
2"' @wlLEY
:rQ- 1nterSciencee
-32 o I x c o v c s s o Y i , w Y o o l l l r

Survivable IP Network Design with OSPF Routing

L.S. Buriol
Computer Science Department, Federal University of Rio Grande do Sul,
Av. Bento Gon~alves, 9500, 91501-970 Porto Alegre, RS, Brazil

M.G.C. Resende and M. Thorup
lnternet and Network Systems Research Center, AT& T Labs Research,
180 Park Avenue, Florham Park, NJ 07932

lnternet protocol (IP) traffic follows rules established by
routing protocols. Shortest path-based protocols, such
as Open Shortest Path First (OSPF), direct traffic based
on arc weights assigned by the network operator. Each
router computes shortest paths and creates destination
tables used for routing flow on the shortest paths. If
a router has multiple outgoing links on shortest paths
to a given destination, it splits traffic evenly over these
links. It is also the role of the routing protocol to specify
how the network should react to changes in the network
topology, such as arc or router failures. In such situa-
tions, IP traffic is rerouted through the shortest paths
not traversing the affected part of the network. This
article addresses the issue of assigning OSPF weights
and multiplicities to each arc, aiming to design efficient
OSPF-routed networks with minimum total weighted mul-
tiplicity (multiplicity multiplied by the arc length) needed
to route the required demand and handle any single arc or
router failure. The multiplicities are limited to a discrete
set of values, and we assume that the topology is given.
We propose an evolutionary algorithm for this problem,
and present results applying it to several real-world prob-
lem instances. o 2006 Wiley Periodicals, Inc. NETWORKS,
Vol. 49(1), 51-64 2007

Keywords: Internet; OSPF routing; network design; survivabil-
ity; evolutionary algorithm

L

I 1. INTRODUCTION

The Internet is the global network of interconnected
communication networks, made up of routers and links

Received September 2004; accepted November 2005
Correspondence to: M.G.C. Resende; e-mail: mgcr@research.att.com
Contract grant sponsor: Brazilian National Council for Scientific and
Technological Development (CNPq) (to L.S.B.).
Contract grant sponsor: AT&T Labs Research (to L.S.B).
Contract grant sponsor: The European project "Coevolution and Seff-
organizabon In Dynamic Networks" (COSIN) (to L.S.B.).
DO1 10.100Unet.20141
Published online 2 October 2006 In W~ley Interscience (www.interscience.
wiley.com).
0 2006 Wiley Periodicals, Inc.

connecting the routers. On a network level, the Internet is
built up of several autonomous systems (Ass) that typically
fall under the administration of a single institution, such as a
company, a university, or a service provider. Routing within
a single AS is done by an Interior Gateway Protocol (IGP),
while an Exterior Gateway Protocol (EGP) is used to route
traffic flow between ASS. IP traffic is routed in small chunks
called packets. A routing table instructs the router how to for-
ward packets. Given a packet with an IP destination address
in its header, the router retrieves from the table the IP address
of the packet's next hop.

OSPF (Open Shortest Path First) is the most used IGP.
For this protocol, an integer weight must be assigned to each
arc, and the entire network topology and weights are known
to each router. With this information, each router computes
the graphs of shortest (weight) paths from each other router
in the AS to itself. The graphs need not be trees, because
all shortest paths between two routers need to be consid-
ered. Demands are routed on the corresponding shortest path
graphs. At each router s, the total demand leaving this node
and destined to a target router t is evenly split among all links
outgoing from routers on the shortest path graphs ending at t.
This demand not only consists of demand originating at s, but
also of demand passing through s on its way to t.

The arcs weights are assigned by the AS operator. The
lower the weight, the greater the chance that traffic will get
routed on that arc. Different weight settings lead to different
traffic flow patterns. Weights can be set to optimize network
performance, such as to minimize congestion [5,8,9], as well
as to minimize network design cost. In this article, we address
the latter case.

Given a network topology and predicted traffic demands,
the OSPF network design problem is to find a set of OSPF
weights that minimizes network cost. More precisely, we are
given a directed network G = (N,A), where N is the set
of routers and A is the set of potential arcs where capacity
can be installed, and a demand matrix D that, for each pair
(s, t) E N x N, specifies the demand Di between s and t .

FIG. I . Load splitting for arc multiplicities. Left structure of outgoing arcs of node u; Middle: structure con-
sidering the arc concept; Right: structure considering l i n k concept. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

The arc multiplicity of an arc a is the number of parallel
links associated with arc a. We want to determine a positive
integer weight w, E 11,655351, as well as the multiplicity,
for each arc a E A, such that the network cost is minimized.
Network cost in our application is the overall sum of the
products of the multiplicity and the length of each arc. OSPF
weights are restricted to be identical for all links on the same
arc. Furthermore, we consider each link capacity to be fixed
and equal to M. Therefore, each arc capacity is limited to a
discrete set of values

Multiplicities are determined such that all of the demand can
be feasibly routed on the network, that is, no arc load exceeds
the arc's capacity. For quality of service (QoS) purposes, the
definition of feasible route is slightly different. A feasibly
routed flow is such that no arc load exceeds a fraction p
(0 < p (1) of the arc's capacity.

For traffic splitting purposes, each parallel link is con-
sidered as an independent link. For clarity, we use the term
arc to refer to the structure installed between two nodes and
l i n k for each capacitated link inserted in this structure. As
an example, consider Figure 1, where a load going through
router u is destined to a target router t (not shown in the
figure). Arcs (u,) and (~ 3 4) belong to the shortest path
graph to destination t and arcs (~ 7 ~) and (D3) do not. Let
the arc multiplicities of (a) and (~ 7 4) be 1 and 3, respec-
tively. Then, one-fourth of the load will be routed on arc (a), which has one link, and three fourths will be routed
on arc (uT4), which has three links.

Because failures can occur in either arcs or routers, it
is desirable to design IP networks that are survivable sub-
ject to these types of failures. To overcome the complexity
associated with generating all possible combinations of fail-
ures, we limit ourselves to single-arc or single-router failure.
Because links on a given arc are in some sense dependent,
we consider in this article single-arc failure instead of single-
link failure. Therefore, when an arc fails, all links associated
with that arc fail. When a router fails, all arcs incoming and
outgoing tolfrom this router are disabled. Furthermore, all
demands having this router as source or destination are dis-
carded. We also assume that no single-arc failure disconnects
the network. A failure usually changes one or more short-
est path graphs in the network. Consequently, demand may
be rerouted on different paths. If there is sufficient capacity
such that all of the demand can be feasibly rerouted for all

possible single-arc and single-router failures, the network is
called survivable. In the case of failures, the fraction of the
arc's capacity limiting the load is usually larger than the frac-
tion used to define a feasible flow for the nonfailure case. For
example, in the case of no failure, a flow would be feasible
if no arc load exceeds 70% of the arc's capacity, while for
the case of single failure, this fraction could be, say, 90%.
These values, which we call p, and pf for the nonfailure and
failure cases, respectively, depend on the network's quality of
service requirements. A high quality of service is associated
with a low fraction. Similarly, as shown in Figure 2, the cost
of the network is inversely proportional to the values of the
fractions.

Several articles on OSPF routing and on survivable IP net-
work design have recently appeared in the literature. Fortz and
Thorup [9] propose a local search algorithm to determine
OSPF weights to minimize network congestion. Ericsson
et al. [8] optimize the same objective function, but with a
genetic algorithm. A local search is added to a similar genetic
algorithm in Buriol et al. 151. Bley et al. [3] address survivable
P network design for single arc or router failure. Capacities
are assigned so that a specified percentage of each demand
is satisfied for any single router or arc failure. Capacities
are installed in multiples of a capacity unit, and can vary
between a minimum value and a maximum value if the arc
is utilized. Maximum hop count is imposed on each route.
Arcs, in that article, have a single link. Furthermore, routing
is done on a single shortest path, that is, load splitting is not
implemented. Link weights are adjusted by local search to
minimize the total cost of the network, which depends on
the installed capacities. Bley [2] considers a similar prob-
lem, but also takes into account hardware considerations that
affect solution feasibility and cost. A solution method based
on Lagrangian Relaxation is used. Holmberg and Yuan [12] ,
use simulated annealing to determine OSPF weights and arc
capacities to minimize network cost based on a fixed charge
and variable cost model. OSPF routing with load splitting
is used. Arcs in this article, however, have a single link.
Brostrom and Holmberg [4] use a similar approach, but tackle
the problem of minimizing network cost while maximizing a
measure of network survivability. Only arc failures are con-
sidered. A mixed integer programming formulation is given.
As with the articles above, arcs have a single link.

In this article, we present a genetic algorithm for find-
ing good-quality solutions to the survivable network design
problem for single arc or single router failures where arc

140000
0.5 0.6 0.7 0.8 0.9 1

QoS parameter pf

FIG. 2. Effect of varying QoS parameter pf on network cost for a 74-router, 278-arc network (net - 3 in
Section 5) with single arc failure. Five independent runs were done for each parameter value. The line connects
average network cost values. Runs used p, = .8pf.

multiplicities are considered. When simulating arc or router
failures, the shortest path graphs are updated using dynamic
shortest path algorithms [6], instead of recomputing the short-
est path graphs from scratch. Moreover, OSPF weights are
computed and OSPF routing is affected by arc multiplicities.
Several extensions to the basic model are proposed, including
identical or different OSPF weights on symmetric arcs, iden-
tical or different multiplicities for symmetric arcs, different
objective functions, arc weightrange, and latency constraints.

This article is organized as follows. In Section 2, we
describe a general evolutionary algorithm for weight setting
in OSPF routing. This algorithm calls a procedure that, given
a weight setting, routes the demands to determine arc multi-
plicities and computes the cost of the network. This procedure
is described in Section 3. In Section 4, we add survivability to
the network design process. Computational results on "real-
world" and artificial networks are presented in Section 5.
Extensions and concluding remarks are given in Section 6.

2. EVOLUTIONARY ALGORITHM FOR WEIGHT
SElTlNG IN OSPF ROUTING

Evolutionary algorithms, such as genetic algorithms
[lo, 111, evolve a set of solutions (the population) over time
(generations). The solutions of each generation are formed
by combining pairs of solutions (mating) from the preced-
ing generation, and randomly perturbing them (mutation).
The process is repeated for a fixed number of generations,
and the best solution in the last generation is returned by the
algorithm as an approximate solution to the optimum.

Ericsson et al. [8] presented a genetic algorithm for setting
OSPF weights in an LP network with known link capaci-
ties. The objective function used was the one proposed by
Forts and Thorup [9], which increasingly penalizes loads that
approach and go over link capacities. The same problem was
addressed in Buriol et al. [5] , where a local search procedure
was applied to the resulting offspring after mating.

Our algorithm uses the same genetic algorithm structure
described in [5,8], but differs in how the solution is evalu-
ated. Furthermore, it considers single arc or router failures.
In this section, we describe our genetic algorithm optimizing
a general function f (w). In the next section, we show how
we compute this function. We do not consider survivability
issues yet and address those issues later, in Section 4.

Each of the p elements of the population is an integer
weight vector, characterizing a solution. Each arc a E A has
associated with it an integer weight w, E [I,E]. Initially, all
but one of the solutions are made up of uniformly randomly
generated weights. The remaining solutionis made up of unit
weights.

The algorithm is run for N generations. We use the random
keys crossover scheme of Bean [I] for mating and mutation.
At each generation, the solutions are evaluated and sorted in
increasing order of objective function value. The NA solu-
tions with the smallest costs are put in class A, while the Nc
solutions with the largest costs are placed in class C . The
remaining solutions are assigned to class B.

The next generation is produced as follows. All solutions
in class A are automatically promoted, as is, to the next gen-
eration. All solutions in class C are discarded and replaced by

random weight solutions in the next generation. The remain-
ing NB solutions of the next generation are generated as
follows. To produce each offspring, one parent (pl) is selected
at random (with replacement) from the elements in class A
and one (p2) from B U C . The i-th weight of the offspring will
be the i-th weight of parent pl with probability nl > 112,
the i-th weight of parent p2 with probability J C ~ < 1 - -1,

or a random weight in the interval [l , q with probability
1 - Irl - n2.

Several parameters must be set. In Section 5, where com-
putational results are described, we define these values.
Guidelines for setting these parameters are as follows. The
larger the population size p, the longer will each generation
take to be computed. Experiments performed with this prob-
lem had shown that the CPU time is linearly proportional to
the population size and to the number of generations. We also
expect solution quality to improve by increasing the number
of generations N and/or increasing the population sizep. The
matinglmutation probabilities nl and n2 should be such that
rrl > n2 to avoid mutating too much the solution and gen-
erating an offspring with little information derived from the
parent solutions, and n1 + n2 x 1. NA, NB, and Nc should be
such that NB > NA > Nc. Nc usually is small to avoid exces-
sive randomization of the population and taking too many
generations to converge. However, NA is usually not large to
avoid converging the population too fast and "getting stuck"
in a local minimum.

3. HEURISTIC FOR COMPUTING ARC
MULTIPLICITIES

In this section, we describe a heuristic that computes arc
multiplicities given a topology of potential arcs, lengths, and
capacities associated with each arc (all links of the same arc
have identical capacities and lengths), OSPF arc weights,
and a demand matrix. This heuristic not only returns the arc
multiplicities, but also computes the network cost f (w) that
guides the genetic algorithm of Section 2. In this section, we
describe the heuristic for the no-failure case. A pseudocode
for the heuristic is described. Later, in Section 4, we consider
the full procedure, with single failures. In all pseudocode, the
parameters for some functions are omitted for clarity.

Let T be the set of destination routers. We compute IT1
single-destination shortest path graphs g', r E T. Each g',
with destination t E T, has an [dl-vector L' associated with
the arcs, that stores the partial loads flowing to t and traversing
each arc a E A. The IA I-vector I stores the total load traversing
each arc a E A. For each destination t E T, the IN I-vectors
n' and 6' are associated with the nodes. The distance from
each node to t is stored in n', while 6Qeeps the number of
arc multiplicities (links) outgoing from each node in gf.

The heuristic first routes the demand using OSPF routing
rules and assuming each arc has unit multiplicity. Arc loads
are computed and required multiplicities are determined.
Demand is rerouted assuming the updated multiplicities
and updated arc load are determined. This cycle (routing,
computing arc loads, determining multiplicities) is repeated

procedure EvaluateSolution(w, lf, r f)
1 forall a E A do pa = 1;
2 forall t E T do
3 n' t ReverseDi j kstra(w);
4 gt t ComputeSPG(w, X I) ;

5 St t ~omput e ~ e l ta(gf);
6 L' t ComputePartialLoads(p, 6 , n,gt);
7 end forall
8 1 t ComputeTotalLoads(L);
9 S t UpdateMultiandDeltaO;
10 if IS1 > 0 Updatesolution();
11 foral la~AifL~=Othenp,=O;
12 f t Cad po * length,;
13 r e t - n (f , w);
end procedure

-

FIG. 3. Pseudocode for heuristic for computing arc multiplicities.

until the demand can be feasibly routed using the current
multiplicities.

Figure 3 shows the pseudocode for the heuristic for com-
puting arc multiplicities. For each potential arc a E A,
the arc's multiplicity pa is initially set to 1 in line 1. For
each demand destination t E T, the shortest path graph dis-
tances are computed from scratch, using Dijkstra's algorithm
[7], in procedure ReverseDi j ks t ra (line 3). Given the
weights w and the shortest path distances, the shortest path
graph is identified by procedure ComputeSPG in line 4.
Given the shortest path graph g', 6' is computed in line 5
by ComputeDelta. OSPF routes with load splitting are
computed in line 6 and the partial loads vector L' is deter-
mined by procedure Comput ePart ialloads for each arc
in the shortest path graph g'. The total load 1 on an arc, com-
puted in line 8 by procedure ComputeTotalLoads, is the
sum of all partial loads routed on that arc. In the implemen-
tation, the total loads are actually computed in procedure
ComputePartialLoads.

Next, in line 9, for each arc a E A, the multiplicity ka, and
consequently a,, are updated in UpdateMult iandDelta
according to the total load 1, on the arc. The updated mul-
tiplicity of arc a is the maximum of its current multiplicity
pa and the minimum multiplicity required to route load la
on arc a, rla/(p . ca1), where p is such that 0 < p 5 1 and
defines the portion of the capacity that can be used, that is,
pa +- max{pa, rla/(p . ca)l). The arcs whose multiplicities
were updated are placed in a set S and the loads are updated
in procedure UpdateSolut ion, described next. In line 1 1,
the arcs with no load have their multiplicities set to 0 and in
line 12, the solution cost is computed as the sum of the prod-
ucts of arc multiplicities and the corresponding arc lengths.
This value, as well as the arc multiplicities, are returned in
line 13.

Pseudocode for procedure UpdateSolution is given
in Figure 4. For each shortest path graph g" t E T, the loads
are updated if at least one of the arcs in S belongs to g' . In this
case, the partial loads are not recomputed from scratch, but are
simply updated. In line 4 of Updatesolution, tail nodes

procedure Updatesolution()
1 do
2 forallf E Tdo
3 H + 0;
4 Lrall e = (u 3) E S n g' do InsertIntoHeapMax(H, u, 4);
5 while HeapSize(H) z 0 do
6 u t FindAndDeleteMax(H);
7 if 4 # ca then
8 a + (D: + ~ o e ~ m r N (u) ~ b) fa:;
9 forall e = (u, v) E OUT(u) do
10 i f e $grthenl t o ;
I I else A t fie * 6;
12 if 1 # L: then
13 ic + le - Li + A;
14 L: t A;
I5 ~nsert~ntoHeap~ax(H, v,n:);
16 end if
17 end forall
18 end if
19 end while
20 end forall
21 StUpdateMultiandDelta();
22 until IS1 = 0;
end procedure

FIG. 4. Pseudocode for the procedure that updates the solution.

u of all arcs (Zt) E S belonging tog' are inserted in a priority
queue indexed by the distance to t. Nodes u are removed from
the heap in line 6 and considered one by one until the heap
is empty. The test in line 7 is only used when considering
failures, and is always true for the no-failure case. In line 8,
the load is evenly split, considering arc multiplicities. The
load a is computed as the ratio between the sum of the load
leaving node u and the load passing through node u and 6;.
All arcs (u 3) E g' outgoing from u have their new loads (A)
computed, and if they have changed, the loads are updated in
lines 13-14 and node v is inserted in the heap (line 15).

After the loads are updated, some multiplicities may
change. In line 21, procedure UpdateMul t iandDel ta
computes the set of arcs S for which multiplicities have
changed, and updates the vectors p and 6. Although set S
contains at least one arc, the loop from line 2 to line 20 is
repeated. In Section 5, we record the number of times that
loop 2-20 is repeated and present statistics indicating that
this number is small.

4. SURVIVABLE NETWORK DESIGN

In this section, we add survivability to the network design
process. We consider single-arc, single-router, and single-arc
or single-router failure. The difference between the genetic
algorithm for the no-failure case and the ones for the single
failure cases is the procedure EvaluateSolution. We
describe changes to Evaluat eSolut ion and present the
procedure that simulates these failures.

Unlike the procedure in the previous section, the solu-
tion evaluation not only computes the multiplicities for the
no-failure case, but also updates the multiplicities consid-
ering every single failure. These changes are shown in the
pseudocode in Figure 5.

Lines 9 and 10 of the pseudocode of the no-failure version
of EvaluateSolution in Figure 3 have been substituted
by lines 9 to 21 in the complete version in Figure 5. Further-
more, in line 23, if in no situation (no failure or any single
failure) arc a has a positive load, then the arc's multiplicity
pa is set to 0. In the pseudocode, the maximum load on arc
a over no-failure and all single-failure simulations is ia.

In lines 9 to 21, the multiplicities are updated considering
the cases of no-failure, single-arc failures, and single-router
failures, consecutively. In line 10, the multiplicities are
updated for the no-failure case UpdateMult iandDelta.
Here, the QoS parameter p, is used. A change in multiplic-
ity may cause a change in routing that can consequently
cause a change in arc loads. A change in an arc load can
lead to another change in the arc's multiplicity. For this rea-
son, the steps in lines 10 to 20 are repeated in a circular
loop until no further change in arc loads or multiplici-
ties is detected in a full cycle of the loop by procedure
NoMoreChanges. In Section 5, we study the number
of times that procedure NoMoreChanges is called, and
consequently, the number of times that the loop in lines 9-21
is executed.

Single-arc failures and single-router failures are simulated
by the same procedure, S imulateFai 1. This procedure
has two input parameters: a set F of sets F 1 , F 2 , . . . , Fq of
arcs that are consecutively removed from the graph during
the simulation; and the cardinality q of F. For the single-arc
failure case, SimulateFail first takes as input a set of
sets Fa of single arcs, where each F, consists of arc a. The
second parameter is m, the cardinality of F. For single-router
failure, SimulateFail takes as input aset F of sets Fi and

procedure Evaluatesolut ion(w, If, r f)
1 f o r a l l a ~ A d o p ~ = l ;
2 f ora l l r~Tdo
3 a' t ReverseDijkstra(w);
4 g' c Compute~~~andLoad(w, R');

5 8' c ~ompute~elta(g');
6 L' t ComputePartialLoads(p, 8, X, g');
7 end forall
8 1 c ComputeTotalLoads(L);
9 while 1 do
10 S t UpdateMultiandDeltaO;
1 1 if IS1 > 0 UpdateSolution();
12 if NoMoreChanges() then goto OUTLOOP;
13 i f I f = l d o
14 simulateFail(A,m);
15 if NoMoreChanges() then goto OUTLOOP ;
16 end if
17 i f t f = l d o
18 simulateFail(R,n);
19 if NoMoreChanges() then goto OUTLOOP;
20 end if
21 end while
22 OUTLOOP:

23 f o r a l l a ~ ~ i f i , = ~ t h e n ~ , = ~ ;
24 f + Caul pa * length,;
25 returnv, PI;
end procedure

FIG. 5. Pseudocode for updating a solution considering failures.

NETWORKS-2007-DO1 10.1 0021net 55

procedure SimulateFail(F = {F1, F2,. . . , Fq),q)
1 i = l ;
2 while NoMoreChanges() do
3 Copysolution();
4 forall a E F; do G, t w,;
5 forall a E F; do w, t oo;
6 UpdateSPGandLoad();
7 forall a E Fi do w, t G,;
8 S t UpdateMultiandDel ta();
9 if IS1 > 1 then
10 forall t E T do update~elta(S', gt);
11 UpdateSolutionO;
12 end if
13 i f i < q t h e n i t i + I ;
14 else i t 1;
15 end while
end procedure

FIG. 6. Pseudocode for updating the multiplicities and loads simulating a
given set of failures.

the cardinality n of F. Each Fi in this case is the set of all
incoming and outgoing arcs to and from router i.

We conclude this section with a description of failure sim-
ulation, which is described in the pseudocode in Figure 6. In
the loop in lines 2 to 15 of the pseudocode, the failure of each
set Fi (i = 1,. . . , q) is simulated. The loop is repeated until
one pass is completed over the entire set F without causing
any change in the arc multiplicities, and consequently in the
arc loads. This condition is tested in NoMoreChanges. For
each simulation, the current solution is copied to an auxil-
iary solution in line 3. The current weights of arcs a E F,
are saved in the auxiliary vector & (line 4) and are set to
infinity (line 5). Procedure UpdateSPGandLoad updates
the shortest path graphs and the total and partial loads of
the copied solution with weights w used to simulate the fail-
ure of arcs a E Fi. The weights are reset to their original
values in line 7 and in line 8 the multiplicities are updated
for the copied solution. The QoS parameter pf is used in
UpdateMultiandDelta. If at least one multiplicity has
changed, then for each t E T, the original S t , Lt, and 1' are
updated in lines 10 and 1 1. The counter i is either incremented
in line 13 or reset to 1 in line 14 to force the loop to cycle
through all of the sets F I , F 2 , . . . , Fq.

There is another way to simulate failures. Instead of copy-
ing the current solution (I and g', ,', a t , L', for each r E T)
to the auxiliary solution (line 3), we simulate each failure
by first modifying the original solution and then undoing the
modification at the end of the loop. We implemented and
tested this alternative approach, but surprisingly, it was com-
putationally less efficient than the one we adopted. Perhaps
this is due to the fact that copying a block of memory is done
very efficiently by modern hardware.

In Section 5, we study the number of times that the failure
of set Fi is simulated, discriminating between arc failure and
router failure simulations.

5. COMPUTATIONAL RESULTS

We describe computational experiments with a C language
implementation of the algorithm described in this article on
four test problems derived from real-world IP networks. The
dimensions of the four instances are summarized in Table 1.
The first two instances (net -1 and net -2) are dense net-
works in which there is demand between all pairs of routers.
Each is made up of nodes that correspond to existing or
planned routers of a large tier-1 Internet Service Provider
(ISP) in aregion (of multiple states) of the United States. The
other two instances (net - 3 and net -4) are much larger.
Both involve sparse networks. Instance net - 3 corresponds
to an outdated backbone IP network of a large tier- 1 ISP. Only
18 of the 74 nodes are destination routers of demand pairs.
Because of this, the algorithm works with only 18 shortest
path graphs per solution. The last instance (net - 4) consists
of sparse optimized regional IP networks linked by a dense
backbone. It corresponds to the nationwide network of a large
tier-1 ISP, All nodes are destination routers of demand pairs,
and almost all router pairs have a demand associated with
them. For each instance in this study, all links have identical
capacities.

Table 2 presents some statistics about the instances. Min-
imum, average, and maximum values are given for demand,
length, and inlout degree. Because each link is present in
both directions (for each arc a + b, the networks have a
corresponding arc b + a), the indegree and the outdegree
of every node are equal, and therefore, these values were not
repeated in the table. Symmetric arcs have the same capacity
and the same length. Demands, however, are rarely symmet-
ric. As can be observed, the demands vary considerably from
pair to pair. The minimum demand value is very small com-
pared to the maximum values. Moreover, the larger networks
have higher demand values, because they are derived from
nationwide backbones as opposed to regional backbones.

The capacity of each link from networks net - 1, net - 2,
and net -3 are set to 2.48, whereas links of net -4 have
unit capacities.

The C program was compiled with the gcc compiler, ver-
sion 3.2.3 with optimization flag -03 and run on a SGI Altix
3700 Supercluster running RedHat Advanced Server with
SGI ProPack. The cluster is configured with 32 1.5-GHz
Itanium-2 processors (Rev. 5) and 245 Gb of main memory.
Eachrun was limited to a single processor. User running times

TABLE 1. Test problem network dimensions.

Network IN 1 MI IT1 ID1

net-1 10 90 I0 90
net-2 I I 110 11 110
net-3 74 278 18 306
net-.? 71 350 71 4960

For each of the four networks used in the computational experiments, this
table lists the number of routers (IN[), the number of potential arcs (IAl),
the number of distinct destination routers taking part in the list of demands
(IT]), and the number of demand pairs ([Dl).

TABLE 2. Minimum (min), average (avg), and maximum (m a) values for demand, length, and inlout degrees.

Demand Length Inlout degree

Instance min a% max min avg max min avg max

were measured with the getrusage system call. Running
times exclude problem input.

As mentioned in Section 2, solution quality improves with
population size and number of generations (see Figs. 7 and 8).
On the other hand, running times increase as population size
and number of generations increase. Throughout these com-
putational experiments, we use a population of size p = 50,
matinglmutation probabilities rr l = 0.7 and 7r2 = 0.29, and
define classes A, B, and C with NA = 0.25p, NB = 0.7p, and
Nc = 0 . 0 5 ~ elements, respectively. Weights can take values
in the interval [l , F = 201. Larger and shorter ranges were
tested, but the one adopted seems to drive to a good network
optimization. Short ranges have too many ties and large ones
almost do not have any. Experimental testing suggests that
having ties helps in finding better solutions. With respect to
the QoS parameters, we use ,on = 0.8 for no-failure rout-
ing and pf = 0.95 for the cases where failures occur. On all
experiments, the objective function is the sum of the weighted
multiplicities, where the weighted multiplicity of an arc is the
multiplicity of the arc multiplied by its length.

Figure 9 shows network cost as a function of running time
for four runs on network net - 3. The algorithm was run for
no-failure, single-arc failure, single-router failure, and single-
arclsingle-router failure. Each run was limited to 10,000 sec-
onds. The figure shows that the algorithm produced designs
having costs: 104,528.32 for the no-failure case, 168,801.88
for single-arc failure, 172,570.86 for single-router failure,
and 185,709.16 for single-arclsingle-router failure. Hence,
to achieve protection from single-arc and single-router fail-
ures on net -3 results in about 78% more network cost than
when survivability is not required. Figure 10 illustrates the
progress of the best solutions produced by the genetic algo-
rithm. The figure plots the relative errors of each run as a
function of CPU time. Errors are computed relative to the
value of the best solution found during each run, that is, all rel-
ative errors are zero at time 10,000 seconds. The figure shows
that for the no-failure run, the algorithm produces solutions
within 10 and 1% of the best solution found (104,528.32)
in 6.86 and 1921.53 seconds, respectively. For the single-arc
failure run, solutions within 10 and 1% of the best solution

I I I I I I I 50 generations I I -

100 generations -------
200 generations - - - - - - - - .-

population size

FIG. 7. Network cost as a function of number of genetic algorithm population size for 50, 100, 200, 500, and
500 generations. Experiment done on a 74-router, 278-arc network (n e t - 3 in Section 5) with no router or arc
failure.

100000
100 200 300 400 500 600 700 800 600 1000

number of generations

FIG. 8. Network cost as a function of number of genetic algorithm generations for population sizes 10,30,50,
70,90, 150,250, and 500 elements. Experiment done on a 74-router, 278-arc network (net - 3 in Section 5) with
no router or arc failure.

found (168,801.88) are found in, respectively, 374.1 1 and the algorithm produces solutions within 10 and 1 % of the best
3365.66 seconds. In 85.18 and 6925.90 seconds, the algo- solution found (185,709.16) in 356.78 and 9249.97 seconds,
rithm produces solutions within 10 and 1%, respectively, of respectively.
the best solution found (172,570.86) for the single-router fail- In the next experiment, the genetic algorithm (GA) was
ure run. Finally, for the single-arc / single-router failure run, run on each of the four test problems using five different

I I I ' I

- ? i <.." . .
i ', . ,;.. *.-, j I \ ... ! ,

- ... ; !.ls :t.. h..ij- , . i: , . ., :. 5 : '.5 . . - j : " -- .-... lL...~gI*.mutBTI~re.fil . .
-\, ; * . '1

j 1 '-..; "".
...............-........-.-................. we.~*er.failuFe.-..I:: ,..... j :> .i f.; ::; j "-, :

'I i :. L- :
........ \. I '.- : ---, .-*.-+ : .,-- >--. ..__. : i ; .. A * " :-

i ---- .------ k2,i ---------------- ?-. >--.

sidle arc failure'--- -. L %. ...

... .- i "-

h
I . 1 I . I .

CPU time (1.5 GHz Itanium-2 seconds)

FIG. 9. Network design cost for genetic algorithm runs for 10,000 seconds on instance net -3 for no-failure,
single-router failure, single-arc failure, and single-arc or single-router failure.

CPU time (1.5 GHz ItaniumQ seconds)

FIG. 10. Relative error with respect to the best solution found for genetic algorithm runs for 10,000 seconds on
instance net - 3 for no-failure, single-router failure, single-arc failure, and single-arc or single-router failure.

random number generator seeds. For problems net - 1 and
net - 2, the algorithm was run for 200 generations, whereas
for the larger problems net - 3 and net - 4, the number
of generations was fixed at 100. We compare the average
network cost for weights computed by the genetic algorithm
with average network cost produced using unit and random
(rand) weights. For both random and unit weight solu-
tions, we apply the multiplicity setting heuristics described
in Sections 3 and 4, that is, repeatedly, demand is routed
following OSPF rules, and loads and multiplicities are com-
puted, until there is enough capacity so that all of the demand
can be feasibly routed. We compute as many random weight
solutions as are generated by the genetic algorithm. For
net - 1 and net - 2, where 200 generations with a population
of size 50 are computed for each random seed by the GA,
we compute 7500 random weight solutions. For net - 3 and
net -4, where 100 GA generations are run, we examine
3750 random weight solutions. For each of the five inde-
pendent runs, the best random weight solution is returned.
The average random solution reported is the average of these
five solutions. We compute the network costs for the four
combinations of arc and router failurelno-failure. We also
compute a lower bound (LB) on the network cost as follows.
For each target node, we determine a shortest path graph using
lengths as arc weights. Demands are routed on shortest paths
assuming unit multiplicities and arc loads are computed. New
multiplicities are computed as in Section 3, except that their
values are not rounded up to an integer, but instead are taken
as real numbers. The arc cost is the product of its real-valued
multiplicity and its length. A lower bound on the network

design cost is the sum of all arc costs. The lower bound is the
maximum network cost found repeating this procedure for
each failure scenario. The results are summarized in Table 3,
where for each instance, four sets of costs are shown: no
arc or router failure, single-router failure and no arc failure,
single-arc failure and no router failure, and both single-arc
and single-router failure. Average CPU times for the genetic
algorithm (in 1.5-GHz Itanium-2 seconds) are also listed in
the table. Figures 11 and 12 show plots of the data in Table 3.
We recall that the unit weight solution is one of the initial
solutions generated by the GA. Thus, the final solution found
by the GA can never cost more than the design using unit
weights.

In almost all cases, the genetic algorithm produced designs
where network cost increased when additional failures were
considered. The only exception was on net - 1, where the
average cost for single-arc failure and no router failure was
2773.0, while it decreased to 2766.8 when single-router fail-
ures were also considered. This is probably due to the fact
that demand originating or terminating at failed routers is
discarded in the cost computation.

Table 4 lists ratios of average network costs of ran-
dom weight and genetic algorithm solutions and of average
network costs of unit weight and genetic algorithm solutions.
The table also lists ratios of average genetic algorithm solu-
tions and the lower bounds. The table considers only runs with
no failure or single-arc failure. With respect to random weight
solutions, the GA solutions were from 15% up to almost a
factor of three smaller. Likewise, with respect to unit weight
solutions, GA solutions were up to a factor of three smaller.

TABLE 3. Average network cost for unit, random, and genetic algorithm arc weight solutions, lower bound cost, and genetic algorithm running times
(seconds on an I .5-GHz Itanium-2 processor) for the experiments with no failures, and all single-failure combinations.

Failure Avg network cost Avg time

Network Arc Router Unit Random G A LB G A

Values are averaged over five independent runs.

The lower bounds do not appear to be very strong with the
GA solution reaching almost a factor of 5 of the lower bound.
Recall, however, that these runs were limited to only 100 or
200 generations, and used a small population of size 50. In
contrast, the 1000 generation run with a 500 element pop-
ulation of Figure 8 produced a solution with cost 100,880
for net - 3 with no failures. This increases the ratio rand/GA
from 1.37 to 1.64 and the ratio unit/GA from 1.52 to 1.82 and
decreases the ratio GALB from 2.33 to 1.94.

We conclude this section with an empirical examination
of the number of times the algorithms described in Sections 3
and 4 execute for each solution evaluation. We call conver-
gence loops the set of while loops that are executed in the
multiplicity setting heuristic. For the purpose of our anal-
ysis, we call the convergence loops C1, CZ, C3, and C4.
Loop CI is the while loop in lines 9 to 21 of proce-
dure EvaluateSolution; loop C2 (G3) is the loop in
lines 2 to 15 of procedure SimulateFail for arc (router)
failure; and C4 is the loop in lines 1 to 22 of procedure
Updatesolution.

Figure 13 shows how the loops are related. Loop CI calls
all the other loops. It calls loop C4 in all four combinations
of arc and router failure and no failure. For the case of no arc
or router failure, loop C1 and loop C4 are executed only once
during solution evaluation. In the case of arc or router failure,
loop C1 is executed until one round of no failure, arc failure,
and/or router failure is computed without any change in the
solution. Because arc failures are simulated before router fail-
ures, loop L1 can terminate between simulations. Therefore,
the number of calls to loop C2 is always at least as large as
the number of calls to loop C3.

Loop C4 is called from the other loops only when at least
one multiplicity has changed. For example, in the last round of

each arc or router failure simulation, the multiplicities do not
change. Therefore, the number of calls to loop C4 is always
smaller than the sum of calls of the three other loops.

Table 5 presents the number of times loops GI, C2, C3,
and C4 are called and executed for instances net - 1 and
net - 4. The four combinations of arc and router failure and
no failure are considered. These counts were made in the
experiments reported in Table 3. For each failure combina-
tion, the table lists counts for each possible combination of
loops. For each loop and instance, there are three columns.
Column No. called is the average number of times the loop
was called; No. passes is the number of times the loop was
executed (with an exception in the case of loop C1), and max
No. is the maximum number of times the loop was executed
by a call. The field No. passes for loop CI is the number of
times that it calls the other convergence loops. For example,
as shown in the table, in the case of no arc or router failure,
loop Cl will execute only once per call, and consequently,
max No. is equal to one.

Because the genetic algorithm was run for 200 generations
on the smaller instance (net - I), the No. called entry for
loop C1 is larger than it is for the larger instance (net -4),

which was run for only 100 generations. Because there are
50 individuals per population, then three random solutions
and 34 solutions originated from crossover are evaluated per
generation, which, together with the evaluation of the initial
solutions (in the GA the initial population is counted as the
first generation of solutions), sum up the total number of calls
to loop G,.

Loop C2 is executed more times than loop G3, because
there are more arcs than routers in the networks studied.

The maximum number of times a loop is executed gives
an idea about the convergence of these loops. For example,

! I I I -. - ,

.. z............).

________.__-------------
* --_-__---_-_---- --------$ rand

................................. ...; .. i

. :,......... _
I I' , , , ,
i /' . ,
x' - -

....... .__.. ...-. & 4 GA
&..--.--. __... :

__I-- :

...................... - i... ::.:.:. i.. i... .i
! _....-
: _.I. %p.-

............ - ..A ; 4 , .,;
.................. +..- - A "....+ $ LB

I I I I 0
nolno no/yes yeslno Ye*=

single-arc failure / single-router failure

I ! 1 I

unit

.. .> -
---------.---.---.----G-.--------- __--_--- -----5 rand

........ i

; /' . ,i ,.'....... i... i .. :. ..
/ ,'
7

....$ GA - ,; ;~.~~LI..I.I..:~..~.I:I.~::....I.:..I.T..:.~:I.~,:.I:.-.:I.I.~:T~-:.:.~.:~.:::~,-::~ j,. : . . . __I.
..... _..'

i
.................. - .a::!. j...

$... 6 " + Q LB

I I I I 0
notno yeslno yea!=

single-arc failure I single-router failure

FIG. 11. Average network costs for instances net - 1 and net -2 for random we~ghts, unlt weights, and weights
detem~ned by GA. A lower bound on network cost is also shown.

on instance net -4, the maximum number of times loop C2 The number of times the loops were executed is related to
was executed occurred for the case of arc and router fhil- the instance size and kind of experiment performed. Further-
ure. In this, case rnax No. = 1872.6, which means that the more, it is an indicator of how long the complete experiment
arc failure simulation ran up to 5.35 (=1872.6/350) times took.
for each arc. Also, for this case, loop C1 was executed
up to 3.33 times per call, loop C3 was called up to 4.75
(=337.0/71) times per call, and loop C4 was called up to 6. CONCLUDING REMARKS

5.2 times per call. ~ o t e that the abovemaximum numbers of In this article, we described a new evolutionary algorithm
calls are averaged over five runs each and therefore can be for survivable IP network design with OSPF routing. The
real-valued. algorithm works with a set of p solutions. Each solution

I I ! !

*----- --------- ---------- ---8 rand
8 . ----____ -&-----------

I : _._.___ _.._:.__ : , i
,' i

-

- -
.*--- - - - - _ i

_.-. - i "d.: : : ... i
i ,..-
I ,,.'

............................. . - .. :.. .. --.-

LB
"_".--'' i

<_ --'"
: _--. . -...

.................... - q:..:: ;

I 1 I I

nolno ndV= y&no ~ e s / y e
single-arc failure / singlerouter fallure

I 1 ! 1

---4 rand - i ... /.:.: (......................-
ST---- _*-- _<-- -----___

......... -
....

--.

;-..:L i

. .' - : ..- <.' ! &
T'

................... -. .. .: .. :. ... -.-

.... A - - LB .. r ; I A"'-.-

1 1 1 I 0
notno no&= yedno

single-arc fallure I single-router failure

FIG. 12. Average network costs for instances ne t - 3 and net- 4 for random weights, unit weights, and weights
determined by GA. A lower bound on network cost is also shown.

is characterized by an integer arc weight vector. The algo-
rithm starts with a unit weight solution and p - 1 random
weight solutions and evolves this population over N gener-
ations, combining solutions according to a specific recipe.
To associate a design with each weight vector, a multiplicity
setting heuristic determines the number of links that each
arc must have so that all demand can be feasibly routed
in the network using OSPF routing with route splitting. To
achieve an efficient implementation, instead of recomputing
shortest paths and loads from scratch, dynamic shortest path
algorithms were used whenever possible.

To simplify the description of the algorithm, we omit from
the article many extensions that we have incorporated into
the algorithm. Most are simple to incorporate into a genetic
algorithm. They include:

In addition to the network cost described in the article, we
also allow minimization of the number of links, as well as a
fixed charge cost model, where one pays K, to use arc a and
an additional k, per link of arc a deployed.
Besides arc and router failures, the algorithm also allows sin-
gle span failure. A span is a set of arcs that use a common
network structure and are likely to fail simultaneously.

TABLE4. Average networkcost ratios of random and unitweight solutions loop4
to genetic algorithm networkcost and ratios between meangenetic algorithm
network costs and lower bound.

Network Arc failure unit/GA rand/GA GALB
1 L Y I

net-1 no 2.61 1.93 2.3 1
Yes 2.32 1.94 3.29

net-2 no 3.23 2.48 2.67
Yes 2.67 2.23 4.66

net-3 no 1.52 1.37 2.33
Yes 1.47 1.73 2.18 vv A l

net-4 no 1.16 1.17 3.30
Yes 1.07 1.30 3.68

We assume that routers do not fail.

Single-span failure is a generalization of single-arc and
4, Y r

single-router failures.
Often one wishes to impose a maximum latency restriction
on demand. The algorithm described in the article does not
restrict any demand from following a long and winding route. loop&

It is simple to maintain the latency of each shortest path graph FIG. 13. The relationship between loops in the multiplicity setting
and thus compute the latency of each demand pair. A penalty heuristics. [Color figure can be viewed in the online issue, which is available
function with the sum of excess latencies can be added to the at www.interscience.wiley.com.]
objective function to disfavor solutions that violate the latency
restriction.
Two arcs are said to be symmetric if the tail of one is the head

Offspring solutions resulting from mating of two solutions
from the population may not be locally optimal with respect to

of the other and vice versa. Often one wishes to impose that
OSPF weights be equal on symmetric arcs. Minor modifica-
tions of the random weight generation and matinglmutation the neighborhoods defined by single link removals and single
procedures can achieve this.
Likewise, multiplicities may be required to be the same on

arc weight increases (as in [5]) . We implemented such local
search procedures. Although they can reduce the design cost

symmetric arcs. A simple modification of the multiplicity of some offspring, we feel that the additional computational
setting heuristic allows this type of restriction.
The implementation allows the input of fixed OSPF weights

effort does not justify their use.
The weights produced by the best solution can be further

for a subset S c A of the arcs. adjusted to optimize a measure of network congestion. We
allow the OSPF weights of the set of best solutions in the final
population to be optimized with the weight setting algorithm
of Buriol et al. [5] .

The implementation allows for input of an initial set of mul-
tiplicities for all solutions to allow for network expansion
studies.

TABLE 5. Average number of calls, runs, and maximum runs per call of the convergence loops of networks net -1 and net -4.

Failure Net-1 Net-4

Arc Router Loop No. called No. passes max no. no. called No. passes rnax no.

Acknowledgments

The first author acknowledges discussions with Paulo
Morelato Fran~a, which helped improve an earlier version
of the article. We acknowledge the constructive remarks of
two anonymous referees. We are also thankful to Doug Shier
for carefully proofreading the manuscript and suggesting
improvements.

REFERENCES

[I] J.C. Bean, Genetic algorithms and random keys for sequenc-
ing and optimization, ORSA J Comp 6 (1994), 154-160.

[2] A. Bley, "A Lagrangian approach for integrated network
design and routing in IP Networks," Proceedings of Inter-
national Network Optimization Conference (INOC 2003),
2003, pp. 107-1 13.

[3] A. Bley, M. Grotschel, and R. Wessaly, "Design of broad-
band virtual private networks: Model and heuristics for the
B-WIN," Robust communication networks: Interconnection
and survivability, volume 53 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, N. Dean,
D.F. Hsu, and R. Ravi (Editors), American Mathematical
Society, New Providence, RI, 1998, pp. 1-16.

[4] P. Brostrom and K. Holmberg, Multiobjective design of
survivable IP networks, Technical Report LiTH-MAT-R-

2004-03, Division of Optimization, Linkoping Institute of
Technology, 2004.
L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup,
A hybrid genetic algorithm for the weight setting problem in
OSPF/IS-IS routing, Networks 46 (2005), 36-56.
L.S. Buriol, M.G.C. Resende, and M. Thorup, Speeding
up dynamic shortest path algorithms, Technical Report TD-
SRJSB, AT&T Labs Research, 2003.
E. Dijkstra, A note on two problems in connexion with
graphs, Numer Math 1 (1959). 269-27 1.
M. Ericsson, M.G.C. Resende, and P.M. Pardalos, A genetic
algorithm for the weight setting problem in OSPF routing,
J Combin Optimizat 6 (2002), 299-333.
B. Fortz and M. Thomp, Increasing internet capacity using
local search, Comput Optimizat Appl 29 (2004), 13-48.
(Preliminary short version of this paper published as "Inter-
net Traffic Engineering by Optimizing OSPF weights," Proc.
19th IEEE Conf. on Computer Communications (INFO-
COM), 2000, pp. 519-528.
D.E. Goldberg, Genetic algorithms in search, optimiza-
tion, and machine learning, Addison-Wesley, Reading, MA,
1989.
J.H. Holland, Adaptation in natural and artificial systems,
MIT Press, Cambridge, MA, 1975.
K. Holmberg and D. Yuan, Optimization of internet protocol
network design and routing, Networks 43 (2004), 39-53.

