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lnternet protocol (IP) traffic follows rules established by 
routing protocols. Shortest path-based protocols, such 
as Open Shortest Path First (OSPF), direct traffic based 
on arc weights assigned by the network operator. Each 
router computes shortest paths and creates destination 
tables used for routing flow on the shortest paths. If 
a router has multiple outgoing links on shortest paths 
to a given destination, it splits traffic evenly over these 
links. It is also the role of the routing protocol to specify 
how the network should react to changes in the network 
topology, such as arc or router failures. In such situa- 
tions, IP traffic is rerouted through the shortest paths 
not traversing the affected part of the network. This 
article addresses the issue of assigning OSPF weights 
and multiplicities to each arc, aiming to design efficient 
OSPF-routed networks with minimum total weighted mul- 
tiplicity (multiplicity multiplied by the arc length) needed 
to route the required demand and handle any single arc or 
router failure. The multiplicities are limited to a discrete 
set of values, and we assume that the topology is given. 
We propose an evolutionary algorithm for this problem, 
and present results applying it to several real-world prob- 
lem instances. o 2006 Wiley Periodicals, Inc. NETWORKS, 
Vol. 49(1), 51-64 2007 
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I 1. INTRODUCTION 

The Internet is the global network of interconnected 
communication networks, made up of routers and links 
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connecting the routers. On a network level, the Internet is 
built up of several autonomous systems (Ass) that typically 
fall under the administration of a single institution, such as a 
company, a university, or a service provider. Routing within 
a single AS is done by an Interior Gateway Protocol (IGP), 
while an Exterior Gateway Protocol (EGP) is used to route 
traffic flow between ASS. IP traffic is routed in small chunks 
called packets. A routing table instructs the router how to for- 
ward packets. Given a packet with an IP destination address 
in its header, the router retrieves from the table the IP address 
of the packet's next hop. 

OSPF (Open Shortest Path First) is the most used IGP. 
For this protocol, an integer weight must be assigned to each 
arc, and the entire network topology and weights are known 
to each router. With this information, each router computes 
the graphs of shortest (weight) paths from each other router 
in the AS to itself. The graphs need not be trees, because 
all shortest paths between two routers need to be consid- 
ered. Demands are routed on the corresponding shortest path 
graphs. At each router s, the total demand leaving this node 
and destined to a target router t is evenly split among all links 
outgoing from routers on the shortest path graphs ending at t. 
This demand not only consists of demand originating at s, but 
also of demand passing through s on its way to t. 

The arcs weights are assigned by the AS operator. The 
lower the weight, the greater the chance that traffic will get 
routed on that arc. Different weight settings lead to different 
traffic flow patterns. Weights can be set to optimize network 
performance, such as to minimize congestion [5,8,9], as well 
as to minimize network design cost. In this article, we address 
the latter case. 

Given a network topology and predicted traffic demands, 
the OSPF network design problem is to find a set of OSPF 
weights that minimizes network cost. More precisely, we are 
given a directed network G = (N,A), where N is the set 
of routers and A is the set of potential arcs where capacity 
can be installed, and a demand matrix D that, for each pair 
(s, t) E N x N, specifies the demand Di between s and t .  



FIG. I .  Load splitting for arc multiplicities. Left structure of outgoing arcs of node u; Middle: structure con- 
sidering the arc concept; Right: structure considering l i n k  concept. [Color figure can be viewed in the online 
issue, which is available at www.interscience.wiley.com.] 

The arc multiplicity of an arc a is the number of parallel 
links associated with arc a. We want to determine a positive 
integer weight w, E 11,655351, as well as the multiplicity, 
for each arc a E A, such that the network cost is minimized. 
Network cost in our application is the overall sum of the 
products of the multiplicity and the length of each arc. OSPF 
weights are restricted to be identical for all links on the same 
arc. Furthermore, we consider each link capacity to be fixed 
and equal to M. Therefore, each arc capacity is limited to a 
discrete set of values 

Multiplicities are determined such that all of the demand can 
be feasibly routed on the network, that is, no arc load exceeds 
the arc's capacity. For quality of service (QoS) purposes, the 
definition of feasible route is slightly different. A feasibly 
routed flow is such that no arc load exceeds a fraction p 
(0 < p ( 1) of the arc's capacity. 

For traffic splitting purposes, each parallel link is con- 
sidered as an independent link. For clarity, we use the term 
arc to refer to the structure installed between two nodes and 
l i n k  for each capacitated link inserted in this structure. As 
an example, consider Figure 1, where a load going through 
router u is destined to a target router t (not shown in the 
figure). Arcs (u,) and ( ~ 3 4 )  belong to the shortest path 
graph to destination t and arcs ( ~ 7 ~ )  and (D3) do not. Let 
the arc multiplicities of (a) and ( ~ 7 4 )  be 1 and 3, respec- 
tively. Then, one-fourth of the load will be routed on arc (a), which has one link, and three fourths will be routed 
on arc (uT4), which has three links. 

Because failures can occur in either arcs or routers, it 
is desirable to design IP networks that are survivable sub- 
ject to these types of failures. To overcome the complexity 
associated with generating all possible combinations of fail- 
ures, we limit ourselves to single-arc or single-router failure. 
Because links on a given arc are in some sense dependent, 
we consider in this article single-arc failure instead of single- 
link failure. Therefore, when an arc fails, all links associated 
with that arc fail. When a router fails, all arcs incoming and 
outgoing tolfrom this router are disabled. Furthermore, all 
demands having this router as source or destination are dis- 
carded. We also assume that no single-arc failure disconnects 
the network. A failure usually changes one or more short- 
est path graphs in the network. Consequently, demand may 
be rerouted on different paths. If there is sufficient capacity 
such that all of the demand can be feasibly rerouted for all 

possible single-arc and single-router failures, the network is 
called survivable. In the case of failures, the fraction of the 
arc's capacity limiting the load is usually larger than the frac- 
tion used to define a feasible flow for the nonfailure case. For 
example, in the case of no failure, a flow would be feasible 
if no arc load exceeds 70% of the arc's capacity, while for 
the case of single failure, this fraction could be, say, 90%. 
These values, which we call p, and pf for the nonfailure and 
failure cases, respectively, depend on the network's quality of 
service requirements. A high quality of service is associated 
with a low fraction. Similarly, as shown in Figure 2, the cost 
of the network is inversely proportional to the values of the 
fractions. 

Several articles on OSPF routing and on survivable IP net- 
work design have recently appeared in the literature. Fortz and 
Thorup [9] propose a local search algorithm to determine 
OSPF weights to minimize network congestion. Ericsson 
et al. [8] optimize the same objective function, but with a 
genetic algorithm. A local search is added to a similar genetic 
algorithm in Buriol et al. 151. Bley et al. [3] address survivable 
P network design for single arc or router failure. Capacities 
are assigned so that a specified percentage of each demand 
is satisfied for any single router or arc failure. Capacities 
are installed in multiples of a capacity unit, and can vary 
between a minimum value and a maximum value if the arc 
is utilized. Maximum hop count is imposed on each route. 
Arcs, in that article, have a single link. Furthermore, routing 
is done on a single shortest path, that is, load splitting is not 
implemented. Link weights are adjusted by local search to 
minimize the total cost of the network, which depends on 
the installed capacities. Bley [2] considers a similar prob- 
lem, but also takes into account hardware considerations that 
affect solution feasibility and cost. A solution method based 
on Lagrangian Relaxation is used. Holmberg and Yuan [12] , 
use simulated annealing to determine OSPF weights and arc 
capacities to minimize network cost based on a fixed charge 
and variable cost model. OSPF routing with load splitting 
is used. Arcs in this article, however, have a single link. 
Brostrom and Holmberg [4] use a similar approach, but tackle 
the problem of minimizing network cost while maximizing a 
measure of network survivability. Only arc failures are con- 
sidered. A mixed integer programming formulation is given. 
As with the articles above, arcs have a single link. 

In this article, we present a genetic algorithm for find- 
ing good-quality solutions to the survivable network design 
problem for single arc or single router failures where arc 
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FIG. 2. Effect of varying QoS parameter pf on network cost for a 74-router, 278-arc network (net - 3  in 
Section 5) with single arc failure. Five independent runs were done for each parameter value. The line connects 
average network cost values. Runs used p, = .8pf. 

multiplicities are considered. When simulating arc or router 
failures, the shortest path graphs are updated using dynamic 
shortest path algorithms [6], instead of recomputing the short- 
est path graphs from scratch. Moreover, OSPF weights are 
computed and OSPF routing is affected by arc multiplicities. 
Several extensions to the basic model are proposed, including 
identical or different OSPF weights on symmetric arcs, iden- 
tical or different multiplicities for symmetric arcs, different 
objective functions, arc weightrange, and latency constraints. 

This article is organized as follows. In Section 2, we 
describe a general evolutionary algorithm for weight setting 
in OSPF routing. This algorithm calls a procedure that, given 
a weight setting, routes the demands to determine arc multi- 
plicities and computes the cost of the network. This procedure 
is described in Section 3. In Section 4, we add survivability to 
the network design process. Computational results on "real- 
world" and artificial networks are presented in Section 5. 
Extensions and concluding remarks are given in Section 6. 

2. EVOLUTIONARY ALGORITHM FOR WEIGHT 
SElTlNG IN OSPF ROUTING 

Evolutionary algorithms, such as genetic algorithms 
[lo, 111, evolve a set of solutions (the population) over time 
(generations). The solutions of each generation are formed 
by combining pairs of solutions (mating) from the preced- 
ing generation, and randomly perturbing them (mutation). 
The process is repeated for a fixed number of generations, 
and the best solution in the last generation is returned by the 
algorithm as an approximate solution to the optimum. 

Ericsson et al. [8] presented a genetic algorithm for setting 
OSPF weights in an LP network with known link capaci- 
ties. The objective function used was the one proposed by 
Forts and Thorup [9], which increasingly penalizes loads that 
approach and go over link capacities. The same problem was 
addressed in Buriol et al. [ 5 ] ,  where a local search procedure 
was applied to the resulting offspring after mating. 

Our algorithm uses the same genetic algorithm structure 
described in [5,8], but differs in how the solution is evalu- 
ated. Furthermore, it considers single arc or router failures. 
In this section, we describe our genetic algorithm optimizing 
a general function f (w). In the next section, we show how 
we compute this function. We do not consider survivability 
issues yet and address those issues later, in Section 4. 

Each of the p elements of the population is an integer 
weight vector, characterizing a solution. Each arc a E A has 
associated with it an integer weight w, E [I,E]. Initially, all 
but one of the solutions are made up of uniformly randomly 
generated weights. The remaining solutionis made up of unit 
weights. 

The algorithm is run for N generations. We use the random 
keys crossover scheme of Bean [ I ]  for mating and mutation. 
At each generation, the solutions are evaluated and sorted in 
increasing order of objective function value. The NA solu- 
tions with the smallest costs are put in class A, while the Nc 
solutions with the largest costs are placed in class C .  The 
remaining solutions are assigned to class B. 

The next generation is produced as follows. All solutions 
in class A are automatically promoted, as is, to the next gen- 
eration. All solutions in class C are discarded and replaced by 



random weight solutions in the next generation. The remain- 
ing NB solutions of the next generation are generated as 
follows. To produce each offspring, one parent (pl) is selected 
at random (with replacement) from the elements in class A 
and one (p2) from B U C .  The i-th weight of the offspring will 
be the i-th weight of parent pl with probability nl > 112, 
the i-th weight of parent p2 with probability J C ~  < 1 - -1, 

or a random weight in the interval [ l , q  with probability 
1 - Irl - n2. 

Several parameters must be set. In Section 5, where com- 
putational results are described, we define these values. 
Guidelines for setting these parameters are as follows. The 
larger the population size p,  the longer will each generation 
take to be computed. Experiments performed with this prob- 
lem had shown that the CPU time is linearly proportional to 
the population size and to the number of generations. We also 
expect solution quality to improve by increasing the number 
of generations N and/or increasing the population sizep. The 
matinglmutation probabilities nl and n2 should be such that 
rrl  > n2 to avoid mutating too much the solution and gen- 
erating an offspring with little information derived from the 
parent solutions, and n1 + n2 x 1. NA, NB, and Nc should be 
such that NB > NA > Nc. Nc usually is small to avoid exces- 
sive randomization of the population and taking too many 
generations to converge. However, NA is usually not large to 
avoid converging the population too fast and "getting stuck" 
in a local minimum. 

3. HEURISTIC FOR COMPUTING ARC 
MULTIPLICITIES 

In this section, we describe a heuristic that computes arc 
multiplicities given a topology of potential arcs, lengths, and 
capacities associated with each arc (all links of the same arc 
have identical capacities and lengths), OSPF arc weights, 
and a demand matrix. This heuristic not only returns the arc 
multiplicities, but also computes the network cost f (w) that 
guides the genetic algorithm of Section 2. In this section, we 
describe the heuristic for the no-failure case. A pseudocode 
for the heuristic is described. Later, in Section 4, we consider 
the full procedure, with single failures. In all pseudocode, the 
parameters for some functions are omitted for clarity. 

Let T be the set of destination routers. We compute IT1 
single-destination shortest path graphs g', r E T. Each g', 
with destination t E T, has an [dl-vector L' associated with 
the arcs, that stores the partial loads flowing to t and traversing 
each arc a E A. The IA I-vector I stores the total load traversing 
each arc a E A. For each destination t E T, the IN I-vectors 
n' and 6' are associated with the nodes. The distance from 
each node to t is stored in n', while 6Qeeps the number of 
arc multiplicities (links) outgoing from each node in gf. 

The heuristic first routes the demand using OSPF routing 
rules and assuming each arc has unit multiplicity. Arc loads 
are computed and required multiplicities are determined. 
Demand is rerouted assuming the updated multiplicities 
and updated arc load are determined. This cycle (routing, 
computing arc loads, determining multiplicities) is repeated 

procedure EvaluateSolution(w, lf, r f )  
1 forall a E A do pa = 1; 
2 forall t E T do 
3 n' t ReverseDi j kstra(w); 
4 gt t ComputeSPG(w, X I ) ;  

5 St t ~omput e ~ e l  ta(gf); 
6 L' t ComputePartialLoads(p, 6 ,  n,gt); 
7 end forall 
8 1 t ComputeTotalLoads(L); 
9 S t UpdateMultiandDeltaO; 
10 if IS1 > 0 Updatesolution(); 
11 foral la~AifL~=Othenp,=O; 
12 f t Cad po * length,; 
13 r e t - n ( f ,  w); 
end procedure 

- 

FIG. 3. Pseudocode for heuristic for computing arc multiplicities. 

until the demand can be feasibly routed using the current 
multiplicities. 

Figure 3 shows the pseudocode for the heuristic for com- 
puting arc multiplicities. For each potential arc a E A, 
the arc's multiplicity pa is initially set to 1 in line 1. For 
each demand destination t E T, the shortest path graph dis- 
tances are computed from scratch, using Dijkstra's algorithm 
[7], in procedure ReverseDi j ks  t ra (line 3). Given the 
weights w and the shortest path distances, the shortest path 
graph is identified by procedure ComputeSPG in line 4. 
Given the shortest path graph g', 6' is computed in line 5 
by ComputeDelta. OSPF routes with load splitting are 
computed in line 6 and the partial loads vector L' is deter- 
mined by procedure Comput ePart ialloads for each arc 
in the shortest path graph g'. The total load 1 on an arc, com- 
puted in line 8 by procedure ComputeTotalLoads, is the 
sum of all partial loads routed on that arc. In the implemen- 
tation, the total loads are actually computed in procedure 
ComputePartialLoads. 

Next, in line 9, for each arc a E A, the multiplicity ka, and 
consequently a,, are updated in UpdateMult iandDelta 
according to the total load 1, on the arc. The updated mul- 
tiplicity of arc a is the maximum of its current multiplicity 
pa and the minimum multiplicity required to route load la 
on arc a, rla/(p . ca1), where p is such that 0 < p 5 1 and 
defines the portion of the capacity that can be used, that is, 
pa +- max{pa, rla/(p . ca)l ). The arcs whose multiplicities 
were updated are placed in a set S and the loads are updated 
in procedure UpdateSolut ion, described next. In line 1 1, 
the arcs with no load have their multiplicities set to 0 and in 
line 12, the solution cost is computed as the sum of the prod- 
ucts of arc multiplicities and the corresponding arc lengths. 
This value, as well as the arc multiplicities, are returned in 
line 13. 

Pseudocode for procedure UpdateSolution is given 
in Figure 4. For each shortest path graph g" t E T, the loads 
are updated if at least one of the arcs in S belongs to g' . In this 
case, the partial loads are not recomputed from scratch, but are 
simply updated. In line 4 of Updatesolution, tail nodes 



procedure Updatesolution() 
1 do 
2 forallf E Tdo 
3 H + 0; 
4 Lrall e = ( u 3 )  E S n g' do InsertIntoHeapMax(H, u, 4); 
5 while HeapSize(H) z 0 do 
6 u t FindAndDeleteMax(H); 
7 if 4 # ca then 
8 a + (D: + ~ o e ~ m r N ( u ) ~ b )  fa:; 
9 forall e = (u, v) E OUT(u) do 
10 i f e  $grthenl  t o ;  
I I else A t fie * 6; 
12 if 1 # L: then 
13 ic + le - Li + A; 
14 L: t A; 
I5 ~nsert~ntoHeap~ax(H, v,n:); 
16 end if 
17 end forall 
18 end if 
19 end while 
20 end forall 
21 StUpdateMultiandDelta(); 
22 until IS1 = 0; 
end procedure 

FIG. 4. Pseudocode for the procedure that updates the solution. 

u of all arcs (Zt) E S belonging tog' are inserted in a priority 
queue indexed by the distance to t. Nodes u are removed from 
the heap in line 6 and considered one by one until the heap 
is empty. The test in line 7 is only used when considering 
failures, and is always true for the no-failure case. In line 8, 
the load is evenly split, considering arc multiplicities. The 
load a is computed as the ratio between the sum of the load 
leaving node u and the load passing through node u and 6;. 
All arcs ( u 3 )  E g' outgoing from u have their new loads (A) 
computed, and if they have changed, the loads are updated in 
lines 13-14 and node v is inserted in the heap (line 15). 

After the loads are updated, some multiplicities may 
change. In line 21, procedure UpdateMul t iandDel ta 
computes the set of arcs S for which multiplicities have 
changed, and updates the vectors p and 6. Although set S 
contains at least one arc, the loop from line 2 to line 20 is 
repeated. In Section 5, we record the number of times that 
loop 2-20 is repeated and present statistics indicating that 
this number is small. 

4. SURVIVABLE NETWORK DESIGN 

In this section, we add survivability to the network design 
process. We consider single-arc, single-router, and single-arc 
or single-router failure. The difference between the genetic 
algorithm for the no-failure case and the ones for the single 
failure cases is the procedure EvaluateSolution. We 
describe changes to Evaluat eSolut ion and present the 
procedure that simulates these failures. 

Unlike the procedure in the previous section, the solu- 
tion evaluation not only computes the multiplicities for the 
no-failure case, but also updates the multiplicities consid- 
ering every single failure. These changes are shown in the 
pseudocode in Figure 5. 

Lines 9 and 10 of the pseudocode of the no-failure version 
of EvaluateSolution in Figure 3 have been substituted 
by lines 9 to 21 in the complete version in Figure 5. Further- 
more, in line 23, if in no situation (no failure or any single 
failure) arc a has a positive load, then the arc's multiplicity 
pa is set to 0. In the pseudocode, the maximum load on arc 
a over no-failure and all single-failure simulations is ia. 

In lines 9 to 21, the multiplicities are updated considering 
the cases of no-failure, single-arc failures, and single-router 
failures, consecutively. In line 10, the multiplicities are 
updated for the no-failure case UpdateMult iandDelta. 
Here, the QoS parameter p, is used. A change in multiplic- 
ity may cause a change in routing that can consequently 
cause a change in arc loads. A change in an arc load can 
lead to another change in the arc's multiplicity. For this rea- 
son, the steps in lines 10 to 20 are repeated in a circular 
loop until no further change in arc loads or multiplici- 
ties is detected in a full cycle of the loop by procedure 
NoMoreChanges. In Section 5, we study the number 
of times that procedure NoMoreChanges is called, and 
consequently, the number of times that the loop in lines 9-21 
is executed. 

Single-arc failures and single-router failures are simulated 
by the same procedure, S imulateFai 1. This procedure 
has two input parameters: a set F of sets F 1 ,  F 2 , .  . . , Fq of 
arcs that are consecutively removed from the graph during 
the simulation; and the cardinality q of F. For the single-arc 
failure case, SimulateFail first takes as input a set of 
sets Fa of single arcs, where each F, consists of arc a. The 
second parameter is m, the cardinality of F. For single-router 
failure, SimulateFail takes as input aset F of sets Fi and 

procedure Evaluatesolut ion(w, If, r f )  
1 f o r a l l a ~ A d o p ~ = l ;  
2 f ora l l r~Tdo  
3 a' t ReverseDijkstra(w); 
4 g' c Compute~~~andLoad(w, R'); 

5 8' c ~ompute~elta(g'); 
6 L' t ComputePartialLoads(p, 8, X, g'); 
7 end forall 
8 1 c ComputeTotalLoads(L); 
9 while 1 do 
10 S t UpdateMultiandDeltaO; 
1 1  if IS1 > 0 UpdateSolution(); 
12 if NoMoreChanges() then goto OUTLOOP; 
13 i f I f = l d o  
14 simulateFail(A,m); 
15 if NoMoreChanges() then goto OUTLOOP ; 
16 end if 
17 i f t f = l d o  
18 simulateFail(R,n); 
19 if NoMoreChanges() then goto OUTLOOP; 
20 end if 
21 end while 
22 OUTLOOP: 

23 f o r a l l a ~ ~ i f i , = ~ t h e n ~ , = ~ ;  
24 f + Caul pa * length,; 
25 returnv, PI; 
end procedure 

FIG. 5. Pseudocode for updating a solution considering failures. 
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procedure SimulateFail(F = {F1, F2,. . . , Fq),q) 
1 i = l ;  
2 while NoMoreChanges() do 
3 Copysolution(); 
4 forall a E F; do G, t w,; 
5 forall a E F; do w, t oo; 
6 UpdateSPGandLoad(); 
7 forall a E Fi do w, t G,; 
8 S t UpdateMultiandDel ta(); 
9 if IS1 > 1 then 
10 forall t E T do update~elta(S', gt); 
11 UpdateSolutionO; 
12 end if 
13 i f i < q t h e n i t i + I ;  
14 else i t 1; 
15 end while 
end procedure 

FIG. 6.  Pseudocode for updating the multiplicities and loads simulating a 
given set of failures. 

the cardinality n of F. Each Fi in this case is the set of all 
incoming and outgoing arcs to and from router i. 

We conclude this section with a description of failure sim- 
ulation, which is described in the pseudocode in Figure 6. In 
the loop in lines 2 to 15 of the pseudocode, the failure of each 
set Fi (i = 1,. . . , q) is simulated. The loop is repeated until 
one pass is completed over the entire set F without causing 
any change in the arc multiplicities, and consequently in the 
arc loads. This condition is tested in NoMoreChanges. For 
each simulation, the current solution is copied to an auxil- 
iary solution in line 3. The current weights of arcs a E F, 
are saved in the auxiliary vector & (line 4) and are set to 
infinity (line 5). Procedure UpdateSPGandLoad updates 
the shortest path graphs and the total and partial loads of 
the copied solution with weights w used to simulate the fail- 
ure of arcs a E Fi. The weights are reset to their original 
values in line 7 and in line 8 the multiplicities are updated 
for the copied solution. The QoS parameter pf is used in 
UpdateMultiandDelta. If at least one multiplicity has 
changed, then for each t E T, the original S t ,  Lt, and 1' are 
updated in lines 10 and 1 1. The counter i is either incremented 
in line 13 or reset to 1 in line 14 to force the loop to cycle 
through all of the sets F I ,  F 2 , .  . . , Fq. 

There is another way to simulate failures. Instead of copy- 
ing the current solution ( I  and g', ,', a t ,  L', for each r E T) 
to the auxiliary solution (line 3), we simulate each failure 
by first modifying the original solution and then undoing the 
modification at the end of the loop. We implemented and 
tested this alternative approach, but surprisingly, it was com- 
putationally less efficient than the one we adopted. Perhaps 
this is due to the fact that copying a block of memory is done 
very efficiently by modern hardware. 

In Section 5, we study the number of times that the failure 
of set Fi is simulated, discriminating between arc failure and 
router failure simulations. 

5. COMPUTATIONAL RESULTS 

We describe computational experiments with a C language 
implementation of the algorithm described in this article on 
four test problems derived from real-world IP networks. The 
dimensions of the four instances are summarized in Table 1. 
The first two instances (net -1 and net -2) are dense net- 
works in which there is demand between all pairs of routers. 
Each is made up of nodes that correspond to existing or 
planned routers of a large tier-1 Internet Service Provider 
(ISP) in aregion (of multiple states) of the United States. The 
other two instances (net - 3 and net -4) are much larger. 
Both involve sparse networks. Instance net - 3 corresponds 
to an outdated backbone IP network of a large tier- 1 ISP. Only 
18 of the 74 nodes are destination routers of demand pairs. 
Because of this, the algorithm works with only 18 shortest 
path graphs per solution. The last instance (net - 4) consists 
of sparse optimized regional IP networks linked by a dense 
backbone. It corresponds to the nationwide network of a large 
tier-1 ISP, All nodes are destination routers of demand pairs, 
and almost all router pairs have a demand associated with 
them. For each instance in this study, all links have identical 
capacities. 

Table 2 presents some statistics about the instances. Min- 
imum, average, and maximum values are given for demand, 
length, and inlout degree. Because each link is present in 
both directions (for each arc a + b, the networks have a 
corresponding arc b + a), the indegree and the outdegree 
of every node are equal, and therefore, these values were not 
repeated in the table. Symmetric arcs have the same capacity 
and the same length. Demands, however, are rarely symmet- 
ric. As can be observed, the demands vary considerably from 
pair to pair. The minimum demand value is very small com- 
pared to the maximum values. Moreover, the larger networks 
have higher demand values, because they are derived from 
nationwide backbones as opposed to regional backbones. 

The capacity of each link from networks net - 1, net - 2, 
and net -3 are set to 2.48, whereas links of net -4 have 
unit capacities. 

The C program was compiled with the gcc compiler, ver- 
sion 3.2.3 with optimization flag -03 and run on a SGI Altix 
3700 Supercluster running RedHat Advanced Server with 
SGI ProPack. The cluster is configured with 32 1.5-GHz 
Itanium-2 processors (Rev. 5) and 245 Gb of main memory. 
Eachrun was limited to a single processor. User running times 

TABLE 1. Test problem network dimensions. 

Network IN 1 MI IT1 ID1 

net-1 10 90 I0 90 
net-2 I I 110 11 110 
net-3 74 278 18 306 
net-.? 71 350 71 4960 

For each of the four networks used in the computational experiments, this 
table lists the number of routers (IN[), the number of potential arcs (IAl), 
the number of distinct destination routers taking part in the list of demands 
(IT]), and the number of demand pairs ([Dl). 



TABLE 2. Minimum (min), average (avg), and maximum ( m a )  values for demand, length, and inlout degrees. 

Demand Length Inlout degree 

Instance min a% max min avg max min avg max 

were measured with the getrusage system call. Running 
times exclude problem input. 

As mentioned in Section 2, solution quality improves with 
population size and number of generations (see Figs. 7 and 8). 
On the other hand, running times increase as population size 
and number of generations increase. Throughout these com- 
putational experiments, we use a population of size p = 50, 
matinglmutation probabilities rr l  = 0.7 and 7r2 = 0.29, and 
define classes A, B, and C with NA = 0.25p, NB = 0.7p, and 
Nc = 0 . 0 5 ~  elements, respectively. Weights can take values 
in the interval [ l , F  = 201. Larger and shorter ranges were 
tested, but the one adopted seems to drive to a good network 
optimization. Short ranges have too many ties and large ones 
almost do not have any. Experimental testing suggests that 
having ties helps in finding better solutions. With respect to 
the QoS parameters, we use ,on = 0.8 for no-failure rout- 
ing and pf = 0.95 for the cases where failures occur. On all 
experiments, the objective function is the sum of the weighted 
multiplicities, where the weighted multiplicity of an arc is the 
multiplicity of the arc multiplied by its length. 

Figure 9 shows network cost as a function of running time 
for four runs on network net  - 3. The algorithm was run for 
no-failure, single-arc failure, single-router failure, and single- 
arclsingle-router failure. Each run was limited to 10,000 sec- 
onds. The figure shows that the algorithm produced designs 
having costs: 104,528.32 for the no-failure case, 168,801.88 
for single-arc failure, 172,570.86 for single-router failure, 
and 185,709.16 for single-arclsingle-router failure. Hence, 
to achieve protection from single-arc and single-router fail- 
ures on net -3 results in about 78% more network cost than 
when survivability is not required. Figure 10 illustrates the 
progress of the best solutions produced by the genetic algo- 
rithm. The figure plots the relative errors of each run as a 
function of CPU time. Errors are computed relative to the 
value of the best solution found during each run, that is, all rel- 
ative errors are zero at time 10,000 seconds. The figure shows 
that for the no-failure run, the algorithm produces solutions 
within 10 and 1% of the best solution found (104,528.32) 
in 6.86 and 1921.53 seconds, respectively. For the single-arc 
failure run, solutions within 10 and 1% of the best solution 

I I I I I I I 50 generations I I - 

100 generations ------- 
200 generations - - - - - - - -  .- 

population size 

FIG. 7. Network cost as a function of number of genetic algorithm population size for 50, 100, 200, 500, and 
500 generations. Experiment done on a 74-router, 278-arc network ( n e t  - 3 in Section 5) with no router or arc 
failure. 
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FIG. 8. Network cost as a function of number of genetic algorithm generations for population sizes 10,30,50, 
70,90, 150,250, and 500 elements. Experiment done on a 74-router, 278-arc network (net - 3 in Section 5) with 
no router or arc failure. 

found (168,801.88) are found in, respectively, 374.1 1 and the algorithm produces solutions within 10 and 1 % of the best 
3365.66 seconds. In 85.18 and 6925.90 seconds, the algo- solution found (185,709.16) in 356.78 and 9249.97 seconds, 
rithm produces solutions within 10 and 1%, respectively, of respectively. 
the best solution found (172,570.86) for the single-router fail- In the next experiment, the genetic algorithm (GA) was 
ure run. Finally, for the single-arc / single-router failure run, run on each of the four test problems using five different 
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FIG. 9. Network design cost for genetic algorithm runs for 10,000 seconds on instance net  -3 for no-failure, 
single-router failure, single-arc failure, and single-arc or single-router failure. 



CPU time (1.5 GHz ItaniumQ seconds) 

FIG. 10. Relative error with respect to the best solution found for genetic algorithm runs for 10,000 seconds on 
instance net  - 3 for no-failure, single-router failure, single-arc failure, and single-arc or single-router failure. 

random number generator seeds. For problems net - 1 and 
net - 2, the algorithm was run for 200 generations, whereas 
for the larger problems net - 3 and net - 4, the number 
of generations was fixed at 100. We compare the average 
network cost for weights computed by the genetic algorithm 
with average network cost produced using unit and random 
(rand) weights. For both random and unit weight solu- 
tions, we apply the multiplicity setting heuristics described 
in Sections 3 and 4, that is, repeatedly, demand is routed 
following OSPF rules, and loads and multiplicities are com- 
puted, until there is enough capacity so that all of the demand 
can be feasibly routed. We compute as many random weight 
solutions as are generated by the genetic algorithm. For 
net - 1 and net - 2, where 200 generations with a population 
of size 50 are computed for each random seed by the GA, 
we compute 7500 random weight solutions. For net - 3 and 
net -4, where 100 GA generations are run, we examine 
3750 random weight solutions. For each of the five inde- 
pendent runs, the best random weight solution is returned. 
The average random solution reported is the average of these 
five solutions. We compute the network costs for the four 
combinations of arc and router failurelno-failure. We also 
compute a lower bound (LB) on the network cost as follows. 
For each target node, we determine a shortest path graph using 
lengths as arc weights. Demands are routed on shortest paths 
assuming unit multiplicities and arc loads are computed. New 
multiplicities are computed as in Section 3, except that their 
values are not rounded up to an integer, but instead are taken 
as real numbers. The arc cost is the product of its real-valued 
multiplicity and its length. A lower bound on the network 

design cost is the sum of all arc costs. The lower bound is the 
maximum network cost found repeating this procedure for 
each failure scenario. The results are summarized in Table 3, 
where for each instance, four sets of costs are shown: no 
arc or router failure, single-router failure and no arc failure, 
single-arc failure and no router failure, and both single-arc 
and single-router failure. Average CPU times for the genetic 
algorithm (in 1.5-GHz Itanium-2 seconds) are also listed in 
the table. Figures 11 and 12 show plots of the data in Table 3. 
We recall that the unit weight solution is one of the initial 
solutions generated by the GA. Thus, the final solution found 
by the GA can never cost more than the design using unit 
weights. 

In almost all cases, the genetic algorithm produced designs 
where network cost increased when additional failures were 
considered. The only exception was on net - 1, where the 
average cost for single-arc failure and no router failure was 
2773.0, while it decreased to 2766.8 when single-router fail- 
ures were also considered. This is probably due to the fact 
that demand originating or terminating at failed routers is 
discarded in the cost computation. 

Table 4 lists ratios of average network costs of ran- 
dom weight and genetic algorithm solutions and of average 
network costs of unit weight and genetic algorithm solutions. 
The table also lists ratios of average genetic algorithm solu- 
tions and the lower bounds. The table considers only runs with 
no failure or single-arc failure. With respect to random weight 
solutions, the GA solutions were from 15% up to almost a 
factor of three smaller. Likewise, with respect to unit weight 
solutions, GA solutions were up to a factor of three smaller. 



TABLE 3. Average network cost for unit, random, and genetic algorithm arc weight solutions, lower bound cost, and genetic algorithm running times 
(seconds on an I .5-GHz Itanium-2 processor) for the experiments with no failures, and all single-failure combinations. 

Failure Avg network cost Avg time 

Network Arc Router Unit Random G A LB G A 

Values are averaged over five independent runs. 

The lower bounds do not appear to be very strong with the 
GA solution reaching almost a factor of 5 of the lower bound. 
Recall, however, that these runs were limited to only 100 or 
200 generations, and used a small population of size 50. In 
contrast, the 1000 generation run with a 500 element pop- 
ulation of Figure 8 produced a solution with cost 100,880 
for net - 3 with no failures. This increases the ratio rand/GA 
from 1.37 to 1.64 and the ratio unit/GA from 1.52 to 1.82 and 
decreases the ratio GALB from 2.33 to 1.94. 

We conclude this section with an empirical examination 
of the number of times the algorithms described in Sections 3 
and 4 execute for each solution evaluation. We call conver- 
gence loops the set of while loops that are executed in the 
multiplicity setting heuristic. For the purpose of our anal- 
ysis, we call the convergence loops C1, CZ, C3, and C4. 
Loop CI is the while loop in lines 9 to 21 of proce- 
dure EvaluateSolution; loop C2 (G3) is the loop in 
lines 2 to 15 of procedure SimulateFail for arc (router) 
failure; and C4 is the loop in lines 1 to 22 of procedure 
Updatesolution. 

Figure 13 shows how the loops are related. Loop CI calls 
all the other loops. It calls loop C4 in all four combinations 
of arc and router failure and no failure. For the case of no arc 
or router failure, loop C1 and loop C4 are executed only once 
during solution evaluation. In the case of arc or router failure, 
loop C1 is executed until one round of no failure, arc failure, 
and/or router failure is computed without any change in the 
solution. Because arc failures are simulated before router fail- 
ures, loop L1 can terminate between simulations. Therefore, 
the number of calls to loop C2 is always at least as large as 
the number of calls to loop C3. 

Loop C4 is called from the other loops only when at least 
one multiplicity has changed. For example, in the last round of 

each arc or router failure simulation, the multiplicities do not 
change. Therefore, the number of calls to loop C4 is always 
smaller than the sum of calls of the three other loops. 

Table 5 presents the number of times loops GI, C2, C3, 
and C4 are called and executed for instances net - 1 and 
net - 4. The four combinations of arc and router failure and 
no failure are considered. These counts were made in the 
experiments reported in Table 3. For each failure combina- 
tion, the table lists counts for each possible combination of 
loops. For each loop and instance, there are three columns. 
Column No. called is the average number of times the loop 
was called; No. passes is the number of times the loop was 
executed (with an exception in the case of loop C1), and max 
No. is the maximum number of times the loop was executed 
by a call. The field No. passes for loop CI is the number of 
times that it calls the other convergence loops. For example, 
as shown in the table, in the case of no arc or router failure, 
loop Cl will execute only once per call, and consequently, 
max No. is equal to one. 

Because the genetic algorithm was run for 200 generations 
on the smaller instance (net - I), the No. called entry for 
loop C1 is larger than it is for the larger instance (net -4), 

which was run for only 100 generations. Because there are 
50 individuals per population, then three random solutions 
and 34 solutions originated from crossover are evaluated per 
generation, which, together with the evaluation of the initial 
solutions (in the GA the initial population is counted as the 
first generation of solutions), sum up the total number of calls 
to loop G,. 

Loop C2 is executed more times than loop G3, because 
there are more arcs than routers in the networks studied. 

The maximum number of times a loop is executed gives 
an idea about the convergence of these loops. For example, 
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FIG. 11. Average network costs for instances net - 1 and net  -2  for random we~ghts, unlt weights, and weights 
detem~ned by GA. A lower bound on network cost is also shown. 

on instance net  -4, the maximum number of times loop C2 The number of times the loops were executed is related to 
was executed occurred for the case of arc and router fhil- the instance size and kind of experiment performed. Further- 
ure. In this, case rnax No. = 1872.6, which means that the more, it is an indicator of how long the complete experiment 
arc failure simulation ran up to 5.35 (=1872.6/350) times took. 
for each arc. Also, for this case, loop C1 was executed 
up to 3.33 times per call, loop C3 was called up to 4.75 
(=337.0/71) times per call, and loop C4 was called up to 6. CONCLUDING REMARKS 

5.2 times per call. ~ o t e  that the abovemaximum numbers of In this article, we described a new evolutionary algorithm 
calls are averaged over five runs each and therefore can be for survivable IP network design with OSPF routing. The 
real-valued. algorithm works with a set of p solutions. Each solution 
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FIG. 12. Average network costs for instances ne t - 3 and net- 4 for random weights, unit weights, and weights 
determined by GA. A lower bound on network cost is also shown. 

is characterized by an integer arc weight vector. The algo- 
rithm starts with a unit weight solution and p - 1 random 
weight solutions and evolves this population over N gener- 
ations, combining solutions according to a specific recipe. 
To associate a design with each weight vector, a multiplicity 
setting heuristic determines the number of links that each 
arc must have so that all demand can be feasibly routed 
in the network using OSPF routing with route splitting. To 
achieve an efficient implementation, instead of recomputing 
shortest paths and loads from scratch, dynamic shortest path 
algorithms were used whenever possible. 

To simplify the description of the algorithm, we omit from 
the article many extensions that we have incorporated into 
the algorithm. Most are simple to incorporate into a genetic 
algorithm. They include: 

In addition to the network cost described in the article, we 
also allow minimization of the number of links, as well as a 
fixed charge cost model, where one pays K, to use arc a and 
an additional k, per link of arc a deployed. 
Besides arc and router failures, the algorithm also allows sin- 
gle span failure. A span is a set of arcs that use a common 
network structure and are likely to fail simultaneously. 



TABLE4. Average networkcost ratios of random and unitweight solutions loop4 
to genetic algorithm networkcost and ratios between meangenetic algorithm 
network costs and lower bound. 

Network Arc failure unit/GA rand/GA GALB 
1 L  Y I  

net-1 no 2.61 1.93 2.3 1 
Yes 2.32 1.94 3.29 

net-2 no 3.23 2.48 2.67 
Yes 2.67 2.23 4.66 

net-3 no 1.52 1.37 2.33 
Yes 1.47 1.73 2.18 vv A l 

net-4 no 1.16 1.17 3.30 
Yes 1.07 1.30 3.68 

We assume that routers do not fail. 

Single-span failure is a generalization of single-arc and 
4, Y r  

single-router failures. 
Often one wishes to impose a maximum latency restriction 
on demand. The algorithm described in the article does not 
restrict any demand from following a long and winding route. loop& 

It is simple to maintain the latency of each shortest path graph FIG. 13. The relationship between loops in the multiplicity setting 
and thus compute the latency of each demand pair. A penalty heuristics. [Color figure can be viewed in the online issue, which is available 
function with the sum of excess latencies can be added to the at www.interscience.wiley.com.] 
objective function to disfavor solutions that violate the latency 
restriction. 
Two arcs are said to be symmetric if the tail of one is the head 

Offspring solutions resulting from mating of two solutions 
from the population may not be locally optimal with respect to 

of the other and vice versa. Often one wishes to impose that 
OSPF weights be equal on symmetric arcs. Minor modifica- 
tions of the random weight generation and matinglmutation the neighborhoods defined by single link removals and single 
procedures can achieve this. 
Likewise, multiplicities may be required to be the same on 

arc weight increases (as in [5 ] ) .  We implemented such local 
search procedures. Although they can reduce the design cost 

symmetric arcs. A simple modification of the multiplicity of some offspring, we feel that the additional computational 
setting heuristic allows this type of restriction. 
The implementation allows the input of fixed OSPF weights 

effort does not justify their use. 
The weights produced by the best solution can be further 

for a subset S c A of the arcs. adjusted to optimize a measure of network congestion. We 
allow the OSPF weights of the set of best solutions in the final 
population to be optimized with the weight setting algorithm 
of Buriol et al. [5 ] .  

The implementation allows for input of an initial set of mul- 
tiplicities for all solutions to allow for network expansion 
studies. 

TABLE 5. Average number of calls, runs, and maximum runs per call of the convergence loops of networks net -1 and net -4. 

Failure Net-1 Net-4 

Arc Router Loop No. called No. passes max no. no. called No. passes rnax no. 
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