AN EFFICIENT IMPLEMENTATION OF A NETWORK INTERIOR
POINT METHOD*

MAURICIO G.C. RESENDEf AND GERALDO VEIGA?

Abstract. We describe DLNET, an implementation of the dual affine scaling algorithm for
minimum cost capacitated network flow problems. The efficiency of this implementation is the result
of three factors: the small number of iterations taken by interior point methods, efficient solution
of the linear system that determines the ascent direction using a preconditioned conjugate gradient
algorithm and strategies to produce an optimal primal vertex solution. The combination of these
ingredients results in a code that can solve minimum cost network flow problems having hundreds
of thousands of vertices in a few hours of running time on a workstation. We compare DLNET with
network simplex code NETFLO and relaxation code RELAXT-3 on an extensive range of minimum
cost network flow problems, including minimum cost circulation, maximum flow and transshipment
problems.

Key words. Interior point algorithm, network flows, linear programming, computer implemen-
tation, simplex method, network simplex method, conjugate gradient.

1. Introduction. Consider a network with an underlying directed graph G =
(V,E), where V is a set of m vertices and E a set of n edges. Let (i,5) denote a
directed edge from vertex i to vertex j. For each vertex ¢ € V, let b; denote the net
flow out of vertex i. If b; > 0 vertex 7 is a source, if b; < 0 vertex 7 is a sink and,
otherwise, vertex ¢ is a transshipment vertex. For each edge (i,7) € E, let ¢;;, l;;
and u;; denote, respectively, the unit flow cost, lower bound and upper bound on flow
in edge (i,7). All data are assumed to be integer. A feasible solution of a network
flow problem (often referred to as flow) is given by the n-dimensional vector x, where
component z;; is the flow in edge (i, j), satisfying flow conservation constraints for all
vertices and flow lower bound and capacity constraints on all edges.

The minimum cost network flow (MCNF) problem consists of finding a flow of
minimum cost, as expressed in the following classical linear programming formulation:

(11) min Z CijTsj

ijEE
subject to:
(1.2) Doam— Yy wg=b, jEV
jkeE kj€E

More compactly, the linear program in (1.1-1.3) can be expressed as
min {¢'z | Az =b, | <z < u},

*February 1992 — Revised version 1.2 (March 1992). Cite as M.G.C. Resende and G. Veiga, “An
efficient implementation of a network interior point method,” Network Flows and Matching: First
DIMACS Implementation Challenge, D.S. Johnson and C.C. McGeoch, eds., DIMACS Series on
Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 299-348, 1993.

TAT&T Bell Laboratories, Murray Hill, NJ 07974 USA

tDepartment of IEOR, University of California, Berkeley,CA 94720 USA

1



where A is the incidence matrix of G. If graph G has p components, there are exactly
p redundant flow conservation constraints, which are sometimes removed from the
problem formulation. We rule out a trivially infeasible problem by assuming

(1.4) > by=0, k=1,....p,
jEVE

where V¥ is the set of vertices for the k-th component of G.
Often it is further required that x;; be integer, i.e.

(1.5) lij < @ij < ugj, x;; integer, (,7) € E.

In the remainder of this paper we assume, without loss of generality, that {;; = 0 for
all (¢,j) € E and that ¢ # 0.

Variants of the simplex method [8] can be customized to solve the MCNF prob-
lem (e.g. [19, 13]) based on two special properties of the graph incidence matrix.
Firstly, since a graph incidence matrix is totally unimodular, every primal feasible
basis corresponds to an integer flow. Hence, even if integer flow is required, one can
relax the integrality constraints in (1.5) and solve the resulting linear program by
any simplex variant. Second, in the resulting constraint matrix, there is a one to
one correspondence between basic sequences and maximal forests of GG, which pro-
vides a block triangular ordering for the basic matrix, once redundant constraints are
removed. Data structures in implementations of algorithms for solving MCNF prob-
lems rely heavily on this property, implying that only integer arithmetic is used and,
unlike implementations of the simplex methods for general linear programs, costly
factorizations of the basic matrix are unnecessary.

The motivation of this study is that, in practice, the number of iterations taken by
interior point algorithms for linear programming appears to grow slowly with problem
size. Furthermore, interior point methods do not appear to be affected by degeneracy
as much as the simplex method [28]. Most direct comparisons between interior point
algorithms and the simplex method (e.g. [2, 21, 23]), conclude that as problem size
grows the advantage increasingly tilts toward interior point methods.

To replicate the improved performance observed for the network simplex method
over the general simplex method, an interior point implementation dedicated to MCNF
problems must use some of the distinguishing properties of the structure of the prob-
lem. For example, double precision multiplications are eliminated in operations in-
volving the coefficient matrix and specialized preconditioners based on the network
structure can be devised for the conjugate gradient algorithm. Also, the detection of
an optimal solution can be based on the integer data.

Several studies compare implementations of interior point algorithms with spe-
cialized network codes [3, 4, 24] and conclude that interior point algorithms are not
competitive with the specialized network codes. In this paper, we show that a net-
work interior point implementation outperforms specialized network codes on several
classes of large MCNF problems. Furthermore, in most problem classes, as the size of
the instances grow, so does the difference in solution times.

The dual affine scaling (DAS) algorithm [9] (see also [5, 32]) was among the first
interior point methods to be shown to be a competitive alternative to the simplex
method [1, 2]. Let A be an m X n matrix, ¢, u, and « be n-dimensional vectors and b
an m-dimensional vector. The DAS algorithm solves the linear program

min {¢'z | Az =b, 0 <z < u}



indirectly by solving its dual
(1.6) max {b'y—u'z|ATy—z24+s=¢, 2>0,5>0}

where z and s are an n-dimensional vectors and y is an m-dimensional vector. The
algorithm starts with an initial interior solution {y°, 2%, s°} such that

ATyO—zo—l—sO:c, 22>0, s >0,
and iterates according to
{yPh 2 MY = {yF 28 )+ a {Ay, Az, As),
where the search directions Ay, Az, and As satisfy
A(ZE 4+ SH)YATAy =b— AZZ(Z2 + S3) " Lu,
Az =Z}(ZE + S} HAT Ay — Stu),
As=Az— AT Ay,

where
Zy = diag(z¥, ..., 2¥) and Sy, = diag(st,...,sk)

rn

and « is such that z**!1 > 0 and s**! > 0, i.e. & =y x min{a., a}, where 0 <y < 1
and

o, = min{—2F/(Az); | (Az); <0, i=1,...,n}
oy = min{—s¥/(As); | (As); <0,i=1,...,n}.

The dual problem (1.6) has a readily available initial interior point solution:

yW=0i=1,...,n
s?:ci—i—)\, i=1,...,n
ZZQ:)\, i=1,...,n,
where A is a scalar such that A > 0 and A > —¢;, ¢ = 1,...,n. In the implementation

described in this study (called DLNET), we use A = 2 ||c||2.
The bulk of the work in the DAS algorithm is related to building and updating
the matrix AD, AT and solving the system of linear equations

(1.7) ADLAT Ay = b — AZ?Dyu,

where Dy, = (Z+S3)~!. This system determines the ascent direction at each iteration
of the algorithm. Whereas for a large class of linear programs system (1.7) can be
handled efficiently by direct factorization methods, this is not the case for MCNF
problems. In [25] a direct method and an iterative approach based on the conjugate
gradient method are compared on randomly generated assignment problems. That
study illustrates, for MCNF problems, the gains observed with an iterative approach
over a direct factorization method. In a companion paper [26] the relative performance
of the interior point approach using a preconditioned conjugate gradient algorithm
to the network simplex code NETFLO [19] and the relaxation algorithm code RELAX
[6] was shown to improve with the size of the instance. However, the study left
unanswered whether an interior point implementation could outperform a network
simplex or relaxation method implementation on MCNF problems.



procedure pcg(A, Dy, b, €.y, Ay)
1 Ayg := 05

2 ro :=b;

3 20 = M_l’r’o;

4 po = z0;

) 1:=0;

6 do stopping criterion not satisfied —
7 qi = AD,AT p;;

8 ;=215 /p] G

9 Ayir1 = Ay; + aipi;
10 Tit1 1= T — Qigi;

11 Zit1 = M_l’I“H_1;

12 Bi = z;rlri+1/ziTri;
13 Pit1 = Zit1 + Bipi;

14 ti=14+1

15 od;

16 Ay := Ay

end pcg;

FiG. 2.1. The preconditioned conjugate gradient algorithm

This paper builds on [26] where we use a conjugate gradient with diagonal and
spanning tree preconditioners. Whereas the old implementation was limited to han-
dling uncapacitated bipartite MCNF problems, DLNET can solve capacitated MCNF
problems as formulated in (1.1-1.5). In addition, we implement two new stopping
criteria and a more stable preconditioned conjugate gradient procedure. The paper is
organized as follows. In Section 2 we describe a generic preconditioned conjugate gra-
dient algorithm used in DLNET. The preconditioners applied to the conjugate gradient
algorithm defined in Section 2 are described in Section 3. In Section 4 we describe the
stopping strategies implemented in DLNET. Computational results on a wide range of
MCNF problems are given in Section 5. Concluding remarks are made in Section 6.

2. Computing the Ascent Direction. The computational efficiency of DLNET
relies heavily on a preconditioned conjugate gradient algorithm to solve the direction
finding system at each iteration. We differ slightly from the preconditioned conju-
gate gradient algorithm described in [2]. Here, the preconditioned conjugate gradient
algorithm is used to solve

(2.1) M Y (AD AT) Ay = M~

where M is a positive definite matrix and b = b—AZ,fD,;lu. The objective is to make
the preconditioned matrix
MY (AD,AT)

less ill-conditioned than ADy A", improving the convergence of the conjugate gradient
algorithm.

The preconditioned conjugate gradient algorithm is presented in the pseudo-code
in Figure 2.1. The computationally intensive steps in the preconditioned conjugate
gradient algorithm are lines 3, 7 and 11 of the pseudo-code. Those lines correspond
to a matrix-vector multiplication (7) and solving systems of linear equations (3 and
11). Line 3 is computed once and lines 7 and 11 are computed once every conjugate



gradient iteration. The matrix-vector multiplications carried out are of the form
AD,AT p; are carried out without forming AD, AT explicitly. It is more efficient to
carry out the above matrix-vector multiplication by decomposing it into three sparse
matrix-vector multiplications. Let

¢'=ATp, and (" = Dy('.

Then
(A (D (ATp))) = A¢”.

Note that the matrix-vector multiplications are O(n), involving n additions, 2n sub-
tractions and n floating point multiplications. Note further that this computation
can be carried out in parallel. In this paper, however, we limit ourselves to serial
implementations. See [26] for numerical results of a parallel implementation of the
matrix-vector multiplication in the conjugate gradient algorithm.

The preconditioned residual is computed in lines 3 and 11 and amounts to solving
the system of linear equations

(22) MZZ'+1 =Tit+1,

where M is a positive definite matrix such that the system can be easily solved. Such
preconditioners are the subject of Section 3.

It was pointed out in [2] that the DAS algorithm is particularly well suited to use
approximate solutions of the ascent direction linear system. To determine when the
direction Ay; produced by the conjugate gradient algorithm is satisfactory, we use
the suggestion made in [16] and compute the angle § between (ADyAT)Ay; and b
and stop the conjugate gradient procedure when |1 — cos 8| < €.os, Where €., is some
small tolerance. The computation of

bT (AD,AT)Ay;|
121 - I (ADx AT) Ayl

cosb =

has the complexity of one conjugate gradient iteration and therefore is not carried
out at each conjugate gradient iteration. The cosine is computed every [.,s conjugate
gradient iterations.

3. Preconditioners. A useful preconditioner for the conjugate gradient algo-
rithm must be such that the system of linear equations (2.2) is easy to solve and at
the same time reduces the number of conjugate gradient iterations. A diagonal matrix
constitutes the most straightforward and perhaps the most common preconditioner
used in conjunction with the conjugate gradient algorithm [12]. They are simple
to compute, taking O(n) double precision multiplications and can be very effective
[26, 25, 34]. The diagonal preconditioner used in DLNET is M = diag (AD;A") and
can be computed in O(n) double precision additions and multiplications. The pre-
conditioned residue systems of lines 3 and 11 of the conjugate gradient pseudo-code
can each be solved in O(m) double precision divisions.

Karmarkar and Ramakrishnan [17] and Vaidya [31] have suggested using a maxi-
mum weighted spanning tree preconditioner for network flow problems. Since, in our
presentation, the graph G is not necessarily connected, we identify a maximal forest
using as weights the diagonal elements of the current scaling matrix,

(3.1) w = Dye,



where e is a unit n-vector. The maximal forest is computed by approximately ordering
the edges with a bucket sort and applying Kruskal’s algorithm [27].

At the k-th iteration of the DAS algorithm, let Sy be the submatrix of A with
columns corresponding to edges in the maximal forest, ¢1,...,¢;. The preconditioner
can be written as

M = 8, D;S),

where
Dy, = diag(1/27, + 1/s7,,. .., 1/zfq + l/sfq).

For simplicity of notation, we include in Sy the linear dependent rows corresponding
to the redundant flow conservation constraints. At each conjugate gradient iteration,
the preconditioned residue system

(3.2) (SkDrSy )zit1 = Tit1

is solved with the variables corresponding to redundant constraints set to zero. As
with the diagonal preconditioner, (3.2) can be solved in O(m) time, as the system
coefficient matrix can be ordered into a block triangular form.

The spanning tree preconditioner has been previously used in [26, 15, 14].

In practice, the diagonal preconditioner is effective during the initial iterations of
the DAS algorithm. As the DAS iterations progress, the spanning tree preconditioner is
more effective as it becomes a better approximation of matrix AD, AT . In the DLNET
implementation, we begin with the diagonal preconditioner and monitor the number of
iterations required by the conjugate gradient algorithm. When the conjugate gradient
takes more than 3,/m iterations, where 3 > 0, DLNET switches to the spanning tree
preconditioner. We also set upper and lower limits to the number of DAS iterations
using a diagonal preconditioned conjugate gradient.

4. Stopping with an Optimal Flow. The simplex method restricts the se-
quence of solutions it generates to vertices of the linear programming polytope. Since
the constraint matrix is totally unimodular, and assuming integrality of the data,
when a simplex variant is applied to a MCNF problem, the optimal solution is integer.
On the other hand, the DAS algorithm generates a sequence of dual interior solutions.
For general linear programs, a tentative primal solution is computed based on each
dual iterate [29]. These sequences converge, respectively, to the relative interiors of
the primal and dual optimal faces [30]. Unless the primal optimal solution is unique,
the primal solution returned by DAS is not guaranteed to be integer. Furthermore, we
wish to use MCNF-specific properties to stop the algorithm earlier than its theoretical
convergence. We discuss below the stopping strategies implemented in DLNET.

4.1. Stopping with Basic Solution. As explained in Section 3, computing the
spanning tree preconditioner involves identifying a basic sequence for the MCNF prob-
lem. Under a dual nondegeneracy assumption, as DAS converges, this basic sequence
corresponds to an optimal one. At the end of each iteration of DAS, the maximal
forest used to build the preconditioner can be used to compute a tentative primal
optimal solution in O(m) operations. Under dual degeneracy this technique can still
be useful if only a small number of degeneracies is present in the optimal dual face.
Also, a linear program can be made dual nondegenerate by applying the classical
perturbation scheme of [7] to the cost vector. See [26] for details on how this has been
implemented in DLNET.



7

Let T = {t1,...,tq} denote the set of edge indices in the maximal forest used to
compute the preconditioner. To obtain a tentative primal basic solution, we first set
flow of edges not in the forest to either its upper or lower bound. For alli € E\ T:

K3

o koo ok
. {0 if s > 2!

T, = .
u; otherwise,

where s¥ and z* are the current iterates of the dual slack vectors as defined in (1.6).
The remaining basic edges have flows that satisfy the linear system

(4.1) AT.Z’f;w =b— ZuiAi,
i€Q

where Q = {i € E\ T|s¥ > zF}. Linear system (4.1) can be solved in O(m) time. If
ur > 3 > 0 then the primal solution is feasible.

Optimality can be verified producing a dual feasible solution (y*,s*,z*) that
is either complementary or that implies a duality gap less than 1. We build the
tentative optimal dual solution by first identifying the dual face complementary to
x*, represented by

F={ieT|0<z <u},

the set of edges with zero dual slacks. To ensure a complementary primal dual pair,
we project orthogonally the current dual interior vector y* onto the support affine
space of the dual face,

(4.2) min {

yeR™ ly* =" | A;y* =cr}

A simliar scheme that uses orthogonal projection to attempt to identify the optimal
face has been independently investigated in Kalinski and Ye [15] and Mehrotra and
Ye [22]. Ye [33] has analyzed that procedure to prove finite convergence of interior
point algorithms for linear programming.

Matrix A} can be reordered into a block triangular form, with each block corre-
sponding to a component of graph G = (V,F). Since G is a forest, the affine space is
the sum of orthogonal one-dimensional subspaces. By computing the orthogonal pro-
jections onto each individual subspace independently, the procedure can be completed
in O(m) time.

Assume G has p components, with T, . .. , T as the sets of edges in each compo-
nent tree. After reordering, we have

Ar,
Ay =
Ar

p

For i = 1,...,p, V; and m,; are, respectively, the set and the number of vertices
spanned by edges in T;, Az, is an (m; + 1) X m; matrix and each subspace

has dimension one. Then, for all yy, € ¥;, we have



8

where y?,i is a given solution in ¥, and y‘h/z is a solution of the homogeneous system
At yv, = 0. Since Ag, is the incidence matrix of a tree, the unit vector is a homoge-
neous solution. The given solution y?,i can be computed by selecting v € V;, setting
yY = 0 and solving the triangular system resulting from removing from matrix Ar,
the row corresponding to vertex v,

A}—iyVi\{v} = Cry,

where A7, is the triangular matrix. With the representation in (4.3), the orthogonal
projection of yy, onto subspace U; is

T 0
* 0 ey, (yv, — yv,i)
=Yy + ———————————ey;
Yv, =Y, s Vi
where e is the unit vector.
The orthogonal projection as indicated in (4.2) is obtained by combining the

projections onto each subspace,

*

Y =W un,)-
We build a feasible dual solution by computing the slacks as

*_{@ if 6; <0 . {0 if 6; <0

700 otherwise % T 5, otherwise,
where §; = ¢; — ATy*.

The primal and dual solutions, z* and (y*, s*, z*), are optimal if complementary
slackness is satisfied, i.e. if for all ¢ € E'\ T either sf > 0 and «f =0 or 2z > 0 and
x} = u;. Otherwise, the primal solution, x*, is still optimal if the duality gap is less
than 1, ie. ifcTz* —bTy* 4+ ul2* < 1.

K3

4.2. Stopping with Maximum Flow Solution. Determining the magnitude
in the classical perturbation technique poses a major obstacle. The theoretical ac-
ceptable perturbation can be too small to resolve all dual degeneracies in a reasonable
number of DAS iterations. A larger perturbation, on the other hand, can change the
combinatorial structure of the optimal dual face. An alternative stopping procedure
consists of identifying the optimal dual face with the dual interior solution and com-
puting an optimal primal solution by solving a maximum flow problem on a restricted
network. Compared to solving spanning tree based linear systems, the maximum flow
problem displays a high theoretical complexity. However, the low practical complexity
of new maximum flow algorithms make this procedure an attractive option. Further-
more, the stopping test is not performed at every iteration of the DAS algorithm.

As described in the previous section, the dual iterates generated by the DAS
algorithm converge to the relative interior of the optimal dual face [30]. In practice,
the algorithm identifies the set of active dual constraints defining a tentative optimal
dual face

F={icE|sf—2F<ecory<st/zF<1/y},

where € > 0 and v > 0 are small tolerances. Unless the DAS algorithm is close to
convergence, there is no guarantee that F actually defines a dual face, as the set
{y e R™ | ALy = cx} can be empty.

Let G = (V, F) be the original graph G with the F as its set of edges. A maximal
forest T of G defines a dual face. If F also defines a dual face, edges in F \T



9

correspond to redundant hyperplanes, and the face is unique. When this is not the
case, we select the maximal forest according the ordering used for the preconditioner
computation. The tentative dual optimal solution is computed by projecting the
current dual interior vector y* onto the support affine space of the dual face defined
by T,

min {|ly* — y"|| | Ary* = cr}.
yrERM

This operation is identical to the orthogonal projection described earlier in this sec-
tion. The dual slack for the tentative dual optimal solution are computed as

z; = . s; = .
g 0 otherwise v d; otherwise,

where 6; = ¢; — ATy* .
Based on the projected dual solution y*, the tentative optimal face is redefined
as }
F={icE||c;—Aly*| <e}.
A primal solution complementary to the tentative optimal solution has the non-active
edges set to lower or upper bounds. For all i € E'\ F,

*_{ 0 ife;—Aly*>0

Tl = .
v u; otherwise.

Flow in the active edges satisfies

(4.4) Apzz=b=0b— Z u; A,
i€Q
(4.5) 0<a]<u, i€ E\F,

where Q = {i € E\ F | ¢; — Aly* < 0}.

Because of the nature of most maximum flow algorithms (they generate integer
flows), an integer solution to the system above can be obtained by solving a maximum
flow problem on the restricted network G = (V, E), where

V=1{0,6,V}
and _ ~
E={%0,F}
The additional edges are such that
Y = {(0,i) |i €V, b; >0}
with capacity Ei, and ~
©={(0)|icV, b <0}

with capacity —b;. R
Let M, be the maximum flow from o to 6 in G, with =] as the flow on each

edge ¢ € F.If
Moo= > b,
{ieV|b;>0}
then z% is a feasible flow for the restricted network problem (4.4-4.5). Furthermore,

x* and (y*, s*, z*) are optimal primal-dual complementary solutions for the original
problem.



10

5. Computational Investigation. The aim of this investigation is to com-
pare network implementations of interior point, simplex, and relaxation algorithms
on a wide range of MCNF problems, including minimum cost circulation, maximum
flow, and transshipment. We are motivated by empirical evidence indicating that for
general linear programming the relative speedup of interior point algorithms to the
simplex method increases with problem size. We seek to establish whether a similar
phenomenon occurs with network flow problems, for which specialized network sim-
plex codes have been shown to outperform general-purpose simplex codes by several
orders of magnitude. We compare our interior point code with the network simplex
code NETFLO [19]. We also compare our code with RELAXT-3 [6] an implementation of
the relaxation algorithm, reported to outperform NETFLO on several classes of MCNF
problems.

In [26] we demonstrated that if the conjugate gradient algorithm is implemented
in parallel on an eight processor Alliant FX/80, an interior point code could solve
large assignment problems faster than serial versions of the network simplex code
NETFLO as well the relaxation method code RELAX (an early version of RELAXT-3).
In this investigation, we wish to determine if a serial interior point implementation
can accomplish the same. For this investigation we have developed DLNET, a new
network implementation of the DAS algorithm that was briefly described in the first
sections of this paper.

Finally, we wish to demonstrate the feasibility of using an interior point code to
solve MCNF problems having hundreds of thousands of vertices in reasonable running
time.

All instances used in the computational investigation are generated with problem
generators distributed for The First DIMACS International Algorithm Implementa-
tion Challenge [10]. The problems are grouped into five categories: minimum cost
circulation, transshipment on a mesh, minimum cost-maximum flow on a grid, max-
imum flow on a random layered graph, and problems generated with the standard
NETGEN [20] generator. All instances and/or generators can be obtained via anony-
mous ftp from dimacs.rutgers.edu.

5.1. Computing Environment. The computational experiment is conducted
on a Silicon Graphics 1RIS workstation, model 4D /240, with four 25 MHz IP7 proces-
sors, a MIPS R2010A/R3010 Fpu, a mips R2000A /R3000 cpu, 64 Kbytes instruction
cache, 64 Kbytes data cache, and 256 Mbytes of main memory. The swapping device
is configured to allow processes over 1 Gbytes in size to run. The operating system is
IRIX System V Release 3.3.2.

DLNET is written mostly in FORTRAN, with only memory management and in-
put/output routines written in C, yacc and lex. The experiments were done with
version 1.4b (30 Jan 92) of DLNET. Version 1.4b of the code contains 5337 lines of
FORTRAN (3434 of which are comments), 5623 lines of C, 515 lines of yacc and 116
lines of lex. NETFLO and RELAXT-3 are FORTRAN codes. NETFLO has 1072 lines of
code (290 of which are comments) while RELAXT-3 has 2559 lines (653 of which are
comment lines). We modified NETFLO and RELAXT-3 to avoid integer overflow when
computing the optimal objective function value. These computations were originally
done in integer arithmetic and are carried out here in double precision floating point
arithmetic. They are computed once, upon termination of the algorithm. The com-
pilers £77 and cc are used with optimization level -02 -01imit 800. Running times
are measured with the UNIX routine times(). The times reported exclude time to
input the problem.



11

5.2. DLNET Parameter Settings. DLNET obtains from a specification file
run-time parameters that control the execution of the algorithm. Fine tuning of
these parameters for each individual problem could lead to faster execution times.
However, for the experiments reported here, we run DLNET on all instances with
identical parameter settings listed in Figure 5.1. The following is a description of
DLNET parameters:

e mode: optimization mode (minimization or maximization)
e seed: random number generator seeds
e maximum iterations: maximum DAS iterations
e maximum perturbation: perturbation parameter p,. Cost vector is randomly
perturbed
¢p = ¢+ unif(—e¢p, €p)

where €, = p,/(2 ||c||2).
e warm iterations: minimum number of DAS iterations with diagonal precon-
ditioned CG
e maximum switch iterations: maximum number of DAS iterations with di-
agonal preconditioned CG
e active tolerance: tolerance used to set “non-basic” variables
e zero tolerance: tolerance for 0
e primal basic optimality: set primal estimates testing; initial DAS iteration
to begin testing; DAS iteration frequency of testing; testing tolerance
e absolute gap optimality: set absolute gap optimality testing; initial DAS
iteration to begin testing; DAS iteration frequency of testing; testing tolerance
e dual interior optimality: set dual interior optimality testing; initial DAS
iteration to begin testing; DAS iteration frequency of testing; testing tolerance
e max flow optimality: set max flow optimality testing; initial DAS iteration
to begin testing; DAS iteration frequency of testing; testing tolerance
sort buckets: number of buckets in sort =+ n
cg tolerance: €. tolerance for CG convergence
cg maximum iterations: maximum number of CG iterations =+ \/m
cg maximum diagonal: maximum number of diagonal preconditioner CG
iterations + y/m
e cg residual check: l.,s frequency of CG stopping criterion checking
Finally, the DAS step back factor v is hard-wired in the code and cannot be set through
the specification file. For the first 10 iterations v = 0.99. After that, v = 0.95.
To solve maximum flow problems on the restricted network described in Sec-
tion 4 we have interfaced the implementation of Dinic’s algorithm of Goldfarb and
Grigoriadis [11] with DLNET.

5.3. Experimental Results. In this sub-section we present experimental re-
sults on the five problem classes listed earlier. Several of the classes are further
broken down into sub-classes. For each sub-class we summarize the experiments with
two tables and a figure. The first table summarizes running times and iteration counts
for the three codes. Values listed are averaged over one or more runs, corresponding
to different instances generated with different seeds. In most cases, three instances are
generated, though this is not always the case, given the expensive nature of running
the codes on some of the instances. The second table summarizes DLNET runs. Specif-
ically, it lists averages for conjugate gradient iterations and running times, running
times for spanning tree approximate sorting and Kruskal’s algorithm, and number of
calls to the maximum flow optimality testing procedure, the average running time of



12

begin
mode minimize
seed 999 333
maximum iterations 300
maximum perturbation 1.e-3
warm iterations 2
maximum switch iteration 15
active tolerance l.e-3 1.e-4
zero tolerance 1.e-20
primal basic optimality yes 10 1 1.e-8
absolute gap optimality yes 10 1 1.
dual interior optimality yes 10 1 1.e-15
max flow optimality yes 10 10 1.e-8
sort buckets 1
cg tolerance 1.e-3
cg maximum iterations 1
cg maximum diagonal 0.5
cg residual check 5

end

F1G. 5.1. DLNET specification file

each call, the size of the restricted graph (|E|) and a measure of the density of the
restricted graph (|E|/(|V|—1)). The figure shows running time ratios, in log-log scale,
for NETFLO to DLNET, and RELAXT-3 to DLNET.

In all runs carried out in this experiment the optimal objective function values
found by DLNET (primal value), NETFLO and RELAXT-3 were identical. In most cases,
the dual objective function value obtained by DLNET was equal to the primal value.
However, because we allowed DLNET to stop with a primal dual gap of less than
one, but not necessarily zero, in a few cases, the dual objective value did not equal
the primal. By changing the specification file to disallow stopping with absolute
duality gap, all DLNET solutions could be made primal-dual complementary. Table 5.1
summarizes how DLNET stopped for all problem instances. For each problem class, the
table lists the number of instances solved, the number of instances in which DLNET
stopped with the primal estimate stopping criterion, the corresponding percentage
of all instances for which this occurred, the number of instances in which DLNET
stopped with the maximum flow stopping criterion, the corresponding percentage,
the number of instances that DLNET produced a primal-dual complementary solution
and the percentage of instances for which this occurred.

5.3.1. Transshipment Problems on a Grid. The networks in this class of
problems are obtained by removing the minimum number of edges from a grid graph
embedded on a torus such that all vertical paths wrap around and no horizontal path
wraps around, and adding a source and sink vertex with edges going from the source
to all vertices on one side of the resulting tube network and from all vertices on the
other side to the sink. Network density is controlled by adding extra edges in both
the horizontal and vertical directions. All vertices other than the source and sink
vertices are transshipment vertices. Costs and capacities are uniformly distributed in
the intervals [0,4096] and [0, 16384], respectively.

These instances are generated with the MCNF problem generator goto.c of Gold-
berg [10]. Three sub-classes of problems are generated: Grid-Density-8, Grid-Density-



13

TABLE 5.1
Summary of DLNET optimal solutions

PB-Stopping | MF-Stopping | PD-Opt Sol'n

Problem Class Instances # % | # % # %
Grid-Density-8 22 19 86 3 14 22 100
Grid-Density-16 18 5 28 | 13 72 | 18 100
Grid-Increasing-Density 18 3 17 | 15 83 18 100
RLG-Wide 7 0 0| 7 100 7 100
Grid-Square 14 12 86 | 2 14| 14 100
Grid-Wide 27 27 100 0 0 25 93
Grid-Long 24 23 96 1 4 24 100
Mesh_1 16 14 88 2 12 16 100
Mesh_2 15 11 73 4 27 15 100
Mesh_4 15 10 67 5 33 15 100
Mesh_8 12 8 67 | 4 33| 12 100
Netgen-Lo 27 19 70| 8 30 | 22 81
Netgen-Hi 27 23 85 4 15 25 93
] All instances \ 242 \ 174 72 \ 68 28 \ 233 96

16 and Grid-Increasing-Density. Let m and n denote the number of vertices and
edges of the network, respectively. For Grid-Density-8, n = 8 m; for Grid-Density-16,
n = 16 m; and for Grid-Increasing-Density, n = m!®. For Grid-Density-8 and Grid-
Density-16, instances having 256,512, ...,32768 vertices are generated. For Grid-
Increasing-Density the networks have 256,512, ...,8192 vertices.

The random number generator seeds 270001, 270002, and 270003 were used to
generate different instances for each problem size. For Grid-Density-8, 3 instances
of sizes 256,512, ...,16384 vertices were generated. A single 32768 vertex instance
was generated. RELAXT-3 was not run on that instance. For Grid-Density-16, 3
instances of sizes 256,512, ...,8192 vertices were generated. Single instances of sizes
16384 and 32768 vertices were generated. RELAXT-3 was not run on the 32768 vertex
instance. For Grid-Increasing-Density, 3 instances were generated for each problem
size. RELAXT-3 was run on only a single 8192 vertex instance.

Tables 5.2-5.3 and Figure 5.2 summarize runs for problem class Grid-Density-
8. Tables 5.4-5.5 and Figure 5.3 summarize runs for problem class Grid-Density-
16. Tables 5.6-5.7 and Figure 5.4 summarize runs for problem class Grid-Increasing-
Density.

We make the following observations regarding this family of problems.

e DLNET was faster than RELAXT-3 on all instances in sub-classes Grid-Density-
8, Grid-Density-16 and Grid-Increasing-Density. A speedup ratio of over
85 was observed, where RELAXT-3 took 60.4 hours while DLNET took 42.4
minutes.

e DLNET was faster than NETFLO on the larger instances. For those, a speedup
ratio of over 15 was observed, where NETFLO took 81.33 hours and DLNET
took 5.2 hours.

e DLNET-t0-RELAXT-3 and DLNET-t0-NETFLO solution time ratios decrease with
network density.

e Let Tp,Tr, Ty denote running time (in CPU seconds) of DLNET, RELAXT-3
and NETFLO, respectively. A linear regression of the running times produced



14

TABLE 5.2
CPU times for problem class Grid-Density-8

SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 2048 5.6 22.7 1.6 5613.7 18.8 68620.0
n_512 512 4096 12.5  23.7 7.0 15472.0 106.1 214289.7
n_1024 1024 8192 39.7  29.0 26.8 29750.0 432.5 600647.3
n_2048 2048 16384 102.4  32.7 112.8 68479.7 1625.5 1248580.7
n_4096 4096 32768 296.8 36.0 721.3 360894.0 6695.2 1890436.7
n_8192 8192 65536 842.7 35.3 2740.7 330211.0 43694.8 9761998.3
n_16384 | 16384 131072 2545.6  40.0 12116.9 755820.3 | 217432.2  29034906.7
n_32768 | 32768 262144 | 18882.0 90.0 | 293822.2 18718769.0 DID NOT RUN
100 I ) 3
L - ]
[ e ]
e
10 ¢ PO e E
g o E
[} . O 4
| L o -
Ratio 1k ————— E
£ Lo o 3
. ]
0.1 ¢ E
g NETFLO/DLNET -o- - ]
r RELAXT-3/DLNET ‘e -
0.01 | | | | | |
211 212 213 214 215 216 217 218
Number of edges
Fic. 5.2. CPU time ratios for problem class Grid-Density-8
TABLE 5.3
DLNET statistics for problem class Grid-Density-8
Conj. Grad. Span. Tree Max Flow
PROB itr time | sort Kruskal | calls  time |E| \V"\L—‘l
n_256 6.6 0.07 | 0.03 0.01 2.0 0.06 257.3 1.01
n_512 6.2 0.15 | 0.06 0.01 2.0 0.15 514.3 1.01
n_1024 7.0 0.38 | 0.13 0.03 2.3 0.42 1029.9 1.01
n_2048 7.4 0.99 | 0.28 0.08 3.0 1.37 2063.3  1.01
n-4096 8.5 2.95 | 0.59 0.06 3.3 5.09 4147.7  1.01
n_8192 10.8 9.85 | 1.24 0.42 3.0 43.92 8210.2  1.00
n 16384 | 12.2 27.55 | 2.64 0.97 3.3 15531 16424.3 1.00
n_32768 | 19.6 133.87 | 5.83 1.14 9.0 266.45 33131.6 1.01




TABLE 5.4
CPU times for problem class Grid-Density-16

15

SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 4096 159 31.7 4.3 14224.7 85.3 137897.7
n_512 512 8192 56.8 39.7 15.7 32477.7 355.5 335681.7
n_1024 1024 16384 134.6 48.0 64.9 74794.3 1655.0 1092594.3
n_2048 2048 32768 394.2  60.0 275.0 172897.7 5905.8 2614008.3
n_4096 4096 65536 921.6 63.3 1307.2 453328.0 27352.2 6324750.3
n_8192 8192 131072 2878.9 70.0 5082.8 839747.0 | 110404.4  13928929.0
n_16384 | 16384 262144 7099.3 80.0 26550.8 1948729.0 | 536569.2 46306590.0
n_32768 | 32768 524288 | 26572.8 90.0 | 281157.8 15453366.0 DID NOT RUN
100 \ \ 3 3
r .- - ]
10 L . . »
€ o . E
r o ]
[ o o 7
Ratio 1 3
g .o e 3
b o ]
0.1 ¢ -
g NETFLO/DLNET -o- - ]
r RELAXT-3/DLNET ‘e -
0.01 | | | | | |
212 213 214 215 216 217 218 219
Number of edges
Fic. 5.3. CPU time ratios for problem class Grid-Density-16
TABLE 5.5
DLNET statistics for problem class Grid-Density-16
Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls  time |E| %
n_256 9.0 0.19 0.06 0.01 3.0 0.07 271.6  1.06
n_512 14.1 0.62 0.13 0.01 3.7 0.16 544.6  1.06
n_1024 10.0 1.09 0.27 0.06 4.7 0.45 1085.2  1.06
n_2048 10.8 2.48 0.55 0.14 6.0 1.37 2243.4  1.10
n_4096 10.8 6.13 1.19 0.08 6.3 4.03 4445.6  1.08
n_8192 13.6 20.59 2.60 0.89 7.0 19.81 8762.4  1.07
n_16384 | 12.3 41.48 5.35 1.69 8.0 80.39 17036.8 1.04
n_32768 | 17.2 171.12 | 12.30 1.01 9.0 302.67 34520.9 1.05




16

TABLE 5.6
CPU times for problem class Grid-Increasing-Density

SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 4096 17.0 31.7 6.3 14224.7 99.4 137897.7
n_512 512 11585 79.4 50.0 38.5 47668.0 716.2 444212.0
n_1024 | 1024 32768 513.9 70.0 297.2 188971.3 4411.3 1480909.3
n_2048 | 2048 92682 2214.6  103.3 2191.1 679631.7 23886.3 3826721.3
n_4096 | 4096 262144 9277.8 150.0 18383.2 2516757.3 132558.0  14827709.0
n_8192 | 8192 741455 | 44623.1 200.0 | 121526.8 7467246.7 | 1138682.0 30883918.0
100 3
[ -
10 3 o P € ° 4
L A ]
. o
[ - 3
Ratio 1k e
C L o .|
P ]
0.1 ¢ .
F NETFLO/DLNET o - ]
[ RELAXT-3/DLNET ‘e -
001 | | | | | |
212 213 214 215 216 217 218 219

Number of edges

Fic. 5.4. CPU time ratios for problem class Grid-Density-Increasing

the following models for:

e Grid-Density-8:

.9903)
)

19967)
.9975)

logo Tp = .461log, |F| — 4.449 (R* =

logyo Tr = .66log, |E| — 6.041 (R? =.

log,o Tw = .68log, |E| — 7.354 R? = .9890)
e Grid-Density-16:

logo Tp = .44log, |E| — 4.072 (R? =

log,o Tr = .63log, |E| — 5.615 (R? =

log,, Ty = .66log, |E| — 7.331 (R* =

o Grid-Increasing-Density:
log,o Tp = .46log, |E| — 4.213
log,y Tr = .52log, |E| — 4.272
log,o Ty = .581og, |E| — 6.179

(R =
(R =
(R =

.9944),

.9976)
.9964)
.9996),



17

TABLE 5.7
DLNET statistics for problem class Grid-Density-Increasing

Conj. Grad. Span. Tree Max Flow
PROB | itr time sort  Kruskal | calls time |E| I ‘H{l T
n-256 9.0 0.20 0.06 0.01 3.0 0.06 271.6 1.06
n_512 10.1 0.70 0.19 0.01 5.0 0.17 569.3 1.11
n_1024 | 15.3 3.30 0.60 0.07 7.0 0.75 1203.3 1.18
n_2048 | 20.2 13.35 1.87 0.33 | 10.3 2.46 2643.2 1.29
n_4096 | 12.9 27.88 5.58 0.13 | 15.0 6.74 4735.1 1.16
n8192 | 22.2 150.68 | 18.36 3.97 | 20.0 20.65 12561.4 1.53

where R? is the coefficient of multiple determination.

e The conjugate gradient algorithm took on average 19.6, 17.2 and 22.2 it-
erations for the largest instances of classes Grid-Density-8, Grid-Density-16
and Grid-Increasing-Density, respectively. Those instances have, respectively
32768, 32768, and 8192 vertices.

e For the largest instances of classes Grid-Density-8, Grid-Density-16 and Grid-
Increasing-Density the computation of the maximum weight spanning tree
(sorting and Kruskal’s algorithm) took respectively 0.5%, 0.7% and 13% of the
total time taken by the conjugate gradient algorithm (computing the spanning
tree plus carrying out the conjugate gradient iterations). Sorting accounted
for 88%, 92% and 84% of the total spanning tree computation time for classes
Grid-Density-8, Grid-Density-16 and Grid-Increasing-Density, respectively.

e On the largest instances of Grid-Density-8, Grid-Density-16 and Grid-Increas-
ing-Density, DLNET spent on solving maximum flow problems in the maximum
flow stopping test the equivalent of respectively 18.9%, 16.4% and 1.2% of
the time spent on the conjugate gradient algorithm.

e The density of the restricted network of the maximum flow stopping criterion
increased with the density of the original network. The largest restricted
network densities for Grid-Density-8, Grid-Density-16 and Grid-Increasing-
Density had |E|/(|V| — 1) values of 1.01, 1.10 and 1.53, respectively.

e For Grid-Density-8, DLNET stopped with primal estimate stopping in 86% of
the instances and with maximum flow stopping in the remaining 14%. For
Grid-Density-16, DLNET stopped with primal estimate stopping in 28% of
the instances and with maximum flow stopping in the remaining 72%. For
Grid-Increasing-Density, DLNET stopped with primal estimate stopping in
17% of the instances and with maximum flow stopping in the remaining 83%.
Primal-dual complementary solutions were produced for all instances.

e The instances had optimal objective function values with 10 to 12 digits.

5.3.2. Maximum Flow Problems. The class RLG-Wide consists of finding
the maximum flow across a wide random leveled network. In these networks, ver-
tices are arranged on a grid in 2275 rows by 64 columns (z = 11,12,...), with an
additional source vertex and sink vertex. Edges go from the source vertex to each
vertex in the first column of the grid and from each vertex in the last column to the
sink. Furthermore, each vertex in the first 63 columns has an edge going to exactly
three randomly selected vertices in the next column. Edge capacities in the grid are
uniformly distributed in [1,10000]. Edges out of the source and into the sink edges
are uncapacitated.



18

TABLE 5.8
CPU times for problem class RLG-Wide

SIZE DLNET NETFLO RELAXT-3
PROB V| |E| time itr time itr time itr
x_32 2050 6113 40.9 20.0 37.5 6848.0 67.3 2283.0
x_64 4098 12225 125.9  20.0 181.7 17640.0 287.9 4460.0
x_128 8194 24449 493.0 30.0 917.0 45469.0 1582.8 9824.0
x_256 16386 48897 1328.7 30.0 4806.0 120058.0 7891.2 19472.0
x_512 32770 97793 3854.5 30.0 25584.1 325919.0 52689.2 46386.0
x_1024 65538 195585 | 14496.8 50.0 | 141157.0 849836.0 252447.2 95147.0
x_2048 | 131074 391169 | 51293.8 70.0 | 962987.5 2408010.0 | 1460680.0 189577.0
100 3
F w
[ (3 - g
10 & o 0 =
£ o o |
i e o ]
¢ ; ....... o 7
Ratio 1¢ E
0.1 ¢ -
g NETFLO/DLNET ‘o - ]
r RELAXT-3/DLNET e - 1
0.01 | | | | |
212 213 214 215 216 217 218

Fic. 5.5. CPU time ratios for problem class RLG-Wide

Number of edges

We transform the maximum flow problem into a MCNF problem by adding an
uncapacitated edge from the sink to the source with cost —1. All other edges have
cost zero. These instances are used as a test for the codes on highly dual degenerate
problems. In practice, however, one should use specialized maximum flow codes to
solve maximum flow problems.

The instances are generated with the generator washington.c of Anderson [10].

Seven instances on 2276 x 64 grids (x = 11,12, ...,17) are generated. All three codes
solved all instances. Tables 5.8-5.9 and Figure 5.5 summarize runs for problem class
RLG-Wide.

We make the following observations regarding this family of problems.

e Except for the smallest instance (with = 11) DLNET was faster than the
other codes on all instances. On the largest instance (131074 vertices and
391169 edges) DLNET was over 18 times faster than NETFLO and 28 times
faster than RELAXT-3. On that instance DLNET took 14.2 hours to solve
the problem while NETFLO and RELAXT-3 took 267.5 hours and 405.7 hours,



19

TABLE 5.9
DLNET statistics for problem class RLG-Wide

Conj. Grad. Span. Tree Max Flow
PROB | itr time | sort Kruskal | calls time |E| ‘ “,lEl T
x-32 20.0 1.26 | 0.10 0.04 2.0 1.81 5869.0 2.86
x_64 25.8 4.56 | 0.20 0.09 2.0 5.10 11684.0 2.85
x_128 27.7 11.45 | 0.41 0.22 3.0 24.09 23076.0 2.82
x-256 29.3 31.07 | 0.87 0.54 3.0 75.74 46680.3 2.85
x_512 39.2 95.16 | 1.86 1.29 3.0 213.00 93035.0 2.84
x_.1024 | 27.6 151.17 | 4.11 3.31 5.0 1125.56 184545.2 2.82
x-2048 | 31.6 385.24 | 8.64 7.46 7.0 2917.88 366764.4 2.80
respectively.

Let Tp,Tr, Ty denote running time (in CPU seconds) of DLNET, RELAXT-3
and NETFLO, respectively. A linear regression of the running times produced
the following models:

logyo Tp = .51log, |E| — 4.821 (R? = .9986)
log,o Tr = .73log, |E| — 7.407 (R? = .9992)
log,o Ty = .73log, | E| — 7.663 (R? = .9992),

where R? is the coefficient of multiple determination.

On the largest instance the conjugate gradient algorithm took on average 31.6
iterations.

On the largest instance the computation of the spanning tree (sorting plus
Kruskal’s algorithm) accounted for 0.4% of the total time taken by the conju-
gate gradient (computing the preconditioner plus conjugate gradient iterates).
Sorting accounted for 54% of the total spanning tree computation time.

On the largest instance of RLG-Wide, DLNET spent on solving maximum flow
problems in the maximum flow stopping test the equivalent of 72.7% of the
time spent on the conjugate gradient algorithm.

Since these instances are highly dual degenerate it is expected that the re-
stricted networks of the maximum flow stopping criterion will be dense. In
fact, the least dense restricted network had on average 2.8 (|V| — 1) edges.
In all instances, DLNET stopped using the maximum flow stopping criterion.
All solutions produced by DLNET were primal-dual complementary.

The instances had optimal objective function values with 6 to 8 digits.

5.3.3. Minimum Cost-Maximum Flow Problems on a Grid. The net-
works in this class are formed on a grid of vertices of height A and width w. Two
additional vertices complete the vertex set: a source vertex S and a sink vertex 7.
Edges go from the source to each vertex in the first column of the grid and from each
vertex in the last column of the grid to the sink vertex. On the grid, edges go from
vertex to nearest neighbor vertex oriented left to right and top to bottom. Grid edge
costs and capacities are generated uniformly in the interval [1,10000]. Edges from the
source and into the sink have cost zero and are uncapacitated. All vertices, except
the source and the sink are transshipment vertices. The source has a supply of Mgr,
the maximum flow from S to T', and the sink has a demand of Mgr.

These instances are generated with the MCNF problem generator ggraphl.f of
Resende [10]. Three sub-classes of problems are generated: Grid-Square, Grid-Wide,



20

TABLE 5.10
CPU times for problem class Grid-Square

SIZE DLNET NETFLO RELAXT-3

PROB V| |E| time itr time itr time itr
n_256 258 512 1.6 15.0 0.1 355.3 0.3 1354.3
n_1024 1026 2048 12.7 25.0 0.7 1940.3 4.2 7417.3
n_4096 4098 8192 149.2 38.3 8.6 10393.7 103.8 18453.0

n_16384 16386 32768 2192.8 61.3 159.2 72847.3 2295.4 392862.0
n_65536 65538 131072 17618.4 90.0 2625.9 486330.0 | 36947.8 2715011.0

n_262144 | 262146 524288 | 255332.0 180.0 | 67189.7  3482255.0 DID NOT RUN

100 ¢ -
: NETFLO/DLNET o - ]
10 ¢ RELAXT-3/DLNET -e- - .
Ratio 1E ——— R E
) o g
0.1 . -
P o =
% .......... [ R o - E

0.01 ! ‘ ‘ \ \

210 212 214 216 218

Number of edges

Fic. 5.6. CPU time ratios for problem class Grid-Square

and Grid-Long. Grid-Square has h = w = 16,32, ... Grid-Wide has w = 16 and h =
32,64, ... Grid-Long has h = 16 and w = 32,64, ... Karmarkar and Ramakrishnan,
in [18], solved instances similar to those of Grid-Square.

The random number generator seeds 270001, 270002, and 270003 were used to
generate different instances for each problem size. For Grid-Square, 3 instances of
sizes 258,1026,...,16386 vertices were generated. Single 65538 and 262146 vertex
instances were generated. RELAXT-3 was not run on the largest instance. For Grid-
Wide, 3 instances of sizes 514,1026,...,131074 vertices were generated. RELAXT-3
was not run on one of the three 65538 vertex instances and on all three of the 131074
vertex instances. For Grid-Long, 3 instances of sizes 258, 1026, . .., 65538 vertices were
generated.

Tables 5.10-5.11 and Figure 5.6 summarize runs for problem class Grid-Square.
Tables 5.12-5.13 and Figure 5.7 summarize runs for problem class Grid-Long. Ta-
bles 5.14-5.15 and Figure 5.8 summarize runs for problem class Grid-Wide.

We make the following observations regarding this family of problems.

e On both Grid-Square and Grid-Wide, the interior point code’s performance



TABLE 5.11

DLNET statistics for problem class Grid-Square

Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls time |E| I “/‘El T
n_256 9.9 0.04 0.01 0.00 1.0 0.03 257.0 1.00
n_1024 12.7 0.28 0.04 0.01 2.0 0.19 1025.0 1.00
n_4096 17.4 2.61 0.14 0.07 3.3 1.83 4052.2  0.99
n_16384 32.6 27.70 0.67 0.43 5.7 20.22 16159.8  0.99
n_65536 47.0 158.46 2.62 1.97 9.0 146.94 64214.6  0.98
n_262144 | 70.0 1193.90 | 12.46 10.19 | 18.0 1185.79 254344.3 0.97
TABLE 5.12
CPU times for problem class Grid-Long
SIZE DLNET NETFLO RELAXT-3

PROB V| |E| time itr time itr time itr
n_512 514 1008 4.7 20.3 0.2 656.7 0.7 1952.0
n_1024 1026 2000 14.3 27.0 0.4 1207.3 2.2 696.7
n_2048 2050 3984 50.2 35.3 1.2 2771.3 6.4 902.0
n_4096 4098 7952 191.9 49.7 3.0 5259.7 19.0 545.3
n_8192 8194 15888 599.0 59.3 6.9 8808.3 56.9 883.7
n_16384 | 16386 31760 2318.5 88.3 18.1 17732.7 159.5 1878.0
n_32768 | 32770 63504 7328.8 111.0 61.2 32102.0 411.2  2650.3
n_65536 | 65538 126992 | 18340.7 142.3 | 199.3 65849.3 | 1294.9 4258.0

21

relative to the other codes improved with problem size. On Grid-Long, it
initially decreased slowly with size, but later leveled off and began increasing.
On Grid-Square, a speedup ratio of 2.1 relative to RELAXT-3 was observed on
the 65538 vertex instance. RELAXT-3 took 10.3 hours to solve the instance,
while DLNET took 4.9 hours. On all instances NETFLO was faster than DLNET,
with a speedup ratio of 3.8 on the largest instance tested. On that instance,
DLNET took 70.9 hours, while NETFLO solved the problem in 18.7 hours. On
Grid-Wide, DLNET was up to 46.9 times faster than RELAXT-3, solving a
65538 vertex instance in 1.0 hours while RELAXT-3 took 48.9 hours. On the
largest instance (131074 vertices) DLNET was 2.2 times faster then NETFLO,
solving the problem in 3.1 hours while NETFLO took 6.8 hours. On Grid-Long,
NETFLO was the fastest code, solving the 65538 vertex instances on average
in only 3.3 minutes while RELAXT-3 took 21.6 minutes and DLNET took 5.1
hours.

Let Tp,Tr,Tn denote running time (in CPU seconds) of DLNET, RELAXT-3
and NETFLO, respectively. A linear regression of the running times produced
the following models for:

e Grid-Square:

log,o Tp = .52log, |E| — 4.591 (R? = .9982)
log,o T = .58log, |E| — 6.496 (R* = .9950)
log,o Tr = .65log, |F| — 6.503 (R* = .9986),



22

1000 E [ E
100 7 NETFLO/DLNET -o- - é
g RELAXT-3/DLNET -e- - 3
10 ¢ E
Ratio 1k e
01 1; ...... o . ... .. o. ... P o ... . . . *;
T 0 .. o. ]
0.01 ¢ RO o o o 4
0.001 - ‘ ‘ ‘ ‘ ‘ -
29 210 211 212 213 214 216
Number of edges
Fic. 5.7. CPU time ratios for problem class Grid-Long
TABLE 5.13
DLNET statistics for problem class Grid-Long
Conj. Grad. Span. Tree Max Flow
PROB itr time | sort Kruskal | calls time |E| |VI|L—|1
n 512 12.4 0.11 | 0.02 0.01 1.3 0.06 511.8  1.00
n_1024 13.7 0.31 | 0.03 0.01 2.0 0.19 1025.2 1.00
n_2048 18.4 0.94 | 0.07 0.03 3.0 0.52 2041.7  1.00
n_4096 19.5 2.84 | 0.14 0.06 4.7 1.62 3858.1  0.94
n_8192 23.1 7.90 | 0.29 0.13 5.3 4.64 7796.4  0.95
n_16384 | 25.8 21.53 | 0.61 0.35 8.7 11.78 15116.0 0.92
n_32768 | 29.4 55.26 | 1.23 0.73 | 10.7 29.19 29620.6 0.90
n_65536 | 33.5 109.16 | 2.39 1.69 | 13.3 56.24 58405.7  0.89
TABLE 5.14
CPU times for problem class Grid-Wide
SIZE DLNET NETFLO RELAXT-3
PROB V] |E]| time itr time itr time itr
n 512 514 1040 3.7 19.7 0.2 956.3 1.1 3758.3
n_1024 1026 2096 10.8 26.0 1.0 2471.3 5.6 13963.7
n_2048 2050 4208 32.1  34.0 3.6 6143.7 29.4 48901.7
n_4096 4098 8432 88.3 35.7 14.0 14625.0 167.3 140421.0
n_8192 8194 16880 241.5  44.7 59.7 33214.0 1013.0 467138.7
n_16384 16386 33776 720.6 49.7 232.0 71172.7 6341.8 1607827.3
n_32768 32770 67568 1511.8 57.0 1003.3  156852.7 35670.5 5464625.0
n_65536 65538 135152 3756.6 65.3 4207.0 351092.3 | 176147.8 12211461.0
n_131072 | 131074 270320 | 11012.5 85.3 | 24619.6 786468.0 DID NOT RUN




218

100 3
i NETFLO/DLNET -o- - e ]
10 & RELAXT-3/DLNET e - e -
F o ]
L e .4
Ratio 1 ——— 4
E o .o E
¢ o - o ]
[ o ]
0.1 ¢ Lo o =
b E
0.01 | | | | | |
210 211 212 213 214 215 216 217
Number of edges
Fic. 5.8. CPU time ratios for problem class Grid-Wide
TABLE 5.15
DLNET statistics for problem class Grid-Wide
Conj. Grad. Span. Tree Max Flow
PROB itr ~ time | sort Kruskal | calls  time |E| &T‘l I
n_512 9.9 0.08 | 0.02 0.00 1.3 0.06 512.7 1.00
n_1024 10.8 0.20 | 0.03 0.01 2.0 0.16 1025.0 1.00
n_2048 11.2  0.48 | 0.06 0.03 3.0 0.50 2047.3  1.00
n_4096 10.3 1.47 | 0.14 0.07 3.0 1.27 4097.3 1.00
n_8192 87 3.02]0.29 0.16 4.0 5.31 8189.5  1.00
n_16384 9.3 8.61 | 0.63 0.40 4.3 1473  16363.7  1.00
n_32768 7.6 14.79 | 1.35 0.91 5.0 33.14 32765.0 1.00
n-65536 6.6 28.97 | 3.01 2.33 6.0 89.13 654245 1.00
n_131072 | 5.5 62.24 | 6.86 5.73 7.7 210.68 131020.2  1.00
o Grid-Wide:
log,o Tp = .43log, |E| — 3.675 (R? = .9974)
log,, Tn = .62log, |E| — 6.866 (R* = .9987)
logo Tr = .75log, |E| — 7.532 (R? = .9992),
e Grid-Long:
log,o Tv = .44log, |E| — 5.185 (R* = .9924)
logqo Tr = -46log, |E| — 4.737 (R? = .9949)
log, Tp = .531og, |E| — 4.585 (R* = .9981),

where R? is the coefficient of multiple determination.

23

e The conjugate gradient algorithm took on average 70, 5.5, and 33.5 iterations
on the largest instances of classes Grid-Square, Grid-Wide and Grid-Long,



24

respectively. Those instances have, respectively 262146, 131074 and 65538
vertices.

e For the largest instances of classes Grid-Square, Grid-Wide and Grid-Long,
the computation of the maximum weight spanning tree (sorting and Kruskal’s
algorithm) took respectively 1.8%, 17% and 3.7% of the total time taken by
the conjugate gradient algorithm (computing the spanning tree plus carrying
out the conjugate gradient iterations). Sorting accounted for 55%, 63% and
57% of the total spanning tree computation time for classes Grid-Density-8,
Grid-Density-16 and Grid-Increasing-Density, respectively.

e On the largest instances of Grid-Square, Grid-Wide and Grid-Long, DLNET
spent on solving maximum flow problems in the maximum flow stopping test
the equivalent of respectively 9.7%, 25.4% and 4.6% of the time spent on the
conjugate gradient algorithm.

e All restricted networks of the maximum flow stopping criterion were very
sparse. The largest restricted network densities for Grid-Square, Grid-Wide
and Grid-Long had |E|/(]V| — 1) values of 1.00, 1.00 and 1.00, respectively.

e For Grid-Square, DLNET stopped with primal estimate stopping in 86% of the
instances and with maximum flow stopping in the remaining 14%. For Grid-
Wide, DLNET stopped with primal estimate stopping in all of the instances
and with maximum flow stopping in none. For Grid-Long, DLNET stopped
with primal estimate stopping in 96% of the instances and with maximum
flow stopping in the remaining 4%. Primal-dual complementary solutions
were produced for all instances of Grid-Square and Grid-Long and in 93% of
the instances of Grid-Wide.

e The instances had optimal objective function values with 10 to 13 digits.

5.3.4. Minimum Cost Circulation Problems. Networks in this class are
formed on a grid of vertices embedded on a torus. Edges connect vertices in the same
row or column of the grid. All horizontal edges have the same orientation. Similarly,
all vertical edges are oriented in the same direction. Networks in the four sub-classes
Mesh-1, Mesh-2, Mesh-4 and Mesh-8 differ only with respect to vertex degree. All
vertices in a network from a specific sub-class have the same degree. In Mesh-1, each
vertex has an edge going to each nearest neighbor (one in the horizontal direction, the
other in the vertical direction). In Mesh-2, Mesh-4 and Mesh-8, edges go from a vertex
to, respectively, its 4,8 and 16 nearest neighbors. Costs are generated uniformly in
the interval [—1000, 1000]. Capacities are generated in the interval [—1000, 1000] with
a bias that makes longer edges have smaller capacities.

The instances are generated with the MCNF generator mesh.c of Goldberg [10].
All vertex sets are h X w grids. We generate all instances with h = w. In Mesh-
1, instances are generated having h = w = 16,32,...,512. In Mesh-2, instances
have h = w = 16,32,...,256. In Mesh-4, h = w = 16,32,...,256 and in Mesh-8
h=w=16,32,...,128.

The random number generator seeds 270001, 270002, and 270003 were used to
generate different instances for each problem size. For Mesh-1, 3 instances having
256,1024,...,65536 vertices were generated. A single 262144 vertex instance was
generated. For Mesh-2, 3 instances of sizes 256, 1024, ...,65536 vertices were gener-
ated. For Mesh-4, 3 instances of sizes 256,1024,...,65536 vertices were generated.
NETFLO was not run on two of the 65536 vertex instances. For Mesh-8, 3 instances of
sizes 256, 1024, ...,16384 vertices were generated.

Since NETFLO requires lower bounds [ = 0 we applied the change of variables



TABLE 5.16
CPU times for problem class Mesh-1

25

SIZE DLNET NETFLO RELAXT-3
PROB V| |E| time itr time itr time itr
n_256 256 512 1.6 15.7 0.2 1022.3 0.1 671.7
n_1024 1024 2048 8.6 17.7 3.7 5833.7 0.9 3077.3
n_4096 4096 8192 110.8 25.0 64.9 28962.3 10.3 13083.7
n_16384 16384 32768 1291.6 32.0 1426.1 151025.7 98.6 56668.7
n_65536 65536 131072 | 11462.6 49.3 29567.3 780700.7 857.2  226535.3
n_262144 | 262144 524288 | 95445.9 80.0 | 506716.0 4174524.0 | 13122.6 958396.0
100 ¢ 3
i NETFLO/DLNET o - ]
10 & RELAXT-3/DLNET - e - -
C . -q
Ratio 1E “O— E
£ o ]
L .0 - N
01l . . . 3
0.01 | | | | |
210 212 214 216 218

' =x—1to

resulting in

Number of edges

F1c. 5.9. CPU time ratios for problem class Mesh-1

min {¢'z | Az =b, | <z < u},

min {c'2' +c'l| Ax' =b— Al, 0< 2’ <u—1}.

Tables 5.16-5.17 and Figure 5.9 summarize runs for problem class Mesh-1. Ta-
bles 5.18-5.19 and Figure 5.10 summarize runs for problem class Mesh-2. Tables 5.20-
5.21 and Figure 5.11 summarize runs for problem class Mesh-4. Tables 5.22-5.23 and
Figure 5.12 summarize runs for problem class Mesh-8.

We make the following observations regarding this family of problems.

e On all sub-classes, the interior point code’s performance relative to the other
codes improved with problem size. However, RELAXT-3 was the fastest code
on all instances. On Mesh-1, a speedup ratio of 5.3 relative to NETFLO was
observed on the largest instances.
while DLNET took 26.5 hours. RELAXT-3 was 7.2 times faster than DLNET on
those instances taking 3.6 hours. On Mesh-2, DLNET was up to 8.6 times faster
than NETFLO, taking, on average, 3.4 hours to solve the largest instances,

NETFLO took, on average, 140.8 hours,



26

TABLE 5.17
DLNET statistics for problem class Mesh-1

Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls time |E| I ‘H{l T
n-256 8.5 0.04 0.01 0.00 1.0 0.05 255.0 1.00
n_1024 11.2 0.25 0.03 0.01 1.0 0.23 1023.3 1.00
n_4096 13.4 299 | 0.14 0.06 2.0 3.85 4096.2  1.00
n_16384 16.5 28.79 0.65 0.40 3.0 48.12 16387.4 1.00
n65536 | 20.1 169.16 | 3.15 2.33 4.3 31355  65553.5  1.00
n_262144 | 19.7 772.43 | 13.70 11.41 8.0 2630.95 2622124 1.00

TABLE 5.18
CPU times for problem class Mesh-2

SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 1024 2.7 17.0 0.7 3054.7 0.2 904.3
n_1024 1024 4096 16.3 21.7 13.9 18847.0 1.3 3645.0
n_4096 4096 16384 144.9 28.0 280.4 100593.7 16.4 16878.7
n_16384 | 16384 65536 1615.8 42.7 5201.7 527599.0 155.0 71540.7
n_65536 | 65536 262144 | 12297.3 53.3 | 106817.3 2828038.3 | 1408.6 295908.3

compared to 29.7 hours for NETFLO and 23.5 minutes for RELAXT-3. On
average, RELAXT-3 was 8.7 times faster than DLNET on those largest instances.
On the largest instances of class Mesh-4, DLNET was, on average, 15.6 times
faster than NETFLO, taking 5.6 hours, compared to 83.9 hours for NETFLO and
41.9 minutes for RELAXT-3. In these instances RELAXT-3 was 7.7 times faster
than DLNET. On the largest instances of Mesh-8, DLNET was, on average, 7.1
times faster than NETFLO, solving the problems in 1.6 hours, while NETFLO
took 11.5 hours and RELAXT-3 8.8 minutes. RELAXT-3 was 11.0 times faster
than DLNET in those instances.

Let Tp,Tr,Tn denote running time (in CPU seconds) of DLNET, RELAXT-3
and NETFLO, respectively. A linear regression of the running times produced
the following models for:

e Mesh-1:
log,o Tp = 491og, |E| — 4.344 (R? = .9969)
logyo Tr = -501og, |E| — 5.570 (R? = .9982)
logyo Tv = .64log, |E| — 5.570 (R? = .9993),
o Mesh-2:

log,o Tp = .461og, |E| — 4.304 (R? = .9975)
log,o Tr = .50log, |E| — 5.810 (R* = .9955)
log,o Ty = .65log, |E| — 6.620 (R* = .9998),



27

100 ¢ 3
i NETFLO/DLNET o - ]
10 £ RELAXT-3/DLNET - e - .
: . :
L o ]
Ratio 1E — o E
01 e 0 @ @ 7:1
I E
0.01 | | | | | | |
210 211 212 213 214 215 216 217 218
Number of edges
F1c. 5.10. CPU time ratios for problem class Mesh-2
TABLE 5.19
DLNET statistics for problem class Mesh-2
Conj. Grad. Span. Tree Max Flow
PROB itr time | sort Kruskal | calls  time |E| \\‘/\%
n_256 9.2 0.06 | 0.02 0.00 1.0 0.04 255.0  1.00
n_1024 9.4 0.32 | 0.07 0.01 1.7 0.26 1024.8 1.00
n_4096 12.2 2.86 | 0.30 0.08 2.0 2.61 4101.5  1.00
n_16384 | 14.8 22.77 | 1.40 0.49 3.7 33.92  16404.0 1.00
n 65536 | 17.1 139.79 | 6.46 3.00 5.3 310.95 65614.0 1.00
TABLE 5.20
CPU times for problem class Mesh-4
SIZE DLNET NETFLO RELAXT-3
PROB V| |E| time itr time itr time itr
n_256 256 2048 54 19.7 1.6 6761.0 0.3 994.3
n_1024 1024 8192 37.8 25.3 33.8 50395.0 2.7 4354.3
n_4096 4096 32768 309.1 34.3 798.4 285664.3 35.0 20556.3
n_16384 | 16384 131072 2554.1 45.0 18435.3  1512214.7 311.1 87593.0
n_65536 | 65536 524288 | 19409.6 63.3 | 302213.5 7659533.0 | 2511.8 358163.3

TABLE 5.21
DLNET statistics for problem class Mesh-/

Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls  time |E| &ﬁ‘l
n_256 9.7 0.10 0.03 0.00 1.7 0.05 255.3 1.00
n_1024 9.8 0.54 0.13 0.02 2.0 0.24 1025.8 1.00
n4096 | 11.7 4.01 | 0.61 0.08 3.0 2.33  4108.0 1.00
n_16384 | 14.4 31.35 2.90 0.52 4.3 27.81 16430.7  1.00
n_65536 | 16.1 172.38 | 12.90 3.34 6.3 273.03 65737.2  1.00




28

100 3
i NETFLO/DLNET -o- - ]
10 = RELAXT-3/DLNET e - .. -
i o ]
Ratio 1k - E
. ]
e o e E
0.1 o . ¢ E
IR E
0.01 | | | | |
211 212 213 214 215 216 217 218 219
Number of edges
Fic. 5.11. CPU time ratios for problem class Mesh-/
TABLE 5.22
CPU times for problem class Mesh-8
SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 4096 12.3  21.0 2.9 12368.0 0.6 1133.7
n_1024 1024 16384 93.1 27.7 74.7 115804.7 5.3 5365.3
n_4096 4096 65536 730.2 37.0 1806.6 712742.0 51.9 24169.3
n_16384 | 16384 262144 | 5822.2 56.7 | 41255.4 3688382.0 | 530.2 102671.0
100 3
i NETFLO/DLNET -o- - 1
10 & RELAXT-3/DLNET e - 3
i o ]
Ratio 1E — e
0-1 = -3
E o - - 3
‘E .................. P E
0.01 | | | | |
212 213 214 215 216 217 218

Fic. 5.12. CPU time ratios for problem class Mesh-8

Number of edges




TABLE 5.23

DLNET statistics for problem class Mesh-8

29

Conj. Grad. Span. Tree Max Flow
PROB itr ~ time | sort Kruskal | calls time |E| 1\‘/?11
n_256 10.9 0.24 | 0.06 0.00 2.0 0.06 256.3 1.00
n_1024 12.7 1.50 | 0.28 0.02 2.0 0.31 1028.7 1.00
n_4096 16.4 9.96 | 1.32 0.11 3.3 2.96 4123.0 1.01
n_16384 | 19.5 56.67 | 5.88 0.58 5.7 30.26 16497.7 1.01
e Mesh-4:
log,o Tp = .45log, |E| — 4.210 (R? = .9988)
log,o Tr = .50log, |E| — 6.007 (R* = .9973)
log,, T = .67log, |E| — 7.193 (R* = .9995),
e Mesh-8:

log,o Tp = .44log, |E| — 4.268 (R? = .9994)
logqo Tr = -491og, |E| — 6.089 (R? = .9982)
logyo Tv = .691og, | E| — 7.831 (R? = .9999),

where R? is the coefficient of multiple determination.

The conjugate gradient algorithm took on average 19.7, 17.1, 16.1 and 19.5
iterations on the largest instances of classes Mesh-1, Mesh-2, Mesh-4, and
Mesh-8, respectively. Those instances have, respectively 262144, 65536, 65536,1
and 16384 vertices.

For the largest instances of classes Mesh-1, Mesh-2, Mesh-4 and Mesh-8, the
computation of the maximum weight spanning tree (sorting and Kruskal’s
algorithm) took respectively 3.1%, 6.3%, 8.6% and 10.2% of the total time
taken by the conjugate gradient algorithm (computing the spanning tree plus
carrying out the conjugate gradient iterations). Sorting accounted for 54.6%,
68.3%, 79.4% and 91.0% of the total spanning tree computation time for
classes Mesh-1, Mesh-2, Mesh-4, and Mesh-8, respectively.

On the largest instances of Mesh-1, Mesh-2, Mesh-4, and Mesh-8, DLNET
spent on solving maximum flow problems in the maximum flow stopping test
the equivalent of respectively 33.0%, 20.7%, 14.4% and 4.8% of the time spent
on the conjugate gradient algorithm.

All restricted networks of the maximum flow stopping criterion were very
sparse. The largest restricted network densities for Mesh-1, Mesh-2, Mesh-4,
and Mesh-8, had | E|/(|V|—1) values of 1.00, 1.00, 1.00 and 1.01, respectively.
For Mesh-1, DLNET stopped with primal estimate stopping in 88% of the
instances and with maximum flow stopping in the remaining 12%. For Mesh-
2, DLNET stopped with primal estimate stopping in 73% of the instances
and with maximum flow stopping in 27%. For Mesh-4, DLNET stopped with
primal estimate stopping in 67% of the instances and with maximum flow
stopping in the remaining 33%. For Mesh-8, DLNET stopped with primal
estimate stopping in 67% of the instances and with maximum flow stopping
in the remaining 33%. Primal-dual complementary solutions were produced
for all instances.

The instances had optimal objective function values with 8 to 11 digits.



30

seed Random number seed: 270001, 270002, 270003
problem Problem number (for output): 1
nodes Number of nodes: m = 2"
sources Number of sources: 27 —2
sinks Number of sinks: 2e—2
density Number of (requested) arcs: ~ 2%+3
mincost Minimum arc cost: 0
maxcost Maximum arc cost: 4096
supply Total supply: 22 (z=2)
tsources Transshipment sources: 0
tsinks Transshipment sinks: 0
hicost Skeleton arcs with max cost:  100%
capacitated Capacitated arcs: 100%
mincap Minimum arc capacity: 1
maxcap Maximum arc capacity: 16

Fi1c. 5.13. NETGEN specification file for Netgen-Lo

TABLE 5.24
CPU times for problem class Netgen-Lo

SIZE DLNET NETFLO RELAXT-3
PROB V] |E| time itr time itr time itr
n_256 256 2048 6.5 21.3 0.7 3517.0 0.3 958.3
n_512 512 4096 16.7 23.7 2.5 9258.7 1.4 2528.0
n_1024 1024 8204 41.0 29.3 9.4 21541.7 5.0 5707.3
n_2048 2048 16415 116.3  33.7 40.2 49142.7 28.2 13035.3
n_4096 4096 32877 3084 37.3 202.5 113142.7 83.2 31832.3
n_8192 8192 65750 1025.8 47.0 1214.1 264955.0 306.1 69652.0
n 16384 | 16384 131442 3414.9  55.7 8447.5 601164.3 1445.2  148248.0
n_32768 | 32768 262909 | 11833.7 76.7 53656.2  1413134.3 3680.2 316751.3
n_65536 | 65536 525792 | 29366.2 83.3 | 309572.9 3273724.0 | 19888.8 656165.0

5.3.5. NETGEN Problems. Most computational studies of network optimiza-
tion codes in the past have used the MCNF generator NETGEN [20] of Klingman, Napier
and Stutz. In this sub-section we test the codes on two classes of networks generated
with NETGEN: Netgen-Lo and Netgen-Hi. Figure 5.13 lists the NETGEN parameters
used to generate the class Netgen-Lo. Networks in class Netgen-Hi are generated with
the same parameters except for maxcap, which is set to 16384. For both sub-classes 3
instances of each size are generated. Sizes correspond to the settings x = 8,9,...,16.

Tables 5.24-5.25 and Figure 5.14 summarize runs for problem class Netgen-Lo.
Tables 5.26-5.27 and Figure 5.15 summarize runs for problem class Netgen-Hi.

We make the following observations regarding this family of problems.

e With respect to NETFLO, the relative speedup of DLNET increases with size
for both sub-classes. On Netgen-Lo, an average speedup of 10.5 was observed
for the 65526 vertex instances with DLNET taking an average of 8.2 hours
while NETFLO took 86.0 hours. On Netgen-Hi, an average speedup of 6.6
was observed for the 65526 vertex instances with DLNET taking an average of
18.7 hours while NETFLO took 123.9 hours. With respect to RELAXT-3, the
relative speedup of DLNET increased with size for Netgen-Lo, but decreased
for Netgen-Hi. On the 65536 vertex Netgen-Lo instances, RELAXT-3 was



31

100 ¢ 3
i NETFLO/DLNET -o- - 1
10 & RELAXT-3/DLNET e - 4
F o ]
L o ]
Ratio 1 — E
£ .0 . }
i o e > . ]
L .o Lo - i
0.1 B s E
¢ ]
0.01 | | | | | | |
211 212 213 214 215 216 217 218 219
Number of edges
FiG. 5.14. CPU time ratios for problem class Netgen-Lo
TABLE 5.25
DLNET statistics for problem class Netgen-Lo
Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls  time |E| %
n_256 9.8 0.11 0.04 0.01 1.7 0.03 255.3 1.00
n_512 10.1 0.32 0.07 0.02 2.0 0.08 512.3 1.00
n_1024 9.6 0.62 0.14 0.03 2.3 0.19 1033.0 1.01
n_2048 10.2 1.78 0.31 0.08 3.0 0.69 2060.7  1.01
n_4096 11.1 4.86 0.60 0.17 3.0 2.21 4132.6 1.01
n_8192 12.6 13.60 1.31 0.46 4.3 12.13 8233.7  1.00
n_16384 | 14.2 40.32 2.95 1.28 5.3 46.18  16438.5 1.00
n 32768 | 15.8 101.37 6.41 3.03 7.7 158.25 33029.0 1.01
n_65536 | 17.5 237.19 | 12.83 6.58 8.3 409.82 66054.9 1.01
TABLE 5.26
CPU times for problem class Netgen-Hi
SIZE DLNET NETFLO RELAXT-3
PROB V| |E| time itr time itr time itr
n_256 256 2048 8.1 29.7 0.2 1102.0 0.2 431.3
n_512 512 4096 22.3 34.3 0.8 2980.3 0.6 806.3
n-1024 1024 8204 58.1 38.0 3.3 7768.0 2.5 1769.7
n_2048 2048 16415 172.5 42.7 18.0 20193.3 6.8 3955.0
n_4096 4096 32877 632.8 61.3 101.4 52000.7 16.6 8107.0
n_8192 8192 65750 1430.0 58.3 705.9 140144.0 50.3 17596.7
n_16384 | 16384 131442 5889.2 58.7 5010.3 397343.0 139.2 39109.0
n 32768 | 32768 262909 | 19176.1 124.7 57912.7 1151210.0 380.5 90430.0
n_65536 | 65536 525792 | 67475.8 200.0 | 446095.4 3462448.0 | 1136.5 211132.3




32

100 S
: NETFLO/DLNET -o- - i
10 & RELAXT-3/DLNET -e- - -
£ . E
r o ]
Ratio 1 E N e
F o ]
0.1 & 0 e -
F - E
T I . ]
$oo . . . . o ]
e
0.01 ‘ ‘ ‘ \ \ \ \
211 212 213 214 215 216 217 218 219

Number of edges

Fic. 5.15. CPU time ratios for problem class Netgen-Hi

TABLE 5.27
DLNET statistics for problem class Netgen-Hi

Conj. Grad. Span. Tree Max Flow
PROB itr time sort  Kruskal | calls  time |E| M%
n_256 10.5 0.11 | 0.03 0.01 2.3 0.01 2476 097
n_512 10.9 0.30 | 0.06 0.02 3.0 0.03 499.8  0.98
n_1024 13.4 0.81 0.13 0.04 3.0 0.07 1023.2 1.00
n_2048 14.8 2.49 0.29 0.09 4.0 0.26 1944.3  0.95
n4096 | 15.7 7.10 | 0.60 0.20 5.3 0.55 39809 097
n_-8192 15.6 17.13 1.31 0.50 5.3 3.19 7768.2  0.95
n.16384 | 31.7  84.12 | 2.86 1.26 5.7 8.88 15598.0 0.95
n.32768 | 29.0 167.00 | 6.30 270 | 123 4275 30670.5  0.94
n_65536 | 21.1 268.14 | 12.86 7.04 | 20.0 124.58 63939.0 0.98

on average 1.5 times faster than DLNET, with DLNET taking an average of
8.2 hours while RELAXT-3 took 5.5 hours. On the 65536 vertex Netgen-Hi
instances, an average speedup of 59.4 was observed with DLNET taking an
average of 18.7 hours while RELAXT-3 took only 18.9 minutes.

RELAXT-3 was the most sensitive code to changes in the edge capacities.
For the 65536 vertex networks RELAXT-3 was 17.5 faster on the Netgen-Hi
networks than on the Netgen-Lo. DLNET was 2.3 times faster on the 65536
vertex Netgen-Lo instances than on Netgen-Hi. NETFLO was 1.4 times faster
on the 65536 vertex Netgen-Lo instances than on Netgen-Hi.

Let Tp,Tr, Ty denote running time (in CPU seconds) of DLNET, RELAXT-3
and NETFLO, respectively. A linear regression of the running times produced
the following models for:



33

e Netgen-Lo:
logo Tp = .461og, |E| — 4.399 (R? = .9961)
logo Tr = .591log, |E| — 6.942 (R? = .9972)
log,, Tv = .7T1log, |E| — 8.174 (R* = .9842),
e Netgen-Hi:

log,, Tr = .47log, |E| — 5.883 (R? = .9914)
log1o Tp = -491og, |E| — 4.534 (R? = .9944)
log,o Ty = .77log, |E| — 9.418 (R? = .9900),

where R? is the coefficient of multiple determination.

The conjugate gradient algorithm took on average 17.5, and 21.1 iterations for
the 65536 vertex instances of classes Netgen-Lo, and Netgen-Hi, respectively.
For the 65536 vertex instances of classes Netgen-Lo and Netgen-Hi the com-
putation of the maximum weight spanning tree (sorting and Kruskal’s al-
gorithm) took respectively 7.6%, and 6.9% of the total time taken by the
conjugate gradient algorithm (computing the spanning tree plus carrying out
the conjugate gradient iterations). Sorting accounted for 66% and 65% of the
total spanning tree computation time for classes Netgen-Lo and Netgen-Hi,
respectively.

On the 65536 vertex instances of Netgen-Lo and Netgen-Hi, DLNET spent
on solving maximum flow problems in the maximum flow stopping test the
equivalent of respectively 15.9%, and 4.3% of the time spent on the conjugate
gradient algorithm.

The restricted networks of the maximum flow stopping criterion were very
sparse. The largest restricted network densities for Netgen-Lo and Netgen-Hi
had |E|/(]V] — 1) values of 1.01 and 1.00, respectively.

For Netgen-Lo, DLNET stopped with primal estimate stopping in 70% of
the instances and with maximum flow stopping in the remaining 30%. For
Netgen-Hi, DLNET stopped with primal estimate stopping in 85% of the in-
stances and with maximum flow stopping in the remaining 15%. Primal-dual
complementary solutions were produced for 81% of the Netgen-Lo instances
and 93% of the Netgen-Hi instances.

The instances had optimal objective function values with 7 to 13 digits.

5.4. Discussion. We conclude this section with a discussion based on statis-
tics taken from all instances solved in the experiment. Two tables and two figures
illustrate this discussion. Table 5.1 shows how DLNET stopped and what type of
optimal solutions were generated. Table 5.28 shows the regression models for each
problem class and for the combined set of problems. Figure 5.16 plots running times
for all codes on all instances in the experiment. Figure 5.17 plots conjugate gradient
iterations for all instances tested.

We make the following observations regarding the experimental results.

All codes solved all 242 instances to optimality. Instances in the problem set
had up to 13-digit optimal objective function values.

Overall, DLNET was both the fastest code and had the most predictable run-
ning times. A linear regression of each family-code data set was made. The
regression model used was

log;o T = B1 log, |E| + Bo,



34

10000000

1000000

100000

10000

1000
CPU

time
(secs)

100

10

0.1

0.01

: S :
L o -
L [ ) ,
. [
- DLNET * " =
E NETFLO o . E N E
' RELAXT-3 e ’ o R
— g8 s % 1
L * : |
| g % * |
: fot 5 4 E
i ° . *% . ]
L : 3 & . J
'-;*%*3 :
3 o o : ’ 3
: i *% . ! ]
. ' Y ' é o -
L § o ° a m
* . H
Pobel oo
[ * § ° e ° 3 ]
r * ° : ]
L H * ° o i
i S N ]
: £oe 0 E
s 1 bog ]
| * . ° i
* g $ s
| o e |
T %
8 s ]
L .
-t
\ \ \ \ \ \ \ \ \ \ \ \
29 210 211 212 213 214 215 216 217 218 219 220

Number of edges

Fic. 5.16. CPU times for all problem classes



TABLE 5.28

Regression coefficients for all family-code combinations

l Problem Class [ Code Bo b1 R?

DLNET -4.072 0.44 0.9967

Grid-Density-16 NETFLO -7.331 0.66 0.9944
RELAXT-3 -5.615 0.63 0.9975

DLNET -4.449 0.46 0.9903

Grid-Density-8 NETFLO -7.354 0.68 0.9890
RELAXT-3 -6.041 0.66 0.9954

DLNET -4.213 0.46 0.9976

Grid-Increasing-Density NETFLO -6.179 0.58 0.9996
RELAXT-3 -4.272 0.52 0.9964

DLNET -4.821 0.51 0.9986

RLG-Wide NETFLO -7.663 0.73 0.9992
RELAXT-3 -7.407 0.73 0.9992

DLNET -4.591 0.52 0.9982

Grid-Square NETFLO -6.496 0.58 0.9950
RELAXT-3 -6.503 0.65 0.9986

DLNET -3.675 0.43 0.9974

Grid-Wide NETFLO -6.866 0.62 0.9987
RELAXT-3 -7.532 0.75 0.9992

DLNET -4.585 0.53 0.9981

Grid-Long NETFLO -5.185 0.44 0.9924
RELAXT-3 -4.737 0.46 0.9949

DLNET -4.344 0.49 0.9969

Mesh-1 NETFLO -6.419 0.64 0.9993
RELAXT-3 -5.570 0.50 0.9982

DLNET -4.304 0.46 0.9975

Mesh-2 NETFLO -6.620 0.65 0.9998
RELAXT-3 -5.810 0.50 0.9955

DLNET -4.210 0.45 0.9988

Mesh-4 NETFLO -7.193 0.67 0.9995
RELAXT-3 -6.007 0.50 0.9973

DLNET -4.268 0.44 0.9994

Mesh-8 NETFLO -7.831 0.69 0.9999
RELAXT-3 -6.089 0.49 0.9982

DLNET -4.399 0.46 0.9961

Netgen-Lo NETFLO -8.174 0.71 0.9942
RELAXT-3 -6.942 0.59 0.9972

DLNET -4.534 0.49 0.9944

Netgen-Hi NETFLO -9.418 0.77 0.9900
RELAXT-3 -5.883 0.47 0.9914

DLNET -4.058 0.45 0.9555

All instances NETFLO -7.178 0.65 0.9253
RELAXT-3 -5.316 0.52 0.6458

35

where T is the CPU time in seconds, |F| is the number of edges and S;, fy are
the regression parameters to be estimated. Table 5.28 summarizes the results
of the regression. The term R? is the coefficient of multiple determination.
The fit was good (R? > 0.99) for all family-code combinations. On the



36

70 ° -
DLNET o
|V|1/2 . :
60 =
50 =

Conjugate 40

gradient °
iterations ;
(avg) .
. [¢]
. o [e]
30 - N o 8 B
. [e] [¢]
[¢] [e]
[e]
. o
: [e]
20 [ o le) o o ° o ]
: ° o o 8
.. o © o 8 ° o ° °
o 8 é 3
10 - é e S 8 ° i
o [e]
[e]
) ° ° ° ) o
0 Ll Ll Ll
100 1000 10000 100000 1000000

Number of vertices (|V])

Fic. 5.17. Average CG iterations for all problem classes

complete set of data, the regression models were

log,o Tp = .45log, |E| — 4.058 (R? = .9555)
log,o Tr = .52log, |E| — 5.316 (R? = .6458)
logo T = .65log, |E| — 7.178 (R? = .9253),

indicating that asymptotically DLNET was the fastest, followed by RELAXT-



37

3 and then by NETFLO. For small networks, the model ranks the codes in
the opposite order. The coefficients of multiple determination R? show that
DLNET had the most predictable running times, while RELAXT-3 had the most
variability. Figure 5.16 illustrates well the variability of the running times of
RELAXT-3.

e It is well known that interior point algorithms take few iterations in practice.
To take advantage of this phenomenon the computation of the ascent direction
must be carried out efficiently. Figure 5.17 illustrates the effectiveness of the
preconditioners implemented in DLNET. It shows that all average conjugate
gradient iteration counts fell well below the [V'|}/2 level, considered to be the
boundary between good and poor preconditioners.

e The computation of the maximum weight spanning tree took anywhere from
0.4 to 14% of the total conjugate gradient running time. Sorting, in most
cases, accounted for over half of the spanning tree computation time, going
from a minimum of 1.4% to a maximum of 91%. Kalinski and Ye [15] have
implemented a sorting scheme that makes use of the fact that the dual slacks
change very little from iteration to iteration. Using such a sorting scheme
could reduce the conjugate gradient running time by perhaps 10% in some
instances.

e Because the DAS algorithm allows for inexact ascent directions, a high conju-
gate gradient stopping tolerance of 10~3 was used successfully. Even though
tightening this tolerance could reduce the DAS iteration count (by using bet-
ter directions), the increased conjugate gradient running times do not justify
this tightening.

e The primal estimate stopping scheme worked well on instances with no or
little dual degeneracy. DLNET stopped in 72% of the instances with this
scheme. In those, the projected dual solution identified the optimal face in
95% of the time. In the remaining 4%, DLNET produced an optimal primal
integer solution and a dual interior solution with a duality gap of less than
1. By not allowing DLNET to stop with the absolute duality gap criterion,
primal-dual complementary solutions could have been produced for all of the
instances.

e For dual degenerate instances, DLNET stopped with the maximum flow stop-
ping criterion. This occurred in 28% of the instances. By definition, all of
those solutions are primal-dual complementary. The restricted networks used
in the maximum flow stopping scheme were all very sparse (about the size of
a tree) with the exception of the highly dual degenerate RLG-Wide instances.
Dinic’s algorithm is longer state-of-the-art for maximum flow computations
and perhaps the maximum flow scheme running times could be improved by
changing maximum flow algorithms. Perhaps the most waste was produced
by starting the maximum flow stopping scheme at iteration 10 of DAS and
repeating every 10 DAS iterations. DAS iterations were almost always greater
than 40 and in some cases up to 200. By starting the maximum flow stopping
scheme at iteration 40 and using a larger interval, of say 15 or 20 DAS itera-
tions between tests, DLNET running times could be halved in some instances.

6. Concluding Remarks. Efficient implementations of variants of the network
simplex algorithm and the relaxation method currently make up the set of tools used
by analysts to solve large scale MCNF problems. In this study, we have introduced a
new tool: the network interior point code DLNET.



38

In the computational experiments described in this study, DLNET proved to be
robust, not failing to find an integer primal optimal solution a single time while
using the same parameter settings throughout. Furthermore, it produced integer
primal-dual complementary pairs for the majority of problems solved. When it did
not produce a complementary pair, DLNET found a primal integer optimal solution.
For those instances, forcing a few more DAS iterations would probably produce the
primal-dual pair.

We showed that DLNET can be more efficient than NETFLO and RELAXT-3 in
several classes of large MCNF problems. In the experiments DLNET was up to 85 times
faster than RELAXT-3 and 18 times faster than NETFLO.

There were classes of problems where DLNET was not the fastest. Even for these
instances DLNET proved to be competitive with the third code (with the exception of
problem class Grid-Long).

Ongoing work on DLNET includes optimizing the conjugate gradient code, im-
plementing a more efficient maximum flow algorithm, implementing better heuristics
to control the transition from diagonal to spanning tree preconditioning and imple-
mentation of a centering step to avoid situations where the DAS algorithm encounters
difficulty in converging.

Acknowledgment. One of the authors (M.G.C. Resende) acknowledges several
insightful discussions with N. Karmarkar, K.G. Ramakrishnan and P. Vaidya. A
discussion with S.T. McCormick led the authors to the idea of solving a maximum
flow problem to find an integer primal-dual solution. This research was done as a part
of the First DIMACS International Algorithm Implementation Challenge, organized
by M.D. Grigoriadis, D.S. Johnson, C. McGeogh, C. Monma and R.E. Tarjan.

REFERENCES

[1] I. ADLER, N. KARMARKAR, M. RESENDE, AND G. VEIGA, Data structures and programming
techniques for the implementation of Karmarkar’s algorithm, ORSA Journal on Comput-
ing, 1 (1989), pp. 84-106.

2] , An implementation of Karmarkar’s algorithm for linear programming, Mathematical
Programming, 44 (1989), pp. 297-335.

[3] A. ARMACOST AND S. MEHROTRA, Computational comparison of the network simplex method
with the affine scaling method, Opsearch, 28 (1991), pp. 26-43.

[4] J. ARONSON, R. BARR, R. HELGASON, J. KENNINGTON, A. LoH, AND H. ZAKI1, The projective
transformation algorithm of Karmarkar: A computational experiment with assignment
problems, Tech. Report 85-OR-3, Department of Operations Research, Southern Methodist
University, Dallas, TX, August 1985.

[5] E. BARNES, A variation on Karmarkar’s algorithm for solving linear programming problems,

Mathematical Programming, 36 (1986), pp. 174-182.
D. BERTSEKAS AND P. TSENG, Relazation methods for minimum cost ordinary and generalized
network flow problems, Operations Research, 36 (1988), pp. 93-114.
[7] A. CHARNES, Optimality and degeneracy in linear programming, Econometrica, 20 (1952),
G

pp. 160-170.

. DANTZIG, Mazimization of a linear function of variables subject to linear inequalities, in
Activity Analysis of Production and Allocation, T. Koopsmans, ed., John Wiley and Sons,
1951, pp. 339-347.

[9] 1. DIKIN, [terative solution of problems of linear and quadratic programming, Soviet Mathe-
matics Doklady, 8 (1967), pp. 674-675.

[10] DIMACS, The first DIMACS international algorithm implementation challenge: The bench-
mark experiments, tech. report, DIMACS, New Brunswick, NJ, 1991.

[11] D. GOLDFARB AND M. GRIGORIADIS, A computational comparison of the Dinic and network
simplex methods for mazimum flow, Annals of Operations Research, 7 (1988), pp. 83-123.

[12] G. GoLuB AND C. VAN LOAN, Matriz Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.



21]

22]

23]

24]
[25]

[26]

(34]

39

M. GRIGORIADIS, An efficient implementation of the network simplex method, Mathematical
Programming Study, 26 (1986), pp. 83-111.

A. JosHI, A. GOLDSTEIN, AND P. VAIDYA, A fast tmplementation of a path-following algorithm
for maximizing a linear function over a metwork polytope, tech. report, Dept of Computer
Science, University of Illinois, Urbana, IL, 1991.

J. KALINSKI AND Y. YE, A decomposition variant of the potential reduction algorithm for linear
programming, Tech. Report 91-11, Dept of Management Sciences, The University of Towa,
Towa City, Iowa, 1991.

N. KARMARKAR AND K. RAMAKRISHNAN, Implementation and computational results of the
Karmarkar algorithm for linear programming, using an iterative method for computing
projections, tech. report, AT&T Bell Laboratories, Murray Hill, NJ, 1988.

, Private communication, 1988.

——, Computational results of an interior point algorithm for large scale linear programming,
Mathematical Programming, 52 (1991), pp. 555-586.

J. KENNINGTON AND R. HELGASON, Algorithms for metwork programming, John Wiley and
Sons, New York, NY, 1980.

D. KLINGMAN, A. NAPIER, AND J. STUTZ, Netgen: A program for generating large scale capaci-
tated assignment, transportation, and minimum cost flow network problems, Management
Science, 20 (1974), pp. 814-821.

K. MCSHANE, C. MONMA, AND D. SHANNO, An implementation of a primal-dual interior point
method for linear programming, ORSA Journal on Computing, 1 (1989), pp. 70-83.

S. MEHROTRA AND Y. YE, On finding the optimal facet of linear programs, Tech. Report 91-10,
Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL 60208, 1991.

C. MoONMA AND A. MORTON, Computational erperiments with a dual affine variant of Kar-
markar’s method for linear programming, Operations Research Letters, 6 (1987), pp. 261
267.

A. RAJAN, An empirical comparison of KORBX against RELAXT, a special code for network
flow problems, tech. report, AT&T Bell Laboratories, Holmdel, NJ, 1989.

M. RESENDE AND G. VEIGA, Computational study of two implementations of the dual affine
scaling algorithm, tech. report, AT&T Bell Laboratories, Murray Hill, NJ, 1990.

, An implementation of the dual affine scaling algorithm for minimum cost flow on
bipartite uncapaciated networks, tech. report, AT&T Bell Laboratories, Murray Hill, NJ,
1990. To appear in STAM Journal on Optimization.

R. TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1983.

M. Tobpp, The effects of degeneracy and unbounded variables on wvariants of Karmarkar’s
linear programming algorithm, in Large-scale Numerical Optimization, T. Coleman and
Y. L, eds., STAM, 1990, pp. 81-91.

M. Topp AND B. BURRELL, An extension to Karmarkar’s algorithm for linear programming
using dual variables, Algorithmica, 1 (1986), pp. 409-424.

T. TsucHIYA AND M. MURAMATSU, Global convergence of the long-step affine scaling algorithm
for degenerate linear programming problems, tech. report, The Institute of Statistical Math-
ematics, Tokyo, January 1992.

P. VAIDYA, Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners, tech. report, Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL, 1990.

R. VANDERBEI, M. MEKETON, AND B. FREEDMAN, A modification of Karmarkar’s linear pro-
gramming algorithm, Algorithmica, 1 (1986), pp. 395-407.

Y. YE, On the finite convergence of interior-point algorithms for linear programming, Tech.
Report 91-5, Dept of Management Sciences, The University of lowa, lowa City, Iowa, 1991.
To appear in Mathematical Programming B.

Q.-J. YEH, A reduced dual affine scaling algorithm for solving assignment and transportation
problems, PhD thesis, Columbia University, New York, NY, 1989.




	Introduction
	Computing the Ascent Direction
	Preconditioners
	Stopping with an Optimal Flow
	Stopping with Basic Solution
	Stopping with Maximum Flow Solution

	Computational Investigation
	Computing Environment
	DLNET Parameter Settings
	Experimental Results
	Transshipment Problems on a Grid
	Maximum Flow Problems
	Minimum Cost-Maximum Flow Problems on a Grid
	Minimum Cost Circulation Problems
	NETGEN Problems

	Discussion

	Concluding Remarks
	References

