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ABSTRACT. Ad hoc networks are composed of a set of wireless units that can commu-
nicate directly, without the use of a pre-established server infrastructure. In an ad hoc
network, each client has the capacity of accessing network nodes that are within its reach.
This connectivity model allows the existence of networks without a predefined topology,
reaching a different state every time a node changes its position. We describe a GRASP for
the cooperative communication problem in mobile ad hoc networks (CCPM), the problem
of coordinating wireless users involved in a task that requires going from an initial loca-
tion to a target location. The problem consists of maximizing the amount of connectivity
among a set of users, subject to constraints on the maximum distance traveled, as well as
restrictions on what types of movement can be performed.

1. INTRODUCTION

An ad hoc network is a system of mobile nodes that communicate through the use
of wireless links. Due to the lack of central authority, ad hoc networks have non-fixed
topology, and their communication pattern depends on the actual position of individual
nodes. This characteristic presents a great challenge for some fundamental design tasks
such as ensuring connectivity, robustness, and proper routing over the network.

Applications of ad hoc networks are pervasive, including loosely coupled systems of
personal digital assistants (and other equipment using wireless technology such as blue-
tooth) as well as sensor networks. Applications occur on urban and rural settings, includ-
ing rescue missions and military operations. Optimization techniques have been applied
on several ad hoc network problems, such as routing, correction of measurement errors,
and ensuring general connectivity [5]. In this paper we propose an algorithm for group
communication, which is a vital resource when a collaborative task is defined. In this case,
we assume that members of the network must keep in contact for as long as possible, in
order to exchange vital information.

Consider a graph G = (V,E), where the set V of nodes correspond to candidate positions
in a given area. The set U contains elements representing members of the ad hoc network.
Each element u ∈ U has associated position pt(u), at each instant t ∈ 1, . . . ,T , where T
is the given time horizon. Assume that the initial and final positions for each u ∈U are
known, and given respectively by su and du, for each u ∈ U . Each edge e ∈ E has an
associated distance given by function dist : E → R+. Elements of the wireless network
move according to simple rules. At each time step t an element can stay at the same
position or move to one of the positions in N(pt(u)) – where N : V → 2V is a function
returning the neighborhood of a node.
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Two elements of the wireless network are connected at a given time instant if the dis-
tance between them is less than the radius τ, which is determined by the range of the
wireless equipment. Total communication is measured as the summation of the number
of connections achieved by the system over time. To formalize this, let r : V 2 → {0,1}
be a function returning 1 if the distance between nodes is less than τ. Then, the objective
function for our problem can be represented as ∑t=1,...,T ∑u,v∈U r(pt(u), pt(v)). Moreover,
we require that each path P from su to du, for each u ∈U , have total distance ∑e∈P dist(e)
of at most Du units, where Du is a natural limit on the travel autonomy of wireless agent u.

It has been determined [4] that the problem described above is NP-hard. This can be
shown by a reduction from the well known 3SAT problem. Moreover, it is NP-hard even to
find an optimal solution for one stage of the problem at a given time t. To see this, consider
an algorithm that maximizes the number of connections at time t, by defining the positions
for members of the network. Run this algorithm for different sets U i, with |U i| = i and i
varying from 1 to T . Then, the algorithm stops when the number of connections is less then( i

2

)
, and the value returned is i− 1; clearly, the algorithm described above computes the

value of the maximum clique on the underlying unit graph. However, finding the maximum
clique on a unit graph is known to be NP-hard [1].

In this paper, we propose a heuristic for maximizing connectivity, based on the greedy
randomized adaptive search algorithm (GRASP) of Feo and Resende [3]. The algorithm
provides a quick way of determining solutions for the problem without the necessity of
a full scale enumerative algorithm. The solutions provided by the resulting algorithm are
close to the optimal for most of the tested instances.

2. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

Greedy randomized adaptive search procedure is a metaheuristic for combinatorial op-
timization that aims to find very good solutions though the controlled use of random sam-
pling, greedy selection, and local search. The metaheuristic has been used in the last
decade in several optimization problems with very good results in practice. Let F be the
set of feasible solutions for problem Π, where each solution S ∈ F is composed of k dis-
crete components a1, . . . ,ak. GRASP constructs a sequence {S}i of solutions for Π, such
that each Si is feasible for Π. At the end, the algorithm returns the best of the solutions
found.

Each GRASP solution is built in two stages, called greedy randomized construction and
intensification phases. The construction phase receives as parameters an instance of the
problem, a ranking function g : A(S)→R (where A(S) is the domain of feasible components
a1, . . . ,ak for a partial solution S), and a constant 0< α< 1. It starts with an empty partial
solution S. Assuming that |A(S)| = l, the algorithm creates a list of the best ranked αl
components in A(S), and returns a uniformly chosen element x from this list. The current
partial solution is augmented with x, and the procedure is repeated until the solution is
feasible, i.e., S ∈ F .

The intensification phase consists of the implementation of a hill-climbing procedure.
Given a solution S ∈ F , let N(S) be the set of solutions that can found from S by changing
one of the components a ∈ S. Then, N(S) is called the neighborhood of S. The improve-
ment algorithm consists of finding, at each step, the element S∗ such that

S∗ = arg max
S′∈N(S)

f (S′),



A GRASP FOR THE COOPERATIVE COMMUNICATION PROBLEM ON AD HOC NETWORKS 3

where f : F→ R is the objective function of the problem. At the end of each step we make
S← S∗ if S < S∗. The algorithm will eventually achieve a local optimum, in which case
the procedure above will generate a solution S∗ such that S≥ S∗.

To employ GRASP for solving the cooperative communication problem in ad hoc net-
works, we need to specify the set A, the greedy function g, the parameter α, and the neigh-
borhood N(S), for S ∈ F . The components of each solution S are feasible moves of a
member of the ad hoc network from a node v to a node w ∈ N(v)∪{v}. The complete
solution is constructed according to the following procedure. Start with a random u ∈U
and find the shortest path P from su to du. If the total distance of P is more than Du,
then the instance is clearly infeasible, and the algorithm ends. Else, the algorithm con-
siders each feasible move. A feasible move connects the final node of a sub-path Pv, for
v∈U \{u}, to another node w, such that the shortest path from w to dv has distance at most
Dv−∑e∈Pv dist(e). The set of all feasible moves in a solution is defined as A(S).

The greedy function g returns for each move in A(S) the number of additional connec-
tions created by that move. As described above, the construction procedure will rank the
elements of A(S) according to g, and return one of the best αl elements. This is repeated
until a complete solution for the problem is obtained.

The improvement phase is defined by the perturbation function, which consists of se-
lecting a wireless agent u ∈ U and rerouting it, i.e., finding a complete path using the
procedure described above for each time step 1 to T . The set of all perturbations of a
solution S is its neighborhood N(S). At each step, all elements u ∈U are tested, and the
procedure stops when no such element u that improves the current solution can be found.

3. COMPUTATIONAL EXPERIMENTS

The described procedure has been implemented in the C programming language using
the Linux operating system. It was tested on a Dell Power Edge 2600 with twin 3.2GHz
Pentium 4 processors with 1M cache and 6GB of RAM running in hyperthreading mode.
The proposed GRASP was tested on 60 random unit graphs with varying densities ranging
from 50 to 100 nodes. The radii of communication varies from 1 to 10 units (miles). We
tested each case with different sets of mobile agents in order to achieve better comparisons
and model real-world scenarios. The graphs were created by a generator used by Butenko
et al. on the BROADCAST SCHEDULING problem [2].

Numerical results can be seen in Figure 1. The results summarize the solutions from
the average of 5 graphs having the same number of nodes, radius of communication, and
number of mobile agents. As expected, we obtain better average solutions as we increase
the communication range and the number of agents. Subsequently, as the complexity of
the instance gets larger, this leads to longer computation times. Nevertheless, the average
solution was found in 1.71s not counting the 100 node graphs where 50 agents were routed.
The average time including these instances was 5.54s. We see that the proposed GRASP
is very robust in that it is able to solve a variety of instances in a fraction of the time that
would be required by a pure IP solver.
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Instance Nodes Radius Agents Avg.Soln Avg.Time Agents Avg.Soln Avg.Time Agents Avg.Soln Avg.Time

1 50 1 10 856.0 0.014 15 2217.0 0.049 25 5041.2 2.431

2 50 3 10 1372.4 0.012 15 3203.6 0.050 25 9152.8 1.842

3 50 5 10 1386.0 0.014 15 3234.0 0.052 25 9300.0 1.664

4 50 10 10 1395.0 0.020 15 3234.0 0.063 25 9300.0 2.075

5 75 1 10 1024.8 0.017 20 4058.4 1.057 30 9490.4 4.862

6 75 3 10 1376.8 0.018 20 5807.8 1.081 30 13264.2 5.863

7 75 5 10 1386.0 0.094 20 5890.0 1.251 30 13485.0 5.068

8 75 10 10 1395.0 0.036 20 5852.0 1.841 30 13398.0 6.853

9 100 1 15 2592.2 0.073 25 6437.8 3.844 50 28149.0 32.050

10 100 3 15 3221.8 0.459 25 9203.0 4.267 50 37637.6 32.459

11 100 5 15 3234.0 0.341 25 9300.0 3.053 50 37975.0 35.242

12 100 10 15 3234.0 1.037 25 9240.0 5.453 50 37975.0 45.059

1

1

FIGURE 3.1. Top: numerical results of the algorithm. Bottom: evolu-
tion of solution values.
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