for load balancing.

We compare the GAOSPF solution with the LP lower bound (LPLB) and the
results obtained with the following heuristics:

• In UnitOSPF, all arc weights are set to 1. The cost of a path is the number of
links in the path, and therefore is equivalent to routing with minimum hops.
• In InvCapOSPF, the arc weights are set inversely proportional to arc capac-

ities, as recommended by Cisco [7]. In Cisco IOS 10.3 and later, by default,
the cost is inversely proportional to the bandwidth of the interface [26].
• In RandomOSPF, arc weights are randomly generated and OSPF routing

is done for as many cost evaluations as is done with GAOSPF, using new
randomly generated weights, if necessary.
• F&T is the Fortz and Thorup local search heuristic. We did not run their

code and simply report the results given in [12].
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We next present the computational results for the thirteen test problems and
the five heuristics. For each test problem, we present one table and one figure with
two plots. In the experiments, the heuristics and lower bounding procedure are run
using several levels of Internet traffic. This scaling of Internet traffic is done by
simply multiplying each entry in the demand matrix by a fixed number. We use
the scaling values used in [12].

Table 2 and Figure 3 show the results for the AT&T Worldnet backbone network
instance. Tables 3 – 6 and Figures 4 – 7 show the results for the 2-level hierarchical
network instances. Tables 7 – 10 and Figures 8 – 11 show the results for the random
network instances. Finally, Tables 11 – 14 and Figures 12 – 15 show the results for
the Waxman network instances. In the tables, we present the OSPF routing costs
and the maximum utilizations for each of the heuristics and the LP lower bound, as
a function of the total demand (D). The routing costs are normalized, as described
earlier, with the normalizing scaling factor Φuncap. In the routing cost figures,
the dashed horizontal line corresponds to the threshold of 10.667, when network
congestion is reached. By maximum utilization, we mean the arc utilization (total
traffic on the arc load divided by arc capacity) of the maximum utilized arc in the
network. The maximum utilizations are listed in parenthesis in the tables.

We make the following remarks regarding the computational experiments. First,
we observe that the GAOSPF generally finds good solutions close to the lower
bound. With the exception of the random networks, GAOSPF found solutions
with similar quality as those found by the Fortz and Thorup local search. The
solutions found by GAOSPF were significantly better than those produced by Uni-
tOSPF, InvCapOSPF, and RandomOSPF, and allowed a significant increase of
the network’s throughput with respect to the throughputs associated with those
heuristics.

GAOSPF works particularly well for the real-world AT&T Worldnet backbone
instance, where compared to the InvCapOSPF heuristic, it was able to increase
network traffic by 70% until the network becomes congested. Recall that InvCa-
pOSPF is recommended by Cisco. GAOSPF also produces good solutions on the
instances of the 2-level hierarchical graphs and on the large Waxman graphs, where
the gap to the lower bound is very small.

For the two instances of the 2-level hierarchical graphs with 50 nodes, GAOSPF
produced an average traffic increase of 105%, when compared with InvCapOSPF.
The average traffic increase for all test problems was 52%.

Comparing the UnitOSPF and InvCapOSPF routing schemes, we see that In-
vCapOSPF is slightly better than UnitOSPF for most instances. InvCapOSPF is
therefore the most challenging of the simple heuristic to compete with.
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Figure 3. Routing cost and maximum utilization versus scaled
Internet traffic on AT&T Worldnet backbone network
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Table 2. Routing costs and (max-utilization) for AT&T Worldnet backbone with scaled projected demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

3761 1.00 (0.16) 1.01 (0.15) 1.03 (0.19) 1.00 (0.15) 1.00 (0.15) 1.00 (0.10)
7522 1.00 (0.31) 1.01 (0.31) 1.03 (0.33) 1.00 (0.32) 1.00 (0.29) 1.00 (0.20)

11284 1.03 (0.47) 1.05 (0.46) 1.06 (0.44) 1.01 (0.36) 1.01 (0.36) 1.01 (0.29)
15045 1.13 (0.62) 1.15 (0.61) 1.20 (0.67) 1.05 (0.48) 1.06 (0.46) 1.05 (0.39)
18806 1.33 (0.78) 1.36 (0.76) 1.37 (0.68) 1.17 (0.65) 1.17 (0.60) 1.15 (0.49)
22567 1.63 (0.94) 1.66 (0.92) 1.56 (0.85) 1.33 (0.68) 1.34 (0.68) 1.31 (0.59)

26328 3.39 (1.09) 2.94 (1.07) 2.07 (1.00) 1.51 (0.79) 1.52 (0.79) 1.48 (0.69)
30089 24.49 (1.25) 21.05 (1.22) 3.65 (1.06) 1.70 (0.90) 1.70 (0.90) 1.65 (0.79)
33851 54.95 (1.40) 60.83 (1.37) 19.49 (1.20) 2.04 (0.91) 2.05 (0.91) 1.93 (0.88)
37612 101.48 (1.56) 116.69 (1.53) 62.39 (1.30) 2.70 (1.02) 2.69 (1.02) 2.40 (0.98)
41373 168.16 (1.72) 185.68 (1.68) 106.46 (1.57) 4.66 (1.12) 5.11 (1.12) 3.97 (1.08)
45134 241.96 (1.87) 258.27 (1.83) 195.45 (1.69) 17.34 (1.22) 18.91 (1.36) 15.62 (1.18)

Table 3. Routing costs and (max-utilization) for 2-level hierarchical graph (50 nodes, 148 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

411 1.00 (0.19) 1.02 (0.22) 1.03 (0.18) 1.00 (0.17) 1.00 (0.17) 1.00 (0.09)
821 1.00 (0.37) 1.03 (0.43) 1.03 (0.39) 1.00 (0.33) 1.00 (0.31) 1.00 (0.19)

1232 1.04 (0.56) 1.06 (0.65) 1.08 (0.55) 1.01 (0.33) 1.01 (0.33) 1.01 (0.28)
1643 1.13 (0.75) 1.15 (0.87) 1.17 (0.58) 1.05 (0.55) 1.05 (0.56) 1.04 (0.38)
2053 1.31 (0.93) 2.34 (1.08) 1.21 (0.80) 1.11 (0.67) 1.11 (0.67) 1.10 (0.47)
2464 4.67 (1.12) 21.89 (1.30) 1.50 (0.85) 1.20 (0.66) 1.20 (0.67) 1.17 (0.56)
2874 21.32 (1.31) 37.73 (1.51) 2.63 (1.03) 1.31 (0.79) 1.34 (0.86) 1.27 (0.66)
3285 50.30 (1.50) 56.18 (1.73) 9.88 (1.15) 1.44 (0.90) 1.47 (0.89) 1.39 (0.75)
3696 79.26 (1.68) 75.97 (1.95) 36.96 (1.45) 1.66 (0.90) 1.69 (0.95) 1.53 (0.85)
4106 119.52 (1.87) 106.90 (2.16) 55.77 (1.48) 2.20 (1.00) 2.23 (1.00) 1.89 (0.94)
4517 168.67 (2.06) 140.52 (2.38) 157.26 (1.57) 4.29 (1.10) 5.11 (1.10) 3.44 (1.03)
4928 222.01 (2.24) 180.30 (2.60) 223.01 (1.74) 15.73 (1.21) 21.99 (1.34) 14.40 (1.13)
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Figure 4. Routing cost and maximum utilization versus scaled
Internet traffic on 2-level hierarchical network (50 nodes, 148 arcs)
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Table 4. Routing costs and (max-utilization) for 2-level hierarchical graph (50 nodes, 212 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

280 1.00 (0.19) 1.00 (0.19) 1.05 (0.20) 1.00 (0.18) 1.00 (0.19) 1.00 (0.07)
560 1.01 (0.39) 1.01 (0.38) 1.06 (0.32) 1.00 (0.33) 1.00 (0.33) 1.00 (0.15)
841 1.04 (0.58) 1.04 (0.56) 1.11 (0.60) 1.02 (0.33) 1.02 (0.33) 1.01 (0.22)

1121 1.11 (0.78) 1.11 (0.75) 1.19 (0.67) 1.06 (0.43) 1.06 (0.43) 1.03 (0.30)
1401 1.34 (0.97) 1.27 (0.94) 1.29 (0.72) 1.09 (0.55) 1.09 (0.55) 1.06 (0.37)
1681 12.28 (1.17) 6.28 (1.13) 1.48 (0.83) 1.14 (0.67) 1.15 (0.67) 1.11 (0.45)

1962 33.71 (1.36) 27.66 (1.31) 1.98 (0.99) 1.21 (0.72) 1.23 (0.77) 1.16 (0.52)
2242 50.66 (1.56) 44.14 (1.50) 3.24 (1.04) 1.32 (0.83) 1.33 (0.85) 1.24 (0.60)
2522 73.84 (1.75) 63.90 (1.69) 13.98 (1.20) 1.46 (0.90) 1.46 (0.90) 1.35 (0.67)
2802 102.83 (1.95) 95.13 (1.88) 41.77 (1.32) 1.73 (0.95) 1.79 (1.00) 1.47 (0.75)
3082 135.13 (2.14) 128.35 (2.06) 100.30 (2.33) 2.20 (1.00) 2.23 (1.00) 1.61 (0.82)
3363 167.47 (2.34) 159.85 (2.25) 141.12 (1.70) 4.52 (1.10) 5.09 (1.10) 1.83 (0.89)
3643 197.44 (2.53) 201.50 (2.44) - (-) - (-) 18.71 (1.24) 2.26 (-)
3923 230.34 (2.73) 240.95 (2.63) - (-) - (-) 43.50 (1.49) 3.88 (-)
4203 260.97 (2.92) 275.48 (2.81) - (-) - (-) 102.11 (1.57) 6.11 (-)
4484 292.27 (3.12) 307.31 (3.00) - (-) - (-) 132.06 (3.13) 8.95 (-)

Table 5. Routing costs and (max-utilization) for 2-level hierarchical graph (100 nodes, 280 arcs) with scaled demands.

D UnitOSPF InvCapOSPF F&T GAOSPF LPLB

384 1.00 (0.18) 1.02 (0.17) 1.00 (0.17) 1.00 (0.18) 1.00 (0.11)
768 1.00 (0.36) 1.02 (0.35) 1.00 (0.33) 1.00 (0.33) 1.00 (0.22)

1151 1.02 (0.54) 1.03 (0.52) 1.01 (0.36) 1.01 (0.36) 1.01 (0.34)
1535 1.10 (0.72) 1.09 (0.69) 1.03 (0.51) 1.03 (0.52) 1.03 (0.45)
1919 1.17 (0.90) 1.17 (0.86) 1.08 (0.63) 1.08 (0.63) 1.06 (0.56)
2303 1.89 (1.07) 1.59 (1.04) 1.13 (0.67) 1.14 (0.67) 1.11 (0.67)
2686 11.65 (1.25) 8.87 (1.21) 1.22 (0.78) 1.23 (0.78) 1.20 (0.78)
3070 21.04 (1.43) 17.50 (1.38) 1.31 (0.89) 1.34 (0.89) 1.28 (0.89)
3454 37.93 (1.61) 24.93 (1.56) 1.55 (1.01) 1.63 (1.01) 1.52 (1.01)
3838 67.60 (1.79) 38.54 (1.73) 3.25 (1.12) 3.27 (1.12) 3.18 (1.12)
4221 117.09 (1.97) 70.25 (1.90) 11.83 (1.23) 12.17 (1.23) 11.71 (1.23)
4605 168.47 (2.15) 114.55 (2.07) 19.26 (1.34) 19.66 (1.34) 19.06 (1.34)
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Figure 5. Routing cost and maximum utilization versus scaled
Internet traffic on 2-level hierarchical network (50 nodes, 212 arcs)
with scaled demands.
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Figure 6. Routing cost and maximum utilization versus scaled
Internet traffic on 2-level hierarchical network (100 nodes, 280 arcs)
with scaled demands.
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Figure 7. Routing cost and maximum utilization versus scaled
Internet traffic on 2-level hierarchical network (100 nodes, 360 arcs)
with scaled demands.



2
0

M
.

E
R

IC
S
S
O

N
,

M
.G

.C
.

R
E

S
E

N
D

E
,

A
N

D
P

.M
.

P
A

R
D

A
L

O
S

Table 6. Routing costs and (max-utilization) for 2-level hierarchical graph (100 nodes, 360 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

1034 1.00 (0.23) 1.17 (0.15) 1.09 (0.27) 1.00 (0.19) 1.00 (0.23) 1.00 (0.10)
2068 1.01 (0.46) 1.17 (0.31) 1.11 (0.45) 1.00 (0.33) 1.00 (0.33) 1.00 (0.20)
3102 1.03 (0.69) 1.19 (0.46) 1.19 (0.69) 1.01 (0.41) 1.01 (0.42) 1.00 (0.31)
4136 1.12 (0.92) 1.27 (0.62) 1.33 (0.86) 1.03 (0.59) 1.03 (0.61) 1.02 (0.41)
5169 3.94 (1.15) 1.39 (0.77) 1.56 (0.91) 1.07 (0.67) 1.08 (0.67) 1.06 (0.52)
6203 12.39 (1.38) 1.57 (0.93) 5.46 (1.13) 1.12 (0.67) 1.13 (0.67) 1.10 (0.62)

7237 19.23 (1.61) 2.39 (1.08) 31.42 (1.37) 1.19 (0.75) 1.22 (0.82) 1.16 (0.73)
8271 35.86 (1.84) 10.66 (1.23) 36.42 (1.26) 1.29 (0.90) 1.35 (0.90) 1.25 (0.83)
9305 61.46 (2.07) 24.77 (1.39) 124.45 (1.86) 1.46 (0.93) 1.64 (0.97) 1.38 (0.93)

10339 89.49 (2.30) 53.24 (1.54) 200.01 (2.01) 2.07 (1.04) 2.23 (1.08) 1.76 (1.04)
11373 123.91 (2.53) 112.11 (1.70) 257.98 (2.82) 5.25 (1.14) 6.09 (1.14) 4.48 (1.14)
12407 166.31 (2.76) 181.10 (1.85) 310.51 (2.61) 20.04 (1.43) 17.74 (1.34) 13.32 (1.24)

Table 7. Routing costs and (max-utilization) for random graph (50 nodes, 228 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

3523 1.00 (0.16) 1.00 (0.16) 1.12 (0.29) 1.00 (0.22) 1.00 (0.20) 1.00 (0.10)
7047 1.00 (0.32) 1.00 (0.32) 1.16 (0.43) 1.00 (0.31) 1.00 (0.32) 1.00 (0.20)

10570 1.04 (0.47) 1.04 (0.47) 1.35 (0.75) 1.00 (0.33) 1.02 (0.35) 1.00 (0.30)
14094 1.14 (0.63) 1.14 (0.63) 1.74 (0.89) 1.04 (0.47) 1.10 (0.59) 1.03 (0.40)
17617 1.30 (0.79) 1.30 (0.79) 3.49 (1.04) 1.15 (0.63) 1.24 (0.67) 1.13 (0.50)
21141 1.57 (0.95) 1.57 (0.95) 39.47 (1.29) 1.29 (0.67) 1.41 (0.73) 1.27 (0.61)
24664 3.65 (1.10) 3.65 (1.10) 126.24 (2.05) 1.46 (0.71) 1.65 (0.89) 1.42 (0.71)
28187 27.35 (1.26) 27.35 (1.26) 222.39 (1.97) 1.69 (0.87) 1.98 (0.90) 1.61 (0.81)
31711 66.67 (1.42) 66.67 (1.42) 422.80 (2.55) 1.99 (0.91) 2.77 (1.00) 1.90 (0.91)
35234 122.87 (1.58) 122.87 (1.58) 514.03 (2.90) 2.65 (1.01) 5.19 (1.09) 2.43 (1.01)
38758 188.78 (1.73) 188.78 (1.73) 667.62 (2.54) 5.22 (1.11) 25.36 (1.21) 4.26 (1.11)
42281 264.61 (1.89) 264.61 (1.89) 849.10 (2.99) 17.04 (1.21) 84.56 (1.79) 13.75 (1.21)
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Figure 8. Routing cost and maximum utilization versus scaled
Internet traffic on random network (50 nodes, 228 arcs) with scaled
demands.
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Figure 9. Routing cost and maximum utilization versus scaled
Internet traffic on random network (50 nodes, 245 arcs) with scaled
demands.
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Table 8. Routing costs and (max-utilization) for random graph (50 nodes, 245 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

4463 1.00 (0.21) 1.00 (0.21) 1.13 (0.35) 1.00 (0.25) 1.00 (0.21) 1.00 (0.10)
8927 1.01 (0.43) 1.01 (0.43) 1.24 (0.60) 1.00 (0.32) 1.00 (0.34) 1.00 (0.20)

13390 1.07 (0.64) 1.07 (0.64) 1.58 (0.87) 1.01 (0.35) 1.05 (0.49) 1.01 (0.30)
17854 1.22 (0.86) 1.22 (0.86) 5.37 (1.09) 1.08 (0.67) 1.16 (0.66) 1.05 (0.41)
22317 2.13 (1.07) 2.13 (1.07) 20.24 (1.17) 1.22 (0.67) 1.36 (0.80) 1.19 (0.51)
26781 16.60 (1.28) 16.60 (1.28) 165.63 (1.68) 1.40 (0.67) 1.62 (0.90) 1.35 (0.61)

31244 42.65 (1.50) 42.65 (1.50) 335.25 (2.35) 1.63 (0.89) 2.10 (0.99) 1.57 (0.71)
35708 81.28 (1.71) 81.28 (1.71) 558.74 (2.17) 2.01 (0.90) 3.72 (1.08) 1.87 (0.81)
40171 131.86 (1.92) 131.86 (1.92) 615.90 (3.58) 2.65 (0.99) 12.69 (1.19) 2.29 (0.91)
44635 203.56 (2.14) 203.56 (2.14) 890.17 (3.04) 5.11 (1.09) 34.32 (1.49) 3.02 (1.01)
49098 279.00 (2.35) 279.00 (2.35) 1067.68 (3.01) 14.09 (1.11) 114.52 (1.77) 5.98 (1.11)
53562 357.04 (2.57) 357.04 (2.57) 1214.61 (3.59) 52.68 (1.57) 206.79 (2.10) 19.65 (1.22)

Table 9. Routing costs and (max-utilization) for random graph (100 nodes, 403 arcs) with scaled demands.

D UnitOSPF InvCapOSPF F&T GAOSPF LPLB

5775 1.00 (0.17) 1.00 (0.17) 1.00 (0.19) 1.00 (0.17) 1.00 (0.09)
11549 1.00 (0.33) 1.00 (0.33) 1.00 (0.33) 1.00 (0.33) 1.00 (0.18)
17324 1.04 (0.50) 1.04 (0.50) 1.00 (0.33) 1.03 (0.46) 1.00 (0.28)
23099 1.13 (0.67) 1.13 (0.67) 1.04 (0.58) 1.11 (0.64) 1.03 (0.37)
28874 1.31 (0.83) 1.31 (0.83) 1.16 (0.67) 1.27 (0.70) 1.14 (0.46)
34648 1.68 (1.00) 1.68 (1.00) 1.32 (0.67) 1.48 (0.85) 1.29 (0.55)
40423 9.25 (1.17) 9.25 (1.17) 1.50 (0.71) 1.86 (0.90) 1.47 (0.64)
46198 37.22 (1.34) 37.22 (1.34) 1.76 (0.89) 2.46 (0.99) 1.71 (0.73)
51973 71.52 (1.50) 71.52 (1.50) 2.13 (0.90) 4.16 (1.06) 2.02 (0.83)
57747 115.26 (1.67) 115.26 (1.67) 2.93 (0.98) 13.56 (1.14) 2.46 (0.92)
63522 173.79 (1.84) 173.79 (1.84) 4.16 (1.04) 58.03 (1.39) 3.27 (1.01)
69297 238.56 (2.00) 238.56 (2.00) 16.05 (1.11) 130.02 (1.59) 5.79 (1.10)
70000 314.83 (2.17) 314.83 (2.17) 56.42 (1.47) - (-) 18.02 (1.19)
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Figure 10. Routing cost and maximum utilization versus scaled
Internet traffic on random network (100 nodes, 403 arcs) with
scaled demands.
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Figure 11. Routing cost and maximum utilization versus scaled
Internet traffic on random network (100 nodes, 503 arcs) with
scaled demands.
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Table 10. Routing costs and (max-utilization) for random graph (100 nodes, 503 arcs) with scaled demands.

D UnitOSPF InvCapOSPF F&T GAOSPF LPLB

8383 1.00 (0.15) 1.00 (0.15) 1.00 (0.19) 1.00 (0.15) 1.00 (0.10)
16766 1.00 (0.30) 1.00 (0.30) 1.00 (0.33) 1.00 (0.30) 1.00 (0.20)
25149 1.02 (0.46) 1.02 (0.46) 1.00 (0.33) 1.01 (0.46) 1.00 (0.30)
33531 1.09 (0.61) 1.09 (0.61) 1.01 (0.44) 1.09 (0.60) 1.01 (0.40)
41914 1.22 (0.76) 1.22 (0.76) 1.10 (0.67) 1.21 (0.72) 1.07 (0.50)
50297 1.40 (0.91) 1.40 (0.91) 1.23 (0.67) 1.37 (0.90) 1.20 (0.60)

58680 1.96 (1.07) 1.96 (1.07) 1.40 (0.72) 1.62 (0.88) 1.36 (0.70)
67063 8.13 (1.22) 8.13 (1.22) 1.61 (0.88) 2.04 (0.91) 1.54 (0.80)
75446 20.51 (1.37) 20.51 (1.37) 1.86 (0.90) 2.98 (1.00) 1.76 (0.89)
83829 48.85 (1.52) 48.85 (1.52) 2.32 (0.99) 7.35 (1.10) 2.10 (0.99)
92211 94.05 (1.68) 94.05 (1.68) 3.23 (1.09) 30.40 (1.48) 2.78 (1.09)

100594 155.68 (1.83) 155.68 (1.83) 7.68 (1.19) 81.50 (1.86) 5.87 (1.19)

Table 11. Routing costs and (max-utilization) for Waxman graph (50 nodes, 169 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

2118 1.00 (0.14) 1.00 (0.14) 1.05 (0.18) 1.00 (0.15) 1.00 (0.15) 1.00 (0.10)
4235 1.00 (0.28) 1.00 (0.28) 1.07 (0.33) 1.00 (0.23) 1.00 (0.28) 1.00 (0.21)
6353 1.01 (0.42) 1.01 (0.42) 1.11 (0.45) 1.00 (0.33) 1.00 (0.33) 1.00 (0.31)
8470 1.08 (0.55) 1.08 (0.55) 1.24 (0.63) 1.02 (0.42) 1.02 (0.42) 1.02 (0.42)

10588 1.17 (0.69) 1.17 (0.69) 1.42 (0.80) 1.09 (0.58) 1.14 (0.62) 1.08 (0.52)
12706 1.32 (0.83) 1.32 (0.83) 1.69 (0.87) 1.18 (0.66) 1.19 (0.67) 1.18 (0.62)
14823 1.60 (0.97) 1.60 (0.97) 2.42 (0.97) 1.31 (0.73) 1.32 (0.73) 1.29 (0.73)
16941 3.90 (1.11) 3.90 (1.11) 6.66 (1.10) 1.48 (0.84) 1.50 (0.84) 1.45 (0.83)
19059 20.63 (1.25) 20.63 (1.25) 45.92 (1.31) 1.76 (0.94) 1.78 (0.94) 1.72 (0.94)
21176 45.77 (1.39) 45.77 (1.39) 98.08 (1.37) 2.37 (1.04) 2.40 (1.04) 2.31 (1.04)
23294 84.41 (1.52) 84.41 (1.52) 198.25 (1.57) 6.02 (1.14) 6.18 (1.25) 3.27 (1.14)
25411 139.52 (1.66) 139.52 (1.66) 314.38 (2.09) 13.15 (1.25) 13.79 (1.25) 4.36 (1.25)
27529 200.04 (1.80) 200.04 (1.80) - (-) - (-) - (-) 6.93 (-)
29647 261.73 (1.94) 261.73 (1.94) - (-) - (-) - (-) 16.75 (-)
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Figure 12. Maximum utilization versus scaled Internet traffic on
Waxman network (50 nodes, 169 arcs) with scaled demands.
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Figure 13. Routing cost and maximum utilization versus scaled
Internet traffic on Waxman network (50 nodes, 230 arcs) with
scaled demands.
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Table 12. Routing costs and (max-utilization) for Waxman graph (50 nodes, 230 arcs) with scaled demands.

D UnitOSPF InvCapOSPF RandomOSPF F&T GAOSPF LPLB

3287 1.00 (0.12) 1.00 (0.12) 1.13 (0.20) 1.00 (0.13) 1.00 (0.12) 1.00 (0.10)
6574 1.00 (0.23) 1.00 (0.23) 1.12 (0.38) 1.00 (0.27) 1.00 (0.23) 1.00 (0.20)
9862 1.00 (0.35) 1.00 (0.35) 1.23 (0.63) 1.00 (0.33) 1.00 (0.34) 1.00 (0.31)

13149 1.05 (0.46) 1.05 (0.46) 1.50 (0.70) 1.01 (0.41) 1.03 (0.45) 1.01 (0.41)
16436 1.13 (0.58) 1.13 (0.58) 1.84 (0.94) 1.03 (0.51) 1.10 (0.53) 1.03 (0.51)
19723 1.23 (0.70) 1.23 (0.70) 7.99 (1.15) 1.10 (0.65) 1.20 (0.62) 1.09 (0.61)

23011 1.39 (0.81) 1.39 (0.81) 37.04 (1.35) 1.21 (0.71) 1.32 (0.73) 1.19 (0.71)
26298 1.63 (0.93) 1.63 (0.93) 104.82 (1.54) 1.35 (0.81) 1.49 (0.81) 1.32 (0.81)
29585 2.71 (1.04) 2.71 (1.04) 248.27 (1.86) 1.51 (0.92) 1.72 (0.92) 1.48 (0.92)
32872 12.82 (1.16) 12.82 (1.16) 272.03 (2.17) 1.90 (1.02) 2.20 (1.02) 1.83 (1.02)
36159 38.71 (1.28) 38.71 (1.28) 515.65 (2.06) 3.89 (1.12) 4.34 (1.12) 2.84 (1.12)
39447 78.08 (1.39) 78.08 (1.39) 587.54 (2.50) 11.29 (1.22) 12.11 (1.22) 4.30 (1.22)
42734 122.75 (1.51) 122.75 (1.51) - (-) - (-) - (-) 5.65 (-)
46021 177.42 (1.63) 177.42 (1.63) - (-) - (-) - (-) 10.40 (-)

Table 13. Routing costs and (max-utilization) for Waxman graph (100 nodes, 391 arcs) with scaled demands.

D UnitOSPF InvCapOSPF F&T GAOSPF LPLB

4039 1.00 (0.16) 1.00 (0.16) 1.00 (0.19) 1.00 (0.16) 1.00 (0.12)
8079 1.00 (0.33) 1.00 (0.33) 1.00 (0.30) 1.00 (0.33) 1.00 (0.23)

12118 1.01 (0.49) 1.01 (0.49) 1.00 (0.36) 1.00 (0.35) 1.00 (0.35)
16158 1.03 (0.66) 1.03 (0.66) 1.01 (0.48) 1.02 (0.47) 1.01 (0.47)
20197 1.09 (0.82) 1.09 (0.82) 1.01 (0.60) 1.06 (0.58) 1.01 (0.58)
24237 1.24 (0.99) 1.24 (0.99) 1.05 (0.70) 1.13 (0.70) 1.04 (0.70)
28276 4.66 (1.15) 4.66 (1.15) 1.13 (0.82) 1.23 (0.82) 1.11 (0.82)
32316 12.37 (1.32) 12.37 (1.32) 1.25 (0.93) 1.39 (0.93) 1.23 (0.93)
36355 23.02 (1.48) 23.02 (1.48) 1.60 (1.05) 1.78 (1.05) 1.57 (1.05)
40395 32.23 (1.65) 32.23 (1.65) 4.39 (1.17) 4.68 (1.17) 4.36 (1.17)
44434 40.64 (1.81) 40.64 (1.81) 8.19 (1.28) 8.64 (1.28) 8.14 (1.28)
48474 54.56 (1.98) 54.56 (1.98) 11.43 (1.40) 12.30 (1.40) 11.35 (1.40)
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Table 14. Routing costs and (max-utilization) for Waxman graph
(100 nodes, 476 arcs) with scaled demands.

D UnitOSPF InvCapOSPF F&T GAOSPF LPLB

5291 1.00 (0.14) 1.00 (0.14) 1.00 (0.13) 1.00 (0.14) 1.00 (0.11)
10582 1.00 (0.28) 1.00 (0.28) 1.00 (0.28) 1.00 (0.28) 1.00 (0.22)
15873 1.01 (0.42) 1.01 (0.42) 1.00 (0.33) 1.01 (0.34) 1.00 (0.33)
21164 1.06 (0.56) 1.06 (0.56) 1.02 (0.44) 1.05 (0.52) 1.02 (0.44)
26455 1.13 (0.70) 1.13 (0.70) 1.04 (0.61) 1.11 (0.67) 1.03 (0.55)
31747 1.25 (0.84) 1.25 (0.84) 1.10 (0.67) 1.20 (0.66) 1.09 (0.66)
37038 1.49 (0.98) 1.49 (0.98) 1.22 (0.77) 1.34 (0.77) 1.19 (0.77)
42329 3.38 (1.12) 3.38 (1.12) 1.36 (0.88) 1.56 (0.88) 1.32 (0.88)
47620 18.08 (1.25) 18.08 (1.25) 1.61 (0.99) 1.90 (0.99) 1.54 (0.99)
52911 38.94 (1.39) 38.94 (1.39) 2.55 (1.10) 3.14 (1.10) 2.41 (1.10)
58202 69.40 (1.53) 69.40 (1.53) 10.46 (1.20) 10.75 (1.20) 9.62 (1.20)
63493 103.43 (1.67) 103.43 (1.67) 19.77 (1.31) 22.13 (1.31) 19.49 (1.31)

When comparing GAOSPF with the local search procedure of Fortz and Thorup
(F&T), we can generally state that the two heuristics find equally good solutions on
the AT&T Worldnet backbone network instance, the 2-level hierarchical network
instances, and the Waxman graph instances. On all four random graph instances,
however, we observe that the gap between the GAOSPF solution and the lower
bound is larger than the corresponding gap for F&T. These graphs as well as the
small Waxman graphs are those where the performance of F&T also degrades,
which may suggest that the gap between OSPF and the lower bound is large. The
running times of GAOSPF varied from about 10 minutes to about 40 minutes on
the IBM machine, while Fortz and Thorup mention CPU times only when they say
that 5000 iterations of their algorithm took about one hour [12].

We chose an arbitrary 700 generations for the GAOSPF runs on the AT&T
Worldnet backbone instance. With this number of generations, GAOSPF was able
to find solutions similar in quality to those found by the Fortz and Thorup local
search. To investigate the tradeoff between longer runs and solution quality, we
performed ten independent runs of GAOSPF (using different random number gen-
erator seeds) on the AT&T instance with a total demand 37612. Each run consisted
of 8000 generations. The plots of the incumbent objection function value as a func-
tion of running time (on the SGI Challenge computer) for each of the ten runs is
shown in Figure 16. The figure shows that all ten runs improve upon the Fortz and
Thorup solution (2.70) within 300 seconds. From that point on, all runs continued
improving the incumbent. The best run produced a value of 2.5138, closer to the
LP lower bound of 2.40 than to the Fortz and Thorup solution.

RandomOSPF does better than both UnitOSPF and InvCapOSPF for the AT&T
and hierarchical graphs, but is always worse on the random and Waxman graphs.
This is why we did not include RandomOSPF in the experiments for some of the
larger instances.

5. Concluding remarks

A new genetic algorithm for finding good weight settings for OSPF routing was
proposed in this paper. The algorithm was tested on several networks and compared
with results produced by other heuristic approaches, as well as a linear programming
lower bound. The results show that the algorithm produces good-quality solutions



A GA FOR WEIGHT SETTING IN OSPF ROUTING 31

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

co
st

scaled internet traffic

unitOSPF
InvCapOSPF

Fortz & Thorup
GAOSPF

LPLB

0

0.5

1

1.5

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

m
ax

im
um

 u
til

iz
at

io
n

scaled internet traffic

unitOSPF
InvCapOSPF

Fortz & Thorup
GAOSPF

LPLB

Figure 14. Routing cost and maximum utilization versus scaled
Internet traffic on Waxman network (100 nodes, 391 arcs) with
scaled demands.
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Figure 15. Routing cost and maximum utilization versus scaled
Internet traffic on Waxman network (100 nodes, 476 arcs) with
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Figure 16. Routing cost as a function of running time for ten
independent runs of GAOSPF on the AT&T Worldnet backbone
with total demand D = 37612.

for most instances and that better solutions can be produced if one allows longer
runs of the algorithm.

A natural extension of the algorithm would be its hybridization with some local
search, such as one similar to the local search proposed by Fortz and Thorup. Such
a local search could be applied, as in a memetic algorithm [21], to each element of
the population at the end of each generation, or in a post-optimization phase at
the end of all generations.

A simple variant of the proposed approach can be easily implemented in parallel.
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