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Abstract— A program for discrete event simulation of a semiconductor wafer
fab is presented. The program is designed 1o serve as a tool in the investigation
of efficient fab(shop ﬂoor)scheduling disciplines. but can also be used to analvze
issues such as fa voul design, capacity analysis, production forecasts. and fab
start-up strategies. The semiconductor fab scheduling problem is presented and
the job shop model used 10 represent the problem described. The C implementa-
tion of the model is discussed. Input and output of the mode] are described bv
presenting several test simulations. Future extensions to the model and research
directions are proposed.
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Introduction

This paper describes a C implementation of a simulation model of a semiconductor wafer
fab. The program is designed for use in research of fab shop scheduling schemes. but can
also be applied to problems such as fab lavout design, capacity analysis. production fore-
casts. and fab start-up strategy analysis. Other authors have developed simulation models
for .semiconductor fab analysis [Da84, Lo84]. but those models are not intended for study-

ing scheduling dispatching schemes and lack some important capabilities.

The semiconductor fab is first described and the fab scheduling problem defined. The

simulation model is then presented and its implementation in C described. Several simula-
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tion runs are executed on the code. Exiensions to the model and code are proposed.
The Semiconductor Fab

The manufacturing of integrated circuits is perhaps one of the most complex manufactur-
ing processes in existence today. Thi.\: complexity is the result of process intricacy, broducl
diversity, random elements. and evolving technologies that contribute to varying products
and product recipes. We next briefly describe the dvnamics of a semiconductor fab and

state the fab scheduling problem.

For an introductory discussion of integrated circuit manufacturing see [0177]. Semicon-
ductor devices are three-dimensional structures etched on silicon wafers by chemical and
pbysical processes. The manufacturing process consists of four phases: fabrication. sort,
assembly, and test. In fabrication. semiconductor devices are constructed on silicon

wafers. During sort, individual finished circuit chips are sorted according to quality. After

defective chips are discarded. the remaining circuits are packaged in proLective@asLic)

shells during the assembly phase. Finally. in the test phase. circuits are tested, further
classified. and shipped. In this paper we consider only the fabrication‘ phase of manufac-
turing.

The fabrication process begins with lots of polished, millimeter-thin silicon wafers. Fabri-
cation is carried out in a clean room environmen! since even the smallest dp}st particle can

MriCeriax

ruin the minute circuits found on a chip. Wafers follow @isg)sequence of process
s.Leps. which transform a blank wafer into a finished batch of semiconductor devices. Pro-
cess sequences are cyclic. with each cycle beginning with the wafer visiting a masking sta-
tion. where a laver of the three-dimensional structure is defined by a photolithographic
process. In each cycle the wafer will visit other, perhaps different, stations where processes

such .as chemical or physical etching of the structure takes place or where the silicon is

doped with charged impurities. Devices mayv have more than ten masking lavers. with
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each cycle corresponding to a single laver of the device. Often wafers will require over ten

weeks in the fab to complete the hundreds of steps in its process sequence.

The semiconductor fab can be viewed as a general job shop with a hub station. A general
job shop is a production shop consisting of at least two Stations. A station is a set of
identical machines with a single. perhaps empty, queue or buffer of lots waiting for an
available machine at the station. A job can enter the shop at any station and is allowed to
leave from any station. Jobs have a sequence of operations to be performed on them by a
subsetl of shop stations. This sequence is termed a recipc. The recipe may require a job to
return 1o a station more than once. Cyclic recipes are recipes that require jobs to return to
a fixed station, called the hub station, periodically. Exhibit I illustrates a cyclic recipe, (in,

A B,C,AJEFGHI1J K A ou)

Exhibit 1 - Cyclic Recipe

The general job shop has several stochastic elements. Machines fail at random, requiring a
random amount of time to be repaired. A job may require rework at a given machine.
Random setup times are sometimes required at a station for a given sequence of jobs going

through the staiion. Defects are introduced at random on the devices causing random

vields.
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In industry lots are started at a fixed rate for each product. When a machine becomes idle
a lot must be selected for processing from the set of lots currently queued at the station
@of that machine. The selection scheme most used is one where the lot with the
highest priority is selected for processing. Priorities are given to lots by a dispatching
priority rule. Examples of such rules are: FIF() - select the lot that first arrived at the
queue: SIPT - select the lot with the shortest processing time in that station: SRPT - selec
the lot with the shortest remaining processing time in the shop: NINQ - select the lot
whose next station in its recipe has the smallest number of lots queved; and RANDOM -
select the next job for processing at random from the queued jobs. Panwalker and
Iskander [Pa77] classify over one hundred dispatching rules. The objective of the fab
scheduler is 10 determine when lots should begin }processing in the fab and which lot
should be dispatched to 2 machine that has just become available, such that some measure
of performance is optimized. Performance measures include minimization of expected flow

time (cycle time), minimization of work-in-progress, minimization of maximum flowtime,

and minimization of idle time for a bottleneck machine.

The general job shop sched uliﬁg problem is too complex for exact solution even when there
are no random elements preseni. Anempt's to solve the problem e);actly have not suc-
ceeded, e.g. [Ma60, Gi60, Ba69. Gr68, La77]). In fact, a 10-job, 10-machine job shop prob-
lem proposed in 1963 has not vet been solved to optimality [Le84]. It has been shown
[Le77] that for the case with two stations and recipes of three steps or more and the case
of two step recipes on three or more stations the job shop scheduling problem is NP-
complete [Ga79]. even for the case where randomness is ruled out. Consequently, there is
little hope that an efficient algorithm for job shop scheduling will ever be found. To solve
real-world problems, heuristics that obtain good but not necessarily optimal solutions
must be used. Several alternative approaches have been proposed in the literature. These
include experimentation with real job shops [E163], simulation [Da70. Da84. Ge66. Lo84.

Sc84. Ta80. Co85). perturbation analysis [Ho84. Su84]. artificial intelligence [Bu80]. and
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Since it is not desirable to test possibly poor scheduling algorithms on a real fab. and cer- '
tain situations, such as multiple machine shut-downs. for which one wants to experiment
with are not alwavs available, a tool for simulating the dvnamics of a fab is required. A
discrete event simulation model is such a tool.
The Model
In this section we discuss the model used to describe the fab in the discrete event simula-
tion program.
The fab is modeled as a network of queues. where each network node corresponds to a fab ”\
workstation. A workstation is a group of identical pieces of processing equipment. Equip- MJ'L‘I 2 . -
— .
f |
ment are not reliable and fail periodicallv. Both failure and repair times of equipment are d " lo Lj "
Vi
. . . : 1w
modeled as exponentially distributed random variables. Equipment have three possibie Gurah 1

!

states: BUSY (up and processing). IDLE (up and not processing). and DOWN.

N P k/‘h/J
A fab produces. in general. more than one product. For each product. a process recipe. a st0t Tl den
cie pres 7
lot start rate, and a hot-lot ratio are specified. A recipe is a sequence of workstation , //f
. <

visits, where the following parameters are fixed for each visit: processing time. rework
probability. and vield. The lot start rate for a product is defined to be the number of lots
of that product that are started per unit of time. A hot-lot is a lot that has priority over

all other lots in a queue. The hot-lot ratio is the number of high priority lots of a given

product started over the total number of lots of that product started. o -

Devices are produced on wafers and are processed in lots. usually of\_2-5.to 5vd :/;fers each. p//’f‘l ;/Off’_' v

For modeling purposes we aggregate production into lots, and thus do not consider wafers ,7 Cl_‘ jr( Lj\xw oij.‘;:
N

as an entity. A lot will follow its product recipe throughout the fab. Jc,/ 3

Upon entering the fab a lot is placed in the queue in front of the first workstation on its

recipe. When a processing equipment becomes JDLE two cases can occur. If the queue of
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lots in front of its workstation is not empty a lot from that queue is selected. by a
dispatching rule, for processing. If there is one or more hot-lots in the queue a hot-lot
will be chosen. The selected lot is taken off the queue and placed on the equipment for
processing. which then goes into the BUSY stiate. If the queue is empty. the equipment
remains in the idle state until it either goes DOWN. or is given a lot for processing.
becoming BUSY. Equipment in the DOWN state cannot process lots. We assume equip-
ment can only go to the DOWA from the /DLE state. Transitions from BUSY to DOWN
are not allowed. This assumption is also made in [Da84]. Upon termination of processing
on a piece of equipment three cases may occur. First, the lot may require rework. In this
case the lot is replaced on the equipment and processing restarts. In the second case. the
lot is successfully processed and requires further processing in the fab. The lot is placed
in the queue of the next workstation on its recipe. Finally. when the Jot has no more steps

on its recipe for processing, it is removed from the fab.
A C Programming Language Implementation

The fab model described in the section is implemented as a discrete eQenl simulator [La82].
The code is written in C and is currently running experimentally on a VAX 11/750 mini-
computer under BSD 4.2 Unix, and on an IBM 3081 mainframe running VM/SP CMS. The
code is written in a way to facilitaie porting to an IBM Personal Computer. In this section

the data structures and logic of the code are briefly described.

The program is designed to work as a list processor. All entities in the program are

represented as linked lists. Below is a brief description of the lists found in the program.

product_recipe: A linked list whose elements contain information about a single
step of a product recipe. This includes step duration, step number, workstation

number, rework probability. yield. and a pointer to ils corresponding worksta-
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tion element in the list of workstations.

lor: A linked list whose elements contain information about a single lot in the
fab. This includes product type, lot number, hot-lot indicator, time into fab.
time into present queue. time left in current equipment. priority in gqueue.
cumulative queue time. cumulative vield. and a pointer to its current position in

the product recipe list.

work_station: A linked list whose elements contain information about a single
workstation in the fab. Its elements contain station number, current queue size,
equipment load size. cumulative queue size. pointers to the first and last ele-
ments of its queue. and a pointer to the first element of the list of equipment of

the workstation.

queue: A linked list representing a queue in a workstation. Its elements contain

a pointer to a lot element in the list of lots in the fab.

equipment: A linked list of equipment in a given workstation. Its elements con-
tain equipment status indicator, time unti] equipment is té go down, time until
equipment is 10 come back up. time until processing of current lot(s) is to ter-
minate, cumulative time busy. cumulative time idle, cumulative time down,
mean downtlime, mean uptime, a pointer to the first element of the list of lots
currently being processed by it. and a pointer to the element in the workstation

list that corresponds to its workstation.
in_process: A linked list of lots being currently processed by some equipment.

Its elements contain a pointer to a lot cell in the list of lots in the fab.

The simulation is event driven, i.e.. time in the simulation is not incremented in units, but

rather scheduled events are kept sorted in a heap data structure [St80] and time is
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incremented 1o the epoch of the next scheduled event. The main program in C is presented

in exhibit 1I.

main()

set_up( }:

update_times():

while (time <= horizon)

{
lot_start_check():
load_gueue_check();
equip_status_check();
load_equip_check();
update_times();

}

output_report();

Exhibit Il - Main Program

The set_up() routine @@Lhe program for running the simulation. In it the lists are
initialized. the problem data is inputl. and the initial simulation events are scheduled.
Input includes descriptions of the fab an’{gijthe products, and a set of simulation parame-
ters. The description of the fab is given by a set of workstations, éach with workstation
number, number of equipment in workstation. and equipment load size; and a list of
equipment in each workstation. with mean downtime and uptime estimates for each equip-
ment. The description of the products is defined by the number of products, and for each
product. the number of steps in its recipe, its wafer start rate, the proportion of lots of
that product that are hot. and a list of steps that constitute the product’s recipe. with each
step having a step number, a work station where the step is to be performed, a step dura-
tion in minutes, the rework probability, and the step yield. The set of simulation parame-
ters include seeds for the random number generator, the simulation horizon, and an indica-
tion of the dispatching rule 1o be used. At present the following rules are available: first-

in-first-out. shortest imminentl operatlion time, shortest remaining operation time. and
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shortest queue size of next step. Finally, variable time is set 10 next event time.
1

-/—- )
The update_times() routine finds the next event in the @f scheduled events and
updates time and count-down times in the list structures. Count-down times include time
until equipment is scheduled to go down. time until down equipment is scheduled to come

up. time until a process is to finish, and time until the next lot is started.

The whilc loop is run while time is less than or equal to the simulation horizon. In the
loop the program first checks. in lot_start_check(), if a new lot is ready to be started. If
so. a new lot is defined. loaded into the queue of the workstation of its first recipe step,
and a new lot start for that product is scheduled. In load_gueue_check() the equipment
lists are scanned and if a lot is finished processing, it is placed in the queue of the next
workstation in its recipe or is removed from the fab if it has just completed its last step.
If the lot is removed from the fab, statistics are collected. In equip_status_check() all
workstations are scanned for an equipment that is JDLE and scheduled to go DOWN or
one that is DOWN and scheduled to come up. thus becoming IDLE. If found. equipment
status is changed and new events scheduled. In load_equip_check() all workstations are
checked for an /DLE equipment and for a number of waiting lots egual to the load size of
the equipment in the workstation. If such a situation is identified. lots in the queue are
prioritized and one or more lots are selected for loading into the equipment. These lots are
removed from the workstation queue list and put into the equipment in_process list. An
end processing event is scheduled and placed in the heap. The iteration ends with an
update_times() where the next event is retrieved from the event heap and time and

count-down times updated.
Routine output_repori() generates a report of the simulation run.
Example Simulations

-~

In this section we run several simulations on a hypothetical fab.
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The fab has the hub workstation characteristic. There are 14 workstations. Each works-
tation has one or more identical pieces of processing equipment that we consider to have
the same mean up and down times (the mode! allows them 10 be different). We also
assume that equipment load size is a single lot of wafers (the model allows the load size to

be of any size). Exhibit 11l gives a description of the fab.

Workstation Equipment Copies Mean Uptimej Mean Downtime
(mins.) (mins.)
1 6 20000 1800
2 2 10000 1000
3 2 10000 1000
4 2 10000 1000
5 2 10000 1000
6 1 50000 200
7 1 50000 200
8 1 50000 200
9 1 50000 200
10 1 50000 200
11 1 50000 200
12 1 50000 200
13 1 50000 200
14 1 50000 200

Exhibit 111 - .Fab Description

The fab is assumed to process one product {(the model allows several) with a 27 step
recipe. The total processing time for a lot is 2200 minutes. Two sets of simulation runs
are made. In the first set of runs the wafer start rate is set at one lot every 300 minutes
and set the hot-lot ratio to 0.1. All rework probabilities are set to 0.01 and yield is 0.99
for every step. In the second set of runs, the fab is loaded more heavily by increasing the
start rate to one lot every 230 minutes. Exhibit IV describes the process recipe used in the

simulations. Notice that workstation 1 is the hub station of the fab.
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Step Number Workstation Duration
(mins.)
1 8 60
2 4 30
3 9 70
4 4 40
5 1 275
6 2 50
7 10 70
LY 2 30 .
9 11 60 |
10 2 30
11 3 40
12 1 185
13 3 50
14 12 80
15 13 60
16 3 30
17 14 90
18 3 50
19 1 180
20 5 40
21 6 60
22 5 25
23 1 300
24 4 20
25 1 180
26 5 35
27 7 60

Exhibit IV - Product Recipe

The simulations were run on the IBM 3081 at Berkeley. The code is compiled on the
Waterloo C compiler using the object code optimization option. Simulations are run with a
horizon of 120.000 minutes (approximately 12 seven-day weeks with 24-hour days) with
some 400 lot starts per run in the first set of runs and 520 in the second. Over 10,000
events occur in each simulation. A total of 16 sets of four runs are made. ten with the
17300 start rate and six with the 1/230 rate. Each set has a different random number gen-
erator@sel. In each set a run is made for each dispatching rule presently available on
the sysktelx'n: first-in~first-out (FIFO), shortest imminent processing time (SIPT), shortest

remaining processing time (SRPT) and shortest queue at next step (NINQ). The mean CPU

time for a run was 7.15 secs. Mean cvcle time is measured. Exhibits Va and Vb



summarizes the simulation runs.

Mean Cvcle Time (mins.)

Set Run || FIFO SIPT | SRPT NINQ
1 2721.05 | 257332 : 3469.93 | 2548.61
2 | 3462.93 | 4001.55 | 3566.76 | 3366.96
3 | 2917.47 | 352637 | 301048 | 2871.03
K i 330586 | 405736 | 399562 | 423136
5 2619.72 | 2586.17 | 2586.72 | 2621.54
6 2802.16 | 2692.56 | 2484.36 | 342423
7 2986.17 | 3609.87 | 3039.45 | 2397.04
8 2834.31 | 2945.79 | 3247.47 | 2675.61
9 4446.57 | 257258 | 2920.71 | 3648.28
10 2917.47 | 3526.37 | 3010.48 | 2871.03

Exhibit Va - Example Simulation Runs (1/300 Start Rate)

Mean Cvcle Time (mins.)
Set Run FIFO SIPT SRPT NINQ
1 5485.09 5531.88 4735.08 3276.47
2 3826.74 4517.70 4364.94 3993.38
3 9268.26 9897.44 8393.65 12102.80
4 6046.31 5256.61 3588.10 3865.71
5 3394 .40 4278.79 3631.75 3170.83
6 5961.68 3819.50 4486.09 4166.47

Exhibit Vb - Example Simulation Runs (1/230 Start Rate)

The means of the mean cycle 1imes for the first set of runs were 3089.54, 3124.37.
3081.76. and 3089.02 for FIFO, SIPT, SRPT, and NINQ. respectively. For the second set of
runs the means of the mean cycle time were respectively 5663.75, 5550.32, 4866.60, and
5095.94. for FIFO. SIPT, SRPT, and NINQ. Besides computing the above means. we make /
no further attempt to analyze the results of the simulations but rather imend these exam-

ples to serve as an illustration of the use of the code. el



Future Directions

The objective of thedescribed in this paper is to aid us in the investigation of effective

L —

fabxwdispalchmg rules. With this in mind the next phase in its development can
be divided into twe main efforis. The first is the validation of the model. We must deter- ‘
nmine 1! the model @escribes the behavior of a semiconductor fab. lf not. extensions
must be developed to make it a good approxi(mation of a fab. This may require the intro-
‘
duction of set-up times. fab personnel(.‘;i.ter—equipmem trans{er mechanisms. statistical
distribution of vield, etc. The second effort is the inclusion of more dispatching rules in
the code. This should also include more complex rules, such as those that are combina-

tions of simple rules [Bu85). heuristics similar to those in [Ge66]. and rules that

diflerentiate between stations being dispatched.

More data can still be captured from the simulation. Statistical requirements should be
specified so that the desired data set can be collected. Finally, a concise outputl report

must be designed. |
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