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his paper proposes and tests variants of GRASP (greedy randomized adaptive search procedure) with path

relinking for the three-index assignment problem (AP3). GRASP is a multistart metaheuristic for combinato-
rial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and
of a local search. Path relinking is an intensification strategy that explores trajectories that connect high-quality
solutions. Several variants of the heuristic are proposed and tested. Computational results show clearly that this
GRASP for AP3 benefits from path relinking and that the variants considered in this paper compare well with
previously proposed heuristics for this problem. GRASP with path relinking was able to improve the solution
quality of heuristics proposed by Balas and Saltzman (1991), Burkard et al. (1996), and Crama and Spieksma
(1992) on all instances proposed in those papers. We show that the random variable “time to target solution,” for
all proposed GRASP with path-relinking variants, fits a two-parameter exponential distribution. To illustrate the
consequence of this, one of the variants of GRASP with path relinking is shown to benefit from parallelization.

Key words: heuristics; GRASP; path relinking; statistical analysis; three-index assignment problem; parallel
programming
History: Accepted by Michael Gendreau, Heuristic Search and Learning; received December 2000; revised May

2002, March 2003; accepted June 2003.

1. Introduction

The three-index assignment problem (AP3) was first
stated by Pierskalla (1967) as a straightforward exten-
sion of the classical two-dimensional assignment
problem. It can be viewed as an optimization prob-
lem on a complete tripartite graph K, , , = (IUJUK,
(Ix U xK)U(] xK)), where I, ], and K are dis-
joint sets of size n. If a cost ¢; ; , is associated with
each triangle (i, j, k) € I x | x K, then the AP3 consists
of finding a subset A €I x | x K of n triangles such
that every element of I U J UK occurs in exactly one
triangle of A, and the sum of the costs of the chosen
triangles is minimized.

The AP3 has a 0-1 integer programming
formulation:
min Y cpXi
iel, je], keK
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subject to
Z xi]‘kzl, Viel,
jeJ, keK
> =1, VjeJ,
iel, keK
Z xijk:1, VkEK,
iel, jeJ

xix€{0,1}, Viel, je], keKk,
where [ =]=K={1,2,...,n}.

The above formulation models, for example, the
problem of assigning jobs to workers to machines at
minimum cost. ¢;; is the cost of assigning job j to
worker i on machine k. The 0-1 decision variable
x;i =1 if, and only if, job j is assigned to worker i on
machine k. Each constraint implies that each element
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of a set is assigned to exactly one element of each of
the other two sets.

The AP3 can be also formulated using permutation
functions. There are n® cost elements and the optimal
solution of the AP3 consists of the n smallest, such
that the constraints are not violated. Assign to each
set I, |, and K the numbers 1,2, ..., n. The three sets
of constraints can now be seen as one. None of the
chosen cost elements c;; is allowed to have the same
value for indices i, j, and k as another. For example,
X1 2,4 =2X3 5 5 =1 is infeasible, since these assignments
share index j = 2. The permutation-based formulation
for the AP3 is

o g Cip(i)q(i)
where 7y denotes the set of all permutations of the
set of integers N ={1,2, ..., n}. Note that |my|=mn!

An equivalent formulation of the AP3 (often called
the three-dimensional matching problem) is the follow-
ing: Given three disjoint sets I, J, and K such
that |I| = |J| = [K| =n and a weight c;; associated
with each ordered triplet (i,j, k) € I x | x K, find
a minimum-weight collection of n disjoint triplets
(i,j,k)elx]xK.

The permutation-based formulation has several
advantages. Apart from being simple and compact,
it facilitates the implementation of a heuristic for the
AP3 since the constraints can be taken care of by the
objective function itself.

The AP3 is NP-Complete (Frieze 1983, Garey and
Johnson 1979). Applications of the AP3 can be found
in Pierskalla (1967, 1968), Frieze and Yadegar (1981),
and Crama et al. (1990) and include scheduling ingots
in soaking pits in a rolling mill, scheduling capital
investments, military troop assignment, satellite cov-
erage optimization, scheduling teaching practice, and
production of printed circuit boards.

Exact and heuristic algorithms have been proposed
for the three-index assignment problem, including
Balas and Saltzman (1991), Burkard and Frohlich
(1980), Burkard and Rudolf (1993), Burkard et al
(1996), Crama and Spieksma (1992), Frohlich (1979),
Hansen and Kaufman (1973), Leue (1972), Pardalos
and Pitsoulis (2000), Pierskalla (1967, 1968), Vlach
(1967), and Voss (2000).

The aim of this paper is to propose a new class
of heuristics for the three-index assignment problem,
evaluate experimentally these heuristics, compare
solutions found by the new heuristics with previously
known solutions, and show that the new heuristics
can benefit from parallelization.

The remainder of the paper is organized as fol-
lows. In §2, the construction and local search phases
of a GRASP for the AP3 are described. Path relink-
ing is presented in §3. Section 4 shows how GRASP

and path relinking are combined. A parallel imple-
mentation using the Message Passing Interface library
is shown in §5. In §6, computational results, using the
sequential and parallel implementations, are reported.
Concluding remarks are made in §7.

2. GRASP Construction and
Local Search

21. GRASP

A greedy randomized adaptive search procedure
(GRASP) (Feo and Resende 1989, 1995; Festa and
Resende 2002) is a multistart or iterative process in
which each GRASP iteration consists of two phases. In
a construction phase, a feasible solution is produced,
and in a local search phase, a local optimum in the
neighborhood of the constructed solution is sought.
The best overall solution is kept as the result.

In the construction phase, a feasible solution is iter-
atively constructed, one element at a time. The basic
GRASP construction phase is similar to the semi-
greedy heuristic proposed independently by Hart and
Shogan (1987). At each construction iteration, the
choice of the next element to be added is determined
by ordering all candidate elements (i.e., those that can
be added to the solution) in a candidate list C with
respect to a greedy function g: C — R. This func-
tion measures the (myopic) benefit of selecting each
element. The heuristic is adaptive because the ben-
efits associated with every element are updated at
each iteration of the construction phase to reflect the
changes brought on by the selection of the previous
element. The probabilistic component of a GRASP is
characterized by randomly choosing one of the best
candidates in the list, but not necessarily the top
candidate. The list of best candidates is called the
restricted candidate list (RCL).

It is almost always beneficial to apply a local
search to attempt to improve each constructed solu-
tion. A local search algorithm works in an iterative
fashion by successively replacing the current solution
by a better solution in the neighborhood of the cur-
rent solution. It terminates when no better solution is
found in the neighborhood.

GRASP has been applied to numerous assignment
problems (Ahuja et al. 2000; Feo and Gonzélez-
Velarde 1995; Fleurent and Glover 1999; Li et al. 1994;
Murphey et al. 1998; Mavridou et al. 1998; Pardalos
et al. 1995, 1997; Pardalos and Resende 2002; Pitsoulis
1999; Pitsoulis et al. 2001; Rangel et al. 1999; Resende
et al. 1996; Robertson 2001).

2.2. GRASP Construction for AP3

The GRASP construction phase builds a feasible solu-
tion S by selecting n triplets, one at a time. Figure 1
illustrates the construction phase in pseudo-code.
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procedure CONSTRUCT (seed,n,c,S)

1 Select o € [0, 1] at random;

2 S=0;

3 C={(i,j,k) eI xJxK};

4 forp=1,....n—1do

5 ¢ = min{cyj | (i,),k) € C};

6 E:max{cijk| (i,j,k)EC};

7 Cl:{(i’jvk)ec|Cijkgg"'a(é_g)};
8 Select (ip, jp,kp) € C’ at random;

9 S?SU{(ipvjpakp)}Q

10 Ti(p) ={(i,j,k) €C|i=ip};
11 Ff(p):{(i,j,k)eC ]:]P}’
12 TX(p) ={(i,j,k) €C | k=kp};
13 C=C\{T'(p)uli(p)uT¥(p)};
14  rof;

15 S=SUC;

end CONSTRUCT

Figure 1 The GRASP Construction Phase

A restricted candidate list parameter « is selected at
random from the interval [0, 1] (line 1). This value is
not changed during the construction phase. The solu-
tion S is initially empty and the set C of candidate
triplets is initially the set of all triplets (lines 2 and 3).

The loop going from line 4 to 14 selects the first
n —1 triplets. To select the pth triplet to be added to
the solution, a restricted candidate list C’ is defined
(in lines 5 to 7) to include all triplets (i, j, k) in the
candidate set C having cost c;; < ¢+ a(c —¢), where

c=min{c,|(i,j,k)€C} and E=maxiey|(i,j,K)€C).

Triplet (i,, j,, k,) € C" is chosen at random in line 8
and is added to the solution, i.e., S=SU{(i,, j,, k,)}
in line 9.

Once (ip, jp,kp) is selected, the set of candidate
triplets must be adjusted to take into account that
(iy, jp, k,) is part of the solution. Any triplet (i, j, k)
such that i =i, or j = j, or k =k, is removed from the
current set of candidate triplets in lines 10 to 13. This
updating procedure is the computational bottleneck
of the construction phase. A straightforward imple-
mentation would scan all O(n®) cost elements n — 1
times in order to update the candidate list. We make
use of four doubly linked lists to implement this pro-
cess more efficiently, reducing the complexity from
O(n*) to O(nd).

A doubly linked list L. = {c; ; x; (i, j, k)} links the
ordered set of triplets (7, j, k) in the candidate list C.
The elements of L. appear in increasing order of cost.
L. is used during the construction of the restricted
candidate list C'. The minimum and maximum can-
didate list cost values (computed in lines five and six
of the pseudo-code in Figure 1) are kept in the first
and last elements of L, respectively. These elements

are addressed to by pointers. To compute the RCL, L,
is traversed until the cost associated with the current
element is greater than the cutoff value ¢ + a(c — ¢).
The traversed elements (before the last visited ele-
ment) make up C'.

A pointer P,;, points to each element
{ci, ;s (i, j, k)} of L. Three other doubly linked lists,
L, L, and L, link, respectively, the i, j, and k indices
that still appear in elements of C.

To update C after triplet (i,,j,, k,) is chosen
(lines 10 to 13 of the pseudo-code in Figure 1), we
first remove i, from L; and traverse L;. For each
element j € L]-, list L, is traversed. This way, all
triplets (i,, j, k) € C are traversed. For each triplet
(ip, j, k) € C, we remove from L, the element pointed
to by Pip, jk- Next, we remove j, from L; and tra-
verse L;. For each element i € L;, list L, is tra-
versed. This way, all remaining triplets (i, j,, k) € C
are traversed. For each triplet (i, jp, k) € C, we remove
from L. the element pointed to by P, ; ;. Finally, we
remove k, from L, and traverse L;. For each ele-
ment i € L;, list L; is traversed. This way, all remain-
ing triplets (7, j, k,) € C are traversed. For each triplet
(i,j, k,) € C, we remove from L, the element pointed
to by P,-,]-,kp

After n — 1 triplets have been selected, the set C
of candidate triplets contains one last triplet which is
added to S in line 15, thus completing the construc-
tion phase.

2.3. GRASP Local Search for AP3

In the local search procedure, the current solution is
improved by searching its neighborhood for a better
solution. If an improvement is detected, the solution is
updated and a new neighborhood search is initialized.
The definition of the neighborhood N(s) is crucial for
the performance of the local search.

The solution of the AP3 can be represented by a
pair of permutations (p, q). Therefore, the solution
space consists of all (n!)?> possible combinations of
permutations.

Let us first define the difference between two per-
mutations s and s’ to be

8(s,s") ={i|s(i) #s'()},
and the distance between them to be
d(s,s')=18(s, s)|.

In this local search a 2-exchange neighborhood is
adopted. A 2-exchange neighborhood is defined to be

Ny(s) = {s' | (s, s') = 2}.

In general, a k-exchange neighborhood could be used.
When defining the neighborhood of a solution (p, q)
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in terms of 2-exchanges, one natural choice is to let
it be all possible 2-exchange permutations. However,
the size of that neighborhood is (g)z, which is large
even for small values of n. We propose, instead, a dif-
ferent scheme, in which the neighborhood of a solu-
tion (p, q) consists of all 2-exchange permutations of
p plus all 2-exchange permutations of g. This means
that for a solution p, g € my, the 2-exchange neighbor-
hood is

Ny(p, 9)={p',q'1d(p,p)+4d(q,q) =2}

Hence, the size of the neighborhood is |N,(p)| +
IN>(9)| =2(3). In the local search, each cost of a neigh-
borhood solution is compared with the cost of the
current solution. If the cost of the neighbor is lower,
then the solution is updated, the search is halted,
and a search in the new neighborhood is initial-
ized. The local search ends when no neighbor of the
current solution has a lower cost than the current
solution.

Figure 2 illustrates this local search using the triplet
solution representation. The solution S, built in the
construction phase, is used as the starting point for
the local search. The double loop from lines 1 to 18
examines the neighboring solutions. The cost of a
neighbor associated with permutation p is computed
in line 3. If its cost is better than the cost of the cur-
rent solution, a move to the new solution is done in
lines 5 and 6 and the local search is recursively called,
starting from this new solution, in line 7. Likewise,
the cost of a neighbor associated with permutation g
is computed in line 10. If its cost is better than the
cost of the current solution, a move to the new solu-
tion is done in lines 12 and 13 and the local search

procedure LOCAL(n,c,cs,S)

1 forp=1,....n—1do

2 forg=p+1,...,ndo

3 €Cj = €8 = Cip,jpkp = Cig.jgikg t Cip,jgrkp t Cigjipiky>
4 if (¢j < cg) then

5 § =5\ {{ip.Jprkp) )\ ((ig Ji k) -

6 §=8UL(ip, g kp)} U{lig: jp.Kqg) }:

7 LOCAL(n,c,¢;,S);

8

return;
9 fi;
10 Ck = €S = Ciy,jpkp ~ Cig.jgkg T Cipjp kg T Cigujgkp>
11 if (cx < cs) then
12 S:§\{(ip»jpvkp)}\{(iqvjq’kq)}§
13 §=8U{(ip:Jip,kg)} U{lig: g kp)}:
14 LOCAL(n, ¢, cx,S);
15 return;
16 fi;
17 rof;
18  rof;
19  return;
end LOCAL
Figure 2 The GRASP Local Search Phase

is recursively called, starting from this new solution,
in line 14. The procedure ends with a solution that
is locally optimal with respect to the neighborhood
definition.

3. Path Relinking
Path relinking was first introduced in the context of
tabu search (Glover and Laguna 1997), as an approach
to integrate intensification and diversification strate-
gies in the search. See Glover et al. (2000) for a survey
of path relinking. It consists of exploring trajectories
that connect high-quality solutions, by starting from
an initial solution and generating a path in the neigh-
borhood of this solution towards another solution,
called the guiding solution. This path is generated by
selecting moves that introduce in the initial solution
attributes of the guiding solution. At each step, all
moves that incorporate attributes of the guiding solu-
tion are analyzed and the move that best improves
(or least deteriorates) the initial solution is chosen.
Path relinking in the context of GRASP was first intro-
duced by Laguna and Marti (1999).

For the three-index assignment problem, path
relinking is done between an initial solution

S={L 7, k), @ 3, k), (i, k)
and a guiding solution
T={,j, k), 2. k) .., kD)

This path-relinking procedure is summarized in the
pseudo-code shown in Figure 3.

Let the symmetric difference between S and T be
defined by the following two sets of indices:

8] =li=1,...,n|j7 #jl)

and
3K={i=l,...,n|kis;£kiT}.

These sets are computed in lines 4 and 5 of the
pseudo-code.

An intermediate solution of the path is visited at
each step of the loop in lines 6 to 34. Two elemen-
tary types of moves can be carried out. In a type-one
move, triplets

{(ilf jl/ kl)/ (i2/ j2/ kz)}

are replaced by triplets

{(ill j2/ kl)/ (iZIjll kz)}/

while in a type-two move, triplets

{1, 1, k1), () o, ko))
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procedure PATHRL(n,c,cs,S,T)

1 LetSbe {(17]f7ks) (2 Jzaks) (n Jnakg)}’
2 Let T be {(17J{7k1) (2 J27k2) (n Jn?kr{)});
3 Cgmin = CS; ngm =S
4 ={i=1....n| B #i}
5 SK={i=1,....n|K #k'};
6 f0r|8J|—H8K\>2d0
7 Cmin =
8 for i € 6J do
9 Let g be such that jg == jiS;
10 AN I AN
11 =SU{(i, jg.k7)y U{(q, 7 k) s
12 E =cCcg— Ci,jf,k‘? qng_’k;v] +Cl-,jg,k,~s + qujis"kg;
13 if ¢ < ¢y, then
14 Cmin = C; Smin = S; Imin = 1}
15 flag =0;
16 fi;
17 rof;
18 for i € 8K do
19 Let g be such that k! == kS
20 S S\{(G, Jﬂkf)}\{(q an )}
21 = SU{(i, 7, k) U{(q, J5,K) )5
22 C=cs— CijS kS~ Cq js kS +¢; S + cq7_]g?k'5;
23 if ¢ < ¢, then
24 Cimin = C; Spin = S5 Imin = 1
25 flag=1;
26 fi;
27 rof;
28 S = Sin; s = Cmin;
29 if flag == 0 then 8J = &J\ {iin};
30 if flag == 1 then 0K = 8K \ {imin};
31 if cg < Cgmin then
32 Cgmin = CS; ngin =S5
33 fi;
34  rof;
35 return (Sguin);
end PATHRL
Figure 3 Path Relinking Between Initial Solution S and Guiding

Solution T

are replaced by

{1, i, ko), () os Kr))-

We use the sets 6] and 6K to guide the moves. 6]
guides type-one moves, while 6K guides type-two
moves.

The loop going from line 8 to line 17 considers type-
one moves. For all i € 8], let g be such that j| = j.
The type-one move replaces triplets

(G, 75, K, @, 5 )

(G, 1, k). @37 k)

Likewise, the loop going from line 18 to line 27 con-
siders type-two moves. For all i € 6K, let g be such

that k; = k?. The type-two move replaces triplets
{(1 1’ 1) (q ]q/ )}

by
(G, J5,K5), (g, 15, K9)).

At each step, the move that produces the least
costly solution is selected and the corresponding
index is deleted from either 6] or 6K (line 29 or 30).
This process continues until there are only two move
indices left in one of the sets 6] or 6K. At this stage,
any of these two moves results in the guiding solu-
tion and, therefore, they are not carried out. The best
solution found (S,,,;,) in the path is returned by the
procedure.

The hybrid approach proposed here is similar to
the strategy proposed in Laguna and Marti (1999).
Laguna and Marti maintain a pool of three elite solu-
tions consisting of the three best-quality solutions so
far produced. In our implementation, a pool P of elite
solutions is formed with the solutions found in the
first |P| GRASP iterations.

After this initial phase, each solution s, produced
by the GRASP local search phase is relinked with
one or more elite solutions. Laguna and Marti select
one elite solution s, € P and generate a path from
S, to s,. In our implementation, given s, and s,,
always generate two paths, one from sq to s,, and
another from s, to s,. This is done because these paths
often visit dlfferent intermediate solutions. We imple-
mented two strategies for selecting s,. The first is
the one proposed by Laguna and Marti, where s, is
selected at random from the pool. The second relinks
s, with all elite solutions in P.

Laguna and Marti update their pool by maintaining
in it three best-quality solutions. We use an approach
proposed by Fleurent and Glover (1999) for using
elite solutions within the GRASP framework. The
approach proposed by Fleurent and Glover, used to
perform the pool update, is explained below.

Let cpo and ¢y, be the objective function values
of the best and the worst solutions in P, respectively.
Given two solutions

S={ . k), @15 k), (n i )

and

T={ i, k), Q2 fa k), s (i k)D),

let

Y +YK,

i=1 i=1

AS, T)=
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where
1oif 7 #jf
Ji=
0 otherwise
and
1 if k¥ #kT
Ki =
0 otherwise,

be a measure of dissimilarity of solutions S and T.

Solution S, output from the path-relinking pro-
cedure is a candidate for insertion into the pool and is
accepted if it satisfies one of the following acceptance
criteria:

1. Cgmin < Chest/ i'e'/ ngm
so far;

2. Cpest < Cgmin < Cworst and for all elite solutions
S, € P, A(Sgpin, Sp) > 1, i€, Sy, is better than the
worst elite solution, and more than half of the
elements of the permutation arrays in S, differ
(according to the measure of dissimilarity explained
above) from the corresponding elements in the per-
mutation arrays of each solution in P.

Once accepted for insertion into P, S,,,;, replaces the
worst elite solution, which is discarded from P.

Path relinking can also be used as an intensifica-
tion phase for the elite set. This is accomplished by
applying path relinking to each pair of elite solutions
in the pool and updating the pool if necessary. The
procedure is repeated until no further change in the
pool occurs. This type of intensification can be done
in a post-optimization phase (using the final pool of
elite solutions), or periodically during the optimiza-
tion (using the current set of elite solutions).

When applying path relinking as a post-
optimization step, after no further change in the elite
set occurs, the local search procedure of §2.3 is applied
to each elite solution, as the solutions produced by
path relinking are not always local optima. The local
optima found are candidates for insertion into the
elite set. If a change in the elite set occurs, the entire
post-processing step is repeated.

is the best solution found

4. GRASP with Path Relinking

In this section, we show how the procedures
described above are combined in our implementation.
Figure 4 presents pseudo-code for this algorithm.
The algorithm uses two stopping criteria. It halts
either after maxitr iterations are done or if a solu-
tion with objective value less than or equal to look4 is
found. Each iteration consists of solution construction
(line 5), local search using the constructed solution as
the initial solution (line 6), and once the pool of elite
solutions is full, a path-relinking phase. Path relink-
ing examines two-way paths (lines 9 to 14) between
the solution produced by the local search and a subset

procedure GRASP_PR(seed, n,c, look4, maxitr,maxpool,freq)
1 POOL = 0;

2 fori=1,... maxitr do

3 seed = rand(seed);

4 seedc = seed,

5 CONSTRUCT (seedc,n,c,S);
6 LOCAL(n,c,cs,S);

7 if |POOL| == maxpool then

8 select SUBPOOL C POOL;

9 for T € SUBPOOL do

10 Sgmin = PATHRL(n, ¢, cs,8,T);

11 UPDATE_POOL (S gynin, Cgmin, POOL);
12 Sgmin = PATHRL(n,c,c7, T, S);

13 UPDATE_POOL (S gunin, Cgmin, POOL);
14 rof;

15 else POOL = POOL U {S} fi;

16 if mod (i,freq) == 0 then INTENSIFY(POOL) fi;
17 Spest = argmin{POOL};

18 if cpesr < Look4 then break fi;

19  rof;

20  POSTOPT(POOL);

21 Spes = argmin{POOL};
22 return (Spey);

end GRASP_PR;

Figure 4 Pseudo-Code for GRASP with Path Relinking

of elite solutions (in SUBPOOL). In our implementation,
SUBPOOL can consist of a single solution, selected at
random from the pool, or the entire pool. After each
path relinking is done, the best path solution is tested
for insertion into the pool (lines 11 and 13). If the pool
is not full, the local search solution is simply added
to the pool (line 15).

The intensification scheme for the elite set, descri-
bed in §3, is done every freq iterations (line 16).
Finally, when one of the stopping criteria is satisfied,
the post-optimization path relinking with local search
phase, described in §3, is computed (line 20).

5. A Parallel Approach for GRASP
with Path Relinking

As running time for a sequential implementation
of the algorithm increases super-quadratically with
problem dimension, it is natural to consider a par-
allel implementation to speed up the computations.
Figure 5 shows, in log-log scale, CPU times for 10,000
iterations for GRASP with path relinking for instances
of increasing dimension. The regression model T =
10-%%%1271, where T is CPU time in seconds (on a SGI
Challenge computer with 196 MHz MIPS R10000 pro-
cessors) and # is the dimension of the instance, is also
shown in the figure as a straight line. The value of the
coefficient of multiple determination (R?) is 0.968.
We next present a basic parallelization scheme
for GRASP with path relinking. Figure 6 shows
pseudo-code for this scheme, which according to the
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Figure 5  Problem Dimension Against CPU Time for 10,000 Iterations

of GRASP with Path Relinking

procedure PARALLEL_GRASP PR(n, ¢, seed, Look4, maxitr,maxpool,freq)
1 my_rank = GerRank(); nprocs = GetNumProcs();
2 fori=1,... maxitr*«my rank do
3 seed = rand(seed);
4 rof;

5 POOL = 0; num_stop = 0;
6 fori=1,...,~do

7 seed = rand(seed);
8 seedc = seed;

9 CONSTRUCT (seedc, n,c¢,S);

10 LOCAL(n,c,cs,S);

11 if |POOL| == maxpool then

12 select SUBPOOL C POOL;

13 for T € SUBPOOL do

14 Sgmin = PATHRL(n, ¢, cs,S,T);

15 UPDATE-_POOL(S gins Cgmin, POOL);
16 Sgmin = PATHRL(n,c,c1,T,S);

17 UPDATE_POOL(ng,-,”cg,m'mPDOL);
18 rof;

19 else POOL = POOL U {S} fi;

20 if mod (i,freq) =0 then INTENSIFY(POOL) fi;
21 Spesr = argmin{POOL};

22 if cper < Look4 then SendAll(look4 _stop) fi;
23 if i == maxitr then

24 num_stop = num_stop+ 1;

25 SendAll(maxitr_stop)

26 fi;

27 received = VerifyReceiving(flag);

28 if received then

29 if flag == look4_stop then break;

30 else if flag == maxitr_stop then

31 num_stop =num_stop+ 1;

32 fi;

33 if num_stop == nprocs then break fi;

34 rof;

35  POSTOPT(POOL);

36 SGiobaiBest = GetGlobalBest(Spes);
37 return (SgiopatBest);

end PARALLEL_GRASP_PR;

Figure 6 Pseudo-Code for Parallel GRASP with Path Relinking

taxonomy proposed by Verhoeven and Aarts (1995) is
a multiple independent walks parallelization.

Our implementation uses message passing for com-
munication between processors. This communication
is limited to program initialization and termination.
A single processor reads the problem data and passes
it to the remaining nproc — 1 processes. Processes send
a message to all others when they either stop upon
finding a solution at least as good as the target or
complete the maximum number of allotted iterations.

Each processor executes a copy of the program. In
line 1 the processor’s rank and the number of proces-
sors are determined. In the beginning of each GRASP
construction phase, the random-number-generator is
reinitialized with a different seed. To increase the like-
lihood of independence of processors, identical seeds
of the random-number-generator (rand()) must not
be used by more than one processor. The initial seed
for processor my_rank is computed in lines 2-4. This
way, each processor has a sequence of maxitr initial
seeds. Note that using different seeds does not com-
pletely guarantee independence of the processors. The
problem stems from the fact that the sequences of
random numbers used by different processors may
“overlap,” unless the seeds are sufficiently apart.
Obviously, the probability of this occurring with a
generator with a very long sequence is not big, and
should have a minimal impact on the results. The loop
from line 6 to line 34 executes the iterations. The con-
struction phase seed (seedc) is computed according
to lines 7-8. If a solution with cost at least as good
as the target (Look4) is found by a process, a message
is sent to all other processes, indicating this occur-
rence (line 22). Likewise, if a process reaches its max-
imum number of iterations, it sends a message to all
other processes indicating this (lines 23-26) and incre-
ments its counter of number of terminated processes
(num_stop) in line 24. In line 27, the process verifies if
a message has been sent to it and, if so, takes appro-
priate action in lines 28-33. If the message indicated
stopping by solution value, the iterations are termi-
nated in line 29. If the number of maximum iterations
has been reached by some other process, the counter
of number of terminated processes is incremented in
line 31, and if all processes have been terminated, the
iterations are stopped in line 33.

Each process, upon completing its iterations, runs
the post-optimization phase of pool of elite solutions
in line 35. A reduce operator determines the best
global solution among all processes in line 36 and
returns this solution.

6. Computational Results

In this section, we present computational results using
sequential and parallel implementations of the algo-
rithms described in this paper. We describe the com-
puter environment used to conduct the experiments,
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the instances selected for each of the seven algo-
rithms, and present results comparing the variants as
well as results showing that this procedure can pro-
duce near-optimal solutions on instances of the AP3.

6.1. Computer Environment

The experiments were done on an SGI Challenge com-
puter (28 196-MHz MIPS R10000 processors) with
7.6 Gb of memory. Each run of the sequential imple-
mentations used a single processor. The parallel
implementations were run on 1, 2, 4, 8, and 16 proces-
sors. Load on the machine was not uniform through-
out the experiments and may have affected processor
availability.

The algorithms were coded in Fortran and were
compiled with the SGI MIPSpro F77 compiler using
flags -03 -r4 -64. The Message-Passing Interface
(MPI) specification has become a common standard
for message-passing libraries for parallel computa-
tions (Snir et al. 1998). The parallel codes used SGI’s
Message Passing Toolkit 1.4, which contains a fully
compliant implementation of the MPI 1.2 specifica-
tion. CPU times for the sequential implementation
were measured with the system function etime. In
the parallel implementation, times measured are wall-
clock time and were done with the MPI function
MPI_WT. This is also the case for runs with a single pro-
cessor that are compared to parallel 2, 4, 8, and 16 pro-
cessor runs. Timing in the parallel runs excludes the
time to read the problem data, initialize the random-
number-generator seeds, and to output the solution.
The pseudo-random-number-generator proposed in
Schrage (1979) was used to produce the sequences of
random numbers used.

6.2. Test Problems
Three classes of test problems taken from the litera-
ture were used in the experiment.

The first class of test problems was described by
Balas and Saltzman (1991). Integer cost coefficients
¢;, j,x for those problems are uniformly generated in
the interval [0, 100]. We limited our experiments to
all instances generated by Balas and Saltzman of size
n=12,14, 16,18, 20, 22,24, and 26. For each size, we
considered all of the five instances provided by Balas
and Saltzman.

The second class of problems is the class TA,
described by Crama and Spieksma (1992). The costs
in these problems are generated as follows. The AP3
is viewed as the optimization problem on a complete
tripartite graph K, , , referred to in the introduction
of this paper. For class TA, alength d, , > 0 is assigned
to each edge of X, ,, , and the cost ¢; ;  of a triangle
(i,j, k) el x ] x K is its total length, i.e., Ci j k= di,]- +
di x +d; . Three types of randomly generated prob-
lems are considered. They differ in how the lengths

d, , are computed (see Crama and Spieksma 1992 for
details). Each type consists of three instances of size
n =33 and three instances of size n = 66, totaling 18
instances.

The final class of problems is described in Burkard
et al. (1996). Problems in this class have decomposable
cost coefficients. Let ;, B;, and v, be the elements of
three n-element sequences. The cost coefficient ¢; ; , =
;- B; - ¥ The instances considered in our experiment
are the largest ones tested by Burkard et al. (1996)
(of sizes n =12,14,16). Each has integer cost coeffi-
cients a;, B, and 7, uniformly distributed in the inter-
val [0, 10]. For each problem size, all of the 100 test
instances provided by Burkard et al. were considered.

6.3. Algorithm Variants
We considered seven variants of the GRASP and path-
relinking schemes proposed in this paper.

1. GRASP: This variant is a pure GRASP with no
path relinking.

2. GPR(RAND): This variant adds to GRASP a two-way
path relinking between the initiating solution and a
randomly selected target solution from the elite set.

3. GPR(ALL): This variant adds to GRASP a two-way
path relinking between the GRASP solution and all
|POOL| solutions in the elite set POOL.

4. GPR(RAND,POST): This variant adds to GPR(RAND)
a post-optimization phase where two-way path
relinking is done between all elite set solutions and
the resulting solutions are locally optimized. The
post-optimization procedure is reapplied until no fur-
ther change in the elite set is observed.

5. GPR(ALL,POST): This variant adds to GPR(ALL) a
post-optimization phase where two-way path relink-
ing is done between all elite set solutions and the
resulting solutions are locally optimized. The post-
optimization procedure is reapplied until no further
change in the elite set is observed.

6. GPR(RAND,POST,INT): This variant adds to
GPR(RAND,POST) an intensification scheme that is
repeated at fixed iteration intervals. In the intensifica-
tion scheme, two-way path relinking is done between
all elite set solutions. The procedure is reapplied until
no further change in the elite set is observed.

7. GPR(ALL,POST,INT): This variant adds to
GPR(ALL,POST) an intensification scheme that is
repeated at fixed iteration intervals. In the intensifica-
tion scheme, two-way path relinking is done between
all elite set solutions. The procedure is reapplied until
no further change in the elite set is observed.

6.4. The Experiments

Our objective with the experimental part of this paper
is to evaluate the effectiveness of path relinking when
used in conjunction with GRASP. We aim to answer
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three broad questions:

1. Does path relinking improve the performance of
GRASP, and what is the trade-off in terms of CPU
time?

2. What are the trade-offs between CPU times and
solution quality using the different variants of GRASP
with path relinking described in this paper?

3. Are the random variables time to target solution
for the different variants of GRASP with path relink-
ing exponentially distributed, and if so, how does a
straightforward parallel implementation perform?

To study the above questions, we considered the
test problems described in §6.2 and used the variants
of GRASP with path relinking listed in §6.3.

To study the effect of path relinking on GRASP,
we compared the pure GRASP variant (GRASP) and
the simplest GRASP with path-relinking variant
(GPR(RAND)) on problems 20.1, 22.1, 24.1, and 26.1 of
Balas and Saltzman (1991). The two variants were run
for » =200 times for each of the four problems. Execu-
tion was terminated when a solution of value at most
equal to look4 was found. look4 values of 19, 20, 17,
and 19 were used for problems 20.1, 22.1, 24.1, and
26.1, respectively. These values are far from optimal
and can usually be found in few iterations. Empiri-
cal probability distributions for time to target solution
are plotted in Figures 7 and 8. To plot the empirical
distribution, we associate with the ith sorted running
time (t;) a probability

pi=(i-3)/r

and plot the points z; = (t;,p;), for i=1, ..., r, where
r =200. We comment on the choice of p; later on §6.5.
The plots clearly show that path relinking reduces the
time needed to find a sub-optimal target solution. For
example, on problem 20.1 the probability of finding
a solution at least as good as the target solution in
at most 50 seconds is 89% for GPR(RAND), while for
GRASP it is 44%, and in at most 100 seconds, it is 98%
for GPR(RAND) and 66% for GRASP. Table 1 shows these
probabilities for this and the other three instances.
These results show that even though more computa-
tional effort is needed per iteration of GPR(RAND), this
is compensated for by the reduced number of itera-
tions needed to produce the solution.

Similar to the plots comparing GRASP and GPR(RAND)
in Figures 7 and 8, Figures 9 and 10 show empiri-
cal probability distributions for time to target solu-
tion for variants GPR(RAND), GPR(RAND, INT), GPR(ALL),
and GPR(ALL,INT) on the same problems 20.1, 22.1,
24.1, and 26.1 using the harder-to-find look4 tar-
get values 7, 8, 7, and 8, respectively. For example,
Figure 9 shows that for problem 20.1, the probability
that GPR(RAND) finds a solution of value at most 7 in
less than 2063s is 0.5, while with the same probabil-
ity GPR(RAND, INT), GPR(ALL), and GPR(ALL,INT) find
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Figure 7 Empirical Probability Distributions of Time to Target Value

for GRASP and GPR(RAND) (Balas and Saltzman Test Prob-
lems 20.1 and 22.1)
Note. Stopping criteria: 1ook4 =19 and look4 = 20 for test problems 20.1
and 22.1, respectively.

a solution of value at most 7 in less than 1744s,
851s, and 718s, respectively. Table 2 shows times as
a function of probability for the four test problems
and four variants. The plots and the table show that
GPR(ALL) and GPR(ALL,INT) outperform GPR(RAND)
and GPR(RAND, INT), finding the target solutions in less
time despite the fact that the time per iteration of
both GPR(RAND) and GPR(RAND, INT) is significantly less
than for GPR(ALL) and GPR(ALL,INT). Note also that
the data show that intensification appears to benefit
more GPR(RAND,INT) with respect to GPR(RAND) than
GPR(ALL, INT) with respect to GPR(ALL), and that as the
problem size increases, the benefit of intensification is
diminished.

In another type of experiment, the different variants
were run by a fixed number of iterations on the entire
set of test problems. Two types of runs were done.
The first with 100 iterations (quick) and the second
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Figure 8

with 10,000 iterations (long). Five quick and five long
independent runs were done for each variant-instance
pair.

Tables 3 and 4 show results for the Balas and
Saltzman (1991) test problems with 100 and 10,000
iterations, respectively. Each row shows statistics
taken over five instances with five independent
runs each, ie., a total of 25 runs. For example,

Table 1
Solution Time
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for Different Variants of GRASP with Path Relinking (Balas
and Saltzman Test Problems 20.1 and 22.1)

Note. Stopping criteria: 1ook4 = 7 and look4 = 8 for test problems 20.1
and 22.1, respectively.

Figure 9

for n = 12, the instances are 12.1, 12.2, 12.3, 12.4,
and 12.5. Column entry n is the dimension of the
problem. Column entry B-S is the average solution
found using the wvariable-depth interchange heuristic
of Balas and Saltzman (1991) and column OPT lists
the average optimal solution reported by Balas and
Saltzman. In these tables, as well as the ones that fol-
low, the GRASP with path-relinking variants GRASP,

Probability Estimates of Finding a Solution at Least as Good as the Target Solution as a Function of Maximum

20.1 22.1 24.1 26.1
Time GPR(RAND) GRASP GPR(RAND) GRASP GPR(RAND) GRASP GPR(RAND) GRASP
50s 0.89 0.44 0.52 0.25 0.45 0.22 0.35 0.16
100s 0.98 0.68 0.83 0.43 0.70 0.32 0.66 0.25
150s 1.00 0.80 0.93 0.56 0.84 0.42 0.85 0.37
200s 1.00 0.87 0.98 0.66 0.91 0.49 0.96 0.50

Note. Instances are Balas and Saltzman 20.1, 22.1, 24.1, and 26.1 with target values 19, 20, 17, and 19, respectively.
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and Saltzman Test Problems 24.1 and 26.1)
Note. Stopping criteria: 1ook4 = 7 and look4 = 8 for test problems 24.1
and 26.1, respectively.

GPR(RAND),  GPR(RAND,POST),  GPR(RAND,POST,INT),
GPR(ALL), GPR(ALL,POST), and GPR(ALL,POST,INT)
are indicated by the column headings GRASP,
GPR(R), GPR(R,P), GPR(R,PI), GPR(A), GPR(A,P),
and GPR(A,PI), respectively. For each instance size,
the highlighted cells in each row correspond to
those variants with the smallest average solutions
for instances of that size. For each algorithm variant
and problem dimension, the corresponding cell in
Tables 3 and 4 lists average cost (taken over the best
of the five independent runs for each instance), the
number of times the variant found the best solution
(winner) over the five instances of that dimension
(e.g., GPR(ALL,POST) found the best solution for
two of the five instances of dimension 12, while
GPR(ALL,POST,INT) found the best solution for all
of the five instances of dimension 12), and the
average CPU time of the 25 runs of that cell. The
last row of these tables adds up the winners for each
variant.

Table 2 Time to Find a Solution at Least as Good as the Target
Solution as a Function of Probability
Balas and Saltzman 20.1
Probability GPR(ALL,INT) GPR(ALL) GPR(RAND,INT) GPR(RAND)
0.2 238s 266s 338s 428s
0.5 718s 851s 1,744s 2,063s
0.8 1,856s 1,918s 4,887s 5,331s
Balas and Saltzman 22.1
Probability GPR(ALL,INT) GPR(ALL) GPR(RAND,INT) GPR(RAND)
0.2 544s 546s 710s 852s
0.5 1,502s 1,584s 2,916s 2,763s
0.8 4,731s 4,780s 8,244s 8,161s
Balas and Saltzman 24.1
Probability GPR(ALL,INT) GPR(ALL) GPR(RAND,INT) GPR(RAND)
0.2 742s 856s 1,714s 1,697s
0.5 2,274s 2,603s 5,378s 4,084s
0.8 6,198s 6,306s 12,467s 11,3365
Balas and Saltzman 26.1
Probability GPR(ALL,INT) GPR(ALL) GPR(RAND,INT) GPR(RAND)
0.2 594s 592s 852s 963s
0.5 1,411s 1,411s 2,315s 2,315s
0.8 3,698s 3,691s 5,941s 6,049s

Note. Instances are Balas and Saltzman 20.1, 22.1, 24.1, and 26.1 with target
values 7, 8, 7, and 8, respectively.

Tables 3 and 4 show the following.

® On short runs, GRASP with path relinking finds
better solutions than does the variable-depth inter-
change heuristic of Balas and Saltzman for n < 20, but
worse solutions for n > 22. On long runs, however, all
variants (including pure GRASP) find better solutions
than the variable-depth interchange heuristic.

* Optimal solutions are found on long runs for
n <14.

* On both short and long runs, all GRASP with
path-relinking variants find solutions that are, on
average, better than pure GRASP.

¢ On both short and long runs, post-optimization
and fixed-interval intensification helps both random
path relinking and full elite set path relinking.

¢ On long runs, solutions improve with algorithm
sophistication, i.e., as one moves from the left side to
the right side of the table.

¢ On short runs, random path relinking with either
post-optimization or post-optimization and fixed-
interval intensification finds better solutions than
does full elite set path relinking without intensifi-
cation. However, full elite set path relinking with
post-optimization finds better solutions than does
random path relinking with post-optimization. Also,
full elite set path relinking with post-optimization
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Table 3 Balas and Saltzman Test Problems (100 Iterations)
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(A,RI)
n B-S OPT  Cost  Wins Cost Wins  Cost Wins  Cost Wins Cost Wins  Cost Wins Cost  Wins
12 240 156 314 0 28.8 0 20.0 2 20.0 3 21.2 0 20.0 2 180 5
(0.09s) (0.11s) (0.355) (0.865) (0.54s) (0.71s) (1.24s)
14 224 100 27.8 0 254 0 16.8 1 16.2 2 17.8 0 16.4 0 150 4
(0.165) (0.18s) (0.54s) (1.27s) (0.78s) (1.055) (1.81s)
16 250 100 250 0 25.0 0 18.8 0 18.4 3 212 0 20.8 1 184 4
(0.265) (0.29s) (0.80s) (1.72s) (1.07s) (1.44s) (2.45s)
18 17.6 64 268 0 26.8 0 19.2 3 18.6 2 21.2 0 17.2 2 176 3
(0.40s) (0.44s) (1.04s) (2.255) (1.43s) (1.88s) (3.19s)
20 274 48 270 1 27.0 1 18.6 3 20.8 2 21.4 2 21.0 2 188 2
(0.58s) (0.63s) (1.33s) (2.80s) (1.87s) (2.39s) (3.97s)
22 18.8 40 246 1 24.6 1 22.4 2 20.8 4 23.0 3 23.0 3 226 4
(0.80s) (0.865) (1.63s) (3.46s) (2.375) (2.99s) (4.855s)
24 14.0 18 312 0 31.2 0 25.2 0 20.0 2 23.4 1 20.2 2 168 2
(1.09s) (1.16s) (2.10s) (4.20s) (2.96s) (3.64s) (5.83s)
26 15.7 13 280 1 28.0 1 21.2 2 22.4 2 23.4 2 22.4 2 218 3
(1.44s) (1.52s) (2.69s) (4.79s) (3.64s) (4.40s) (6.71s)
Total winners 3 3 13 20 8 14 27

and fixed-interval intensification finds better solutions
than random path relinking with post-optimization
and fixed-interval intensification.

¢ CPU times increase as post-processing and inten-
sification are added to GRASP with path relinking.

Tables 5, 6, and 7 show results for the Crama and
Spieksma type I, 1I, and III test problems (Crama
and Spieksma 1992), respectively, with 100 and 10,000

iterations. Each table shows number of iterations,
problem dimension 7, the value obtained by H, the
best heuristic in Crama and Spieksma, and the lower
bound reported by Crama and Spieksma. We refer
to the Crama and Spieksma heuristic as C-S. Each
cell corresponding to an instance-variant pair shows
the value of the best solution found out of the five
independent runs, the number times the best solution

Table 4 Balas and Saltzman Test Problems (10,000 Iterations)
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(A,P)
n B-S OPT  Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins
12 240 156 164 3 15.6 5 15.6 5 15.6 5 15.6 5 15.6 5 15.6 5
(8.37s) (10.77s) (10.85s) (14.32s) (71.63s) (71.70s) (74.79s)
14 224 10.0 120 2 10.6 3 10.2 4 10.2 4 10.0 5 10.0 5 10.0 5
(14.37s) (17.71s) (17.83s) (22.675s) (102.22s) (102.30s) (106.55s)
16 250 10.0 132 0 12.8 1 12.8 1 11.0 2 10.6 2 10.6 2 10.2 4
(23.51s) (27.64s) (27.85s) (34.33s) (138.31s) (138.37s) (143.89s)
18 17.6 64 118 0 9.8 0 8.0 2 9.8 0 7.2 3 7.2 3 7.4 2
(36.585s) (42.04s) (42.20s) (50.39s) (184.86s) (183.70s) (190.88s)
20 274 48 142 0 9.8 1 94 1 10.2 1 7.2 3 6.6 4 6.4 5
(53.40s) (60.20s) (60.53s) (70.64s) (237.02s) (237.355) (246.70s)
22 18.8 40 136 0 124 0 10.6 1 10.2 1 7.2 4 7.2 4 7.8 3
(74.82s) (83.18s) (83.27s) (95.63s) (298.17s) (298.40s) (309.645)
24 14.0 1.8 134 0 9.8 1 9.8 1 8.4 3 74 5 74 5 74 5
(101.665s) (111.14s) (111.98s) (127.09s) (368.45s) (368.82s) (382.45s)
26 15.7 13 134 0 9.8 1 9.8 1 9.8 2 8.4 5 8.4 5 8.4 5
(134.535) (145.60s) (146.275) (164.155) (448.54s) (449.06s) (465.20s)
Total winners 5 12 16 18 32 33 34
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Table 5 Crama and Spieksma Type | Test Problems
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(A,PI)
Iterations n C-S LB Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins
100 33 1,618 1,607 1,617 0 1,613 0 1,608 1 1,608 1 1,608 1 1,608 1 1,608 1
(4.88s) (4.94s) (5.45s) (6.15s) (6.14s) (6.41s) (7.35s)
100 33 1411 1395 1,419 0 1,405 0 1,401 1 1,401 1 1,401 1 1,401 1 1,401 1
(5.08s) (5.15s) (5.73s) (6.42s) (6.48s) (6.76s) (7.70s)
100 33 1,609 1,604 1,616 0 1,609 0 1,604 1 1,604 1 1,604 1 1,604 1 1,604 1
(4.70s) (4.79s) (5.32s) (6.25s) (6.22s) (6.49s) (7.54s)
100 66 2,668 2,654 2,767 0 2,753 0 2,687 0 2,682 0 2,679 0 2,678 1 2,681 0
(151.34s) (151.95s) (154.97s) (165.08s) (158.545) (159.69s) (171.20s)
100 66 2,469 2433 2515 0 2,490 0 2,461 0 2,452 1 2,454 0 2,454 0 2,452 1
(147.97s) (149.14s) (152.155) (163.34s) (155.04s) (156.225) (166.80s)
100 66 2,775 2,748 2,822 0 2,788 0 2,766 1 2,778 0 2,783 0 2,779 0 2,774 0
(149.07s) (149.53s) (151.93s) (162.79s) (154.775) (155.875) (171.40s)
Total winners 0 0 4 3 4 4
10,000 33 1,618 1,607 1,609 0 1,608 1 1,608 1 1,608 1 1,608 1 1,608 1 1,608 1
(459.355) (467.50s) (466.48s) (477.70s) (654.70s) (652.26s) (660.49s)
10,000 33 1,411 1,395 1,401 1 1,401 1 1,401 1 1,401 1 1,401 1 1,401 1 1,401 1
(474.90s) (489.25s) (485.71s) (495.97s) (672.43s) (671.76s) (680.50s)
10,000 33 1,609 1,604 1,606 0 1,604 1 1,604 1 1,604 1 1,604 1 1,604 1 1,604 1
(443.60s) (460.63s) (459.33s) (465.86s) (648.24s) (673.43s) (676.07s)
10,000 66 2,668 2,654 2,714 0 2,670 0 2,670 0 2,664 1 2,664 1 2,664 1 2,664 1
(14,432.23s)  (14,470.68s)  (14,380.15s)  (14,440.98s) (15,352.03s) (15,662.94s) (15,470.11s)
10,000 66 2,469 2,433 2,484 0 2,454 0 2,454 0 2,454 0 2,449 1 2,449 1 2,449 1
(14,157.01s)  (14,197.33s)  (14,220.41s)  (14,238.75s)  (14,986.12s) (15,018.97s) (15,010.90s)
10,000 66 2,775 2,748 2,801 0 2,758 1 2,758 1 2,758 1 2,759 0 2,759 0 2,759 0
(14,196.91s)  (14,244.77s)  (14,265.57s) (14,283.52s) (15,023.19s)  (15,011.29s)  (15,084.57s)
Total winners 1 4 4 5 5 5 5

was found, and the average running time over the
five runs.

For type I problems, Table 5 shows the follow-
ing.
¢ On short runs the GRASP with path-relinking
variants found a better solution than did C-S on all
but one instance, whereas on the long runs, better
solutions were found for all instances.

¢ On short runs, pure GRASP improved upon the
solution found by C-S only on a single instance of size
n = 33, while on instances of size n = 66 C-S found
better solutions than GRASP.

¢ On long runs, GRASP found better solutions for
the instances of size n = 33, but worse solutions for
the instances of size n = 66.

® On all short runs and all but one long run,
GRASP with random or full elite set path relinking
found solutions that are better than pure GRASP.

® On all short runs, post-processing improved
GRASP with random path relinking. In two of six
short runs, post-processing improved GRASP with

full elite set path relinking. However, for long runs,
post-processing did not make any difference.

¢ There is an insignificant difference between the
different GRASP with path-relinking variants on the
long runs.

* On one instance of size n = 33 more than one
GRASP with path-relinking variant found an optimal
solution.

* The relative error with respect to the lower
bound was at most 0.9% for the short runs and 0.65%
for the long runs.

For type-II problems, Table 6 shows the follow-
ing.

* On all short and long runs, the pure GRASP
found solutions that were better than those found
with C-S.

* On four of six short runs and on all long runs,
random path relinking improved pure GRASP. On
all short and long runs, full elite set path relinking
improved pure GRASP.

* On all short runs, post-processing improved
GRASP with random path relinking. However,
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Table 6 Crama and Spieksma Type Il Test Problems
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(A,PI)
Iterations n C-S LB Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins
100 33 4,861 4772 4,805 0 4,805 0 4,799 0 4,799 0 4,798 1 4,798 1 4,798 1
(4.49s) (4.59s) (5.50s) (7.265) (6.89s) (7.50s) (9.50s)
100 33 5,142 5,035 5,086 0 5,081 0 5,070 1 5,072 0 5,075 0 5,071 0 5,071 0
(4.25s) (4.375s) (5.49s) (7.54s) (6.83s) (7.62s) (9.975)
100 33 4,352 4,260 4,306 0 4,301 0 4,288 1 4,290 0 4,290 0 4,290 0 4,289 0
(4.365) (4.425) (5.54s) (7.58s) (6.725) (7.25s) (9.19s)
100 66 9,780 9,633 9,728 0 9,728 0 9,709 0 9,707 0 9,710 0 9,709 0 9,703 1
(133.99s) (134.10s) (141.95s) (154.09s) (145.42s) (149.12s) (163.67s)
100 66 9,142 8,831 8,990 0 8,981 0 8,962 1 8,966 0 8,966 0 8,966 0 8,964 0
(138.28s) (139.04s) (144.25s) (155.43s) (149.31s) (150.975) (167.24s)
100 66 9,888 9,670 9,803 0 9,791 0 9,768 0 9,770 0 9,766 0 9,764 1 9,767 0
(133.235) (133.81s) (139.255) (154.42s) (145.58s) (157.98s) (161.255)
Total winners 0 0 3 0 1 2 2
10,000 33 4861 4,772 4,804 0 4,797 1 4,797 1 4,797 1 4,797 1 4,797 1 4,797 1
(419.435) (433.18s) (434.92s) (446.75s) (752.91s) (754.34s) (766.06s)
10,000 33 5,142 5,035 5,076 0 5,067 1 5,067 1 5,069 0 5,068 0 5,068 0 5,068 0
(398.355) (414.93s) (413.58s) (429.325) (759.88s) (761.775) (772.845)
10,000 33 4352 4,260 4,296 0 4,287 1 4,287 1 4,288 0 4,287 1 4,287 1 4,287 1
(405.03s) (418.35s) (420.94s) (430.965) (747.17s) (748.03s) (762.19s)
10,000 66 9,780 9,633 9,720 0 9,703 0 9,703 0 9,699 0 9,694 1 9,694 1 9,694 1
(13,453.17s)  (13,449.01s)  (13,387.55s)  (13,545.63s) (14,676.68s) (14,553.60s)  (14,629.08s)
10,000 66 9,142 8,831 8,976 0 8,957 0 8,957 0 8,956 0 8,951 1 8,951 1 8,954 0
(13,238.00s)  (13,257.29s)  (13,335.41s)  (13,412.89s) (14,871.51s) (14,706.02s) (14,922.91s)
10,000 66 9,888 9,670 9,784 0 9,757 0 9,756 0 9,759 0 9,753 0 9,753 0 9,751 1
(12,689.67s)  (12,739.95s5)  (12,748.95s)  (12,784.51s)  (14,446.85s)  (14,326.70s)  (14,391.67s)
Total winners 0 3 3 1 4 4 4

post-processing only improved GRASP with random
path relinking on a single long run.

* On half of the short runs, post-processing
improves GRASP with full elite set path relinking,
while on the long runs it has no influence.

¢ Fixed-interval intensification deteriorates solu-
tion quality more than it improves it.

* The relative error with respect to the lower
bound was at most 1.5% for the short runs and 1.35%
for the long runs.

For type III problems, Table 7 shows the follow-
ing.
® On all short and long runs, GRASP with path
relinking found solutions that were better than those
found with C-S.

¢ On only one short run, pure GRASP found a bet-
ter solution than did C-S. On the other five, C-S was
better.

* On four of six long runs, pure GRASP improved
upon C-S, while on the remaining two, both algo-
rithms found solutions of the same quality.

¢ GRASP with random path relinking and GRASP
with full elite set path relinking found better solutions
than pure GRASP on all short and long runs.

* On all short runs and two long runs, post-
optimization improved GRASP with random path
relinking. On the remaining three long runs, both
algorithms found solutions of the same quality.

* On two short runs, post-optimization improved
GRASP with full elite set path relinking, while on the
remaining three short runs and all long runs, both
algorithms found solutions of the same quality.

¢ On short runs, fixed-interval intensification dete-
riorated the solution quality of GRASP with random
path relinking or full elite set path relinking more
than it improved it. On long runs, it had no influence
with respect to solution quality.

¢ The relative error with respect to the lower
bound was at most 1.8% for the short runs as well as
for the long runs.

¢ Both short and long runs on one instance of size
n =33 produced an optimal solution.
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Table 7 Crama and Spieksma Type lll Test Problems
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(ARI)
Iterations n CS LB Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins Cost Wins
100 33 135 133 137 0 136 0 133 1 133 1 133 1 133 1 133 1
(1.75s) (1.87s) (2.69s) (4.44s) (4.13s) (4.53s) (6.56s)
100 33 137 130 136 0 133 0 131 1 132 0 131 1 131 1 131 1
(1.73s) (1.83s) (2.58s) (4.385) (3.97s) (4.50s) (6.15s)
100 33 135 130 136 0 133 0 132 0 131 1 131 1 131 1 131 1
(1.73s) (1.84s) (2.60s) (3.89s) (3.82s) (4.24s) (5.84s)
100 66 293 283 297 0 291 0 286 1 286 1 286 1 286 1 286 1
(42.73s) (43.28s) (47.14s) (55.57s) (52.29s) (53.18s) (63.08s)
100 66 294 281 295 0 291 0 286 1 287 0 287 0 286 1 287 0
(42.24s) (42.24s) (45.63s) (55.09s) (50.79s) (52.54s) (62.16s)
100 66 293 280 295 0 288 0 282 1 283 0 284 0 283 0 283 0
(41.77s) (42.055) (45.37s) (54.55s) (50.73s) (52.69s) (61.555)
Total winners 0 0 5 3 4 5 4
10,000 33 135 133 135 0 133 1 133 1 133 1 133 1 133 1 133 1
(149.44s) (162.57s) (164.11s) (179.94s) (475.23s) (476.97s) (490.79s)
10,000 33 137 130 134 0 131 1 131 1 131 1 131 1 131 1 131 1
(149.74s) (162.42s) (163.33s) (178.10s) (459.16s) (459.70s) (471.21s)
10,000 33 135 130 134 0 132 0 131 1 131 1 131 1 131 1 131 1
(148.27s) (162.04s) (161.64s) (175.95s) (439.93s) (439.06s) (451.72s)
10,000 66 293 283 293 0 286 1 286 1 286 1 286 1 286 1 286 1
(4,280.75s) (4,222.88s) (4,082.55s) (4,160.62s) (5,303.95s) (5,243.44s) (5,322.97s)
10,000 66 294 281 292 0 286 1 286 1 286 1 286 1 286 1 286 1
(3,955.23s) (3,951.28s) (3,943.24s) (3,967.02s) (5,117.01s) (4,980.35s) (5,126.865)
10,000 66 293 280 292 0 283 0 282 1 282 1 282 1 282 1 282 1
(4,073.55s) (3,861.92s) (3,865.62s) (3,909.43s) (5,008.44s) (5,015.85s) (5,059.06s)
Total winners 0 4 6 6 6 6 6

Tables 8 and 9 show results for the Burkard et al.
(1996) test problems, respectively, with 100 and 10,000
iterations. Each table shows the problem dimension
n, the value obtained by the Burkard et al. heuris-
tics Simple_LSH on instances of size n =12 and LSH
on instances of size n > 14. We refer to the Burkard
et al. heuristics as B-R-W. Each of the 100 instances of
each size was solved five times independently with
the GRASP with path-relinking variants. Each cell

corresponding to an instance-variant pair shows the
average value computed over the 100 best solutions
(one for each of five independent runs), the number
of times the best solution was found, and the average
running time over the five hundred runs.

Tables 8 and 9 show the following.

® On all short and long runs, the average solution
found by pure GRASP was better than the average
solution found by B-R-W.

Table 8 Burkard et al. Test Problems (100 Iterations)
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(A,P) GPR(A,PI)
n B-R-W Cost  Wins  Cost Wins  Cost  Wins Cost  Wins Cost  Wins Cost  Wins Cost  Wins
12 1,188.02 1,186.92 92 1,186.85 97 1,186.82 99 1,186.81 100 1,186.81 100 1,186.81 100 1,186.81 100
(0.12s) (0.14s) (0.31s) (0.73s) (0.51s) (0.62s) (1.03s)
14 1,469.19 1468.18 73 146791 87 146776 98 1,467.74 100 1,467.75 98 1,467.75 99 1,467.74 100
(0.21s) (0.23s) (0.49s) (1.10s) (0.75s) (0.91s) (1.52)
16 1,476.80 1,47593 56 147565 64 147517 96 147514 99 147515 98 1,47513 100 1,47513 100
(0.35s) (0.38s) (0.765) (1.61s) (1.07s) (1.33s) (2.21)
Total winners 221 248 293 299 297 299 300




Aiex et al.: GRASP with Path Relinking for Three-Index Assignment

INFORMS Journal on Computing 17(2), pp. 224-247, ©2005 INFORMS 239
Table 9 Burkard et al. Test Problems (10,000 Iterations)
GRASP GPR(R) GPR(R,P) GPR(R,PI) GPR(A) GPR(AP) GPR(API)
n B-R-W Cost  Wins  Cost Wins Cost Wins  Cost Wins Cost Wins Cost Wins  Cost  Wins
12 1,188.02 1,186.81 100 1,186.81 100 1,186.81 100 1,186.81 100 1,186.81 100 1,186.81 100 1,186.81 100
(11.19s) (13.29s) (13.35s) (15.965) (65.90s) (65.965) (68.30s)
14 1,46919 146775 99 1,467.74 100 1,467.74 100 1,467.74 100 1,467.74 100 1,467.74 100 1,467.74 100
(19.09s) (21.92s) (22.01s) (25.67s) (94.70s) (94.79s) (98.02s)
16 1,476.80 1,475.18 96 1,47513 100 1,475.13 100 1,47513 100 1,47513 100 1,47513 100 1,475.13 100
(31.77s) (35.58s) (35.74s) (41.08s) (134.62s) (134.86s) (139.30s)
Total winners 295 300 300 300 300 300 300

* On short runs, for all problem sizes adding either
random path relinking or full elite set path relinking
to GRASP, reduced the average cost of the solutions.
On long runs, this occurred for problems of size
n>14.

* On short runs, post-optimization improved
GRASP with random and full elite set path relinking,
while fixed-interval intensification improved post-
optimized GRASP with random and full elite set
path relinking. On long runs, all GRASP with path-
relinking variants found the same solution.

® On short runs, GRASP with full elite set path
relinking was better than GRASP with random path
relinking. Also, GRASP with full elite set path relink-
ing and post-optimization was better than GRASP
with random path relinking and post-optimization.
GRASP with full elite set path relinking, post-
optimization, and fixed-interval intensification was
better than GRASP with random path relinking, post-
optimization, and fixed-interval intensification.

* On all but five long runs, pure GRASP found the
best solution averages.

6.5. Experiments with a Parallel Implementation
Aijex et al. (2002) studied the empirical probability dis-
tributions of the random variable time to target solu-
tion in five GRASP implementations. They showed
that, given a target solution value, the time it takes
GRASP to find a solution at least as good as the target
fits a two-parameter exponential distribution. Stan-
dard methodology for graphical analysis (Chambers
et al. 1983) is used to compute the empirical and
theoretical distributions and estimate the parameters
of the distributions. We use the same methodol-
ogy to study the time to target solution for four
variants of GRASP with path relinking: GPR(RAND),
GPR(RAND, INT), GPR(ALL), and GPR(ALL, INT). We con-
sider four test problems: Balas and Saltzman 20.1,
221, 24.1, and 26.1, and look4 target values 7, 8, 7,
and 8, respectively. Our objective is to show that the
four variants of GRASP with path relinking have time
to target value distributions that fit a two-parameter
exponential distribution.

Figures 11, 12, 13, and 14 show empirical and
theoretical distributions of the random variable
time to target solution as well as quantile-quantile
plots for GPR(RAND), GPR(RAND,INT), GPR(ALL), and
GPR(ALL,INT), respectively. Each figure shows four
rows of plots, one for each of the four problems.
Each row is made up of two plots. The plot on
the left shows empirical and theoretical distribu-
tions computed with 200 runs of the GRASP with
path-relinking variant. For each of the 200 runs of
each combination, the random-number-generator is
initialized with a distinct seed. Our description of
each plot follows Aiex et al. (2002) closely. For each
instance/variant pair, the running times are sorted in
increasing order. To plot the empirical distribution,
we associate with the ith sorted running time (t;) a
probability p; = (i —1/2)/200 and plot the points z; =
(t;, p;), fori=1,...,200.

The plot on the right is a quantile-quantile (or Q-Q)
plot. To estimate the parameters of the two-parameter
exponential distribution, we first draw the theoretical
quantile-quantile plot for the data. To describe Q-Q
plots, recall that the cumulative distribution func-
tion for the two-parameter exponential distribution is
given by

F(t)=1—¢ =0/

where A is the mean of the distribution data (and indi-
cates the spread of the data) and u is the shift of the
distribution with respect to the ordinate axis.

For each value p;, i =1,...,200, we associate a
p,-quantile Qt(p;) of the theoretical distribution. For
each p;-quantile we have, by definition, that

F(Qt(p;) =p;-

Hence, Qt(p;,) = F~'(p;) and therefore, for the two-
parameter exponential distribution, we have

Qt(p;) =—Aln(1—p;) +p.

The quantiles of the data of an empirical distribu-
tion are simply the (sorted) raw data. Note that if we
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Note. Balas and Saltzman problems 20.1, 22.1, 24.1, and 26.1, using look4 =7, 8,7, and 8, respectively.

were to use p; =i/200, for i=1, ..., 200, then Qt(ps)

would be undefined.

A theoretical quantile-quantile plot (or theoretical
Q-Q plot) is obtained by plotting the quantiles of the

data of an empirical distribution against the quantiles
of a theoretical distribution. This involves three steps.
First, the data (in our case, the measured times) are
sorted in ascending order. Second, the quantiles of
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Note. Balas and Saltzman problems 20.1, 22.1, 24.1, and 26.1, using look4 =7, 8,7, and 8, respectively.

the theoretical exponential distribution are obtained.

Finally, a plot of the data against the theoretical quan-

tiles is made.

In a situation where the theoretical distribution is a
close approximation of the empirical distribution, the

points in the Q-Q plot will have a nearly straight con-
figuration. If the parameters A and u of the theoretical
distribution that best fits the measured data could be
estimated a priori, the points in a Q-Q plot would tend
to follow the line x =y. Alternatively, in a plot of the



Aiex et al.: GRASP with Path Relinking for Three-Index Assignment

242 INFORMS Journal on Computing 17(2), pp. 224-247, ©2005 INFORMS
1.0 g 10,000
o 9,000
0.8 @ 8,000
> £ 7,000
= i~ 6,000
3 06 ’
§ 3 5,000
[ 7 4,000
a 04 S 3,000
= 2,000
0.2 1,000
Balas and Saltzman 20.1 0 Balas and Saltzman 20.1
0.0 -1,000
0 1,800 3,600 5,400 7,200 0 1 2 3 4 5 6
1.0 - — 25,000 . . . . .
0.8 y 20,000
(0]
Z E 15,000
% 0.6 5
o] 210,000
© 04 ?
& § 5,000
=
0.2 0
Balas and Saltzman 22.1 Balas and Saltzman 22.1
0.0 -5,000 P —
0 4,000 8,000 12,000 16,000 0 1 2 3 4 5 6
1.0 . — 30,000 . . . . —
P
¥ 25,000
0.8 2
- £20,000
E] i~
5 06 5 15,000
[] [0)
S 310,000
S 04 210,
o 3
S 5,000
0.2 0
Balas and Saltzman 24.1 Balas and Saltzman 24.1
0.0 . . : . -5,000 . - . y .
0 5,000 10,000 15,000 20,000 0 1 2 3 4 5 6
1.0 T 18,000
v 16,000
08 / 814,000
Z §12,ooo
S 0.6
© 310,000
Ke) —
ne_ 04 § 8,000
§ 6,000
0.2 4,000
Balas and Saltzman 26.1 2,000 Balas and Saltzman 26.1
0.0
0 2,800 5,600 8,400 11,200 % 1 2 3 4 5 &
Time to Sub-optimal Exponential Quantiles
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Note. Balas and Saltzman problems 20.1, 22.1, 24.1, and 26.1, using 1look4 =7,8, 7, and 8, respectively.

data against a two-parameter exponential distribution
with A=1 and u =0, the points would tend to follow
the line y = Ax + w. Consequently, parameters A and
u of the two-parameter exponential distribution can
be estimated, respectively, by the slope and intercept
of the line depicted in the Q-Q plot.

To avoid possible distortions caused by outliers, we
do not estimate the distribution mean with the data
mean or by linear regression on the points of the
Q-Q plot. Instead, we estimate the slope X of line y=
Ax 4+ u using the upper quartile g, and lower quar-
tile g, of the data. The upper and lower quartiles are,

respectively, the Q(1/4) and Q(3/4) quantiles, respec-
tively. We take

A= (zu —2)/(q,— 1)

as an estimate of the slope, where z, and z; are the
u-th and [-th points of the ordered measured times,
respectively. This informal estimation of the distribu-
tion of the measured data mean is robust since it will
not be distorted by a few outliers (Chambers et al.
1983). These estimates are used to plot the theoreti-
cal distributions on the plots on the left side of the
figures.
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Note. Balas and Saltzman problems 20.1, 22.1, 24.1, and 26.1, using look4 =7, 8, 7, and 8, respectively.

To analyze the straightness of the Q-Q plots, we
superimpose them with variability information. For
each plotted point, we show plus and minus one stan-
dard deviation in the vertical direction from the line
fitted to the plot. An estimate of the standard devia-
tion for point z;, i=1, ...,200, of the Q-Q plot is

~_% Pi
7= )‘\/ (1—p;)200°

Figures 11, 12, 13, and 14 show that there is lit-
tle departure from straightness in the Q-Q plots and

consequently the distributions fit a two-parameter
exponential distribution.

The following proposition (Aiex et al. 2002,
Verhoeven and Aarts 1995) can be stated for a two-
parameter (shifted) exponential distribution.

ProPOSITION 1. Let P,(t) be the probability of not hav-
ing found a given (target) solution in t time units with p
independent processes. If Py (t) = e~*~#/* with A € R* and
weR, ie., P corresponds to a two-parameter exponential
distribution, then P, (t) = e (t=1/2,
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This proposition follows from the definition of
the two-parameter exponential distribution. It implies
that the probability of finding a solution of a given
value in time pt with a sequential process is equal
to 1 — e ®=W/A while the probability of finding a
solution at least as good as that given value in
time t with p independent parallel processes is 1 —
e P=#W/A Note that if u =0, then both probabilities
are equal and correspond to the nonshifted exponen-
tial distribution. Furthermore, if pu < A, then the two
probabilities are approximately equal and it is pos-
sible to achieve approximate linear speedup in solu-
tion time to target solution by multiple independent
processes.

We illustrate that GRASP with path relinking can
be implemented in a straightforward parallel way and
that near-linear speedup can be achieved. In these
experiments, we disable stopping due to a maximum
number of iterations, i.e., the algorithms terminate
only when a solution of value at least as good as
look4 is found. This stopping criterion, although not

: Linear Spéedup —.— 4

: Paralltlal Implemenltalion —x-
2 4 6 8 10 12 14 16
Number of Processors

1.0

=
E
©
Q
[
o
S A 'Y processor—— |
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Py GRLRTLTRLTITRITEE 4 processors - - -
: 8 processors ------
0.0 1{5 processors — - —
RS 10 100 1,000 10,000
Time to Sub-optimal
Figure 15 Speedup and Empirical Distributions for Parallel Implemen-

tation of GPR(ALL, POST)
Note. Balas and Saltzman problem 20.1 using look4 =7.

used in practice for the AP3, is useful to study the
behavior of GRASP. In §6.4, it was used to compare
the execution times of GRASP variants by fixing their
final solution quality. In this section, the stopping cri-
terion using solution quality is applied to a parallel
GRASP to study how its computational times vary
according to the number of processors used, consid-
ering that the final solution quality is fixed among the
executions. As a consequence, interrupting a parallel
program upon finding a solution of a given quality
allows for an understanding of how solution quality
degrades along the parallel executions. For example,
when a linear speedup is achieved for p processors,
adding the computational time spent by each proces-
sor will equal the time spent during the sequential
execution. Thus, there was no degradation of the solu-
tion quality along the parallel execution. However, if
a sublinear speedup is obtained, then the sum of the
computational time spent by each processor is greater
than the time spent during the sequential execution,
and thus the solution quality degraded along the par-
allel execution.
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Figure 16 Speedup and Empirical Distributions for Parallel Implemen-

tation of GPR(ALL, POST)
Note. Balas and Saltzman problem 22.1 using 1look4 = 8.
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Figure 17

Figures 15, 16, 17, and 18 show speedup and empir-
ical distributions for a parallel implementation of the
GRASP with path-relinking variant GPR(ALL, POST), on
Balas and Saltzman problems 20.1, 22.1, 24.1, and 26.1,
respectively. The plots were generated with 60 inde-
pendent runs for each parallel run (with 1, 2, 4, 8, and
16 processors).

Figures 15 to 18 show the following.

Table 10
of Processors)
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Figure 18

e Table 10 summarizes the speedups shown in
the figures. The table also shows efficiency (speedup
divided by number of processors) values.

¢ Efficiencies are on average superlinear for 2 and
4 processors, slightly sublinear for 8 processors, and
sublinear for 16 processors. Since there is very lit-
tle communication between processors and the exper-
iments were not done on a dedicated machine, the

Speedup with Respect to a Single Processor Implementation and Efficiency (Speedup Divided by Number

Number of processors

2 8 16

Balas and Saltzman

Problem Speedup Eff. Speedup Eff. Speedup Eff. Speedup Eff.
20.1 1.98 0.99 3.87 0.97 7.38 0.92 10.53 0.66
22.1 2.01 1.01 4.29 1.07 7.83 0.98 13.39 0.84
241 2.22 1.11 5.34 1.34 8.40 1.05 16.23 1.01
26.1 2.09 1.05 3.68 0.92 6.99 0.87 12.29 0.77
Average 2.08 1.04 430 1.08 7.65 0.96 13.11 0.69

Note. Algorithm variant is GPR(ALL,POST). Instances are Balas and Saltzman 20.1, 22.1, 24.1, and 26.1 with target values
7,8, 7,and 8, respectively.
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Table 11 Estimates of Probability of Finding a Solution at Least as
Good as the Target Solution in a Given Running Time, as a

Function of Number of Processors

Number of processors
Balas and Saltzman P

Problem Time 1 2 4 8 16

20.1 100s 008 013 023 036 049
500s 036 054 083 100 1.00
1,000s 055 086 098 100 1.00

22.1 100s 003 003 010 016 0.30
500s 023 033 058 079 095
1,000s 043 055 081 095 1.00

24.1 100s 001 004 008 011 028
500s 018 031 050 071 094
1,000s 028 053 078 093 1.00

26.1 100s 003 006 012 019 034
500s 012 024 050 085 096
1,000s 038 060 083 098 1.00

Note. Algorithm variant is GPR(ALL, POST). Instances are Balas and Saltzman
20.1, 22.1, 24.1, and 26.1 with target values 7, 8, 7, and 8, respectively.

falloff in efficiency is probably due to processor
availability.

e Table 11 shows, for given running times, the
probability of finding a solution at least as good as
the target solution in that time, as a function of num-
ber of processors. The table shows, for example, that
the probability of finding a solution of value at most
8 on Balas and Saltzman instance 24.1 in less than
100 seconds, goes from 1% with one processor to 8%
with four processors to 28% with 16 processors.

7. Concluding Remarks

In this paper, we presented a GRASP for the three-
index assignment problem (AP3) and showed how
path-relinking techniques can be used to improve the
performance of the greedy randomized search. New
construction and local search procedures were pre-
sented. We also described new ways to implement
path relinking in a GRASP. Two-way path relink-
ing, full elite set path relinking, path relinking
post-optimization, and fixed-interval path-relinking
intensification were shown to improve the basic path
relinking strategy introduced by Laguna and Marti
(1999).

Extensive computational experimentation was done
with the different algorithms introduced in this paper.

The GRASP with path-relinking strategies were
shown to improve the performance of a pure GRASP
(without path relinking), both in terms of finding a
solution faster and finding a better solution in a fixed
number of iterations.

In general, variants requiring more work per iter-
ation were shown to find solutions of a given qual-
ity in less time than variants doing less work per
iteration. Also, these more sophisticated variants in

general found better solutions in a fixed number of
iterations.

We showed that these new GRASP with path-
relinking heuristics improved the results for heuristics
previously described in Balas and Saltzman (1991),
Burkard et al. (1996), and Crama and Spieksma (1992).

We studied the probability distribution of the ran-
dom variable time to target solution on several variants
of GRASP with path relinking and concluded that
these times can be fitted by a two-parameter exponen-
tial distribution. The parameters of these distributions
were such that a straightforward parallel implemen-
tation of one of the variants was shown to achieve
approximate linear speedup.
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