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Abstract. This paper presents a new edge-swap heuristic for generating span-
ning trees with a minimum number of branch vertices, i.e. vertices of degree
greater than two. This problem was introduced in Gargano et al. (2002) and
has been called the minimum branch vertices (MBV) problem by Cerulli et al.
(2009). The heuristic starts with a random spanning tree and iteratively re-
duces the number of branch vertices by swapping tree edges with edges not
currently in the tree. It can be easily implemented as a multi-start heuristic.
We report on extensive computational experiments comparing single-start and
multi-start variants on our heuristic with other heuristics previously proposed
in the literature.

1. Introduction

Given an undirected unweighted graph G = (V,E), where V is the set of vertices
and E is the set of edges, a vertex v ∈ V is said to be a branch vertex if its degree
δ(v) is greater than 2. In this paper, we consider the minimum branch vertices
(MBV) problem whose goal is to find a spanning tree of G with minimum number
of branch vertices. This problem finds applications in optical multicast network
design. In these networks switches use light splitters to replicate the optical signal.
Since switches need only be installed at branch vertices of the network, reducing
the number of branch vertices will reduce the number of switches and consequently
the cost to deploy the switches in the network.

For all v ∈ V , let yv be a binary variable such that yv = 1 if and only if vertex
v is a branch vertex and for all e ∈ E, let xe be a binary variable such that xe = 1
if and only if edge e is in the spanning tree. Furthermore, let E(S) be the set of
edges having both endpoints in S ⊆ V and let A(v) be the set of edges incident to
vertex v ∈ V . Carrabs et al. (2009) formulate this problem as the following integer
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program:

min
∑

v∈V

yv(1)

s.t.
∑

e∈E

xe = |V | − 1,(2)

∑

e∈E(S)

xe ≤ |S| − 1, ∀ S ⊆ V,(3)

∑

e∈A(v)

xe − 2 ≤ (|A(v)| − 2)yv, ∀ v ∈ V,(4)

yv ∈ {0, 1}, ∀ v ∈ V,(5)

xe ∈ {0, 1}, ∀ e ∈ E.(6)

The objective function (1) minimizes the count of branch vertices. Constraint (2)
must be satisfied by any spanning tree of G and constraints (3) forbid cycles in
the spanning tree. Constraints (4) require that if vertex v ∈ V has degree greater
than two, then it must be a branch vertex. Finally, constraints (5)–(6) restrict the
decision variables to be binary.

This problem has been recently addressed in the literature by several authors.
The problem was introduced by Gargano et al. (2002) who show the problem is
NP-hard and present some nonapproximability results. They also show conditions
which imply strong upper bounds. Cerulli et al. (2009) developed a mixed integer
linear formulation which is, however, only tractable for solving small instances with
the CPLEX solver (IBM ILOG, 2011). For large instances the authors propose three
heuristics: Edge-Weighting Strategy (EWS), Node-Coloring Heuristic (NCH), and
Combined Approach (CA) (which combines EWS and NCH). Carrabs et al. (2009)
introduce four new formulations and their corresponding relaxations. With their
algorithms, they compute lower and upper bounds for 80 instances introduced by
them.

The edge-swap heuristic (ESH) proposed in this paper starts from a random
spanning tree of G and iteratively attempts to reduce the number of branch vertices
in the tree by exchanging tree edges with edges of G not in tree. We propose
a measure that quantifies the influence of removing/inserting edges from/to the
spanning tree and use this measure to carry out the swaps. If removed, edges that
are incident to two branch vertices can potentially have more impact in reducing
the number of branch vertices than edges that are incident to a single or no branch
vertex. Likewise, if removed, an edge that is incident to a single branch vertex
can potentially have more impact in reducing the number of branch vertices than
an edge that is not incident to any branch vertex. Instead of using a strategy
that seeks first to remove edges incident to vertices of degree three, our strategy
prioritizes for removal edges incident to high-degree vertices. The removal of a tree
edge disconnects the spanning tree with a cut. An edge in this cut, other than the
one just removed, will need to be added to the spanning tree to make it connected
again. Instead of prioritizing, as in the removal phase, edges incident to two branch
vertices, we now prioritize edges incident to no branch vertex over edges incident
to a single branch vertex and edges incident to a single branch vertex over edges
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incident to two branch vertices. Similarly, edges incident to low-degree vertices are
preferable to edges incident to high-degree vertices.

The paper is organized as follows. In Section 2, we describe the new edge-swap
heuristic ESH. Computational results are described in Section 3 and concluding
remarks are made in Section 4.

2. Edge-swap heuristic for the minimum branch vertices problem

In this section, we describe the new edge-swap heuristic (ESH) for finding span-
ning trees with a small number of branch vertices. Pseudo-code for the heuristic
is shown in Algorithm 1. The heuristic starts from a random spanning tree of G.
This is computed in lines 1 and 2 of the pseudo-code, where random weights are
assigned to the edges and a minimum weight spanning tree (MST) T is computed
with any algorithm, such as the one in Kruskal (1956), for MST. A sequence of
edge swaps is made until a stopping criterion is satisfied. Each swap consists of
removing an edge from the current tree and replacing it with an edge not present
in the tree whose insertion results in a new spanning tree.

Data : G = (V,E).
Result: Solution T ∗.
G′ ← RandomWeights(G);1

T ← MST(G′);2

T ∗ ← T ;3

repeat4

ExchangeDone← false;5

L← MakeRemovalEdges(T );6

while ExchangeDone is false and L 6= ∅ do7

e∗ = (u∗, v∗)← SelectRemovalEdge(L);8

L← L \ (u∗, v∗);9

T ← T \ (u∗, v∗);10

R← MakeInsertionEdges(T,G, (u∗, v∗));11

e′ = (u′, v′)← SelectInsertionEdge(R, T, (u∗, v∗));12

if (αe′ < αe∗ ) or (αe′ = αe∗ and σe′ < σe∗) then13

T ← T ∪ (u′, v′);14

ExchangeDone← true;15

if NumBV(T ) < NumBV(T ∗) then16

T ∗ ← T ;17

end18

else19

T ← T ∪ (u∗, v∗);20

end21

end22

until ExchangeDone is false, i.e. there is no edge swap;23

return T ∗;24

Algorithm 1: Pseudo-code for ESH: Edge-swap heuristic for minimum
branch vertices.
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The swaps are carried out in lines 4 to 23 and are done until the current spanning
tree is locally optimal with respect to single edge swaps. In line 5 the edge swap
indicator ExchangeDone is set to false.

In line 6, a list L of candidate edges for swapping out is created. This list consists
of all edges in the current spanning tree that are incident to at least one branch
vertex. For each edge e = (u, v) ∈ L, MakeRemovalEdges computes two values, αe

and σe. For a given spanning tree, parameter αe is 1 if only one endpoint (vertex
u or vertex v) is a branch vertex or 2 if both of them are. Parameter σe is the sum
of the degrees of the endpoints of edge e in the spanning tree. These parameters
are used to prioritize spanning tree edges to be swapped out and non-spanning tree
edges to be swapped in.

A swap is attempted in the loop in lines 7 to 22. The loop is computed while
there are edges in L or until an edge swap is done. In line 8 an edge (u∗, v∗) is
selected from list L by procedure SelectRemovalEdge. Let L′ ⊆ L be the set of
edges in L with maximum αe value. If |L′| = 1, then edge (u∗, v∗) ∈ L′ is selected
as the candidate for being swapped out. Otherwise, let L′′ ⊆ L′ be the set of edges
in L′ with maximum σe value. If |L′′| = 1, then edge (u∗, v∗) ∈ L′′ is selected
as the candidate for being swapped out. Otherwise, if |L′′| > 1, then some edge
(u∗, v∗) ∈ L′′ is selected at random as the candidate for being swapped out.

In lines 9 and 10 edge (u∗, v∗) is removed from list L and from the current
spanning tree creating two subtrees, T1 and T2. In line 11 the list R of candidate
edges for swapping in is created by procedure MakeInsertionEdges. These edges
are those in E \ (T1 ∪ T2 ∪ {(u

∗, v∗)}) with one endpoint in T1 and the other in T2.
As before, parameters αe and σe are computed for all edges e ∈ R. Whereas before
the parameters were computed with respect to the current spanning tree T , here,
for each e ∈ R, they are computed with respect to the spanning tree T \ {e∗}∪{e}.
Procedure SelectInsertionEdge in line 12 selects the candidate edge (u′, v′) ∈ R

to be swapped in. Let R′ ⊆ R be the set of edges in R with minimum αe value.
If |R′| = 1, then edge (u′, v′) ∈ R′ is selected as the candidate for being swapped
in. Otherwise, let R′′ ⊆ R′ be the set of edges in R′ with minimum σe value. If
|R′′| = 1, then edge (u′, v′) ∈ R′′ is selected as the candidate for being swapped in.
Otherwise, if |R′′| > 1, then some edge (u′, v′) ∈ R′′ is selected at random as the
candidate for being swapped in.

The swap of edge e′ for edge e∗ is accepted in line 13 if αe′ < αe∗ , or if αe′ = αe∗

and σe′ < σe∗ . If αe′ < αe∗ then either αe′ = 0 and αe∗ = 1, or αe′ = 0 and
αe∗ = 2, or αe′ = 1 and αe∗ = 2. If αe′ = 0, then the insertion of edge e′ will
not increase the number of branch vertices and the deletion of edge e∗ with either
decrease the number of branch vertices by 1 or 2, or will decrease the degree of at
least one of its endpoint vertices (one or both of which may be branch vertices).
On the other hand, if αe′ = 1 and αe∗ = 2, then the insertion of edge e′ either
creates a new branch vertex or increases the degree of an existing branch vertex.
To compensate for this, the removal of edge e∗ either reduces the number of branch
vertices by 1 or 2, or reduces the degrees of two branch vertices. If αe′ = αe∗ , then
they must be both equal to 1 or to 2 (but not 0). If σe′ < σe∗ , then the removal of
edge e∗ and insertion of edge e′ contributes to balancing the degree distribution in
T of the branch vertices, whereas if σe′ > σe∗ then the swap would contribute to
unbalancing the degree distribution.
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If accepted, the swap is completed in line 14. In line 15 the edge swap indicator
ExchangeDone is set to true, and if an improvement in the number of branch
vertices results, the incumbent solution T ∗ is updated in line 17. If the swap is not
acceptable, edge e∗ is reinserted into the current spanning tree T in line 20.

Figure 1 shows an example of the application of ESH on a 50-vertex, 188-edge
graph. The figure shows intermediate spanning trees found during 12 iterations of
the loop from line 4 to line 23 in the pseudo-code of Algorithm 1. The last spanning
tree has no branch vertex and is, therefore, optimal.

Since ESH starts from a random spanning tree, it fits naturally within a multi-
start scheme. In such a scheme, the heuristic is repeated a number of times, each
time with a different seed for the random number generator, and the best spanning
tree found over all starts is returned as the solution. In the next section, we run
experiments with both single-start and multi-start variants of ESH.

3. Experimental results

In this section, we report on computational experiments with ESH, the new
edge-swap heuristic proposed in this paper as well as with our implementations of
heuristics EWS and NCH proposed in Cerulli et al. (2009). We did not implement
the combined approach of Cerulli et al. (2009) since their paper does not offer
sufficient detail on how this approach was implemented. A more detailed description
of the experiments presented in this section can be found in Silva (2011).

The algorithms were implemented in C++ and compiled with gcc (Ubuntu ver-
sion 4.3.2-1ubuntu11) and made use of STL, the C++ Standard Template Library
(Plauger et al., 2000). We used the C++ implementation of the Mersenne Twister
random number generator (Matsumoto and Nishimura, 1998). All experiments
were done on a computer with a 1.66 GHz dual-core T5500 processor with 2048 Kb
of cache and 1 Gb of RAM running Linux Ubuntu 11.4.

We implemented Union-Find (Cormen et al., 2001) using STL for use in the
implementations of the three heuristics. In EWS and NCH, Union-Find is used to
determine if two vertices are in different connected components of a graph and in
ESH to find the MST with Kruskal’s algorithm and to build the list R of candidate
edges for insertion.

The computational experiment utilized six classes of benchmark instances:

(1) Klingman: The 10 instances in this class correspond to the first 10 of
the 40 networks proposed by Klingman et al. (1974). These instances are
p-1, p-2, . . ., and p-10. Their sizes vary in the range of 200–300 vertices
and 1,300–6,300 edges. They are generated with Klingman’s random net-
work generator Netgen. Netgen is available at ftp://dimacs.rutgers.

edu/pub/netflow/generators/network/netgen/.
(2) Netgen: The 55 instances in this class are also generated with Netgen and

vary in size in the range of 30–500 vertices and 67–18,037 edges.
(3) TSPLIB : The four instances in this class are alb1000, alb2000, alb3000a,

and alb4000, proposed in Reinelt (1995) and available through TSPLIB
(Reinelt, 1991) at http://www2.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/hcp/. They vary in size in the range 1,000–4,000 ver-
tices and 1,998–7,997 edges.

(4) Goldberg: The nine instances in this class were generated with the ran-
dom network generator crand which is distributed in the package SPC
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Table 1. Heuristic solutions and running times (in seconds) for
Klingman instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m d(%) Value Time Value Time Min Mean Max Dev Min Mean Max

p-1 200 1300 7 7 1.13 5 1.12 4 7.00 12 1.69 0.24 0.46 0.70

p-2 200 1500 8 7 1.29 7 1.30 2 5.87 11 1.90 0.24 0.50 0.78

p-3 200 2000 10 5 1.88 5 1.58 2 4.83 8 1.47 0.24 0.57 0.92

p-4 200 2200 11 7 2.19 5 1.94 1 4.23 8 1.61 0.22 0.54 1.11

p-5 200 2900 15 6 2.95 5 2.57 1 3.79 8 1.44 0.34 0.69 1.11

p-6 300 3150 7 8 4.51 6 4.17 1 5.61 9 1.69 0.68 1.58 2.71

p-7 300 4500 10 5 7.28 6 5.96 2 4.54 10 1.65 0.97 2.12 3.48

p-8 300 5155 11 7 8.61 6 6.84 1 3.49 7 1.50 0.82 2.04 4.40

p-9 300 6075 14 4 10.93 3 7.96 0 2.97 7 1.46 0.68 2.05 3.76

p-10 300 6300 14 3 11.59 4 8.56 0 3.67 7 1.21 1.44 3.51 6.78

(Cherkassky and Goldberg, 1996), available at http://www.avglab.com/

andrew/soft.html. These instances vary in size in the range 500–1,000
vertices and 6,237–74,925 edges.

(5) Beasley: Five instances are taken from OR-Library (Beasley, 1989). They
are steind11, steind12, steind13, steind14, and steind15. Each in-
stance has 1,000 vertices and 5,000 edges. They are available at http:

//people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.
(6) Leighton: These 12 instances were proposed in Leighton (1979). They are

le450 5a, le450 5b, le450 5c, le450 5d, le450 15a, le450 15b, le450 15c,
le450 15d, le450 25a, le450 25b, le450 25c, and le450 25d. They all
have 450 vertices and edges in the range 5,714–17,425 and are available at
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.

All of the instances used in the experiment are also available at http://www2.

research.att.com/~mgcr/data/mbv.
The experiment consisted in running the new (randomized) edge-swap heuristic

(ESH) 100 times, each using a different seed for the random number generator on
each of the 95 instances. For each instance, we record the minimum, mean, and
maximum number of branch vertices of the solutions produced by the heuristic, as
well as its standard deviation. We also record minimum, maximum, and average
running times. We ran our implementations of the (deterministic) heuristics EWS
and NCH on each instance, recording the number of branch vertices in the solutions
produced by each heuristic and the corresponding running times.

Tables 1 to 6 summarize the experimental results. We make the following obser-
vations regarding the experiments:

• We validated our implementations of the heuristics EWS and NCH of
Cerulli et al. (2009) by running them on the 600 instances shared with
us for this purpose by Cerulli (2010). Cerulli (2010) also shared with us av-
erage solution values obtained by their implementations of EWS and NCH
on 120 blocks of five instances each. Carrabs et al. (2009) report results for
80 of these 120 blocks. Our implementations of both heuristics were run on
each instance and average solution values were computed for each block so
we could compare them with the values shared with us by Cerulli (2010).
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Table 2. Heuristic solutions and running times (in seconds) for
Netgen instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m seed Value Time Value Time Min Mean Max Dev Min Mean Max

n-01 30 67 1596 2 0.008 2 0.008 0 0.85 3 0.70 0.000 0.002 0.012

n-02 30 67 2429 2 0.008 2 0.012 0 0.68 3 0.71 0.000 0.002 0.008

n-03 30 66 7081 2 0.012 2 0.008 0 1.11 3 0.90 0.000 0.003 0.008

n-04 30 66 7236 1 0.008 1 0.012 0 1.37 3 0.82 0.000 0.003 0.008

n-05 30 66 7880 1 0.008 1 0.012 0 1.37 3 0.77 0.000 0.002 0.008

n-06 30 124 1172 1 0.008 1 0.016 0 0.84 2 0.65 0.000 0.004 0.016

n-07 30 122 2488 0 0.016 0 0.020 0 0.40 2 0.55 0.000 0.004 0.012

n-08 30 122 4970 1 0.016 1 0.016 0 0.45 2 0.54 0.000 0.004 0.012

n-09 30 128 5081 0 0.016 0 0.016 0 0.24 2 0.47 0.000 0.003 0.012

n-10 30 125 8788 1 0.016 1 0.016 0 0.28 1 0.45 0.000 0.004 0.016

n-11 50 182 1054 2 0.040 2 0.048 0 1.55 5 1.08 0.000 0.008 0.020

n-12 50 179 3335 2 0.040 2 0.040 0 1.16 4 0.73 0.000 0.009 0.024

n-13 50 180 4663 2 0.036 3 0.036 0 1.12 4 0.79 0.000 0.008 0.024

n-14 50 182 4985 2 0.040 2 0.040 0 1.50 4 0.92 0.000 0.008 0.020

n-15 50 186 7085 4 0.040 4 0.044 0 1.39 3 0.84 0.000 0.008 0.016

n-16 50 341 1720 0 0.080 0 0.072 0 0.56 2 0.69 0.004 0.012 0.024

n-17 50 345 6752 2 0.084 2 0.048 0 0.36 3 0.58 0.004 0.013 0.024

n-18 50 349 7009 2 0.052 2 0.076 0 0.42 2 0.59 0.004 0.012 0.020

n-19 50 343 7030 1 0.072 1 0.076 0 0.32 2 0.51 0.000 0.012 0.020

n-20 50 344 9979 0 0.076 0 0.072 0 0.40 2 0.62 0.004 0.012 0.020

n-21 100 723 2312 3 0.276 3 0.284 0 1.28 3 0.94 0.024 0.046 0.080

n-22 100 730 299 3 0.268 3 0.256 0 1.09 4 0.95 0.028 0.046 0.072

n-23 100 722 4414 2 0.236 2 0.316 0 1.41 4 0.98 0.024 0.044 0.068

n-24 100 724 5885 1 0.212 1 0.292 0 1.50 4 0.99 0.024 0.046 0.084

n-25 100 719 6570 3 0.296 3 0.228 0 1.69 5 1.12 0.028 0.046 0.084

n-26 100 1399 5309 1 0.792 1 0.384 0 0.55 2 0.66 0.040 0.082 0.128

n-27 100 1383 6105 1 0.764 1 0.416 0 0.43 2 0.59 0.040 0.076 0.128

n-28 100 1386 6259 1 0.772 1 0.464 0 0.40 2 0.57 0.040 0.077 0.112

n-29 100 1389 7695 1 0.628 1 0.480 0 0.34 2 0.54 0.036 0.074 0.112

n-30 100 1391 9414 0 0.656 0 0.612 0 0.66 3 0.71 0.056 0.083 0.132

n-31 150 1624 199 3 1.200 2 0.996 0 2.06 6 1.25 0.092 0.146 0.208

n-32 150 1619 3738 1 1.112 1 1.060 0 1.69 4 1.05 0.096 0.140 0.264

n-33 150 1624 5011 4 1.196 3 1.028 0 1.52 4 1.03 0.072 0.135 0.200

n-34 150 1627 7390 2 1.084 2 1.032 0 1.62 5 1.10 0.068 0.146 0.244

n-35 150 1624 878 3 0.988 2 1.048 0 1.82 5 1.11 0.076 0.147 0.272

n-36 150 3120 2051 1 2.808 1 1.800 0 0.46 2 0.58 0.200 0.300 0.424

n-37 150 3120 2833 1 2.756 1 1.704 0 0.50 2 0.58 0.204 0.303 0.432

n-38 150 3141 3064 1 3.196 1 1.984 0 0.58 3 0.68 0.208 0.330 0.436

n-39 150 3116 5357 1 2.648 1 1.564 0 0.29 2 0.48 0.192 0.292 0.416

n-40 150 3117 5687 2 2.900 2 1.816 0 0.34 2 0.54 0.164 0.292 0.428

n-41 300 6502 1545 1 13.377 1 8.769 0 1.62 4 1.07 0.724 1.042 1.332

n-42 300 6471 365 3 13.429 3 8.869 0 1.81 5 1.01 0.884 1.054 1.444

n-43 300 6481 4071 5 13.377 3 8.545 0 1.61 5 1.13 0.852 1.071 1.432

n-44 300 6513 4889 1 13.277 1 8.761 0 1.27 4 0.86 0.852 1.034 1.324

n-45 300 6505 681 4 13.249 4 8.837 0 1.88 5 0.99 0.868 1.056 1.444

n-46 300 12539 1358 2 37.506 2 16.661 0 0.54 3 0.64 2.232 3.004 3.668

n-47 300 12508 2067 3 37.478 2 17.257 0 0.34 3 0.55 2.460 3.074 3.748

n-48 300 12447 4372 1 36.126 1 17.201 0 0.40 2 0.60 2.464 3.250 3.808

n-49 300 12480 960 1 37.630 1 17.073 0 0.65 3 0.67 2.372 2.996 3.716

n-50 300 12474 9886 1 36.994 1 16.401 0 0.49 3 0.69 1.740 2.939 3.772

n-51 500 18034 1456 2 82.825 2 42.139 0 1.85 4 1.12 4.924 5.665 8.073

n-52 500 18055 1653 3 82.913 3 42.415 0 1.40 4 1.03 4.860 6.188 8.129

n-53 500 18009 4444 2 82.533 2 41.947 0 1.74 5 1.05 4.832 6.678 8.161

n-54 500 18048 6849 2 82.925 2 42.275 0 1.81 5 1.06 4.912 6.833 8.181

n-55 500 18037 8824 4 82.985 3 42.379 0 1.59 4 0.99 4.776 6.596 7.945
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Figure 1. No branch vertex solution of a 50-vertex, 188-edge in-
stance found with ESH in 12 iterations of the algorithm.

Table 3. Heuristic solutions and running times (in seconds) for
TSPLIB instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m d(%) Value Time Value Time Min Mean Max Dev Min Mean Max

alb1000 1k 1998 0.4 73 6.6 73 7.9 54 69.1 80 5.2 12.9 19.6 27.9

alb2000 2k 3996 0.2 129 30.5 141 33.2 121 135.7 155 7.5 127.2 183.5 244.2

alb3000a 3k 5999 0.1 226 69.5 244 77.0 191 208.6 233 8.1 536.5 713.3 927.9

alb4000 4k 7997 0.1 277 126.1 308 136.5 247 271.9 298 10.0 1433.6 1783.4 2276.1
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Table 4. Heuristic solutions and running times (in seconds) for
Goldberg instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m d(%) Value Time Value Time Min Mean Max Dev Min Mean Max

g-1 500 6237 5 2 17.3 2 13.5 1 4.7 10 1.8 2.7 4.8 6.5

g-2 500 12475 10 0 45.4 0 26.6 0 1.8 5 1.1 5.7 8.6 11.9

g-3 500 18712 15 0 83.6 0 40.1 0 0.9 3 0.8 12.5 15.1 17.6

g-4 800 15980 5 2 88.1 2 57.4 2 4.5 8 1.5 15.1 22.4 30.6

g-5 800 31960 10 0 259.1 0 114.5 0 1.8 4 1.0 33.5 47.2 59.6

g-6 800 47940 15 1 523.0 1 172.5 0 0.9 2 0.7 73.0 89.4 101.8

g-7 1000 24975 5 0 191.8 0 107.2 2 4.5 9 1.5 33.9 51.7 64.7

g-8 1000 49950 10 1 671.0 1 234.1 0 1.8 4 0.9 92.6 116.0 136.4

g-9 1000 74925 15 0 1569.1 0 366.6 0 0.8 3 0.8 201.2 217.7 236.2

Table 5. Heuristic solutions and running times (in seconds) for
Beasley instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m d(%) Value Time Value Time Min Mean Max Dev Min Mean Max

steind11 1k 5k 1 34 22.4 35 22.3 33 41.4 50 3.5 27.5 46.3 65.5

steind12 1k 5k 1 40 22.3 36 22.4 26 35.5 46 4.5 25.0 40.4 63.5

steind13 1k 5k 1 40 22.2 35 22.5 28 39.8 54 4.2 30.1 44.2 64.7

steind14 1k 5k 1 34 22.3 33 22.4 28 38.2 50 3.9 20.4 44.5 71.5

steind15 1k 5k 1 45 22.4 40 22.5 27 38.9 48 3.6 27.8 45.6 70.3

Table 6. Heuristic solutions and running times (in seconds) for
Leighton instances

Cerulli et al. (2009) Edge-Swap Heuristic
Benchmark

EWS NCH Branch Vertices Time

Prob n m d(%) Value Time Value Time Min Mean Max Dev Min Mean Max

le450 5a 450 5714 6 3 13.6 3 11.5 1 4.2 8 1.5 2 3.1 4.8

le450 5b 450 5734 6 4 14.1 5 11.7 1 4.2 7 1.3 1.8 3.0 4.5

le450 5c 450 9803 10 3 28.9 3 20.5 0 1.9 4 1.1 3.0 3.8 5.1

le450 5d 450 9757 10 2 29.0 3 20.2 0 1.9 5 1.0 2.9 3.8 5.9

le450 15a 450 8186 8 7 22.1 6 16.4 4 6.6 10 1.5 2.6 4.7 8.3

le450 15b 450 8169 8 10 22.1 9 16.4 3 7.6 12 1.8 2.9 5.5 8.4

le450 15c 450 16680 17 3 64.7 3 35.0 0 1.1 3 0.9 3.4 5.5 7.8

le450 15d 450 16750 17 3 65.6 3 35.1 0 1.1 3 0.8 3.6 5.4 7.3

le450 25a 450 8160 8 12 23.0 11 17.0 8 13.7 19 2.4 3.8 8 15.1

le450 25b 450 8263 8 10 23.0 7 17.2 4 8.9 13 2.1 3.6 6.1 10.1

le450 25c 450 17343 17 4 69.8 3 36.4 0 2.0 5 1.2 5.4 7.2 10.4

le450 25d 450 17425 17 1 69.6 1 36.4 0 1.5 4 1.0 5.3 6.8 9.1
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On the one hand, of the 120 blocks, the average values of the solutions
found by our implementation of NCH matched those of Cerulli (2010) in
119 blocks and found a slightly better average (of 0.1) for one block. On the
other hand, the average values of the solutions found by our implementation
of EWS matched those of Cerulli (2010) in only 4 of the 120 blocks. Our
implementation had better average values in 13 blocks and worse in 103.
On the blocks where our implementation found better solutions, the average
difference was 1.23 (with a maximum difference of 4.40). On those where
the values reported by Cerulli (2010) were better, the average difference
was 3.68 (with a maximum difference of 16.2). The average value of the
solutions reported by Cerulli (2010) was about 93.1% of that found by our
implementation of EWS. A possible explanation for this difference is line 8
of Algorithm 1 of Cerulli et al. (2009) where arc (u∗, v∗) is selected from
list L. The pseudo-code makes reference to a tie-breaking rule but, even
though the paper states that the tie-breaking rule is very important, it
does not elaborate on this rule. We break ties by selecting the arc with the
smallest index. Perhaps this is a different tie-breaking criterion than the
one implemented in the code used by Cerulli (2010).

Since both Cerulli (2010) and Carrabs et al. (2009) report similar average
solutions for NCH and EWS and our implementation of NCH matches the
solutions of Cerulli (2010), then our solution values for NCH should be a
good estimate for those of EWS.
• For each instance, the tables list the name of the instance, its dimension,
density (with the exception of Netgen), the solution values and running
times (in seconds) of the heuristics EWS and NCH, as well as statistics for
the 100 runs of ESH (minimum, mean, maximum solutions, as well as the
standard deviation), and running times (in seconds) for ESH (minimum,
mean, and maximum).
• The minimum value for the solution obtained by ESH corresponds to the
solution found by the 100-iteration multi-start variant of ESH. On only
a single instance in the experiment, the 100-iteration multi-start variant
of ESH failed to find a solution that was better than or equal to the best
solutions found by either EWS or NCH. Running times for the 100-iteration
multi-start variant of ESH are about 100 times the mean running time
shown in the tables for ESH (some time should be deducted to account for
the multiple inputs of the problem data). The running times for the 100-
iteration multi-start variant were always greater than those of both EWS
and NCH.
• On the Klingman instances, the average solutions found by EWS and NCH
were 5.9 and 5.2, respectively. The average solutions found by ESH were
better than the best solutions found by either EWS or NCH in 80% of the
instances. The solutions found by the 100-iteration multi-start variant of
ESH, however, were strictly better than the best solutions found by either
EWS or NCH on all instances. The maximum running times for the single-
start variant of ESH were smaller than those of both EWS and NCH.
• On the Netgen instances, the average solutions found by EWS and NCH
were 1.78 and 1.67, respectively. The average solutions found by ESH were
better than the best solutions found by either EWS or NCH in 83% of the
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instances. The solution found by the 100-iteration multi-start variant of
ESH was strictly better than the best solution found by either EWS or
NCH on 91% of the instances. Furthermore, the 100-iteration multi-start
variant of ESH was never worse than either EWS or NCH. For all instances
in this class, the 100-iteration multi-start variant of ESH found solutions
with no branch vertex. The maximum running times for the single-start
variant of ESH were smaller or equal than those of both EWS and NCH
for all instances but one.
• On the TSPLIB instances, the average solutions found by EWS and NCH
were 176.25 and 191.50, respectively. The average solutions found by ESH
were better than the best solutions found by either EWS or NCH in 75% of
the instances. The solution found by the 100-iteration multi-start variant
of ESH was strictly better than the best solution found by either EWS or
NCH on all instances. However, the minimum running times for the single-
start variant of ESH were greater than those of both EWS and NCH for all
instances.
• On the Goldberg instances, the average solutions found by EWS and NCH
were both equal to 0.67. The average solutions found by ESH were better
than the best solutions found by either EWS or NCH in 11% of the in-
stances. However, the 100-iteration multi-start variant of ESH was better
than or equal to the best solution found by either EWS or NCH in 8 of the
9 instances in this class. It was strictly better on 3 of the 9 instances. The
maximum running times for the single-start variant of ESH were smaller
than those of both EWS and NCH for all instances.
• On the Beasley instances, the average solutions found by EWS and NCH
were 38.6 and 35.8, respectively. The average solutions found by ESH were
better than the best solutions found by either EWS or NCH in 33% of the
instances. The solution found by the 100-iteration multi-start variant of
ESH was strictly better than the best solution found by either EWS or
NCH on all instances. However, the minimum running times for the single-
start variant of ESH were greater than those of both EWS and NCH for all
but one instance.
• On the Leighton instances, the average solutions found by EWS and NCH
were 5.17 and 4.75, respectively. The average solutions found by ESH were
better than the best solutions found by either EWS or NCH in 50% of the
instances. The solution found by the 100-iteration multi-start variant of
ESH was strictly better than the best solution found by either EWS or
NCH on all instances. The maximum running times for the single-start
variant of ESH were smaller than those of both EWS and NCH for all
instances.

4. Concluding remarks

In this paper we introduced a new edge-swap heuristic (ESH) for finding a span-
ning tree with a small number of branch vertices, i.e. vertices with degree greater
than two. This problem was called the minimum branch vertices (MBV) problem
by Cerulli et al. (2009). It finds applications in optical multicast network design.
ESH starts from a random spanning tree and by way of simple edge swaps generates
a sequence of spanning trees with the objective of ending up with a spanning tree
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with no or few branch vertices. ESH comes in two flavors, a single-start variant
which is applied a single time, starting from a single spanning tree, and a multi-start
variant which repeatedly applies the single-start variant, each time starting from
a different random spanning tree. Since iterations of the multi-start algorithm are
independent of each other, this heuristic can be easily implemented in parallel. We
implemented both variants of ESH in C++ and tested them on a set of benchmark
instances that we introduce in this paper for this purpose.

We also present C++ implementations of the heuristics EWS and NCH of Cerulli
et al. (2009) and use them to gauge the effectiveness and efficiency of the imple-
mentations of ESH. We conducted an experiment with 600 instances provided to
us by Cerulli (2010) with EWS and NCH to see if we had reproduced the heuristics
described in Cerulli et al. (2009). Whereas our implementation of NCH matched
closely the solutions provided to us by Cerulli (2010), our implementation of EWS
did not do as well. Nevertheless, in one of six testbed classes our implementation
of EWS did better than our implementation of NCH while in another they tied.

The six classes of testbed instances we introduce in this paper come from a
variety of sources and have diverse characteristics. They consist of 95 instances of
sizes varying from 30 to 4,000 vertices and 67 to 74,925 edges. For each instance,
we ran EWS, NCH, and the single-start and 100-iteration multi-start variants of
ESH. For EWS and NCH, we measure solution values and running times. For the
single-start variant of ESH, we compute minimum, average, and maximum solution
values for each instance. Likewise, we computed minimum, average, and maximum
running times. For the 100-iteration multi-start variant of ESH, we measure the
values of solutions found as well as their corresponding running times.

Of the 95 instances, the average solution value of the single-start variant of ESH
was strictly less than both values of EWS and NCH in 63 instances (66.3%). The
solution of the multi-start variant of ESH was strictly less than both values of EWS
and NCH in 84 instances (88.4%). Finally, the solution of the multi-start variant
of ESH was less than or equal to both values of EWS and NCH in 94 instances
(98.9%). On only one instance (g-7 of Goldberg) was the solution found by either
EWS or NCH strictly better than the one found by the multi-start variant of ESH.

The average running time for the single-start variant of ESH was smaller than
those of EWS and NCH for four of the six problem classes. On the two where ESH
was slower, in one (Beasley) it was about a factor of two slower, while in the other
(TSPLIB) it was up to about a factor of of 14 slower.
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adora com número mı́nimo de vértices branch. Master’s thesis, U. Federal de
Minas Gerais, Belo Horizonte (MG), Brazil, 2011.



14 SILVA, SILVA, RESENDE, MATEUS, GONÇALVES, AND FESTA
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