
INFORMS Journal on Computing
Vol. 20, No. 2, Spring 2008, pp. 191–204
issn 1091-9856 �eissn 1526-5528 �08 �2002 �0191

informs ®

doi 10.1287/ijoc.1070.0231
©2008 INFORMS

Speeding Up Dynamic Shortest-Path Algorithms
Luciana S. Buriol

Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Rio Grande do Sul 91501, Brazil, buriol@inf.ufrgs.br

Mauricio G. C. Resende, Mikkel Thorup
Algorithms and Optimization Research Department, AT&T Labs Research,

Florham Park, New Jersey 07932 {mgcr@research.att.com, mthorup@research.att.com}

Dynamic shortest-path algorithms update the shortest paths taking into account a change in an arc weight.
This paper describes a new generic technique that allows the reduction of heap sizes used by several

dynamic single-destination shortest-path algorithms. For unit weight changes, the updates can be done without
heaps. These reductions almost always reduce the computational times for these algorithms. In computational
testing, several dynamic shortest-path algorithms with and without the heap-reduction technique are compared.
Speedups of up to a factor of 1.8 were observed using the heap-reduction technique on random weight changes
and of over a factor of five on unit weight changes. We compare as well with Dijkstra’s algorithm, which
recomputes the paths from scratch. With respect to Dijkstra’s algorithm, speedups of up to five orders of
magnitude are observed.

Key words : shortest-path algorithms; Dijkstra’s algorithm; dynamic shortest-path algorithms; heaps; graphs;
trees

History : Accepted by William Cook, former Area Editor for Design and Analysis of Algorithms; received
September 2003; revised August 2004, February 2006, April 2007; accepted May 2007. Published online in
Articles in Advance December 11, 2007.

1. Introduction
Finding a shortest path is a fundamental graph prob-
lem, which besides being a basic component in many
graph algorithms, has numerous real-world appli-
cations. Consider a weighted directed graph G =
�V �E�w�, where V is the vertex set, E is the arc set,
and w ∈ ��E� is the arc-weight vector. Given a source
vertex s ∈ V , the single-source shortest-path problem
is to find a shortest-path graph gSP from source s to
every vertex v ∈ V . By reversing the direction of each
arc in the graph, we transform the single-source into
the single-destination shortest-path problem.
There are applications where gSP is given and must

be updated after a weight change. Considering a
single weight change, usually only a small part of
the graph is affected. For this reason, it is sensible
to avoid the computation of gSP from scratch, but
only update the part of the graph affected by the
arc weight change. This problem is known as the
dynamic shortest-path (DSP) problem. DSP algorithms
for the single-source shortest-path problem are the
focus of this paper. An algorithm is referred to as fully
dynamic if both arc deletion (arc weight is set as �)
and insertion are supported, and semidynamic incre-
mental (decremental) if only arc deletion (insertion) is
supported.
Previous work on algorithms for the dynamic

shortest-path problem include Murchland (1970),

Goto and Sangiovanni-Vincentelli (1978), and Dionne
(1978). Considering semidynamic decremental algo-
rithms, previous work was done by Gallo (1980) and
Fujishige (1981), whereas for the incremental case (arc
deletion), we refer to Even and Shiloach (1981).
Many algorithms were proposed for solving this

problem, but the algorithm RR, of Ramalingam and
Reps (1996a), seems to be the most used (Buriol
et al. 2005, Fortz and Thorup 2004, Frigioni et al.
1998). Their algorithm is not the best for all appli-
cations. However, one of its main advantages is to
have good performance in most situations. First of
all, it updates the shortest-path graph, rather than
a shortest-path tree, although it can be easily spe-
cialized for updating a tree (Demetrescu et al. 2000).
Even and Shiloach (1981) proposed a semidynamic
incremental algorithm that works in cascades, which
can be computationally expensive for large arc-weight
increments. RR has good performance independent
of the increment range. The semidynamic incremen-
tal algorithm of Demetrescu (2001), for updating a
shortest-path tree, can have good performance if most
of the affected nodes have no alternative shortest
paths, but its performance can be poor otherwise.
Again, RR has good performance in both situations.
Even the algorithm of Frigioni et al. (1996), which the-
oretically is better than RR, was usually outperformed
by RR in computational testing (Frigioni et al. 1996).

191

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
192 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

Recently, Demetrescu et al. (2000) proposed a spe-
cialization of the Ramalingam and Reps algorithm for
updating a shortest-path tree, which is a revision and
extension of their previous work (Frigioni et al. 1998).
In the new version, they present a fully dynamic
algorithm, whereas in the earlier paper, they pro-
posed a semidynamic incremental algorithm. Their
specialized algorithm did not make use of the spe-
cial tree proposed by King and Thorup (2001). In
graphs where only a few affected nodes have alter-
native shortest paths, the incremental algorithm of
Demetrescu (2001) usually has better performance.
For maintaining all pairs shortest paths in directed

graphs with real-valued arc weights, we refer to
the fully dynamic algorithms of Demetrescu and
Italiano (2001, 2003) and the experimental results in
Demetrescu et al. (2003).
Many theoretical studies of dynamic shortest-path

algorithms have been carried out, but few exper-
imental results are known. Frigioni et al. (1998)
compared the algorithm of Ramalingam and Reps
(1996a) with the algorithm of Frigioni et al. (1996)
to update the single-source shortest-path graph. They
concluded that the algorithm of Ramalingam and
Reps is usually better in practice, with respect to
running times, although their algorithm has a better
worst-case time complexity (Ramalingam and Reps
1996b). Demetrescu et al. (2000) compare the incre-
mental algorithms of Demetrescu et al. (2000), Frigioni
et al. (1998), Ramalingam and Reps (1996a), and a
specialization of Demetrescu et al. (2000) described
in Demetrescu (2001). For the set of instances used
in their study, the results show that their new idea
speeds up the running times for updating a tree.
This paper presents a new generic technique that

allows the reduction of heap (priority queue) sizes
in several dynamic shortest-path algorithms. For unit
weight changes, the updates are done without heaps
for most of the algorithms. Suppose an arc weight
is increased by �. In the standard implementations
of DSP algorithms, all affected nodes (whose dis-
tances have changed) will be placed in a heap, on
which a Dijkstra subroutine is run. However, a subset
of these nodes have their distances increased by
exactly �. In this case, an update without heaps can
be applied. The basic idea of the reduced-heap tech-
nique is to apply the Dijkstra subroutine for only
those nodes whose distances increase by an amount
smaller than �. In the worst case the Dijkstra subrou-
tine may, of course, be applied to all affected nodes.
But often, in practice, the subset of affected nodes
whose distances increase by exactly � is big. Avoiding
the use of heaps on this set almost always results in
substantial savings, reducing the computational times
for DSP algorithms. In computational testing, several
dynamic shortest-path algorithms with and without

the heap-reduction technique are compared. We also
compare with Dijkstra’s algorithm, which recomputes
the paths from scratch.
In this paper, we named the algorithms increase and

decrease, instead of adopting the nomenclature incre-
mental and decremental used for arc insertion and dele-
tion, respectively. We note that deleting an arc, as in
a decremental algorithm, can be viewed as increasing
its weight to infinity. However, the focus here is on
smaller weight changes. The dynamic algorithms to
update the graph after an arc weight increase are called
increase algorithms, while decrease algorithms update a
graph after an arc weight decrease. The algorithms are
named with the letter G or T if they update a shortest-
path graph or tree, respectively. The names also indi-
cate the originators of the algorithms (in superscript)
and the sign + or − (in subscript) is used if it refers to
an increase or decrease algorithm, respectively. When
the name of the algorithm is used without the sign,
it refers to both increase and decrease cases, or it is
followed by the Incr or Decr indication. The terms
std and rh are used to refer to the standard and
reduced-heap variants of the algorithms, respectively.
The standard algorithms were originally designed to
update the single-source shortest paths in directed
graphs with real positive arc weights. In this paper,
the algorithms update the single-destination shortest
paths with integer positive arc weights (most of the
real-world applications use positive weights).
The pseudocodes of all algorithms discussed in this

paper, as well as the tables with detailed presenta-
tion of the results, are in the Online Supplement to
this paper (available at http://joc.pubs.informs.org/
ecompanion.html).
In §2, the data structures used to represent the

graph and the solution (graph or tree) are presented
and some implementation tricks described. Next,
some standard increase dynamic shortest-path algo-
rithms, as well as the heap-reduction technique for
this case, are presented in §3. The weight decrease
case is presented in §5. A discussion of the standard
and reduced-heap increase algorithms with respect to
heap size and memory usage is given in §4. A similar
discussion for the arc-weight-decrease case is given
in §6. Computational results are reported in §7 and
concluding remarks are made in §8.

2. Implementation Issues
In this section, the data structures used to represent
the graph and the solution (graph or tree) are pre-
sented and some implementation tricks are described.

2.1. Data Structures
We first describe two sets of data structures used in
the implementations of the algorithms.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 193

The input graph is stored in forward and reverse
representations. It is represented by four arrays. The
�E� array forward stores the arcs, where each arc con-
sists of its node indices tail and head. The arcs in this
array are sorted by their tails, with ties broken by
their heads. The ith position of the �V �+1 array point
indicates the initial position in forward of the list of
outgoing arcs from node i. By assumption, the last
position in forward of the list of outgoing arcs from
node i is point�i+ 1− 1.
The �E� array reverse stores the arcs, where the arcs

are sorted by their heads, with ties broken by their
tails. To save space, each arc in reverse is represented
by the index of this arc in forward. The ith position of
the �V � + 1 array rpoint indicates the initial position
in reverse of the list of incoming arcs into node i. By
assumption, the last position in reverse of the list of
incoming arcs into node i is rpoint�i+ 1− 1.
Solutions are represented in different algorithms

either as trees or graphs. For both cases, the �E� array
w stores the arc weights, and the �V � array d stores the
distances of the nodes to the destination.
In the case of trees, the ith position of the �V � array

tSP indicates the index of the outgoing arc of node i
in the shortest-path tree. The destination node t stores
the value 0, i.e., tSPt = 0.
In the case of graphs, two arrays are used. The �E�

array gSP is a 0− 1 indicator array whose ith position
is 1, if and only if arc i is in the shortest-path graph.
Finally, the ith position of the �V � array � stores the
number of arcs in the shortest-path graph outgoing
node i.

2.2. Implementation
In this section,we indicate howsomeof the basic opera-
tions referred to in thepseudocodeswere implemented.
In these pseudocodes, the heap-function names fol-

low Ramalingam and Reps (1996a). These functions
are as follows:
• HeapMember(H�u): returns 1 if element u is in

heap H , and 0 otherwise;
• HeapSize(H): returns the number of elements in

heap H ;
• FindAndDeleteMin(H): returns the item in heap

H with minimum key and deletes it from H ;
• InsertIntoHeap(H�u�k): inserts an item u with

key k into heap H ;
• AdjustHeap(H�u�k): if u ∈H , changes the key of

element u in heap H to k and updates H . Otherwise,
u is inserted into H .
In several points in the algorithm one must scan

all outgoing or all incoming arcs of a node. To scan
the outgoing arcs of node u, i.e., e = �−−→u�v� ∈ OUT�u�,
simply scan positions point�u� � � � �point�u+1−1 of
array forward. Similarly, to scan the incoming arcs of
node u, i.e., e = �−→s�u� ∈ IN�u�, simply scan positions

reverse�rpoint�u� � � � �reverse�rpoint�u + 1 − 1 of
array forward.
Set Q is stored as a �V � array where Qi is the ith

element of the set. Set U is represented is a similar
fashion.

3. Standard and Reduced-Heap
Versions of the Increase Algorithms

This section introduces the general technique of
reducing the heap size used by the increase algo-
rithms and describes four increase dynamic shortest-
path algorithms. All standard algorithms are based on
the same idea: considering that the weight of an arc
a = �−−→u�v� has increased, a set Q of affected nodes is
determined. This set is composed of the nodes that
have all their shortest paths traversing arc a. The
changes are applied only to these nodes and their
incoming and outgoing arcs.
The set Q can remain empty in two situations: if a

does not belong to a shortest path, or if it does but
u has an alternative shortest path to the destination
node. In the first case nothing is done, and in the sec-
ond case a local update is applied.
If the weight increase affects the distance label of u,

the tail node of arc a, a more complex update is
required. All nodes that have their distances increased
are inserted into a set Q and have their distances set
to �. Q is initialized with u. All incoming arcs e to
these nodes are traversed. If the tail node of an arc e
has no alternative shortest path to the destination, it
is also inserted into Q.
In a second phase, the algorithm updates the dis-

tances of nodes in Q. First, by traversing the outgoing
arcs of each node u ∈ Q, their distances are updated
considering the arcs directly linking nodes outside
set Q. Next, Dijkstra’s algorithm is applied consider-
ing nodes in Q, taking into account their current dis-
tance labels. Thus, all nodes u ∈Q are inserted into a
heap H .
In the case of updating the shortest-path graph,

a third phase is required. To identify the arcs that
belong to gSP, all outgoing arcs of nodes in u ∈ Q are
traversed.
The standard versions of the increase algorithms

insert into a heap H all nodes initially in set Q, while
the reduced-heap variants use heaps to update only a
subset of Q.
In the proposed reduced-heap variants of these algo-

rithms, the distances of nodes in Q are increased by �
(instead of being set to �), which is the total amount
of the original increment of arc a = �−−→u�v�. After that,
the actual decrease 	 of the distance label of node u is
computed. Next, all nodes u ∈ Q have their distances
adjusted downward by an appropriate amount �−	.
Dijkstra’s algorithm is applied only for those nodes

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
194 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

that have a shorter path and can thus have their dis-
tance label further decreased. As we will see in §7,
the number of nodes inserted into the heap is usually
much smaller than the number of nodes in Q.
We present the increase algorithms in §§3.1–3.4. The

weight can be increased by any amount. If an explicit
arc removal is required, one can simply change its
weight to infinity and apply one of the algorithms.
They receive as input the arc a, which has the weight
increased, the vector w of weights (updated with the
weight increase of arc a), and the distance vector d.
Furthermore, in the case of an algorithm for updating
a shortest-path tree, the vector tSP is also an input
parameter. When updating the shortest-path graph,
gSP and � are the inputs, instead of tSP. The reduced-
heap variants also receive as input the increment �
on arc a. As output they produce the updated input
arrays.
In §§3.1–3.4, the standard and reduced-heap ver-

sions of these algorithms are presented.

3.1. GRR
+ : Increase Algorithm of Ramalingam and
Reps for Updating the Shortest-Path Graph

GRR
+ updates the shortest-path graph gSP = �V �ESP�

when the weight of an arc a is increased by �. Fig-
ure 1 shows both the standard and reduced-heap
variants.
The pseudocode on the left side of Figure 1 presents

stdGRR
+ , the standard algorithm. Clearly, if arc a is not

in the current graph gSP, the algorithm stops (line 1).
Otherwise, arc a is removed from gSP (line 2). If node
u has an alternative shortest path to the destination
node, then the algorithm stops (line 4). Otherwise, the
set Q is initialized with node u (line 5). The loop in
lines 6 to 15 identifies the remaining affected nodes
of gSP and adds them to Q. The loop in lines 16 to
21 updates distances from nodes u ∈ Q (line 18) and
inserts these nodes into heap H (line 20) if its dis-
tance was decreased. The main objective of this loop
is to update distances of nodes that have an alterna-
tive shorter path linking nodes outside Q. The order
in which nodes are considered in this loop can affect
running times, but not the correctness of the algo-
rithm. This is true for this algorithm, as well as for all
increase algorithms presented in this paper. The loop
in lines 22 to 36 updates the distances of nodes in Q
using heap H (lines 24 to 29) and restores gSP (lines
30 to 35).
The pseudocode on the right side of Figure 1

presents rhGRR
+ , the reduced-heap variant for the algo-

rithm. The first 15 lines of rhGRR
+ are identical to

the first 15 of stdGRR
+ , with the exception of line 7.

Instead of setting the distance of node u to �, it is
just increased by �. In the case of unit weight increase
(� = 1) the commands from lines 17 to 41 are not
executed and heap H is not used. Lines 17 to 21

calculate the maximum amount that the distances of
nodes u ∈ Q will decrease. We denote by Q0 the first
element inserted into Q, and by 	 the amount that
the distance of node u decreases. In the loop from
lines 22 to 32, all nodes from Q, excluding node Q0,
have their distances decreased by 	 (line 23). Further-
more, the distances of nodes u ∈Q\�Q0� with a shorter
path linking nodes v � Q are updated. In the loop
from lines 33 to 42, nodes u from heap H are removed
one by one. All arcs e = �−→s�u� incoming into node u
are traversed. If node s has a shorter path traversing
node u, its distance is updated (line 37) and heap H
is adjusted (line 38). The loop in lines 43 to 50 restores
gSP adding the missing arcs in the shortest paths from
nodes u ∈Q.

3.2. T RR
+ : Specialization of Ramalingam and
Reps Increase Algorithm for Updating
a Shortest-Path Tree

The main difference with respect to GRR
+ is that T RR

+
is specialized to update a shortest-path tree tSP rather
than the shortest-path graph gSP. The shortest-path
tree tSP maintained by tRR+ stores an arc a= �−−→u�v� asso-
ciated with each node u ∈ V . The arc a is any one
from the outgoing adjacency list of node u belong-
ing to a shortest path. In the standard algorithm, tSP

is updated while the distances are updated, instead
of employing a loop just for this purpose, as stdGRR

+
does. Furthermore, the set Q of affected nodes is iden-
tical to the one in stdGRR

+ , but the procedure for iden-
tification is slightly different. The main reason is that
this algorithm does not maintain a variable � associ-
ated with each node, and the set of outgoing arcs of
a node is traversed to verify whether it has an alter-
native shortest path. On the other hand, if an arc a=
�−−→u�v�, incoming into an affected node v, is not the one
in tSPu , i.e, tSPu �= a, nothing needs to be done, even if it
is a shortest-path arc, because it is known that the arc
in tSPu represents an alternative shortest path.
In the reduced-heap variant, the increase amount �

is an input parameter. As the algorithm updates tSP at
the same time that Q is identified, in the case of unit
increment (�= 1) the distances of nodes in Q increase
by exactly one unit, and the algorithm stops as soon
as Q is totally identified. Otherwise, if �> 1, the algo-
rithm uses the idea of the reduced heap, similar to
rdGRR

+ .

3.3. T KT
+ : Incremental Algorithm for Updating
the Special Shortest-Path Tree Proposed by
King and Thorup

The main difference with respect to T RR
+ is that T KT

+
updates a special shortest-path tree. It stores, for each
node u, the first shortest-path arc a = �−−→u�v� belong-
ing to the outgoing adjacency list of node u. The
advantage of storing this special tree is to be able

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 195

procedure stdGRR
+ (a= �−−→u�v��w�d���gSP�

1 if gSP
a = 0 return;

2 gSP
a = 0;

3 �u = �u − 1;
4 if �u > 0 then return;
5 Q = �u�;
6 for u ∈Q do
7 du =�;
8 for e = �−→s�u� ∈ IN�u� do
9 if gSP

e = 1 then
10 gSP

e = 0;
11 �s = �s − 1;
12 if �s = 0 then Q =Q∪ �s�;
13 end if
14 end for
15 end for
16 for u ∈Q do
17 for e = �−−→u�v� ∈ OUT�u� do
18 if du > dv +we then du = dv +we;
19 end for
20 if du �= � then InsertIntoHeap(H�u�du);
21 end for
22 while HeapSize�H� > 0 do
23 u= FindAndDeleteMin�H�;
24 for e = �−→s�u� ∈ IN�u� do
25 if ds > du +we then
26 ds = du +we;
27 AdjustHeap�H� s�ds�;
28 end if
29 end for
30 for e = �−−→u�v� ∈ OUT�u� do
31 if du =we + dv then
32 gSP

e = 1;
33 �u = �u + 1;
34 end if
35 end for
36 end while
end stdGRR

+ .

procedure rhGRR
+ (a= �−−→u�v��w�d���gSP���

1 if gSP
a = 0 return;

2 gSP
a = 0;

3 �u = �u − 1;
4 if �u > 0 then return;
5 Q = �u�;
6 for u ∈Q do
7 du = du +�;
8 for e = �−→s�u� ∈ IN�u� do
9 if gSP

e = 1 then
10 gSP

e = 0;
11 �s = �s − 1;
12 if �s = 0 then Q =Q∪ �s�;
13 end if
14 end for
15 end for
16 if �> 1 then
17 dist= dQ0

;

18 for e = �
−−−→
Q0�v� ∈ OUT�Q0� do

19 if dQ0
> dv +we then dQ0

= dv +we;
20 end for
21 	= dist− dQ0

;
22 for u ∈Q\�Q0� do
23 du = du −	;
24 flag = 0;
25 for e = �−−→u�v� ∈ OUT�u� do
26 if du > dv +we then
27 du = dv +we;
28 flag = 1;
29 end if
30 end for
31 if flag = 1 then InsertIntoHeap(H�u�du);
32 end for
33 while HeapSize�H� > 0 do
34 u= FindAndDeleteMin�H�;
35 for e = �−→s�u� ∈ IN�u� do
36 if ds > du +we then
37 ds = du +we;
38 AdjustHeap�H� s�ds�;
39 end if
40 end for
41 end while
42 end if
43 for u ∈Q do
44 for e = �−−→u�v� ∈ OUT�u� do
45 if du =we + dv then
46 gSP

e = 1;
47 �u = �u + 1;
48 end if
49 end for
50 end for
end rhGRR

+ .

Figure 1 Pseudocodes of Procedures stdGRR
+ (Left) and rhGRR

+ (Right)

to find an alternative shortest path for a node s
without exploring all outgoing arcs in the set OUT�s�.
Therefore, during the process of identification of set
Q, while searching for an alternative shortest path for
an affected node s, only a subset OUT�s� ⊃ OUTKT�s� is
traversed.
The drawback is that some extra computational

effort is needed to maintain this special tree. When
the distances of nodes in Q are updated, making

use of heap H , the alternative shortest paths also
should be identified to make sure that, in this case, the
shortest-path arc stored is the first one in the outgoing
adjacency list.
In the reduced-heap variant of this algorithm, extra

effort is required to store the correct arc in tSP. In
the case of unit increment, the subset of arcs OUT�s�⊃
OUT∗�s� of each node s ∈ Q should be traversed. The
subset OUT∗�s� is composed of outgoing arcs that are

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
196 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

located before the stored arc tSPs in the outgoing adja-
cency list. If there is at least one alternative shortest
path using arcs of this subset, the first shortest-path
arc found replaces the current tSPs . Additional tests are
done to ensure that the special shortest-path tree is
being maintained correctly.

3.4. T D
+ : Incremental Algorithm of Demetrescu for
Updating a Shortest-Path Tree

As in T RR
+ and T KT

+ , T D
+ also updates a shortest-

path tree. The main difference is that T D
+ uses a

simpler mechanism for detecting the affected nodes
QD. In other words, it relaxes the notion of affected.
However, �QRR� = �QKT� ≤ �QD� for the standard
implementations.
If some arc a has its weight increased by �, then

set QRR is composed only of nodes such that all their
shortest paths traverse arc a. In T D

+ , set QD is not only
composed of those nodes, but can also have some
of the nodes that have an alternative shortest path
not traversing arc a. The idea is that in graphs where
only a few nodes (or none) have alternative shortest
paths �QD� ≈ �QRR�, with the advantage of QD being
identified with a simpler mechanism. This algorithm
is similar to stdT RR

+ , differing only in the loop that
identifies Q. If e is the outgoing arc of node u in
the shortest-path tree, i.e., tSPs = e, node s is inserted
into Q, even if it has an alternative shortest path to the
destination node. The idea of this algorithm is not to
waste time looking for an alternative path. This pays
off when the distribution of arc weights is spread out
and the probability of ties is low.
As in the standard variant, the reduced-heap vari-

ant of this algorithm is similar to rhT RR
+ , differing only

in how it identifies Q. Furthermore, even in the case
of unit increment, the additional nodes inserted into
Q are updated making use of a heap.

4. Reduced-Heap vs. Standard
Versions of the Increase Algorithms

In this section, we make a few observations com-
paring the reduced-heap variants with the respective

a

t

Q

a

t

Q

a

t

Q

Figure 2 Heap Size Used by the Standard and Reduced-Heap Increase Algorithms GRR
+ , T RR

+ , and T KT
+

Notes. The left graph represents the standard algorithms. The middle graph represents the reduced-heap variants for random weight increase. In the right
graph, for the reduced-heap variants with unit weight increment, the heap is empty.

standard versions of the increase algorithms dis-
cussed in §3. The heap sizes of these algorithms are
illustrated in Figures 2 and 3. The set Q of affected
nodes is linked to the remaining part of the shortest-
path graph by arc a, the first arc whose weight was
increased. Node t is the destination node. The shaded
part of Q is composed of the nodes that were inserted
into heap H .
As observed in the figures, in the case of unit incre-

ment for rhGRR
+ , rhT RR

+ , and rhT KT
+ , the heap H is

empty, whereas for rhT D
+ , the nodes u ∈ �QD\QRR� are

inserted into H . These nodes are the ones treated as
affected while in fact they were not. For this rea-
son, comparing any single case of algorithms std, rh,
and unit increment, QD ⊇QRR =QKT. For all of these
algorithms, Hstd ⊇Hrh

random ⊇Hrh
unit.

No additional memory is required to implement the
reduced-heap variants of the increase algorithms.

5. Standard and Reduced-Heap
Versions of the Decrease
Algorithms

This section introduces the idea of reducing the heap
size used by the algorithms to update a graph after
an arc-weight decrease. Moreover, we describe three
algorithms for arc-weight decrease, as well as the idea
of reduced heap applied to them. The weight can be
decreased by any amount.
Let a ∈ E be the arc whose weight is to be decreased.

All standard algorithms are based on the same idea:
considering that the weight of an arc a has decreased,
Q of affected nodes is determined. In this case, the
set Q is composed by all nodes that have at least
one shortest-path-traversing arc a after its weight
decreases. The changes are applied only to nodes of
Q and their incoming and outgoing arcs. For that, all
nodes u ∈Q are inserted into a heap H .
In the reduced-heap variants, Q is divided in two

subsets, Q and U . Q is composed of all nodes that
have at least one shortest-path-traversing arc a. The
subset U is composed of nodes whose shortest paths
originally did not traverse arc a but do so after the
decrement of wa. The idea of reduced heap avoids the

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 197

a

t

Q

a

t

Q

a

t

Q

Figure 3 Heap Size Used by the Increase Algorithms stdT D
+ and rhT D

+
Notes. The left graph represents the standard algorithm. The middle graph represents the reduced-heap variant for random weight increase. In the right graph,
for the reduced-heap variant with unit weight increment, the heap contains only unaffected nodes that were inserted into Q.

use of heaps for updating nodes in Q and only inserts
into the heap nodes from set U .
For both the standard and reduced-heap algo-

rithms,Q remains empty if a is not in the shortest-path
tree before its weight decreases. In this case, Q
remains empty if the decrease does not affect the dis-
tance label of any node. Also, subset U is used only
if Q is not empty. If �Q� > 0, U remains empty in the
case that no node u � Q has an alternative shortest
path linking nodes u ∈Q.
The reduced-heap algorithms have two phases. Ini-

tially, the shortest paths are updated considering
nodes in Q. Next, they are updated considering nodes
belonging to U . The decrease amount 	 is com-
puted prior to determining Q. Because Q contains
all nodes with at least one shortest-path-traversing
arc a, we decrease the distance label of these nodes by
exactly 	, without using heaps. However, heaps are
needed to compute distance labels of nodes u ∈U .
In the §§5.1–5.3, we briefly describe the standard

and reduced-heap versions of the decrease algorithms.

5.1. GRR
− : Decrease Algorithm of Ramalingam and
Reps for Updating the Shortest-Path Graph

The Ramalingam and Reps arc-weight-decrease algo-
rithm (Ramalingam and Reps 1996a) updates the
shortest-path graph considering an arc-weight de-
crease. Figure 4 presents the standard and reduced-
heap variants of these algorithms.
The pseudocode for the standard procedure is

given on the left side of Figure 4. Recall that a =
�−−→u�v� ∈ E is the arc whose weight is decreased. If
du remains unchanged, the algorithm stops (line 1).
Otherwise, if node u has an alternative shortest-path-
traversing arc a, a is inserted in gSP and the algorithm
stops (lines 3 to 5). Otherwise, H is initialized with
node u.
In the loop in lines 9 to 29, nodes from H are re-

moved, one by one, in order of the smallest to the
largest distance to the destination node, and their
respective distances and incoming/outgoing arcs are
updated in gSP.
We now consider the Ramalingam and Reps

weight-decrease algorithm with reduced heap. The

first phase of rhGRR
− is described on the left side of

Figure 4. In line 7 the amount 	, by which the dis-
tance of node u will be decreased, is calculated. The
array degree is used to avoid inserting a node u into
set Q more than once. Moreover, degree is used to
identify nodes in Q having alternative shortest paths
not traversing arc a. Furthermore, we consider that
all positions of vector degree are initialized with zero
when this vector is created.
The loop in lines 11 to 26 identifies nodes u ∈ Q,

making use of the array degree, and updates gSP in the
case of unitary decrement.
If a node u ∈Q has one or more alternative shortest

paths not traversing arc a, these paths are no longer
shortest after the weight of arc is reduced and must be
removed from the shortest-path graph. The existence
of an alternative path is determined making use of
array degree. The loop in lines 27 to 37 removes these
paths by analyzing each node u ∈Q, one at a time.
In the case of unit decrement, the algorithm stops

in line 38. In the loop from lines 39 to 52, all incom-
ing arcs e = �−→s�u� into node u ∈ Q are scanned. The
distances of nodes s and the shortest-path graph gSP

are updated considering these traversed links.
Recall that phase 1 of the algorithm identifies the

set Q, containing all nodes that have at least one
shortest-path-traversing arc a, and updates the part of
the graph that contains these nodes. Furthermore, all
nodes s ∈ U with an alternative shortest-path-linking
set Q are identified and if ds is reduced, s is inserted
into heap H . The second phase updates the remain-
ing affected part of the graph, i.e., the nodes that
now have a shortest path through arc a, which had
its weight decreased, but do not have an arc linking
directly to a node in Q. The second phase of this algo-
rithm is identical to lines 9 to 29 in procedure stdGRR

− .

5.2. T RR
− : Specialization of Ramalingam and
Reps Decrease Algorithm for Updating
a Shortest-Path Tree

Algorithm T RR
− is a specialization of the Ramalingam

and Reps algorithm (GRR
− ) restricted to updating a

shortest-path tree. A similar algorithm was proposed

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
198 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

procedure stdGRR
− (a= �−−→u�v��w�dV ��V �gSP�

1 if du < dv +wa then return;
2 if du = dv +wa then
3 gSP

a = 1;
4 �u = �u + 1;
5 return;
6 end if
7 du = dv +wa;
8 InsertIntoHeap�H�u�du�;
9 while HeapSize�H� > 0 do
10 u= FindAndDeleteMin�H�d�;
11 �u = 0;
12 for e = �−−→u�v� ∈ OUT�u� do
13 if du = dv +we then
14 �u = �u + 1;
15 gSP

e = 1;
16 end if
17 else gSP

e = 0;
18 end for
19 for e = �−→s�u� ∈ IN�u� do
20 if ds > du +we then
21 ds = du +we;
22 AdjustHeap�H� s�ds�;
23 end if
24 else if gSP

e = 0 and ds = du +we then
25 gSP

e = 1;
26 �s = �s + 1;
27 end if
28 end for
29 end while
end stdGRR

− .

procedure rhGRR
− Ph1(a= �−−→u�v��wE�dV ��V �gSP�

1 if du < dv +wa then return;
2 if du = dv +wa then
3 gSP

a = 1;
4 �u = �u + 1;
5 return;
6 end if
7 	= du − dv −wa;
8 du = du −	;
9 Q = �u�;
10 degreeu = �u − 1;
11 for u ∈Q do
12 for e = �−→s�u� ∈ IN�u� do
13 if gSP

e = 1 then
14 if degrees = 0 then
15 ds = ds −	;
16 Q =Q∪ �s�;
17 degrees = �s − 1;
18 end if
19 else degrees = degrees − 1;
20 end if
21 else if 	= 1 and ds = du +we then
22 gSP

e = 1;
23 �s = �s + 1;
24 end if
25 end for
26 end for
27 for u ∈Q do
28 if degreeu > 0 then
29 degreeu = 0;
30 for e = �−−→u�v� ∈ OUT�u� do
31 if gSP

e = 1 and du < dv +we then
32 gSP

e = 0;
33 �u = �u − 1;
34 end if
35 end for
36 end if
37 end for
38 if 	= 1 return;
39 for u ∈Q do
42 for e = �−→s�u� ∈ IN�u� do
41 if gSP

e = 0 then
42 if ds = du +we then
43 gSP

e = 1;
44 �s = �s + 1;
45 end if
46 else if ds > du +we then
47 ds = du +we;
48 AdjustHeap�H� s�ds�;
49 end if
50 end if
51 end for
52 end for
end rhGRR

− Ph1.

Figure 4 Pseudocodes of Procedures stdGRR
− (Left) and rhGRR

− Ph1 (Right)

in Frigioni et al. (2000). This algorithm is simpler than
GRR

− because tSP can be updated while Q is being
identified. The set Q is identified with use of a heap
H , and the procedure only requires one scan in each
incoming arc into the affected nodes.
The reduced-heap variant requires a more com-

plex implementation. To differentiate the nodes in U

from those in Q, a variable maxdiff is used. The value
maxdiff u of a node u is zero if the node belongs to Q,
and diff if it belongs to U . The value diff corresponds
to the amount of its distance that was decreased. Ini-
tially a node can belong to U , but as soon as its
decreased distance is equal to 	, it is inserted into Q.
In this case, the node is not removed from U and

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 199

the corresponding value of maxdiff is set to zero.
Next, only the nodes from U with a positive value of
maxdiff are updated using a heap.

5.3. T KT
− : Decrease Algorithm for Updating
the Special Shortest-Path Tree Proposed by
King and Thorup

T RR
− is similar to T KT

− , the algorithm for arc weight
decrease that uses the special tree proposed by King
and Thorup (2001). The main difference is that stdT KT

−
and rhT KT

− have additional tests to guarantee that the
correct tree is updated.

6. Reduced Heap vs. Standard
Versions of Decrease Algorithms

In this section, we make a few observations compar-
ing the reduced-heap (rh) variants with the respective
standard (std) versions of the decrease algorithms.
Figure 5 illustrates the heap size used by the decrease
algorithms discussed in the previous section. The set
Q of affected nodes is linked to the remaining part of
the shortest-path graph by arc a, which had its weight
decreased. Node t is the destination node. The shaded
part of Q is composed of the nodes that were inserted
into heap H . As we can see in the figure, in the stan-
dard algorithms all nodes u ∈ Q are inserted into H ,
whereas for the reduced-heap variants no node u ∈Q
is inserted into H . Nodes u ∈ U are inserted into H
for the standard and reduced-heap algorithms for ran-
dom weight decrease, whereas H remains empty for
unit decrement in the reduced-heap variant.
The reduced-heap variants require extra mem-

ory. Algorithm rhGRR
− uses the �V � array degree not

required by its standard implementation. Algorithms
rhT RR

− and rhT KT
− require two extra �V � arrays, maxdiff

and U , not used by their standard implementations.

7. Computational Results
In this section, we describe experimental results com-
paring the algorithms presented in this paper. The
experiments were performed on a 1.7 GHz Intel
Pentium IV computer with 256 MB of RAM, running
RedHat Linux 8.0. The codes were written in C and

a

t

Q

UU

a

t

Q

UU

a

t

Q

Figure 5 Heap Size Used by the Standard and Reduced-Heap Decrease Algorithms GRR
− , T RR

− , and T KT
−

Notes. The left graph represents the standard algorithms. The middle graph represents the reduced-heap variants for random weight decrease. In the right
graph, for the reduced-heap variants with unit decrement, the heap is empty.

compiled with the gcc compiler version 3.2, using the
-O3 optimization option. CPU times were measured
with the system function getrusage.
The experiments were performed on nine classes

of instances. The first class, Internet, is from traffic-
engineering problems studied in Buriol et al. (2005)
and Fortz and Thorup (2004). This class is composed
of four subclasses: att, hier, rand, and wax. These
subclasses were originally proposed in Fortz and Tho-
rup (2004). The first subclass is taken from a real-
world AT&T IP network with old data, whereas the
other three are synthetic internetwork instances. In
this paper, arc weights are integers, generated uni-
formly in the range [1�#], where # is 20 in the unit
change experiments and 104 in the random weight
change experiments. Instances from Internet class
have multiple destination nodes; i.e., once an arc
weight changes, the shortest-path graph (or tree) for
each destination node must be updated. Instances
from group att have 17 destinations nodes, whereas
instances from subclasses hier, rand, and was have �V �
destination nodes.
The other eight classes are taken from Cherkassky

et al. (1996). They constitute all of the instances
in Cherkassky et al. (1996) that have only nonneg-
ative arc weights. These instances were originally
for single-source shortest paths, but all arcs were
inverted (heads and tails swapped) and the source
nodes were redefined as destination nodes. Unlike the
instances of class Internet, which have multiple des-
tination nodes, these instances have a single destina-
tion node. The instances from classes Grid-SSquare-S,
Grid-SWide, and Grid-SLong are generated on rectan-
gular grid networks with integer arc weights selected
uniformly in the interval [0�104]. The instances from
class Grid-PHard are nonplanar and constructed with
a complex layer structure. Weights are selected from
a wide range of integers, with some multiplied by a
function of the layer x-coordinate difference. Instances
from classes Rand-4, Rand-1:4, and Rand-Len are con-
structed by first creating a Hamiltonian cycle. Arcs of
the cycle have unit weight while the integer weights
of the remaining arcs are chosen uniformly in the
interval [0�#]. The size of # is fixed at 104 for classes

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
200 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

Rand-4 and Rand-1:4, and varies in class Rand-Len.
For Rand-Len, the integer arc weight is fixed at 1 for
the first problem in the family, and selected uniformly
in the interval [0�#] for the others problems, with #
varying from 10 to 106. Because the weights of the
path arcs are set to 1, the structure of the shortest-path
tree changes as # increases. For bigger values of #,
the path arcs are more likely to be in the tree and the
tree is likely to be taller. The Acyc-Pos class is com-
posed of acyclic networks. The weights of the path
arcs are set to 1 and the remaining arc weights are
selected in the interval [0�104]. Because the dynamic
shortest-path algorithms update a graph with positive
weights, we set to 1 all weights that originally were
zero.
Each class is composed of groups of instances, vary-

ing from four groups for class Rand-4 to 13 groups for
class Internet. Each group consists of five instances
generated with different random seeds. The seeds
we used for generating the instances of Cherkassky
et al. (1996) are those distributed with the generators.
Instances from each grid graph group have identical
arc sets, differing only with respect to arc weights.
Instances from the remaining groups have identi-
cal dimensions, but differ both with respect to their
arc sets as well as arc weights. The seeds used for
generating the Internet class were �1001� � � � �1005.
Instances from each group in class Internet have
identical arc sets and differ only with respect to arc
weights.
For each instance, we ran 104 weight increases

using an increase algorithm followed by 104 weight
decreases, applied in the reverse order, using a
decrease algorithm, resulting in the end in the
original graph. Times are measured for the increase
and decrease algorithms separately. The following
pairs of increase/decrease algorithms were used:
(stdGRR

+ � stdGRR
− ), (rhGRR

+ � rhGRR
− ), (stdT RR

+ � stdT RR
− ),

(rhT RR
+ � rhT RR

− ), (stdT KT
+ � stdT KT

− ), and (rhT KT
+ � rhT KT

− ).
For algorithms stdT D

+ and rhT D
+ , only the 10

4 weight
increases were done because these shortest-path
algorithms are semidynamic. Besides the dynamic
shortest-path algorithms, results are presented for
Dijkstra’s algorithm. We use a simple mechanism
that locally updates gSP when there is no change in
the distance label of any node and run Dijkstra’s
algorithm only if the distance of at least one node
changes. The times reported for Dijkstra’s algorithm
are estimated. We run the algorithm for the first
100 changes and estimate the time for 104 changes
multiplying the running time by 100. Tests were
carried out to ensure that this estimate was accurate.
For each problem instance and range of weight

increase permitted, all algorithms use the same
sequence of arcs and weight-change values. These arc
sequences and weight-change values are generated

once by a separate program and stored in a file. The
generation process is as follows. Given a shortest-
path graph gSP1 for a particular instance, let �w be
the average arc weight in the problem instance. The
following procedure is repeated for k = 1� � � � �104 to
produce a sequence of arcs a1� � � � � a104 and weight
change values �1� � � � ��104 used in the simulations:
1. Select arc ak at random from gSPk .
2. Choose at random a value �k from the interval

�1� �w.
3. Add �k to the current weight of arc ak.
4. Recompute the shortest-path graph gSPk+1.
The experiments described in this section are

grouped in two categories. Section 7.1 presents results
for random weight changes, whereas §7.2 discusses
results for unit weight changes. All algorithms used in
the experiments as well as the complete set of results
(for all instances of all classes presented) are in the
Online Supplement.

7.1. Random Weight Changes
This section presents computational results for ran-
dom weight changes applied on all instances of each
group from each of the nine problem classes. The
increase is an integer value chosen uniformly between
one and the average arc weight from the original
graph, e.g, �∈ �1� �w. We consider the total CPU times
(in seconds) for the 104 updates of the increase algo-
rithms, the total CPU time for the 104 updates of the
decrease algorithms, and the heap sizes for both algo-
rithms. In the following, comparisons are done among
algorithms to identify the best algorithm for diverse
scenarios.

7.1.1. Improvement Obtained Using Reduced-
Heap Algorithms. Running times were compared
between the standard and reduced-heap versions
of all algorithms described in this paper. For each
dynamic shortest-path algorithm we compared the
average ratio of the CPU times of the standard and
reduced-heap versions. More precisely, let tsi and tri

be the average CPU times for the five instances of the
ith group in the class for the standard and reduced-
heap versions, respectively. Then, for each of the algo-
rithms GRR

+ , GRR
− , T RR

+ , T RR
− , T KT

+ , T KT
− , and T D

+ , we
calculated the ratio as

∑ng

i=1 tsi/tri

ng

� (1)

where ng is the number of groups in the class.
We observed that the reduced-heap algorithms run

faster than their standard-version counterparts in
almost all comparisons. For all four increase variants,
the reduced-heap version was faster than the stan-
dard version for all nine instance classes. This was
also true for the decrease algorithms, with the excep-
tion of the T KT

− algorithm, for which the reduced-heap

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 201

version took longer, on average, in two of the nine
classes.
The largest average gain was obtained for T D

+ ,
whose average ratio was 1.79 on the Internet class.
On the other hand, the lowest ratio was 0.74, obtained
for T KT

− , on the same instance class. It was also
observed that the increase algorithms benefited more
from the reduced-heap idea than did the decrease
algorithms. This behavior is expected because apply-
ing this idea in the decrease algorithms requires extra
computational effort: the incoming arcs to nodes in
set Q are scanned twice, whereas in the standard
algorithm they are scanned only once. The standard
increase algorithms took, on average, 29.25% longer
than their reduced-heap counterparts, while for the
decrease algorithms, the standard algorithms took,
on average, 10.67% longer than their reduced-heap
counterparts.
The average heap sizes for the standard and re-

duced-heap version of the dynamic shortest-path
algorithms were also compared. We calculated the
average ratio of the heap size of the standard and
reduced-heap versions as

∑ng

i=1 hsi/hri

ng

� (2)

More precisely, let hsi and hri be the average heap
sizes for the five instances of the ith group in the class
for the standard and reduced-heap versions, respec-
tively. For all combinations of algorithm and instance
class, the idea of reduced heap was successful in
reducing the heap size. On average, the heap size was
reduced by more than one third. In particular, the
ratio for the class Internet was over 17 times, show-
ing that, in the case of multiple shortest-path graphs,
only a few graphs are affected by a single weight
change (recalling that instances from this class have
more than one destination node each).

Table 1 Ratio Between the Time Spent by the Dij and stdGRR Algorithms for Updating 104 Random Weight Increases and 104 Random
Weight Decreases on Each Group of All Classes of Instances

Group Internet Grid-SSquare-S Grid-SWide Grid-SLong Grid-PHard Rand-4 Rand-1:4 Rand-Len Acyc-Pos

GR1 1727 11763 81477 1803 1251 24972 6889 8�39588 37491
GR2 1143 22383 1�50783 1696 1035 32477 12329 10�71253 49367
GR3 1179 44937 3�38385 1564 912 45940 18964 12�52289 68127

GR4 1565 94559 9�26296 1516 810 64326 25636 9�43598 88762
GR5 2203 2�39175 23�20461 1480 726 92296 9�73913 1�27406
GR6 1375 60�26087 1452 744 1�60020

GR7 1842 149�37117 1364 2�71588
GR8 2588 4�40624
GR9 2610

GR10 1456
GR11 1553
GR12 2424
GR13 2763

7.1.2. Time Comparison Between Recomputing
from Scratch �Dij� and Using a Dynamic Shortest-
Path Graph Algorithm �stdGRR�. Table 1 shows the
ratios between the total times spent by Dijkstra’s algo-
rithm and stdGRR for each class of instances. Each
value in the table is the average ratio of the CPU times
of the Dij and stdGRR algorithms. The table entries
are computed in a fashion similar to (1).
In this table, the CPU time considered for each algo-

rithm is the sum of the CPU times of the increase
and decrease phases. For instance classes Internet,
Grid-SSquare-S, Grid-SWide, Rand-4, Rand-1:4, and
Acyc-Pos, the ratio increases with instance size,
while the opposite occurs in classes Grid-SLong and
Grid-PHard.
The smallest ratio is 7.26, for group GR5 of class

Grid-PHard. The largest is over 149,000, for group GR7
of class Grid-SWide. From this table, it is obvious that
dynamic shortest-path algorithms should be used in
place of Dijkstra’s algorithm.

7.1.3. Time Comparison Between T KT and T RR.
In this section, we show that, for the instances
considered in this experiment, any gain that could
be achieved while scanning the outgoing arcs in
T KT is washed out by the additional computational
effort associated with maintaining the special tree
proposed by King and Thorup (2001). We compute
the average ratios of the CPU times of the T KT and
T RR in a fashion similar to (1). For both standard
and reduced-heap cases, results are compared for
the increase and decrease algorithms. On average,
for the standard and reduced-heap implementations,
algorithm T RR is faster than algorithm T KT. For the
standard algorithms, the performance is almost the
same, whereas for reduced-heap variants, algorithm
rhT KT, on average, takes 15% and 17% longer than
rhT RR. The ratios for the reduced-heap algorithms are
greater than those of the standard versions because
for the reduced-heap variants even more computa-

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
202 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

tional effort is needed to store the special shortest-
path tree maintained by rhT KT algorithm.

7.1.4. Time Comparison Between Algorithms
T RR and T D. We next compare algorithms T RR and
T D observing running times and heap sizes for the
standard and reduced-heap implementations. Because
T D has only an increase version, there is no com-
parison for the decrease versions of the algorithms.
We computed the average ratios between the val-
ues found by the algorithms T RR and T D. For the
running-time comparison, the values are computed
in a fashion similar to (1), whereas for the heap-size
comparison the ratios are computed in a fashion sim-
ilar to (2).
On average, T RR

+ is over 10% longer than T D
+ for

both standard and reduced-heap implementations.
With respect to heap size, the average heap of T D

+ was
only 1% larger than that of T RR

+ . We conclude that for
large ranges of weight changes, the larger heap size
of T D

+ is compensated by its simpler identification of
the set Q.

7.1.5. Time Comparison Between the Algorithms
for Updating Shortest-Path Graphs GRR and Trees
T RR. We next compare computational times spent to
update shortest-path graphs and trees. For this com-
parison, we use CPU times of GRR and T RR. Among
the three algorithms for updating shortest-path trees,
T RR, T KT, and T D, we selected T RR because it was
faster than T KT in our experiments, and the running
times of T D are less predictable.
We compared results for the standard and the

reduced-heap versions of the algorithms analyzing
the average ratio of their CPU times, computed in
a fashion similar to (1). For the increase algorithms,
updating a tSP is slightly faster than updating a gSP.
These results show that the extra computational effort
GRR

+ needs to identify all shortest paths (last loop of
the algorithm) is about the same effort T RR

+ needs to
verify if a node has an alternative shortest path.
The decrease algorithms show more interesting

results. In this case, to update a graph takes 52%
and 41% longer than updating a shortest-path tree,
for standard and reduced-heap algorithms, respec-
tively. These results were expected because T RR

− just
scans once the links incoming to the affected nodes,
whereas GRR

− scans once the incoming and once the
outgoing links of these nodes.

7.1.6. Time Comparison Between the Increase
and Decrease Implementations of the Dynamic
Algorithms. In this section, we explore the time
difference between the increase and the decrease
algorithms. We computed the average ratio, in a fash-
ion similar to (1), of the CPU times of the algo-
rithms stdGRR, rhGRR, stdT RR, rhT RR, stdT KT, and
rhT KT. The average for each algorithm above, over

the nine instance classes, are 1.44, 1.34, 2.12, 1.92,
2.07, and 1.68, respectively. Considering each algo-
rithm and instance class separately, in only three of
the 54 comparisons is the decrease algorithm faster
than its increase counterpart. This performance was
expected because the number of arcs scanned by the
decrease algorithm is smaller than the corresponding
number of arcs scanned by the increase algorithm.
We observe that in the reduced-heap variants, the
ratios are smaller than in the standard versions of the
algorithms.

7.2. Unit Weight Changes
This section presents computational results for unit
weight changes on the same instances used by the
random-weight-changes experiment. The process of
changes is the same, but now the increase and the
decrease of the weight are equal to one, e.g., � = 1
and 	= 1. As before, we run each algorithm updating
104 arc weight changes. For this experiment, instances
from class Internet have integer weights generated
uniformly in the range �1�20. Instances from the
other eight classes have the arc weights modified.
The function mod was used to have weights in the
interval �1�20. Each weight is computed as wa = 1+
�wamod20�.
We found two kinds of results. Either the heap

sizes and times are much shorter than those gener-
ated by random weight changes, or they are about
the same. For example, classes Internet, Grid-SLong,
and Rand-Len have about the same heap size and run-
ning time, whereas the opposite was found in the
experiments with classes Grid-SSquare-S, Grid-PHard,
Rand-4, Rand-1:4, and Acyc-Pos.
In the remainder of this section, we discuss the

experimental results for unit weight changes. Because
the kinds of comparisons are similar to those pre-
sented for random weight changes, the ratios are com-
puted similarly to those experiments.

Table 2 Time Ratio Between the Standard and Reduced-Heap
Implementations of the Algorithms for Updating 104

Unit Weight Changes

Class GRR+ GRR− T RR+ T RR− T KT+ T KT− T D+

Internet 200 158 212 115 205 075 183
Grid-SSquare-S 158 091 150 117 143 097 133
Grid-SWide 173 151 187 129 174 105 163
Grid-SLong 450 245 511 232 402 120 421
Grid-PHard 240 107 241 118 219 099 151
Rand-4 236 139 219 120 210 116 186
Rand-1:4 298 104 238 100 249 101 147
Rand-Len 220 146 213 126 204 125 185
Acyc-Pos 287 115 239 104 252 105 205

Average 251 140 246 129 229 105 197

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS 203

7.2.1. Improvement Obtained Using Reduced-
Heap Algorithms. Table 2 compares times for stan-
dard and reduced-heap versions of the dynamic
shortest-path algorithms.
On average, for each class of instances, the reduced-

heap algorithms were able to reduce the compu-
tational time in almost all simulations. For all the
increase algorithms, i.e., GRR

+ , T RR
+ , and T D

+ , the
reduced-heap variants were faster. The ratio varied
from 1.33 for T D

+ in class Grid-SSquare-S to 5.11 for
T RR
+ in class Grid-SLong. Considering the decrease
algorithms, only three ratios were not favorable to
the respective reduced-heap variant. The last row of
the table shows that, on average, all algorithms were
able to reduce running times using the reduced-heap
technique. The ratios varied from 1.05 for T KT

− to 2.51
for GRR

+ . On average, for unit weight changes the gains
obtained using the reduced-heap idea are bigger than
those presented for random weight changes.

7.2.2. Time Comparison Between Recomputing
from Scratch �Dij� and Using a Dynamic Shortest-
Path Graph Algorithm �stdGRR�. Table 3 presents
results for the comparison between the Dij and
stdGRR algorithm. As expected, Dij takes much longer
than the stdGRR, with ratios varying from 10.33 on
group GR2 from class Internet to 83,637.14 on group
GR5 of class Grid-SSquare-S.

7.2.3. Comparison of Performance for the Dy-
namic Shortest-Paths Algorithms. The comparisons
between algorithms GRR and T RR, and algorithms T RR

and T KT for unit weight change and random weight
change, presented similar results. However, this is not
the case for the comparison between the performance
of T RR

+ and T D
+ . In this last case, we observed some

examples where T D does not perform well when com-
pared with other dynamic shortest-path algorithms.
Because these experiments are applied to instances in
a small range, T D

+ treats many unaffected nodes as
though they were affected. The worst performance for

Table 3 Ratio Between the Time Spent by Algorithms Dij and stdGRR for Updating 104 Unit Weight Increases and 104 Unit Weight Decreases on Each
Group of All Classes of Instances

Group Internet Grid-SSquare-S Grid-SWide Grid-SLong Grid-PHard Rand-4 Rand-1:4 Rand-Len Acyc-Pos

GR1 1538 1�38333 71967 1801 36275 52129 6167 7�74792 67292
GR2 1033 2�72222 1�26163 1764 45221 1�09208 18205 11�41635 1�43067
GR3 1091 6�96296 3�10417 1633 46815 2�42781 73040 9�34097 1�95540
GR4 1559 26�75357 8�34811 1548 70906 3�11764 97606 12�48210 3�23047
GR5 2058 83�63714 21�32946 1491 77068 9�42234 9�03076 8�74976
GR6 1447 44�76975 1500 77336 10�42423
GR7 1714 86�03182 1386 21�16314
GR8 2284 65�18058
GR9 2541
GR10 1327
GR11 1667
GR12 2431
GR13 2396

this algorithm was observed on Rand-1:4. The algo-
rithms took more than twice the time that T RR

+ spent
in the standard implementation and 3.39 times more
for the reduced-heap algorithm. Looking at the heap-
size values, we can see that the heap size for the stan-
dard algorithm is 2.26 times larger, on average, than
the heap of stdT RR

+ . For the reduced-heap implemen-
tation, while rhT RR

+ does not insert any node into the
heap, rhT D inserts up to 50% of the nodes inserted by
stdT D.

7.2.4. Time Comparison Between Increase and
Decrease Implementations of the Dynamic Algo-
rithms. For the standard algorithms, the results com-
puted for the unit and random weight changes are
similar. For the reduced-heap implementations, the
decrease algorithms were faster, on average, for GRR

and T KT and slightly slower for T RR. The averages
over the nine instances, for stdGRR, rhGRR, stdT RR,
rhT RR, stdT KT, and rhT KT, are 1.39, 0.79, 1.90, 1.03,
1.95, and 0.92, respectively.

8. Concluding Remarks
This paper introduces a technique for reducing the
heap size of DSP algorithms. This technique can be
used for both increase and decrease algorithms. For
unit arc-weight changes, the heaps are not used for all
but one algorithm. Computational experiments were
conducted for random and unit weight changes.
On average, all reduced-heap variants were faster

than their corresponding standard implementations.
For random weight changes, the speedups were up to
a factor of 1.79, whereas for unit weight changes, the
largest speedup was a factor of 5.11.
Comparing Dijkstra’s algorithm with the Rama-

lingam and Reps algorithm showed that dynamic
shortest-path algorithms are preferable. Speedups
varied from 7.26 to 149,371.17 for random weight
changes and from 10.33 to 86,031.82 for unit weight
changes.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Buriol, Resende, and Thorup: Speeding Up Dynamic Shortest-Path Algorithms
204 INFORMS Journal on Computing 20(2), pp. 191–204, © 2008 INFORMS

The comparison between dynamic shortest-path
algorithms has shown that, for the increase case,
updating trees is slightly faster than updating graphs
for random and unit weight changes. On the other
hand, for the decrease algorithm to update a tree is
about 50% faster than updating a graph.
For the instances considered in this paper, on aver-

age any gain that could be achieved while scan-
ning the outgoing arcs in T KT is washed out by
the additional computational effort associated with
maintaining the special tree proposed by King and
Thorup (2001).
Algorithm T D can be considered the fastest for

graphs with weights selected in a wide range, but
its performance is not predictable for instances with
weights taken from a small range.
As a final conclusion, there is no dynamic shortest-

path algorithm that can be considered the best for all
situations. Clearly, however, any one of them is a bet-
ter choice than recomputing the graph from scratch
using Dijkstra’s algorithm. The reduced-heap idea can
be applied in both increase and decrease algorithms,
even if in a few examples the reduced-heap vari-
ant took longer than the corresponding standard ver-
sion. If the application does not need the shortest-path
graph, updating a shortest-path tree is faster. The best
choice would be the combination of the increase algo-
rithm rhT D

+ with the decrease algorithm rhT RR
− , if the

instance is generated with weights from a wide range.
Considering weights from a narrow range, the com-
bination of rhT RR

+ and rhT RR
− is recommended. Finally,

we conclude that the performance of an algorithm
depends largely on the instance, and also on its size.

Acknowledgments
The authors thank the reviewers and editors for the care-
ful revisions and suggestions that much improved the final
version of the paper.

References
Buriol, L. S., M. G. C. Resende, C. C. Ribeiro, M. Thorup. 2005.

A hybrid genetic algorithm for the weight setting problem in
OSPF/IS-IS routing. Networks 46 36–56.

Cherkassky, B. V., A. V. Goldberg, T. Radzik. 1996. Shortest paths
algorithms: Theory and experimental evaluation. Math. Pro-
gramming 73 129–174.

Demetrescu, C. 2001. Fully dynamic algorithms for path problems
on directed graphs. PhD thesis, Department of Computer and
Systems Science, University of Rome “La Sapienza,” Rome.

Demetrescu, C., G. F. Italiano. 2001. Fully dynamic all pairs shortest
with real edge weights. Proc. 42nd Annual Sympos. Foundations
Comput. Sci. (FOCS 2001). IEEE Computer Society, Washington,
D.C., 260–267.

Demetrescu, C., G. F. Italiano. 2003. A new approach to dynamic
all pairs shortest paths. Proc. 35th Annual ACM Sympos. Theory
Comput. (STOC’03). ACM Press, New York, 159–166.

Demetrescu, C., S. Emiliozzi, G. Italiano. 2003. Experimental anal-
ysis of dynamic all pairs shortest path algorithms. Technical
report, Dipartimento di Informatica e Sistemistica, University
of Rome “La Sapienza,” Rome.

Demetrescu, C., D. Frigioni, A. Marchetti-Spaccamela, U. Nanni.
2000. Maintaining shortest paths in digraphs with arbitrary
arc weights: An experimental study. Proc. Algorithm Engrg.: 4th
Internat. Workshop, WAE 2000, Saarbrücken, Germany. S. Näher,
D. Wagner, eds. Lecture Notes Compu. Sci., Vol. 1982. Springer,
Berlin, 218–229.

Dionne, R. 1978. Etude et extension d’un algorithme de Murchland.
INFOR 16 132–146.

Even, S., Y. Shiloach. 1981. An on-line edge-deletion problem.
J. ACM 28 1–4.

Fortz, B., M. Thorup. 2004. Increasing internet capacity using local
search. Comput. Optim. Appl. 29 13–48.

Frigioni, D., A. Marchetti-Spaccamela, U. Nanni. 1996. Fully
dynamic output bounded single source shortest path prob-
lem. Proc. 7th Annual ACM-SIAM Sympos. Discrete Algorithms
(SODA). SIAM, Philadelphia, 212–221.

Frigioni, D., A. Marchetti-Spaccamela, U. Nanni. 1998. Semi-
dynamic algorithms for maintaining single-source shortest
path trees. Algorithmica 22 250–274.

Frigioni, D., A. Marchetti-Spaccamela, U. Nanni. 2000. Fully
dynamic algorithms for maintaining shortest paths trees.
J. Algorithms 34 351–381.

Frigioni, D., M. Ioffreda, U. Nanni, G. Pasqualone. 1998. Experi-
mental analysis of dynamic algorithms for the single source
shortest path problem. ACM J. Experiment. Algorithmics 3
Article 5, 1–20.

Fujishige, S. 1981. A note on the problem of updating shortest
paths. Networks 11 317–319.

Gallo, G. 1980. Reoptimization procedures in shortest path prob-
lems. Rivista di Matematica per le Scienze Economiche e Sociali 3
3–13.

Goto, S., A. Sangiovanni-Vincentelli. 1978. A new shortest path
updating algorithm. Networks 8 341–372.

King, V., M. Thorup. 2001. A space saving trick for directed
dynamic transitive closure and shortest path algorithms. Proc.
7th Annual Internat. Comput. Combin. Conf. (COCOON). Lecture
Notes Comput. Sci., Vol. 2108. Springer Verlag Italia, Milano,
Italy, 268–277.

Murchland, J. D. 1970. A fixed matrix method for all shortest dis-
tances in a directed graph and for the inverse problem. PhD
thesis, University of Karlsruhe, Karlsruhe, Germany.

Ramalingam, G., T. Reps. 1996a. An incremental algorithm for a
generalization of the shortest-path problem. J. Algorithms 21
267–305.

Ramalingam, G., T. Reps. 1996b. On the computational complexity
of dynamic graph problems. Theoret. Comput. Sci. 158 233–277.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


