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Abstract

Cellular manufacturing emerged as a production strategy capable of solving the certain problems of complexity

and long manufacturing lead times in batch production. The fundamental problem in cellular manufacturing is the

formation of product families and machine cells. This paper presents a new approach for obtaining machine cells

and product families. The approach combines a local search heuristic with a genetic algorithm. Computational

experience with the algorithm on a set of group technology problems available in the literature is also presented.

The approach produced solutions with a grouping efficacy that is at least as good as any results previously reported

in literature and improved the grouping efficacy for 59% of the problems.

q 2004 Published by Elsevier Ltd.
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1. Introduction

Cellular manufacturing emerged as a production strategy capable of solving certain problems of

complexity and long manufacturing lead times in batch production systems in the beginning of the

1960s. Burbidge (1979) defined group technology (GT) as an approach to the optimization of work in

which the organizational production units are relatively independent groups, each responsible for the

production of a given family of products.
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One fundamental problem in cellular manufacturing is the formation of product families and machine

cells. The objective of this product-machine grouping problem is to form perfect (i.e. disjoint) groups in

which products do not have to move from one cell to the other for processing.

At the conceptual level cell formation models ignore many manufacturing factors and only consider

the machining operations of the products, so that a manufacturing system is represented by a binary

machine-part incidence matrix [A], which is a zero-one matrix of order P!M where PZnumber of

products and MZnumber of machines. Element ap,mZ1 indicates the visit of product p to machine M
and ap,mZ0 indicates otherwise.

Many methods of cell formation have been developed and published. Wemmerlov and Hyer (1989)

and Selim, Askin, and Vakharia (1998) provide extensive reviews of prior research. In the next

subsections we briefly review procedures based on the type of general solution methodology used

(Cluster analysis, Graph partitioning, Mathematical programming and other.)

1.1. Procedures based on cluster analysis

Array-based clustering methods perform a series of column and row permutations to form product and

machine cells simultaneously. King (1980) and later King and Nakornchai (1982) developed array-based

methods. Chandrasekharan and Rajagopalan (1987), Khator and Irani (1987), King and Nakornchai

(1982), and Kusiak and Chow (1987) proposed other algorithms. A comprehensive comparison of three

array-based clustering techniques is given in Chu and Tsai (1990). The quality of the solution given by

these methods depends on the initial configuration of the zero-one matrix.

McAuley (1972) and Carrie (1973) developed algorithms using clustering and similarity coefficients.

Since then, Gupta and Seifoddini (1990), Khan, Islam, and Sarker (2000), Mosier and Taube (1985a,b),

Seifoddini (1989), and Yasuda and Yin (2001) proposed hierarchical methods. These methods have the

disadvantage of not forming product and machine cells simultaneously, so additional methods must be

employed to complete the design of the system.

GRAFICS, developed by Srinivasan and Narendran (1991), and ZODIAC, which is a modular version of

MacQueen’s clustering method, developed by Chandrasekharan and Rajagopalan (1987), are examples of

non-hierarchical methods. Miltenburg and Zhang (1991) present a comprehensive comparison of nine

clustering methods where non-hierarchical methods outperform both array-based and hierarchical methods.

1.2. Graph partitioning approaches

Rajagopalan and Batra (1975) used graph theory to solve the grouping problem. They developed a

machine graph with as many vertices as the number of machines. Two vertices were connected by an

edge if there were parts requiring processing on both the machines. Cliques obtained from the graph

were used to determine machine cells. The limitation of this method is that machine cells and part

families are not formed simultaneously. Kumar et al. (1986) solved a graph decomposition problem to

determine machine cells and part families for a fixed number of groups and with bounds on cell size.

Their algorithm for grouping in flexible manufacturing systems is also applicable in the context of GT.

Vannelli and Kumar (1986) developed graph theoretic models to determine machines to be duplicated

so that a perfect block diagonal structure can be obtained. Kumar and Vannelli (1987) developed

a similar procedure for determining parts to be subcontracted in order to obtain a perfect block diagonal

structure. These methods are found to depend on the initial pivot element choice.
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Vohra et al. (1990) suggested a network-based approach to solve the grouping problem. They used a

modified form of the Gomory-Hu algorithm to decompose the part-machine graph. Askin, Creswell,

Goldberg, and Vakharia (1991) proposed a Hamiltonian-path algorithm for the grouping problem. The

algorithm heuristically solves the distance matrix for machines as a TSP and finds a Hamiltonian path

that gives the rearranged rows in the block diagonal structure. The disadvantage of this approach is that

actual machine groups are not evident from its solution. Lee and Garcia-Diaz (1993) transformed the cell

formation problem into a network flow formulation and used a primal-dual algorithm developed by

Bertsekas and Tseng (1988) to determine the machine cells. Other graph approaches include the

heuristic graph partitioning approach of Askin and Chiu (1990) and the minimum spanning tree

approach of Ng (1993) and (1996).

1.3. Mathematical programming approaches

Mathematical programming methods treat the clustering problem as a mathematical programming

optimization problem. Different objective models have been used. Kusiak (1987) suggested the p-median

model for GT, where it minimizes the total sum of distances between each product/machine pair. Shtub

(1989) modeled the grouping problem as a generalized assignment problem. Choobineh (1988) formulated

an integer programming problem which first determines product families and then assigns product families

to cells with an objective of minimizing costs. Co and Araar (1988) developed a three-stage procedure to

form cells and solved an assignment problem to assign jobs to machines. Gunasingh and Lashkari (1989)

formulated an integer programming problem to group machines and products for cellular manufacturing

systems. Srinivasan, Narendran, and Mahadevan (1990) modeled the problem as an assignment problem to

obtain product and machine cells Chen and Heragu (1999) present two stepwise decomposition approaches

to solve large-scale industrial problems. Won (2000) presents a two-phase methodology based on an efficient

p-median approach. Akturk and Turkcan (2000) propose an integrated algorithm that solves the machine/

product grouping problem by simultaneously considering the within-cell layout problem.

1.4. Other approaches

Joines, Culbreth, and King (1996) developed an integer program that is solved using a genetic

algorithm. Cheng, Gupta, Lee, and Wond (1998) formulate the problem as a traveling salesman problem

and solve the model using a genetic algorithm. Plaquin and Pierreval (2000) propose an evolutionary

algorithm for cell formation taking into account specific constraints. Zhao and Wu (2000) present a

genetic algorithm for cell formation with multiple routes and objectives. Caux, Brauniaux, and Pierreval

(2000) address the cell formation problem with multiple process plans and capacity constraints using a

simulated annealing approach. Dimopoulos and Mort (2001) present a hierarchical clustering

methodology based on genetic programming for the solution of simple cell-formation problems.

Onwubolu and Mutingi (2001) develop a genetic algorithm approach taking into account cell-load

variation. Brown and Sumichrast (2001) propose an approach using Grouping Genetic Algorithm

(GGA). Uddin and Shanker (2002) address a generalized grouping problem, where each part has more

than one process route. The problem is formulated as an integer programming problem and a procedure

based on a genetic algorithm is suggested as a solution methodology.

The cell formation problem is a combinatorial optimization problem that is NP-hard and therefore

optimization algorithms yield a globally optimal solution in a prohibitive computation time. None of
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the approaches presented above guarantees optimal solutions. Metaheuristics have emerged to solve

combinatorial optimization problems with global or near-global optimal solution in a reasonable

computation time.

The objective of this paper is to present a procedure for obtaining product-machine groupings when

the manufacturing system is represented by a binary product-machine incidence matrix. The approach

combines a genetic algorithm with a local search heuristic. The genetic algorithm is responsible for

generating sets of machines cells. The local search heuristic is applied on the set of machines cells with

the objective of constructing sets of machine/product groups and improving their quality.

In Section 2, we present the problem in terms of a block diagonalization problem. Some measures of

grouping quality are discussed in Section 3. Section 4 presents the local search procedure and the genetic

algorithm. The performance of the approach, on a set of 35 GT problems available in the literature, is

shown in Section 5. In Section 6, concluding remarks are made.
2. The block diagonalization problem

In this paper, we attempt to solve the machine and product-grouping problem as a zero one block

diagonalization problem (BDP), to minimize inter-cellular movement and maximize the utilization of

the machines within a cell.

Fig. 1 presents an example of the block diagonalization process of a 15!12 matrix (the zero values

were replaced by spaces in order to make the figure more readable). In this case (see Fig. 1(a)), there are

15 products (pZ1,2,.,15) to be produced in a set of 12 machines (MZM1,M2,.,M12). The objective of

the diagonalization problem is to produce a matrix such as the one in Fig. 1(b).

As can be observed in Fig. 1(b), four product/machine groups were formed see Table 1.
3. Measure of performance

Several measures of goodness of machine-product groups in cellular manufacturing have been

proposed. Sarker and Mondal (1999) present a simulation study of the effects of several factors on the

efficiency measures. Sarker (2001) introduces a new measure of goodness of machine-product grouping

and presents a survey of existing measures. The grouping efficiency and grouping efficacy are two popular

grouping measures because they are simple to implement and generate block diagonal matrices. Grouping

efficiency was first proposed by Chandrasekharan and Rajagopolan (1989). It incorporates both machine

utilization and inter-cell movement and is defined as the weighted sum of two functions h1 and h2:

Grouping efficiency Z h Z qh1 C ð1 � qÞh2

where
h1
 ratio of the number of 1’s in the diagonal blocks to the total number of elements in the diagonal blocks

of the final matrix;
h12
 ratio of the number of 0’s in the off-diagonal blocks to the total number of elements in the off-diagonal

blocks of the final matrix;
q
 weight factor.



Fig. 1. Block diagonalization example.
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One drawback of grouping efficiency is the low discriminating capability (i.e. the ability to

distinguish good quality grouping from bad). For example, a bad solution with many 1’s in the off-

diagonal blocks often shows efficiency figures around 75%. When the matrix size increases, the effect of

1’s in the off-diagonal blocks becomes smaller, and in some cases, the effect of inter-cell moves is not

reflected in grouping efficiency. To overcome the low discriminating power of grouping efficiency

between well-structured and ill-structured incidence matrices, Kumar and Chandrasekharan (1990)

proposed another measure, which they call grouping efficacy. Unlike grouping efficiency, grouping

efficacy is not affected by the size of the matrix.
Table 1

Resulting product/machine groups for the example in Fig. 1b

Cells Machines Products

1 M3, M6, M8 3, 5, 7, 9

2 M5, M7, M10, M12 10, 14, 15

3 M1, M4, M11 1, 4, 6, 12, 13

4 M2, M9 2, 8, 11
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The grouping efficacy can be defined as

Grouping efficacy Z m Z
N1 KNOut

1 ;

N1 CNIn
0

(1)

where
N1
 total number of 1’s in matrix A;
NOut
1
 total number of 1’s outside the diagonal blocks;
NIn
0
 total number of 0’s inside the diagonal blocks.
The closer the grouping efficacy is to 1, the better will be the grouping. The grouping efficacy for the

matrices in Fig. 1(a) (one group containing all the machines and products) and (b) are, respectively,

ma Z
39 K0

39 C141
Z 21:67%

mb Z
39 K0

39 C6
Z 86:67%

As expected, the matrix in Fig. 1(b) has a much higher grouping efficacy than the one in Fig. 1(a).

We chose grouping efficacy as the measure of performance for the hybrid genetic algorithm proposed

in this paper for several reasons:
†
 In the literature it has been considered the standard measure to report the quality of the grouping

solutions.
†
 It is considered a better measure than the grouping efficiency.
†
 It is able to incorporate both the within-cell machine utilization and the inter-cell movement.
†
 It has a high capability to differentiate between well-structured and ill-structured matrices (high

discriminating power).
†
 It generates block diagonal matrices which are attractive in practice.
†
 It does not require a weight factor.
4. The new approach

The approach presented in this paper combines a genetic algorithm with a local search heuristic. The

genetic algorithm is used to generate sets of machine cells. The evolutionary process, embedded in

the genetic algorithm, is responsible for improving the grouping quality of the sets of machine cells

generated. The local search heuristic is applied to the sets of machines cells generated by the genetic

algorithm. The objective of the heuristic is to construct a set of machine/product groups and improve

it, if possible. The heuristic feeds back to the genetic algorithm the grouping efficacy of the set

of machine/product groups it constructs. Fig. 2a shows the sequence of steps applied to each

chromosome generated by the genetic algorithm.

The remainder of this section describes in detail the genetic algorithm and the local search heuristic.



Fig. 2. (a) Architecture of the new approach. (b) Standard genetic algorithm.
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4.1. Genetic algorithm

Genetic algorithms (GA) were introduced by Holland (1975) and have been applied in a number of

fields, e.g. mathematics, engineering, biology, and social science (Goldberg, 1989). GAs are search

algorithms based on the mechanics of natural selection and natural genetics. They combine the concept

of survival of the fittest with structured, yet randomized, information exchange to form robust search

algorithms.

The concept of genetic algorithms is based on the evolution process that occurs in natural biology. An

initial population of possible solutions (referred to as individuals or chromosomes) is generated. Some

individuals are selected to be parents to produce offspring via a crossover operator. All the individuals are

then evaluated and selected based on Darwin’s concept of survival of the fittest. The process of reproduction,

evaluation, and selection is repeated until a termination criterion is reached. In addition, a mutation operator
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with certain probability is applied to the individuals to change their genetic makeup. The objective of this

mutation process is to increase the diversity of the population and ensure an extensive search.

Each iteration (also referred to as generation or family of solutions) is made up of chromosomes. Each

chromosome is in turn made up of individual genes. These genes are encodings of the design variables

that are used to evaluate the function being optimized. In each iteration of the search process, the system

has a fixed population of chromosomes that represent the current solutions to the problem. Fig. 2b

represents a pseudo-code for a standard genetic algorithm.

The GA calls a subroutine to compute the fitness value (the quality) for each chromosome in the

population. This fitness value is the only feedback to the GA.

The genetic algorithm presented in this paper uses a random key alphabet U(0,1) and an evolutionary

strategy (see Fig. 5) identical to the one proposed by Bean (1994). An important feature of random keys

is that all offspring formed by crossover are feasible solutions. This is accomplished by moving much of

the feasibility issue into the fitness evaluation procedure. If any random key vector can be interpreted as

a feasible solution, then any crossover is feasible. Through the dynamics of the genetic algorithm, the

system learns the relationship between random key vectors and solutions with good objective values.

As mentioned earlier, the fitness function used is the grouping efficacy. The other important aspects of

genetic algorithms: chromosomal representation and decoding, parent selection, crossover, and mutation

will be discussed next
4.1.1. Chromosomal representation and decoding

A chromosome represents a solution to the problem and is encoded as a vector of random keys

(random numbers). Each chromosome is made of MC1 genes where M is the number of machines:

ChromosomeZ ðgene1; gene2;.; geneM; geneMC1Þ:

The MC1st gene is used to determine the number of machine cells and uses the following decoding

expression

nCells Z b geneMC1 !M c ;

where (x( is the smallest integer larger than x. Genes 1 through Mare used to determine the assignment of

machines to machine cells and use the following decoding expression

Celli Z b genei !nCells c i Z 1;.;M:

Fig. 3 presents an example of the decoding of a chromosome.
4.1.2. Reproduction, crossover, and mutation

Many variants of genetic algorithms are formed by varying the reproduction, crossover, and mutation

operators. The reproduction and crossover operators determine which parents will have offspring, and

how the genetic material is exchanged between the parents to create those offspring. Mutation allows for

random alteration of genetic material. Reproduction and crossover operators tend to increase the quality

of the populations and force convergence. Mutation opposes convergence and replaces genetic material

lost during reproduction and crossover.

Reproduction is accomplished by copying the best individuals from one generation to the next, in

what is often called an elitist strategy (Goldberg, 1989). The advantage of an elitist strategy over

traditional probabilistic reproduction is that the best solution is monotonically improving from one
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generation to the next. The potential downside is population convergence. This can however be

overcome by high mutation rates described below.

Parameterized uniform crossovers (Spears & DeJong, 1991) are employed in place of the traditional one-

point or two-point crossover. After two parents are chosen randomly from the full old population (including

chromosomes copied to the next generation in the elitist pass), at each gene a biased coin is tossed to select

which parent will contribute the offspring. Fig. 4 presents an example of the crossover operator. It assumes

that a coin toss of heads selects the gene from the first parent, a tails chooses the gene from the second parent,

and that the probability of tossing a heads is 0.7. Below is one potential crossover outcome:

To prevent premature convergence of the population, at each generation one or more new members

of the population are randomly generated from the same distribution as the original population.

This process has the same effect as applying at each generation the traditional gene-by-gene mutation

with small probability.

All chromosomes of the first generation are randomly generated. Fig. 5 depicts the evolutionary

process.
Fig. 4. Example of uniform crossover.



Fig. 5. Evolutionary process.
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4.2. Local search heuristic

The local search heuristic is applied to the sets of machine cells generated by the genetic algorithm

When the machine cells are known, it is customary to assign a product to the cell where it visits the

maximum number of machines. This is optimal to minimize inter-cell movement (because it reduces the

exceptional elements). However, it does not guarantee good utilization of the machines within a cell. To

overcome this problem, a local search heuristic, which takes into consideration both inter-cell movement

and machine utilization was developed. Srinivasan and Narendran (1991) and Adil, Rajamani, and

Strong (1997) developed heuristics whose main loop is similar to ours. The main difference between our

heuristic and their consists in the rule used to assign products/machines to the machines cells/product

groups and in the stopping criteria.

The heuristic consists of an improvement procedure that is repeatedly applied. Each iteration k of the

procedure starts with a given initial set of machine cells MINITIAL
k ; and produces a set of product families

PFINAL
k ; and a set of machine cells MFINAL

k : Two block-diagonal matrices can be obtained by combining

MINITIAL
k with PFINAL

k and MFINAL
k with PFINAL

k : From these two matrices, the one with the highest

grouping efficacy is chosen as the resulting block-diagonal matrix of the iteration k. The procedure stops

if MFINAL
k ZMINITIAL

k or if the grouping efficacy of the block-diagonal matrix resulting from iteration k is

not greater than the grouping efficacy of the block-diagonal matrix resulting from the previous iteration

k-1, (for kO2). Otherwise, the procedure sets MINITIAL
kC1 ZMFINAL

k and continues to iteration kC1.

Each iteration k of the local search heuristic consists of following two steps:
(1) Assignment of products to the initial set of machine cells MINITIAL
k : (Note that the initial the set of

machine cells of iteration 1, MINITIAL
1 ; is supplied by the genetic algorithm). Products are assigned to

machine cells one at a time (in any order). A product is assigned to the cell that maximizes an

approximation of the grouping efficacy, that is, a product is assigned to the machine cell C*, given by

C� Z argmax
C

N1 KNOut
1;C

N1 CNIn
0;C

( )
;
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where
argmax
‘Table 2

Initial set

Cells

1

2

3

4

argument that maximizes expression
N1
 total number of 1’s in matrix A;
NOut
1
 total number of 1’s outside the diagonal blocks if the product is assigned to cell C;
NIn
0
 total number of 0’s inside the diagonal blocks if the product is assigned to cell C.
In this step, the heuristic generates a set of product families PFINAL
k : Let m1

k be the efficacy of the block-

diagonal matrix defined by MINITIAL
k and PFINAL

k :

(2) Assignment of machines to the set of product families PFINAL
k obtained in step (1). Machines are

assigned to product families, one at a time (in any order). A machine is assigned to the product family

that maximizes an approximation of the grouping efficacy, that is, a machine is assigned to the product

family F*, given by

F� Z argmax
F

N1 KNOut
1;F

N1 CNIn
0;F

( )
;

where
argmax
 argument that maximizes expression
N1
 total number of 1’s in matrix A;
NOut
1
 total number of 1’s outside the diagonal blocks if the product is assigned to cell F;
NIn
0
 total number of 0’s inside the diagonal blocks if the product is assigned to cell F.
In this step, the local search heuristic generates a new set of machine cells MFINAL
k : Let m2

k be the

efficacy of the block-diagonal matrix defined by MFINAL
k and PFINAL

k :

The block-diagonal matrix resulting from the iteration has a grouping efficacy given by mkZ
maxðm1

k;m
2
kÞ: If MFINAL

k ZMINITIAL
k or mk%mkKðkR2Þ; then the iterative process stops and the block-

diagonal matrix of iteration k-1 is the result. Otherwise, the procedure sets MINITIAL
kC1 ZMFINAL

k and

continues to step (1) of iteration kC1.
4.2.1. An example

Suppose we start with the initial set of machine cells given by the genetic algorithm and shown in

Table 2:

Thus,

MINITIAL
1 Z fðM3;M8Þ; ðM5;M7;M12Þ; ðM1;M4;M10;M11Þ; ðM2;M6;M9Þg
of machine cells

Machines

M3, M8

M5, M7, M12

M1, M4, M10, M11

M2, M6, M9



Table 3

Computations for step 1 of the local search heuristic

Products Product

machines

Machine cells

(M3, M8) (M5, M7, M12) (M1, M4, M10, M11) (M2, M6, M9)

mC mC mC mC

1 M1,M4 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K0)/(39C2)Z95.1% (39K2)/(39C3)Z88.1%

2 M2,M9 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K2)/(39C4)Z86.0% (39K0)/(39C1)Z97.5%

3 M3,M6,M8 (39K1)/(39C0)Z97.4% (39K3)/(39C3)Z85.7% (39K3)/(39C4)Z83.7% (39K2)/(39C2)Z90.2%

4 M1,M4,M11 (39K3)/(39C2)Z87.8% (39K3)/(39C3)Z85.7% (39K0)/(39C1)Z97.5% (39K3)/(39C3)Z85.7%

5 M3,M6,M8 (39K1)/(39C0)Z97.4% (39K3)/(39C3)Z85.7% (39K3)/(39C4)Z83.7% (39K2)/(39C2)Z90.2%

6 M1,M4,M11 (39K3)/(39C2)Z87.8% (39K3)/(39C3)Z85.7% (39K0)/(39C1)Z97.5% (39K3)/(39C3)Z85.7%

7 M3, M8 (39K0)/(39C0)Z100.0% (39K2)/(39C3)Z88.1% (39K2)/(39C4)Z86.0% (39K2)/(39C3)Z88.1%

8 M2,M9 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K2)/(39C4)Z86.0% (39K0)/(39C1)Z97.5%

9 M3,M6,M8 (39K1)/(39C0)Z97.4% (39K3)/(39C3)Z85.7% (39K3)/(39C4)Z83.7% (39K2)/(39C2)Z90.2%

10 M5,M10,M12 (39K3)/(39C2)Z87.8% (39K1)/(39C1)Z95.0% (39K2)/(39C3)Z88.1% (39K3)/(39C3)Z85.7%

11 M2,M9 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K2)/(39C4)Z86.0% (39K0)/(39C1)Z97.5%

12 M4,M11 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K0)/(39C2)Z95.1% (39K2)/(39C3)Z88.1%

13 M1,M11 (39K2)/(39C2)Z90.2% (39K2)/(39C3)Z88.1% (39K0)/(39C2)Z95.1% (39K2)/(39C3)Z88.1%

14 M5,M7,M12 (39K3)/(39C2)Z87.8% (39K0)/(39C0)Z100.0% (39K3)/(39C4)Z83.7% (39K3)/(39C3)Z85.7%

15 M5,M7, (39K4)/(39C2)Z85.4% (39K1)/(39C0)Z97.4% (39K3)/(39C3)Z85.7% (39K4)/(39C3)Z83.3%
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Step 1 Determining a set of product families

Table 3 presents the value of mC Z
N1KNOut

1;C

N1CNIn
0;C

n o
; for each product and each machine cell. A product is

assigned to the cell with the highest value of mC (the cells in bold in Table 3).

Thus,

PFINAL
1 Z fð3; 5; 7; 9Þ; ð10; 14; 15Þ; ð1; 4; 6; 12; 13Þ; ð2; 8; 11Þg

.The resulting grouping combining MINITIAL
1 and PFINAL

1 is given in Table 4 and the corresponding block-

diagonal matrix is given in Fig. 6.

The grouping efficacy after step 1 is

m1
1 Z

39 K5

39 C12
Z 66:67%

Step 2 Determining a set of machine cells

Table 5 presents the value of the grouping efficacy, mF Z
N1KNOut

1;F

N1CNIn
0;F

n o
; for each product and each

machine cell. A machine is assigned to the product family with the highest value of mF (the cells in bold
in Table 5).

M10,M12
Table 4

Set of machine/product groups obtained after step 1.

Group Machines Products

1 M3, M8 3, 5, 7, 9

2 M5, M7, M12 10, 14, 15

3 M1, M4, M10, M11 1, 4, 6, 12, 13

4 M2, M6, M9 2, 8, 11



Fig. 6. Block diagonal matrix corresponding to the product/machine cells in Table 4.
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Thus,

MFINAL
1 Z fðM3;M6;M8Þ; ðM5;M7;M10;M12Þ; ðM1;M4;M11Þ; ðM2;M9Þg:

The resulting grouping combining PFINAL
1 and MFINAL

1 is given in Table 6.

The corresponding block-diagonal matrix is given in Fig. 7.

The grouping efficacy after step 2 is

m2
1 Z

39 K0

39 C6
Z 86:67%:

The resulting block-diagonal matrix obtained at the end of step 2 has a grouping efficacy of m1Z
maxðm1

1;m
2
1ÞZmaxð66:67%; 86:67%ÞZ86:67%: Since the set of machine cells obtained at the end of

this step is different from the initial set of machine cells and has greater grouping efficacy we set
Table 5

Computations for step 2 of the local search heuristic

Machines Machine

products

Product families

(3, 5, 7, 9) (10, 14, 15) (1, 4, 6, 12, 13) (2, 8, 11)

mF mF mF mF

M1 1, 4, 6, 13 (39K4)/(39C4)Z81.4% (39K4)/(39C3)Z83.3% (39K0)/(39C1)Z97.5% (39K4)/(39C3)Z83.3%

M2 2, 8, 11 (39K3)/(39C4)Z83.7% (39K3)/(39C3)Z85.7% (39K3)/(39C5)Z81.8% (39K0)/(39C0)Z100.0%

M3 3, 5, 7, 9 (39K0)/(39C0)Z100.0% (39K4)/(39C3)Z83.3% (39K4)/(39C5)Z79.5% (39K4)/(39C3)Z83.3%

M4 1, 4, 6, 12 (39K4)/(39C4)Z81.4% (39K4)/(39C3)Z83.3% (39K0)/(39C1)Z97.5% (39K4)/(39C3)Z83.3%

M5 10, 14, 15 (39K3)/(39C4)Z83.7% (39K0)/(39C0)Z100.0% (39K3)/(39C5)Z81.8% (39K3)/(39C3)Z85.7%

M6 3, 5, 9 (39K0)/(39C1)Z97.5% (39K3)/(39C3)Z85.7% (39K3)/(39C5)Z81.8% (39K3)/(39C3)Z85.7%

M7 14, 15 (39K2)/(39C3)Z88.1% (39K0)/(39C1)Z97.5% (39K2)/(39C5)Z84.1% (39K2)/(39C3)Z88.1%

M8 3, 5, 7, 9 (39K0)/(39C0)Z100.0% (39K4)/(39C3)Z83.3% (39K4)/(39C5)Z79.5% (39K4)/(39C3)Z83.3%

M9 2, 8, 11 (39K3)/(39C4)Z83.7% (39K3)/(39C3)Z85.7% (39K3)/(39C5)Z81.8% (39K0)/(39C0)Z100.0%

M10 10, 15 (39K2)/(39C4)Z86.0% (39K0)/(39C1)Z97.5% (39K2)/(39C5)Z84.1% (39K2)/(39C3)Z88.1%

M11 4, 6, 12, 13 (39K4)/(39C4)Z81.4% (39K4)/(39C3)Z83.3% (39K0)/(39C1)Z97.5% (39K4)/(39C3)Z83.3%

M12 10, 14, 15 (39K3)/(39C4)Z83.7% (39K0)/(39C0)Z100.0% (39K3)/(39C5)Z81.8% (39K3)/(39C3)Z85.7%



Table 6

Set of machine/product groups obtained after 2

Group Machines Products

1 M3, M6, M8 3, 5, 7, 9

2 M5, M7, M10, M12 10, 14, 15

3 M1, M4, M11 1, 4, 6, 12, 13

4 M2, M9 2, 8, 11
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MINITIAL
2 ZMFINAL

1 ; i.e.

MINITIAL
2 Z fðM3;M6;M8Þ; ðM5;M7;M10;M12Þ; ðM1;M4;M11Þ; ðM2;M9Þg

and proceed to iteration 2 to repeat steps 1 and 2. At the end of step 2 of the second iteration, we obtain a

set of machine cells that is equal to the initial set (i.e. MINITIAL
2 ZMFINAL

2 ), and so we stop. The final

block-diagonal matrix is the one shown in Fig. 7 and has a grouping efficacy of 86.67%.
5. Computational results

To demonstrate the performance of the proposed algorithm, we tested the hybrid genetic algorithm on

35 GT instances collected from the literature. The selected matrices range from dimension 5!7–40!100

and comprise well-structured, as well as unstructured matrices. The matrix sizes and their sources are

presented in Table 7. The smallest dimension of each matrix was considered to be the number of rows.

We compare the grouping efficacy obtained by our algorithm with the grouping efficacies obtained by

the following six approaches:
†
 ZODIAC (Chandrasekharan & Rajagopalan, 1987);
†
 GRAFICS (Srinivasan & Narendran, 1991);
†
 MST—Clustering algorithm (Srinivasan, 1994);
†
 GATSP—Genetic algorithm (Cheng et al., 1998);
Fig. 7. Block diagonal matrix corresponding to the product/machine groups in Table 6.



Table 7

Experimental results

Problems Other approaches Our approach

Grouping efficacy Grouping efficacy N8 Gen. Improvement Cpu Time (s)

Prob.

N8

Source Size ZODIAC GRAFICS MST GATSP GP GA Min Avg Max Min Avg Max Min

(%)

Avg

(%)

Max

(%)

Avg

1 King and

Nakornchai (1982)

5!7 73.68 73.68 73.68 73.68 73.68 1 1 1 0.00 0.00 0.00 0.53

2 Waghodekar and

Sahu (1984)

5!7 56.52 60.87 62.50 62.50 62.50 62.50 1 2 3 0.00 0.00 0.00 0.47

3 Seifoddini (1989) 5!18 77.36 77.36 77.36 79.59 79.59 79.59 1 1 1 2.88 2.88 2.88 0.85

4 Kusiak (1992) 6!8 76.92 76.92 76.92 76.92 76.92 76.92 1 1 1 0.00 0.00 0.00 0.66

5 Kusiak and Chow

(1987)

7!11 39.13 53.12 46.88 50.00 53.13 53.13 53.13 1 4 10 0.02 0.02 0.02 1.09

6 Boctor (1991) 7!11 70.37 70.37 70.37 70.37 70.37 70.37 1 1 2 0.00 0.00 0.00 1.35

7 Seifoddini and

Wolfe (1986)

8!12 68.30 68.30 68.3 68.3 68.3 1 1 1 0.0 0.0 0.0 1.44

8 Chandrasekharan

and Rajagopalan

8!20 85.24 85.24 85.24 85.24 85.24 85.25 85.25 85.25 85.25 1 1 1 0.00 0.00 0.00 1.68

9 Chandrasekharan

and Rajagopalan

(1989a,b)

8!20 58.33 58.13 58.72 58.33 58.72 55.91 58.72 58.72 58.72 1 4 15 0.00 0.00 0.00 1.68

10 Mosier and Taube

(1985a)

10!10 70.59 70.59 70.59 70.59 70.59 70.59 70.59 1 1 2 0.00 0.00 0.00 1.82

11 Chan and Milner

(1982)

10!15 92.00 92.00 92.00 92.00 92.00 92.00 92.00 1 1 1 0.00 0.00 0.00 2.19

12 Askin and Subra-

manian (1987)

14!24 64.36 64.36 64.36 69.86 69.86 69.86 1 9 16 8.55 8.55 8.55 6.05

13 Stanfel (1985) 14!24 65.55 65.55 67.44 63.48 69.33 69.33 69.33 1 3 12 2.80 2.80 2.80 6.24

14 McCormick et al.

(1972)

16!24 32.09 45.52 48.70 52.58 52.58 52.58 1 21 68 7.97 7.97 7.97 7.85

15 Srinivasan et al.

(1990)

16!30 67.83 67.83 67.83 67.83 67.83 67.83 1 1 2 0.00 0.00 0.00 10.24

16 King (1980) 16!43 53.76 54.39 54.44 53.89 54.86 54.86 54.86 1 1 2 0.77 0.77 0.77 13.92

17 Carrie (1973) 18!24 41.84 48.91 44.20 54.46 54.46 54.46 6 45 128 11.35 11.35 11.35 11.34

18 Mosier and Taube

(1985b)

20!20 21.63 38.26 37.12 34.16 42.86 42.94 42.96 6 24 51 12.02 12.23 12.28 10.89

19 Kumar et al. (1986) 20!23 38.66 49.36 43.01 46.62 49.00 39.02 49.65 49.65 49.65 7 53 119 0.59 0.59 0.59 12.03

20 Carrie (1973) 20!35 75.14 75.14 75.14 75.28 66.30 76.22 76.22 76.22 4 45 107 1.25 1.25 1.25 15.61

21 Boe and Cheng

(1991)

20!35 51.13 55.14 44.44 58.07 58.07 58.07 1 3 6 5.31 5.31 5.31 16.38

22 Chandrasekharan

and Rajagopalan

(1989a,b)

24!40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1 10 35 0.00 0.00 0.00 19.26

23 Chandrasekaran and

Rajagopalan

24!40 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 1 1 3 0.00 0.00 0.00 25.28

24 Chandrasekharan

and Rajagopalan

(1989a,b)

24!40 73.51 73.51 73.51 73.03 73.51 73.03 73.51 73.51 73.51 1 1 1 0.00 0.00 0.00 26.82

25 Chandrasekharan

and Rajagopalan

(1989a,b)

24!40 20.42 43.27 51.81 49.37 37.62 51.85 51.88 51.97 28 92 132 0.08 0.14 0.31 26.48

(continued on next page)
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Problems Other approaches Our approach

Grouping efficacy Grouping efficacy N8 Gen. Improvement Cpu Time (s)

Prob.

N8

Source Size ZODIAC GRAFICS MST GATSP GP GA Min Avg Max Min Avg Max Min

(%)

Avg

(%)

Max

(%)

Avg

26 Chandrasekharan

and Rajagopalan

(1989a,b)

24!40 18.23 44.51 44.72 44.67 34.76 45.78 46.69 47.06 33 86 147 2.37 4.41 5.23 25.97

27 Chandrasekharan

and Rajagopalan

(1989a,b)

24!40 17.61 41.67 44.17 42.50 34.06 44.51 44.75 44.87 24 81 128 0.77 1.31 1.58 26.06

28 McCormick et al.

(1972)

27!27 52.14 41.37 51.00 54.27 54.27 54.27 3 6 23 4.09 4.09 4.09 25.90

29 Carrie (1973) 28!46 33.01 32.86 40.00 44.10 44.37 44.62 11 76 137 10.25 10.93 11.55 43.78

30 Kumar and Vannelli

(1987)

30!41 33.46 55.43 55.29 53.80 40.96 57.30 58.11 58.48 13 105 146 3.37 4.83 5.50 43.00

31 Stanfel (1985) 30!50 46.06 56.32 58.70 56.61 48.28 58.82 59.21 59.66 12 80 145 0.20 0.87 1.64 52.45

32 Stanfel (1985) 30!50 21.11 47.96 46.30 45.93 37.55 50.25 50.48 50.51 8 32 81 4.77 5.25 5.32 48.97

33 King and

Nakornchai (1982)

36!90 32.73 39.41 40.05 41.48 42.12 42.64 46 80 110 3.57 5.17 6.47 81.46

34 McCormick et al.

(1972)

37!53 52.21 52.21 56.42 56.42 56.42 1 2 4 8.06 8.06 8.06 87.66

35 Chandrasekharan

and Rajagopalan

(1989a,b)

40!100 83.66 83.92 83.92 84.03 84.03 83.90 84.03 84.03 84.03 1 5 12 0.00 0.00 0.00 152.13

Cpu Time (s), CPU time in seconds for 150 generations; Improvement, improvement of our algorithm against the best of the other approaches; N8 Gen., Generation number where best grouping efficacy was obtained.

Table 7 (continued)
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†
 GA—Genetic algorithm (Onwubolu & Mutingi, 2001);
†
 GP—Genetic programming (Dimopoulos & Mort, 2001).

These six approaches provide the best results, found in the literature, for the 35 problems used for

comparison.

The grouping efficacy resulting from the application of ZODIAC to above problems is reported in

Srinivasan and Narendran (1991), in Srinivasan (1994), and in Cheng et al. (1998). The grouping efficacy

resulting from the application of GRAPHICS, MST, GATSP, GA and GP is the one reported by their

authors in their papers. The paper by Srinivasan and Narendran (1991) includes five problems not included

in Table 7. Two of these problems were from an unpublished master’s thesis, and were unavailable. One of

the instances was from Seifoddini and Wolfe (1986), but the referenced source does not have any problem

of the same dimension 12!12 and with the same number of 1’s. The remaining two other problems, with

matrices of sizes 12!10 and 10!20 were from McAuley (1972) and Badarinarayna (1987). However,

even after much effort to obtain these instances, we were unable to find them. The paper by Dimopoulos

and Mort (2001) includes 11 problems not included because none of the other approaches uses them.

ZODIAC, GRAPHICS and MST do not allow singletons (cells having less than two products or two

machines) and this constraint degrades the performance of the algorithms in comparison with others

methodologies. In order to make the comparisons fair and meaningful we have not included in the

comparison the problems values presented by Cheng et al. (1998), Dimopoulos and Mort (2001), and

Onwubolu and Mutingi (2001) whose solution allows the existence of singletons clusters. Additionally,

we have not included the values obtained by Dimopoulos and Mort (2001) for problems 10 and 16

because the value reported for problem 10 is not possible and the value reported for problem 16 is not

consistent with the value reported for corresponding the grouping efficiency of the problem.

The test was run on a personal computer having a MS Windows Me PC with an AMD Thunderbird

1.333 GHz processor. The algorithm was coded in Visual Objects 2.0b-1 from CA-Computer Associates.

The present state-of-the-art practice on genetic algorithms does not provide information on how to

configure them. Therefore, a small pilot study was conducted in order to obtain a reasonable

configuration. The algorithm was configured as follows and the configuration was held constant for all

problems. The number of chromosomes in the population equals three times the number of rows in the

problem. The probability of tossing heads during crossover was made equal to 0.7. The elitist strategy

copies to the next generation the top (the best) 20% of the previous population chromosomes. Mutation

substitutes with randomly generated chromosomes the bottom (the worst) 30% of the population

chromosomes. The genetic algorithm stops after 150 generations. The algorithm was replicated 10 times

using different initial seeds for the pseudo-random number generator incorporated.

The local search procedure presented in Section 4.2 can produce singletons (cells having less than two

products or two machines). We address these cases by penalizing their grouping efficacy, i.e. we

consider them to have a grouping efficacy of zero. By doing this we make sure that the evolutionary

process of the genetic algorithm will remove the corresponding chromosomes from the population since

the chromosomes with the lowest quality are not copied into the next generation.

The test results are presented in Table 7. In Appendix A, we present the block-diagonal matrices,

found in the first run of the proposed algorithm, for each of the 35 problems mentioned in Table 7.

As can be seen in Table 7, the algorithm proposed in this paper obtained machine/product groupings,

which have a grouping efficacy that is never smaller than any of the best reported results. More specifically,

the algorithm obtains for 14 (40%) problems values of the grouping efficacy that are equal to the best ones



Fig. 8. % Improvement of the Local Search Heuristic w.r.t. the Customary Allocation Rule.
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found in the literature and improves the values of the grouping efficacy for 21 (60%) problems. In 11 (31%)

problems, the percentage improvement is higher than 5%. For 12 (34%) problems, the solution was obtained

in the first generation, showing the good quality and power of the local search heuristic.

To further evaluate the performance of the local search heuristic, another test was run. In this test, the

proposed algorithm was run with the local search heuristic replaced by the customary allocation rule, i.e.

products are allocated to the cell where it visits the maximum number of machines (since the machine

cells are known). Fig. 8 shows a graph with the percentage improvement of the grouping efficacy

obtained by local heuristic over the customary allocation rule.
6. Conclusion

A new approach for obtaining machine cells and product families has been presented. The approach

combines a local search heuristic with a genetic algorithm. The genetic algorithm uses a random keys

alphabet, an elitist selection strategy, and a parameterized uniform crossover. Computational experience

with the algorithm, on a set of 35 GT problems from the literature, has shown that it performs remarkably

well. The algorithm obtained solutions that are at least as good as the ones found the literature. For 57%

of the problems, the algorithm improved the previous solutions, in some cases by as much as 12%.
Acknowledgements

The authors would like thank (in alphabetical order): A. S. Carrie, C. H. Cheng, Y. Gupta, B.

Mahadevan, G. Srinivasan, and L. Stanfel, for providing and helping to collect the problem data sets.
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