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Abstract

In this paper we consider two special cases of the “cover-by-pairs” optimization problem
that arise when we need to place facilities so that each customer is served by two facilities
that reach it by disjoint shortest paths. These problems arise in a network traffic monitoring
scheme proposed by Breslau et al. and have potential applications to content distribution. The
“set-disjoint” variant applies to networks that use the OSPF routing protocol, and the “path-
disjoint” variant applies when MPLS routing is enabled, making better solutions possible at
the cost of greater operational expense. Although we can prove that no polynomial-time al-
gorithm can guarantee good solutions for either version, we are able to provide heuristics that
do very well in practice on instances with real-world network structure. Fast implementations
of the heuristics, made possible by exploiting mathematical observations about the relationship
between the network instances and the corresponding instances of the cover-by-pairs problem,
allow us to perform an extensive experimental evaluation of the heuristics and what the solu-
tions they produce tell us about the effectiveness of the proposed monitoring scheme. For the
set-disjoint variant, we validate our claim of near-optimality via a new lower-bounding integer
programming formulation. Although computing this lower bound requires solving the NP-hard
Hitting Set problem and can underestimate the optimal value by a linear factor in the worst
case, it can be computed quickly by CPLEX, and it equals the optimal solution value for all the
instances in our extensive testbed.

1. Introduction

This paper studies two new facility location problems relevant to questions of Internet traffic mon-
itoring and content distribution. These problems differ from their more standard predecessors in
that each customer must be served by two facilities rather than one. In addition, the service routes
must be shortest paths and vertex-disjoint.
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More specifically, suppose we are given a network modeled as an arc-weighted, strongly con-
nected directed graph G = (V,A), together with sets C ⊆ F ⊆ V , where C is the set of customer
locations and F is the set of potential facility locations. For each pair (c, f), c ∈ C and f ∈ F ,
let P (c, f) be the set of all shortest paths from c to f in G, which is nonempty by our strong
connectivity assumption (and would be so for typical computer networks).

Definition 1. Suppose c ∈ C is a customer location and {f1, f2} is a pair of potential facility
locations in F − {c}. Then {f1, f2} covers c in a pathwise-disjoint fashion if there exist paths
p1 ∈ P (c, f1) and p2 ∈ P (c, f2) that have no common vertex except c. Such a pair covers c in
a setwise-disjoint fashion if no path in P (c, f1) shares a vertex (other than c) with any path in
P (c, f2).

Definition 2. A subset F ′ ⊆ F is called a pathwise-disjoint (respectively, setwise-disjoint) cover
for C if, for every c ∈ C − F ′, there is a pair {f1, f2} ⊆ F ′ − {c} such that {f1, f2} covers c in a
pathwise-disjoint (respectively, setwise-disjoint) fashion. (Note that if c ∈ F ′, we are assuming that
c covers itself, and hence the set C is a valid cover for itself.)

The two problems we study are defined as follows:

Definition 3. In Pathwise-Disjoint Facility Location (PDFL), we are given G, C, F ,
and asked to find a pathwise-disjoint cover of minimum size for C. Setwise-Disjoint Facility
Location (SDFL) is the same problem except that the cover must be setwise-disjoint.

The Pathwise- and Setwise-Disjoint Facility Location problems arise in a variety of
networking contexts. Our primary motivation for studying them comes from a scheme proposed in
Gu et al. (2008) for active monitoring of end-to-end network performance, which we shall describe
in Section 2. However, both variants have a simple alternative motivation in terms of an idealized
content distribution problem, which we shall use to help motivate the definitions. Suppose we wish
to distribute data, such as video-on-demand, over a network that connects our service hubs but does
not provide a rapid method for repairing link or vertex failures. Suppose further that the service
interruptions caused by such failures would be costly to us, and that we want our distribution
process to be relatively robust against them. A common standard of robustness is immunity to
any single vertex or link failure (as for instance might result from an accidental cable cut). To
guarantee such resilience, we would need to place multiple copies of our data source in the network,
but because of the costs of hosting such copies, we would like to minimize the number of such
hosting sites that we deploy, rather than placing a copy of the data at each service hub.

Pathwise-Disjoint Facility Location models this application as follows. The network
G = (V,A) is the underlying fiber network linking various service hubs, with the directions of the
arcs all reversed, so that P (c, f) is the set of all shortest paths from f to c in the original network,
rather than those from c to f . The set C of customer locations is the set of service hubs that need
access to the data. The set F of facility locations is the set of potential sites where the data can
be hosted, which we assume includes the service hubs and possibly other network vertices. If we
assume the standard Internet default that shortest paths should be used for routing, the sets P (c, f)
now correspond to the paths in the fiber network over which we can route content from facility f to
customer c 6= f . If we further assume that link capacity is not an issue, then the pathwise-disjoint
cover of minimum size for C represents the minimum-cost choice of hosting locations for our data,
subject to the constraint that no single vertex or link failure can disconnect a (nonfailed) service
hub from all the data sources.

Setwise-Disjoint Facility Location models the variant of this application in which we
do not have control over the routing, but instead must rely on the network to do our routing for
us. Many Internet Service Providers (ISP’s) route packets within their networks using a shortest-
path protocol such as OSPF or IS-IS. In such protocols, packets must be routed along shortest
paths, where the weight (length) of an arc is set by the network managers so as to balance traffic
and optimize other performance metrics. If there is more than one shortest path leaving a given
router for a given destination, then the traffic is split evenly between the alternatives. This can
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be of further help in balancing traffic, and so traffic engineers may specifically set weights that
yield multiple shortest paths between key routers. The actual splitting is performed based on
computing hash functions of entries in a packet’s header (such as the source and destination IP
addresses). These functions are themselves randomly chosen, are subject to change at short notice,
and are typically not available to us. Thus when there are multiple shortest paths, although
contemporaneous packets from a given router to the same destination are likely to follow the same
path, the actual route chosen may not be readily predictable. All we know is that it must be a
member of the set P (c, f) of all shortest paths from c to f . This means that the only way to
guarantee vertex-disjoint paths to a customer c from two facility locations f and f ′ is to restrict
attention to pairs (f, f ′) such that the corresponding shortest path sets intersect only in c, and
consequently our problem becomes a Setwise-Disjoint Facility Location problem.

In this paper, we analyze the complexity of the PDFL and SDFL problems and propose and
test algorithms for them. A first observation is that both problems can be viewed as special cases
of Set Cover By Pairs (SCP), first described in Hassin and Segev (2005).

Set Cover By Pairs (SCP): Given a ground set U of elements, a set S of cover objects, and a set
T of triples (u, s, t), where u ∈ U and s, t ∈ S, find a minimum-cardinality covering subset S′ ⊆ S
for U , where S′ covers U if for each u ∈ U , there are s, t ∈ S′ such that (u, s, t) ∈ T .

PDFL and SDFL can be formulated as SCP by taking U = C, S = F , and

T = {(c, c, c) : c ∈ C} ∪ { (c, f1, f2) : c /∈ {f1, f2} and {f1, f2} covers c in a
pathwise-disjoint (setwise-disjoint) fashion

}.
We prove, subject to a complexity assumption, that no polynomial-time algorithm can approx-

imate SCP to within a factor which is 2log
1−ε n for any ε > 0. The best previous hardness bound

for SCP was just Set Cover-hardness (Hassin and Segev, 2005), which implies that no o(log n)
approximation algorithm can exist unless P = NP (Raz and Safra, 1997). We then show that SDFL
is just as hard to approximate as SCP, and that PDFL is at least as hard to approximate as Set
Cover.

These complexity results (assuming their widely-believed hypotheses) rule out both polynomial-
time heuristics that are guaranteed to find good covers and the existence of good lower bounds
on the optimal cover size that can be computed in polynomial time. Nevertheless, there still may
exist algorithms and lower bounds that are useful “in practice.” In this paper we describe and
experimentally evaluate our candidates for both.

We test four main heuristics. Each uses as a subroutine a standard randomized greedy heuris-
tic (Greedy) that actually solves the general SCP problem. The first of our main algorithms,
Greedy(400), is the variant of Greedy that performs 400 randomized runs and returns the best
solution found. The second is a genetic algorithm (Genetic) that uses Greedy as a subroutine.
The third and fourth, Single Hitting Set (SHS) and Double Hitting Set (DHS), apply only in the
Setwise-Disjoint case, exploiting the graph structure in ways that are unavailable to us in the
path-disjoint case.

The quality of the solutions that the heuristics produce can, for small instances, be evaluated
by applying a commercial optimization package (CPLEXTM Version 11 in our case) to an integer
programming formulation of the derived instances of SCP. This is usually feasible when |F | ≤ 150,
although running times grow dramatically with graph size. For the set-disjoint case we introduce
a new lower bound that exploits the graphical nature of our problem to create an instance of the
Hitting Set problem (a dual to Set Cover) whose optimal solution value can be no greater
than the optimal solution value for our problem. Although this lower bound can underestimate
the optimal by a linear factor in the worst case, and its computation requires solving an NP-hard
problem, it turns out to be easily computed using CPLEX and to give surprisingly good bounds
on all our test instances. In fact, it yielded the optimal solution value for all of them, since for
each instance at least one of our heuristics produced a solution whose value matched the bound.
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Moreover, when restricted to our test instances with optimized OSPF weights, the Hitting Set
solution itself was a feasible (and hence optimal) solution to our original problem. For the Path-
Disjoint case, our only lower bound is the comparatively weak one of considering the variant of the
problem where we drop the requirement that the paths be shortest paths. The optimum for the
resulting problem can be computed in linear time, but is substantially below the optimal PDFL
solution, where the latter can be computed. However, for these instances, it at least shows us the
penalty imposed by our restriction to shortest paths. For larger instances, we can use our Genetic
algorithm to provide some idea of how much we might be able to improve on Greedy(400) if time
were not an issue.

A final algorithmic challenge was that of constructing the derived SCP instances needed by all
our heuristics. This involves exploiting shortest path graphs to determine the (often quite large) sets
of relevant triples. Significant algorithmic ingenuity is needed to prevent this computation from
being a major bottleneck, and we will describe the mathematical observations and algorithmic
techniques that make this possible.

1.1. Outline

The remainder of the paper is organized as follows: In Section 2 we describe the network monitoring
application that motivated our study. In Section 3 we present our complexity results. In Section 4
we present the lower bounds we use for evaluating our cover-creating heuristics, and our algorithms
for computing them. This includes the integer programming formulations for computing the true
optima for our problems from their Cover-by-Pairs formulations. In Section 5 we describe the
heuristics we have devised, as well as the (nontrivial) algorithms we use to convert our problems to
their Cover-by-Pairs formulations. Our test instances are described in Section 6, and our experi-
ments and their results are summarized in Section 7. We conclude in Section 8 with a discussion of
further research directions, including preliminary results for significant variants on our problems,
such as the cases where not all members of C need be in F , and where facility locations have costs
and we wish to find a minimum-cost cover.

1.2. Related Work

This paper is, in part, the journal version of a conference paper (Breslau et al., 2011). However,
it contains substantial amounts of new material, including the new SDFL lower bound and related
algorithms, a faster version of the Genetic algorithm, details of the omitted proofs, key implemen-
tation details of our algorithms, and more detailed experimental results and analysis, including an
expansion of the experimental testbed to contain significantly larger synthetic and real-world in-
stances. The only previous work on Set Cover by Pairs, as far as we know, is that of Hassin and
Segev (2005), which is theoretical rather than experimental. That paper considers two applications
that were significantly different from those introduced here, and, from a worst-case point of view,
much easier to approximate. The paper also introduces a variant of the Greedy algorithm studied
here for the general SCP problem and analyzes its (poor) worst-case behavior.

2. Our Motivating Application: Host Placement for End-to-End
Monitoring

In this section, we describe the monitoring application of Gu et al. (2008) that motivated this
paper, an application that is more realistic than the content distribution application mentioned
in the previous section, but also more complicated. We describe it in some detail here to better
motivate our study, and also to present a key new lemma that is actually needed to guarantee that
the proposed monitoring scheme provides valid results.

Suppose we are an Internet Service Provider (ISP) and provide “virtual private network” (VPN)
service to some of our customers. In such a service, we agree to send traffic between various locations
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specified by the customer, promising to provide a certain level of service on the connections, but not
specifying the actual route the packets will take. (The actual routing will be done so as to optimize
the utilization of our network, subject to the promised levels of service.) Our network is a digraph
G = (V,A), in which the vertices correspond to routers and the arcs to the links between routers.
A key service quality metric is packet loss rate (the fraction of packets on a path that fail to reach
their destination). Let p(r1, r2) denote the probability that a packet sent from router r1 to router
r2 will successfully arrive. Our goal is to obtain estimates for p(ri, rj) for a collection of customer
paths Pri,rj . Note that, in contrast to our content distribution application, we here do not worry
about links’ failing (which would cause re-routing), but merely about their underperforming.

One way to measure the loss rate on the path in our network from router r1 to router r2 is
to attach extra equipment to the routers, use the equipment at r1 to send special measurement
packets to r2, and use the equipment at r2 to count how many of the packets arrive. If N packets
are sent and N ′ arrive, then N ′/N should be a good estimate for p(r1, r2), assuming N is sufficiently
large. Unfortunately, the process of authorizing, installing, and maintaining the extra equipment
can be time-consuming and expensive. Thus, this scheme may not be practical in a large network
with hundreds or thousands of distinct path endpoints. For this reason, Gu et al. (2008) proposed
an alternative scheme that may yield a substantial reduction in the total amount of monitoring
equipment needed.

Figure 1: The centralized monitoring scheme of Gu et al. (2008).

In this new scheme, all the monitoring is initiated from a single special measurement vertex
M , as originally proposed in Burch and Chase (2005) and Breslau et al. (2006). See Figure 1. To
measure loss on the path from vertex r1 to vertex r2, the equipment at M sends a packet on a
circular path that first goes from M to r1 (the hop-on path), then traverses the path from r1 to r2,
and finally returns from r2 to M (the hop-off path). Let us make the following assumptions:

1. Packets are only dropped by arcs, not by vertices. (This is a close approximation to reality in
modern-day networks, where an arc models the system consisting of the physical wire/fiber
connecting its endpoints, together with the line card at each of its ends.)

2. The three paths PM,r1 , Pr1,r2 , and Pr2,M are pairwise arc-disjoint. (As we shall show below,
this will typically be true under shortest-path routing.)

3. Loss rates on different arcs are independent of each other. (This is somewhat less realistic,
but is approximately true except in heavily-loaded networks.)

Then if N packets are sent on the circular path PM,r1,r2,M , the expected number N ′ of packets
successfully making the roundtrip will be N ′ = Np(M, r1)p(r1, r2)p(r2,M). Thus if we measure N ′

and have good estimates for p(M, r1) and p(r2,M), we will have the estimate

p(r1, r2) =
N ′/N

p(M, r1)p(r2,M)
.
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Figure 2: Scheme of Gu et al. (2008) for measuring loss rate of hop-on and hop-off paths.

Thus we have reduced the problem of measuring the loss rates for a collection of paths between
arbitrary vertices to that of measuring the loss rates on a collection of round-trip paths and esti-
mating the loss rates for a collection of hop-on and hop-off paths, all of which either begin or end
at M .

Breslau et al. (2006) proposed that these loss rates for a given path endpoint r be estimated
by sending packets along an (M, r,M) circuit and, if, here, N packets were sent and N ′ received,

concluding that p(M, r) = p(r,M) =
√
N ′/N . Unfortunately, this assumes that Internet perfor-

mance is symmetric, which it definitely is not. A quite accurate way to measure the loss rates
would of course be to put equipment at both ends of each of the hop-on and hop-off paths, but this
method would require installing equipment at just as many routers as in the original scheme for
measuring the Pr1,r2 paths directly – indeed at one more vertex, since now we need equipment at M .
Setwise- and Pathwise-Disjoint Facility Location arise in the context of a “tomographic”
method proposed by Gu et al. (2008) for estimating loss rates on hop-on and hop-off paths in a
potentially much more efficient fashion.

In terms of the facility location problems, the set C of “customer” vertices will consist of the
endpoints of the original paths whose loss rates we wish to estimate. The set F of “facility locations”
will be these plus those additional vertices that are capable of hosting monitoring equipment. In
this context, we will call F the set of (potential) monitoring vertices. Assuming as before that we
are in a shortest-path routing regime such as OSPF or IS-IS, the set P (r,m) is the set of all legal
routes from r to m.

We have already observed that, if we install equipment at r itself, it is straightforward to
estimate the loss rates p(M, r) (for the hop-on path to r) and p(r,M) (for the hop-off path from
r) – simply send packets between M and r and counting the number of them that successfully
arrive at their destinations. Suppose r is a path endpoint without equipment and (m1,m2) is a
pair of monitoring vertices that cover r in a pathwise-disjoint fashion. We will now explain how,
by installing monitoring equipment at m1 and m2, we can estimate both loss rates. See Figure 2.
Assuming we are allowed to specify the routing paths from r to m1 and m2, the fact that m1 and
m2 cover r in a pathwise-disjoint fashion means that we can pick legal routing paths P1 and P2

from r to m1 and m2, respectively, that are vertex-disjoint except for r (and hence arc-disjoint).
Moreover, as we shall see, we also have that the two paths P1 and P2 are arc-disjoint from the
path P from M to r, which itself is arc-disjoint from the path P ′ from r to M (under reasonable
assumptions).

This is a consequence of the following lemma, whose additional assumptions have to do with the
arc weights used by OSPF and IS-IS in their shortest path computations. These weights are set by
traffic engineers to help balance traffic loads and normally obey certain restrictions. First, they are
positive integers. Second, in practice networks are typically symmetric directed graphs, in that the
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Figure 3: Illustration for proof of Lemma 1.

digraph contains an arc (a, b), then it must also contain arc (b, a), and we assume that the weights
w for our digraph are themselves symmetric, in that for every arc (a, b), we have w(a, b) = w(b, a).
In real world networks, the weights typically are symmetric, and even networks with asymmetric
weights have very few arcs where w(a, b) 6= w(b, a).

Lemma 1. Suppose we are given a symmetric directed graph G = (V,A), a weight function w on
the arcs that is symmetric and positive, and three vertices a, b, c. If Pa,b and Pb,c are shortest-weight
paths in this digraph from a to b and b to c, respectively, then they are arc-disjoint.

Proof. Suppose that, contrary to the Lemma, Pa,b and Pb,c share a common arc (x, y). Then the
path Pa,b can be broken up into a path Pa,x followed by arc (x, y) followed by a path Py,b, where a
and x may possibly be the same node, as may y and b. Similarly the path Pb,c can be broken up
into a path Pb,x followed by arc (x, y) followed by a path Py,c. See Figure 3.

Note that each of the subpaths of these paths must themselves be shortest paths between their
endpoints since the overall path is itself a shortest path. For instance the path Px,b that is the
concatenation of (x, y) with Py,b is a shortest path from x to b. Let us extend the definition of
w to paths P by letting w(P ) be the sum of the weights of the arcs in P . Then, for instance,
w(Px,b) = w(x, y) + w(Py,b). If we let Pb,y be the path from b to y obtained by reversing the path
Py,b, then, since weights are symmetric, we must have w(Pb,y) = w(Py,b) = w(Px,b) − w(x, y) =
w(Pb,x)− w(x, y).

But now consider the path from b to c obtained by concatenating the two paths Pb,y and Py,c.
It has length w(Pb,y) + w(Py,c) = w(Pb,x) − w(x, y) + w(Py,c). On the other hand, by hypothesis,
the shortest path from b to c has length w(Pb,x) + w(x, y) + w(Py,c), and is hence 2w(x, y) longer
than the length of this Pb,y plus Py,c path. Since by hypothesis w(x, y) > 0, this is a contradiction.
�

The basic idea of the technique of Gu et al. (2008) for estimating the loss rate p(M, r) using
these paths is to send multicast packets from M to r along path P , replicate them at r, and then
send the copies along paths P1 and P2 to m1 and m2, respectively. After this, m1 and m2 report
back to M (using a guaranteed-delivery service such as TCP) as to which packets arrived. Based on
this information, M estimates p(M, r). The loss rate p(r,M) can be estimated by sending packets
along the (M, r,M) loop and counting the number that arrive back at M , using the fact that the
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loss rate for the loop should be p(M, r)p(r,M). (We note that a result like Lemma 1 is needed if
this method is to provide reliable estimates, a fact not observed in Gu et al. (2008), which contained
no such result.)

This scheme may require two monitoring hosts to measure the hop-on and hop-off rates for
a path endpoint r, rather than the single one that would be required if we placed the monitor-
ing equipment at vertex r itself. However, the scheme has the potential advantage that a given
monitoring vertex can be re-used to handle many different path endpoints. Thus there could be
a substantial net overall savings in the total number of monitoring vertices used, and hence in
equipment and operational cost.

As stated, the problem of finding a minimum-sized set of monitoring vertices at which to place
equipment so that we can estimate loss rates for all hop-on and hop-off paths is simply our original
Pathwise-Disjoint Facility Location problem. In practice, however, we will most-likely have
to rely on the ISP’s routing protocol (OSPF or IS-IS) to deliver our packets, and so, as with our
the first application, will face the Setwise-Disjoint Facility Location problem.

It should be noted that, in contrast to that first application, the necessity for vertex-disjoint
paths from r to m1 and m2, rather than simply arc-disjoint paths, is less clear, since by the previous
lemma we can only guarantee that these paths are arc-disjoint from the path from M to r. This is
a meaningless distinction in the Setwise-Disjoint case, however, in light of the following lemma.

Lemma 2. Suppose P (c, f) and P (c, f ′) are the sets of all shortest paths from vertex c to vertices
f and f ′, respectively, in a given digraph G. Then no path in P (c, f) shares an arc with any path
in P (c, f ′) if and only if no path in P (c, f) shares a vertex other than c with any path in P (c, f ′).

Proof. The no-shared-vertex case trivially implies the no-shared-arc case, so let us assume that there
are no shared arcs and argue that there are also no shared vertices other than c. Suppose there
were a shared vertex x 6= c. Then there is a shortest path P from c to f that is the concatenation
of a path Pc,x from c to x with a path Px,f from x to f , both themselves shortest paths, and a
shortest path P ′ from c to f ′ that is the concatenation of a path P ′c,x from c to x with a path P ′x,f ′
from x to f ′, both themselves shortest paths. But then the paths Pc,x and P ′c,x must have the same
length. Thus the path P ′′ that is the concatenation of Pc,x with P ′x,f ′ is a shortest path from c to

f ′, and must be contained in P (c, f ′). Moreover, since x 6= c, the path Pc,x contains at least one
arc a. Thus the path P ′′ ∈ P (c, f ′) shares the arc a with the path P ∈ P (c, f), a contradiction. �

A detailed description of the implementation of this scheme and the formulas used for estimating
p(M, r) and p(r,M) is presented in Gu et al. (2008).

3. Complexity

In this section we investigate the computational complexity of Pathwise- and Setwise-Disjoint
Facility Location, covering both general hardness results and a polynomial-time solvable special
case.

3.1. Hardness of Approximation

We first observe that the more general Set Cover by Pairs problem is not only NP-hard, but
also strongly inapproximable in the worst-case. Let n = |U |. Hassin and Segev (2005) observed
that SCP is at least as hard to approximate as Set Cover, which cannot be approximated to
within a o(log n) factor unless P = NP (Raz and Safra, 1997). We can prove much a stronger
inapproximability result (albeit with a slightly stronger complexity assumption).

Theorem 3. If NP 6⊆ DTIME(nO(polylog(n))), no polynomial-time algorithm can be guaranteed to

find a solution to SCP that is within a factor of 2log
1−ε n of optimal for any ε > 0.
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Proof. The theorem follows via an approximation-preserving transformation from the MinRep
problem of Kortsarz, who showed the above inapproximability bound to hold for MinRep (Kortsarz,
2001). The reader may readily confirm that, for the type of approximation bound being proved
here, it suffices for the transformation to provide a one-to-one correspondence between solutions
for the source and target instances (and their values) and take polynomial time (which also causes
the blow-up in the size of the constructed instance to be bounded by a polynomial).

In MinRep, we are given a bipartite graph G with vertex set V = A∪B and edge set E, where
|A| = |B| = kq for positive integers k, q, together with partitions of the vertex sets on each side of
the bipartite graph into k groups of q vertices, A1 through Ak on the left and B1 through Bk on
the right. We are also given an integer K. We ask whether there is a subset V ′ ⊆ V with |V ′| ≤ K
such that for every pair (Ai, Bj), 1 ≤ i, j ≤ k, if G contains an edge between a vertex in Ai and
one in Bj , then so does the subgraph induced by V ′.

We transform MinRep to SCP by letting the items to be covered be the pairs (Ai, Bj) where G
contains an edge between a member of Ai and a member of Bj . The set of covering objects is V , with
the item (Ai, Bj) covered by all pairs {u, v} ⊆ V in which u ∈ Ai, v ∈ Bj , and (u, v) ∈ E. There
is then a one-to-one correspondence between SCP cover sets and subsets V ′ meeting the MinRep
requirements, with the two sets having the same size. Hence any approximation guarantee for
SCP implies an equally good guarantee for MinRep, and so SCP must be at least as hard to
approximate. �

Theorem 4. The special cases PDFL and SDFL retain much of the complexity of SCP:

1. SDFL is at least as hard to approximate as SCP.

2. PDFL is at least as hard to approximate as Set Cover.

Proof. We shall initially prove the results without the restriction that C ⊆ F , and then sketch how
the proofs can be modified (by appropriate replication) to enforce the restriction.

For Claim 1, we will show how to transform an arbitrary instance of SCP into an equivalent
instance of SDFL. Suppose the given instance of SCP consists of sets U = {u1, . . . , up} and S =
{s1, . . . , sq} and relation T ⊆ U × S × S. By the definition of SCP, we may assume without loss of
generality that if (u, si, sj) ∈ T , then i ≤ j. In the corresponding instance of SDFL, there are four
types of vertices.

1. For each u ∈ U , a customer vertex cu ∈ C.

2. For each u ∈ U , a connector vertex xu.

3. For each s ∈ S, a facility location vertex fs ∈ F .

4. For each pair (si, sj), 1 ≤ i < j ≤ q, a pair vertex vsi,sj .

There are four types of edges, all having length 1. (The constructed digraph is symmetric, so
instead of constructing both (a, b) and (b, a), we just construct one undirected edge {a, b}.)

1. For each customer vertex cu ∈ C, an edge {cu, xu}.

2. For each connector vertex xu and each facility location vertex fs, an edge {xu, fs}.

3. For each pair (si, sj), i < j, an edge between cu and vsi,sj unless (u, si, sj) ∈ T .

4. For each pair (si, sj), 1 ≤ i < j ≤ q, the two edges {vsi,sj , fsi} and {vsi,sj , fsj}.

We claim that F ′ ⊆ F is a feasible cover for the constructed SDFL instance if and only if
S′ = {s : fs ∈ F ′} is a feasible cover for the original SCP instance. Note that in the constructed
digraph, there is a path of length two between each customer vertex cu and each facility location
vertex fsi , i.e., 〈cu, xu, fsi〉, and this is the shortest possible path. Thus P (cu, fsi) consists precisely
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of this path, together with all paths 〈cu, vsi,sj , fsi〉 where i ≤ j and (u, si, sj) /∈ T and all paths
〈cu, vsj ,si , fsi〉 where i > j and (u, sj , si) /∈ T . Thus the only vertex that a path in P (cu, fsi) can
possibly share with a path in P (cu, fsj ), i ≤ j, other than cu itself, is vsi,sj , which will be in shortest
paths from cu to fsi and to fsj if and only if (u, si, sj) /∈ T . Hence a pair {si, sj} will cover an
element u in the SCP instance if and only if the pair {fsi , fsj} jointly covers the customer vertex
cu in the constructed SDFL instance, so the optimal solution values for the two instances coincide.

To get an equivalent instance in which C ⊆ F , we replicate the above construction |S| + 1
times, while, for each s ∈ S, identifying the |S| + 1 copies of vertex fs. We then add the |S| + 1
copies of each customer vertex cu to F to obtain a new set F+ of facilities, one that now contains
all the customer vertices in our expanded instance. Let F ′ be an optimal solution to our original
instance. Note that it remains an optimal solution to the expanded instance. Thus if F ′+ is an
optimal solution to this new instance, we must have |F ′+| ≤ |F ′| ≤ |F | = |S| < |S| + 1. Thus at
least one of the |S| + 1 copies of our original instance fails to have any of its customer vertices in
F ′+. This implies that F ∩F ′+ must be a feasible solution for that copy, and so |F ′+| ≥ |F ′|. But this
implies that |F ′+| = |F ′|. So the optimal solution value for our expanded instance still equals that
for the original instance of SCP. Moreover, the expanded instance can be constructed in polynomial
time and has size within a polynomial factor of the size of the original SCP instance. Hence the
inapproximability result for SCP carries over to SDFL.

For Claim 2, we again prove the result without the restriction that C ⊆ F . The extension to
the case where the restriction holds follows by a replication construction similar to that given in
the proof of Claim 1. Our transformation is from Set Cover, which we already know cannot
be approximated to within a o(log n) factor unless P = NP (Raz and Safra, 1997). Given a Set
Cover instance, we construct an instance of PDFL whose optimal solution differs from the optimal
solution to the Set Cover instance by at most 1. Thus a polynomial-time o(log n) approximation
for our problem would imply one for Set Cover.

An instance of Set Cover consists of a ground set U = {u1, . . . , un} and a collection C =
{C1, . . . , Cm} of subsets of U . Assume without loss of generality that ∪C∈CC = U . Our constructed
graph has four types of vertices:

1. For each i, 1 ≤ i ≤ n, a customer vertex ci ∈ C.

2. For each i, 1 ≤ i ≤ n, a connector vertex xi.

3. For each j, 0 ≤ j ≤ m, a potential facility vertex fj ∈ F . Note that f0 is an added facility,
not corresponding to any member of C.

4. A universal connector vertex x0.

There are four types of (undirected) edges, all having length 1:

1. For 1 ≤ i ≤ n, an edge {ci, xi}.

2. For each i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ m, such that ui ∈ Cj , an edge {xi, fj}.

3. For each i, 1 ≤ i ≤ n, an edge {ci, x0}.

4. For each j, 0 ≤ j ≤ m, an edge {x0, fj}.

Note that for each pair i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ m, there is a path of length two from ci to fj
through x0, and this is the shortest possible path. Thus for each such i, j, P (ci, fj) contains only
paths of length two. More precisely, by construction, if ui /∈ Cj it contains just the path 〈ci, x0, fj〉,
and otherwise it contains that path plus the path 〈ci, xi, Cj〉.

Suppose first that C′ is a feasible solution to our Set Cover instance. Then it is easy to see
that {f0} ∪ {fj : Cj ∈ C′} is a feasible solution for our problem. Each ci is covered by f0 and an fj
such that ui ∈ Fj , which must exist because C′ is a cover. Thus the optimum for our constructed
instance is at most one more than the Set Cover optimum.
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Conversely, suppose that F ′ ⊆ F is a feasible solution for our constructed instance. For each
customer vertex ci, there must be at least one vertex in F ′ that does not equal f0, and so F ′−{f0}
must be a set cover for the original instance. Thus the optimum for the original instance is at most
the optimum for our constructed instance. As in the proof of Claim 1, we can now, by replication,
construct an instance of PDFL where all customers are facilities, and the optimum value remains
unchanged. Consequently, the two optima are within one of each other, which implies that a
polynomial-time algorithm with o(log n) approximation guarantee for PDFL would yield one for
Set Cover as well. �

3.2. The Special Case of Trees

In this section, we consider networks derived from trees, where for a given tree T = (V,E) the
corresponding network is the symmetric directed graph G = (V,A), with both (u, v) and (v, u) in
A whenever {u, v} ∈ E. We first note that, for such instances, the two problems PDFL and SDFL
coincide. This follows from the fact that for every ordered pair v, w of vertices, there is exactly one
simple path from u to v, which is of course the shortest path, and so the shortest path is unique.
More interestingly, the problems can be solved in polynomial (in fact, linear) time. Indeed, the
optimal solution has a simple combinatorial characterization, and can be constructed by a simple
tree traversal.

Theorem 5. The following procedure constructs an optimum cover under PDFL.

1. While T contains a leaf vertex v that is not a customer, delete v.

2. Return the set F ∗ of leaves of the residual tree as our cover.

Proof. Note that in the residual tree, all leaves are customers and hence facility locations, so
F ∗ ⊆ F , as required. Every customer in F ∗ is already covered by itself. If there is any customer
v /∈ F ∗, it must be an internal vertex of the residual tree, and hence there must be at least two
edges incident on v in the residual tree. Each such edge must lie on a path to a leaf of the residual
tree, and those paths can contain no common vertex other than v because we are dealing with a
tree. But all leaves of the residual tree are in F ′, so this means that v has vertex-disjoint shortest
paths to at least two members of F ′ and hence is covered by F ′. �

4. Algorithms

The complexity results of the previous section rule out (assuming widely-believed hypotheses) both
polynomial-time heuristics that are guaranteed to find good covers and the existence of good lower
bounds on the optimal solution value that can be computed in polynomial time. Nevertheless,
there still may exist algorithms and lower bounds that are useful “in practice.” In this section and
the next, we describe our candidates for both, beginning with lower bounds, which provide us with
a standard of comparison for evaluating the quality of the solutions our heuristics provide.

4.1. Optimal Solutions Using Mixed Integer Programming.

The best standard of comparison is, of course, the optimal solution value. It is feasible to compute
this for small instances using mixed integer linear programming, by essentially viewing our instances
of PDFL and SDFL as Set Cover by Pairs instances, modified to account for the fact that a
customer, in its role as a facility, can cover itself. This allows us to leverage general purpose
commercial software for solving our problems.

Our MIP formulation is simple and straightforward. It has a zero-one variable xf for each facility
f ∈ F , where xf = 1 if f is chosen for our cover. In addition, we have a real nonnegative variable
yf,f ′ for each pair {f, f ′} of facilities, subject to the constraints that yf,f ′ ≤ xf and yf,f ′ ≤ xf ′ .
Note that these together imply that yf,f ′ can be positive only if both xf and xf ′ equal 1 (i.e., are
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in the chosen cover). To guarantee that the chosen set is a cover, we have the following constraints,
one for each facility c ∈ C.

xc +
∑

f,f ′:{f,f ′} covers c

yf,f ′ ≥ 1 (1)

where “covers” is interpreted as “covers in a path-disjoint fashion” for PDFL and as “covers in a
set-disjoint fashion” for SDFL. The goal of our MIP is to minimize

∑
f∈F xf .

We derive the MIP instances from the corresponding PDFL/SDFL instances using the “triple
generation” algorithms described at the end of this section, and then attempt to solve them using
the version 11.0 CPLEXTM MIP solver. This MIP approach proved practical for a wide range of
“small” instances, enabling us to find optimal solutions to all but two of the instances in our test
set with |F | ≤ 150. Our detailed experimental results will be summarized in Section 7.

4.2. A Hitting Set Lower Bound

For larger instances of the set-disjoint variant of our problem (SDFL), our standard of comparison
is derived from a new lower bound, based on the construction of a special instance of the NP-hard
Hitting Set problem that CPLEX finds it particularly easy to solve. The bound depends on the
following simple lemma.

Lemma 6. Suppose G = (V,A) is an arc-weighted directed graph, and u, v, w are distinct vertices
in V . Let Pv be a shortest path from u to v, and let x be the first vertex encountered on this path.
If there is a shortest path Pw from u to w that shares a common vertex other than u with Pv, then
there is a shortest path P ′w from u to w that contains x.

Proof. Let y be the first vertex in Pw, other than u, that is also in Pv. If y = x, we are done,
so suppose not. Divide Pv into subpaths Pv,1 from u to y and Pv,2 from y to v. Note that x
remains the first vertex encountered in Pv,1. Similarly divide Pw into subpaths Pw,1 from u to y
and Pw,2 from y to w. Note that all these paths must be shortest paths from their sources to their
destinations. Thus, in particular, Pv,1 and Pw,1 must have the same length since they are both
paths from u to y. Hence, the concatenated path P ′w = Pv,1Pw,2 must be a shortest path from u to
w, and it contains x. �

For a given customer c, let N(c) denote the set of all vertices x such that (c, x) ∈ A – the
neighbors of c. For each facility f 6= c, let N(c, f) be that subset of nodes of N(c) that are included
on shortest paths from c to f . As a consequence of Lemma 6, a pair {f1, f2} will cover c in a
setwise-disjoint fashion if and only if N(c, f1) ∩N(c, f2) is empty. Thus a necessary (although not
sufficient) condition for F ′ ⊆ F to contain a pair {f1, f2} that covers c is that

⋂
f∈F ′ N(c, f) = ∅.

We can use this observation to construct an integer program whose feasible set contains all legal
setwise-disjoint covers, and hence whose optimal solution provides a lower bound on the size of the
optimal set-disjoint cover. As in the MIP for an optimal solution, we have zero-one variables xf
for all f ∈ F , with xf = 1 meaning that facility f is in our chosen cover, and we wish to minimize∑

f∈F xf . Now, however, these are the only variables, and we have a different type of constraint,
one for each pair of a customer c and a neighbor x of c:

xc +
∑

f 6=c and x/∈N(c,f)

xf ≥ 1. (2)

This IP can be viewed as a “Hitting Set” problem, where a facility “hits” a pair (c, x) if
x /∈ N(c, f) or if f = c. For this reason, we call the optimal solution to the IP the hitting set lower
bound (HSLB). It is easy to see that computing this bound is NP-hard. Thus its computation is
likely to require exponential time in the worst case, and our SDFL hardness of approximation result,
which only applies to polynomial-time algorithms, is not applicable. Nevertheless, the Hitting Set
Lower Bound can be quite bad: In the worst case it can underestimate the optimal solution value
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Figure 4: Instances where the HSLB underestimates the optimal cover size by a factor of n/3.

by a linear factor. See Figure 4, which depicts a scheme for instances where the HSLB is too low
by a factor of n/3. In this figure there are n + 3 facility vertices, f1, f2, f3, plus the customer
vertices c1 through cn, together with three additional vertices (v1, v2, v3) that are the neighbors of
the customer vertices. Each (undirected) edge in the figure represents a pair of oppositely directed
arcs of length 1. Note that for each neighbor vertex v, there is one of the fi whose shortest paths
from the customer vertices ci do not contain v. Thus, for n > 3, the solution to the HSLB integer
program is the set {f1, f2, f3}, for a lower bound of 3. On the other hand, for each ci and each
pair of facilities {fj , fk} ⊆ {f1, f2, f3}, we have N(ci, fj) ∩ N(ci, fk) 6= ∅ since it contains one of
the neighbor vertices. Thus no pair of these vertices covers any customer vertex. In addition, for
any customer vertex ch other than ci, all three neighbor vertices are on shortest paths from ci to
ch, so no other customer vertex can help cover ci either. Thus all the customer vertices must cover
themselves, and hence the optimal cover has size n.

Fortunately, the kind of structure occurring in Figure 4, where |N(c, f)|/|N(c)| = 2/3 for
all customer/facility pairs, does not tend to occur in practice. Because of the way networks are
designed and the way OSPF weights are typically set, the number of shortest path ties is typically
limited, and the ratios |N(c, f)|/|N(c)| are much smaller. In part because of this, the hitting set
lower bound is quite good in practice. Indeed, as we shall see in Section 7, the HSLB equaled
the optimal solution value for all our SDFL test instances. The solution to the IP was also often
a feasible (and hence optimal) solution to the original SDFL instance. Moreover, the hitting set
instances themselves turn out to be relatively easy for CPLEX to solve, so we were able to obtain
HSLBs for all our SDFL test instances in reasonable time, and usually get optimal solutions as
a welcome side-effect.. In light of these observations, we will also include our HSLB code in our
comparisons of solution-finding heuristics, albeit one that either produces an optimal solution or
no solution at all.

4.3. An Unconstrained Path-Disjoint Lower Bound

The previous lower bound applied only to the set-disjoint variant of our problem, and required a lin-
ear programming package to compute. For the path-disjoint variant (PDFL), the best polynomial-
time computable lower bound we currently have is not nearly as strong in practice, but can be
computed in linear time. It applies only to networks that are symmetric directed graphs and hence
can be modeled as undirected graphs, but, as remarked above, most real world networks have this
property. It equals the minimum cover size for the variant of PDFL where we drop the constraint
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Figure 5: Decomposition into biconnected components.

that our paths be shortest paths, and only insist that they be vertex-disjoint. Let us call the task
of finding such a cover as the unconstrained path-disjoint facility location problem (UPDFL). The
algorithm for solving the UPDFL problem relies on three observations.

1. Any undirected graph can be decomposed in linear time into its 2-connected components,
the resulting structure being treelike, with the 2-connected components playing the role of
vertices. (See Figure 5.)

2. If our network is 2-connected, then any pair of facility locations in it will cover all the
customers it contains.

3. We already have an easily modifiable algorithm for PDFL on trees (see Section 3.2).

The first observation is attributed to Hopcroft in (Aho et al., 1974), which describes the algo-
rithm in detail. To see the tree structure more clearly, call a vertex an articulation point if deleting
it from the graph breaks the graph into two or more separate connected components, and consider
the graph t(G) derived from G as follows. The vertices of t(G) are the leaves, the articulation
points, and for each 2-connected component C, a new vertex vC representing the component. The
edges consist of all original edges that did not connect two vertices in the same 2-connected com-
ponent, together with edges {u, vC} for every pair of an articulation point v and a 2-connected
component C that contains it. This graph cannot contain a cycle. If it did, such a cycle would
have to contain at least two vertices, each representing either a vertex not in any 2-connected
component or a maximal 2-connected set. However, the existence of the cycle would imply that
the set consisting of all the vertices and 2-connected components represented in the cycle would
itself be 2-connected, a contradiction. Thus t(G) has no cycles, and is a connected graph since by
assumption G is. Hence it is a tree.

The proofs of observations (2) and (3) go as follows:

Proof of Observation 2. By definition, if a graph G is 2-connected and u and v are distinct
vertices of G, then G contains two paths joining u to v whose only common vertices are u and
v themselves. Let u and v be two facility locations in our 2-connected graph G, and let c be a
customer vertex in G. If c ∈ {u, v} we are done, so we assume it is distinct from both. Let P1(u)
and P2(u) be two vertex-disjoint paths from u to c, and similarly, let P1(v) and P2(v) be two
vertex-disjoint paths from v to c. Such paths exist by the definition of 2-connectivity. We are done
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if either of P1(v) and P2(v) is vertex-disjoint from one of P1(u) and P2(u). So assume that both
P1(v) and P2(v) intersect both of P1(u) and P2(u). At most one of them can contain the vertex u,
so assume without loss of generality that P1(v) does not contain u, and let w be the first vertex it
contains that is an internal vertex of one of P1(u) and P2(u), say, without loss of generality, P1(u).
Then the path that starts with v, proceeds along P1(v) until it hits w, and then proceeds along
P1(u) until it reaches c, is vertex-disjoint from P2(u), and once again u and v cover c, and this
holds for all cases. �

Proof of Observation 3. Here is the needed modified version of the algorithm of Section 3.2.
We assume there is at least one customer, as otherwise the empty set is an optimal cover.

Call a 2-connected component a leaf component if it contains only one articulation point. As
usual, call a vertex a leaf if it has degree 1. Note that no leaf can be contained in a 2-connected
component, and that all nonleaf vertices that are not in a 2-connected components are articulation
points. The internal vertices of a 2-connected component are all its vertices that are not articulation
points. As in the algorithm of Section 3.2, we start with a pruning process. If a vertex is a leaf in
the current graph and not a customer, delete it to get a new “current graph.” Similarly, if a leaf
component has no internal vertices that are customers, delete all its internal vertices, leaving only
its (single) articulation point.

After the pruning is complete, the final graph G∗ is such that every leaf is a customer and every
leaf component contains an internal customer. There are two cases to consider:

1. G∗ contains no leaves or leaf components.

2. G∗ contains a leaf or leaf component.

The first case implies that G∗ is a 2-connected graph. By assumption, it must contain at least
one customer. If just one, say v, then {v} is an optimal cover. If more than one, then no single
facility can cover all of them, so pick any two customer vertices, say u and v, and {u, v} will be an
optimal cover by our second observation.

For the second case, first note that since all the leaves are now customers, they must be in any
optimal cover. Similarly, any cover must contain at least one facility in the interior to each leaf
component. To see this, let v be the articulation point for the component, and c an interior point
of the component that is a customer. If our purported cover contains no facilities interior to the
component, there must be two paths to c from facilities it does contain, but all such paths must
now contain v 6= c, and hence cannot be vertex-disjoint. Let F ∗ be a set consisting of all the leaves,
together with one internal customer from each remaining leaf component. By the above argument,
we know that the optimal cover must be at least of size |F ∗|. We now argue that F ∗ itself is a
cover, and hence an optimal one.

Consider any customer vertex in G∗ that is not in F ∗ and the corresponding vertex v in the
underlying tree t(G∗). This is v itself if v is an articulation point or a vertex not contained in
any 2-connected component, and otherwise is vC for the 2-connected component for which v is
an internal vertex. Note that every leaf of this tree either is a member F ∗ or corresponds to a
2-connected component containing a member. Thus if v corresponds to a nonleaf of the tree, it
must be covered by F ∗, since it has vertex-disjoint paths to at least two leaves. The only other
possibility is if v is an internal vertex of a leaf component C of G∗. But then F ∗ must contain a
vertex f 6= v that is one of C’s internal facility locations, since it contains at least one and does
not contain v. Let u be the single articulation point in C. By our second observation, there are
vertex-disjoint paths in C from v to to f and u. Since u itself must be connected to some leaf
outside of C, this means that v has vertex-disjoint paths to two members of F ∗. Thus F ∗ is an
optimal cover. �

As with the Hitting Set Lower Bound for SDFL, the UPDFL lower bound for PDFL is quite
bad in the worst case. For such examples we can restrict ourselves to 2-connected graphs, since, as
implied by the arguments above, there is no advantage to allowing nonshortest paths except between
vertices in the same 2-connected component. So consider the 2-connected graph schematized in
Figure 6, where the ellipsis stands for N − 3 additional connected vertex pairs in the middle row.
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Figure 6: Instances where the UPDFL lower bound underestimates the optimal cover size by a
factor that is linear in n. The filled-in vertices are the only customers/facilities.

Here the filled-in vertices are the customers and the empty vertices are neither customers nor
facilities. There are N customers in the middle row, and every PDFL cover must include all of
them, since any shortest path to a target customer in the row from any other customer vertex
(in the row above it or below it) has to go though the vertex connected to the target on its left.
However, an optimal UPDFL cover consists simply of the two customers at the top and bottom
of the figure, since the length-6 path from the top customer to each middle customer shares no
vertices with the length-2 path to it from the bottom customer. The total number of vertices is
n = 7N + 2, and so the N/2 ratio between the size of the two covers is linear in n.

Note that this is also a lower bound on how large a penalty we can experience by limiting
ourselves to shortest paths. For any given instance, if there is a gap between the UPDFL lower
bound and the PDFL cover we construct, that gap is the sum of (1) the amount by which the
number of monitors used in our constructed solution exceeds the optimal number, plus (2) the
penalty (in excess monitors needed) for restricting ourselves to shortest paths. (There may also, of
course, be penalties for not using shortest paths, such as added congestion and lessened monitoring
accuracy.)

5. Heuristics

5.1. Greedy Heuristic

The simplest, and most general, heuristic that we tested is a straightforward greedy heuristic,
denoted by Greedy in what follows. This is a heuristic for solving the problem described by
the MIP in Section 4.1, and can be applied both to path-disjoint and set-disjoint versions of the
problem. It consists of three phases.

1. Construct the triples {(c, f, f ′) : {f, f ′} covers c in a path-disjoint (set-disjoint) fashion} and
store them in appropriate data structures.

2. Initialize our cover F ′ ⊆ F to the empty set. Then, as long as F ′ does not cover all c ∈ C,
find an f ∈ F − F ′ such that F ′ ∪ {f} covers a maximum number of additional elements.
Since all customers are facilities, there is guaranteed to be a facility that will cover at least
one more customer.

3. Minimalize the cover by testing each facility in the cover in turn to see if its removal would
still leave a valid cover, and if so remove it.

16



Note that, except for the fact that we allow a customer to cover itself, this is essentially a greedy
algorithm for the Set Cover by Pairs problem. It differs from the “Greedy” algorithm of Hassin
and Segev (2005) for that problem, however. The latter does not include a minimalization phase,
and in its growth phase it chooses the best pair to add. It is hence likely to be significantly slower
and less effective in practice than our greedy variant.

Our implementation of Greedy uses randomized tie-breaking. It also allows two options for
starting the construction phase: either take a pair that covers the maximum number of customers,
or take a random customer, which at least covers itself. We also allow two options for the mini-
malization phase: either consider facilities in the reverse of the order in which they were added to
the cover, or consider them in random order.

None of these options (or combinations of options) seems to dominate any of the others, so
here our primary tests cover a multiple-run variant on Greedy (Greedy(400)), which performs
400 runs and returns the best solution found. In those 400 runs, we cycle through the four option
combinations, using each for 100 runs. Multiple runs help amortize the cost of triple generation.
The latter takes time Ω(|C| · |F | · |F |) and typically yields a set T of triples that is substantially
smaller than the |C| · |F | · |F |/2 upper bound, whereas the time for one construction/minimalization
cycle is O(|T | + |F |2). Moreover, as we shall see, the actual overall running times are not large
enough to represent an obstacle in the proposed applications, where the time to deploy a solution
will greatly exceed the time to compute it. Our experiments will, however, explore the tradeoffs
between robustness and number of iterations.

Aside from the triple-generation, which will be described in Section 5.5, the implementation of
Greedy is fairly straightforward, with two exceptions. First, to avoid the multiple cache misses
that would occur if we did many random accesses into the list of triples (c, f, f ′), we keep three
copies of that list, one sorted by the customer c, one by the larger-indexed of f and f ′, and one
by the smaller, with pointers into the start of the portion for each choice of the sorting key. The
list indexed by c is constructed as part of the triple generation process. The other two lists can be
computed in linear time by first precomputing how many triples there are for each key and reserving
space for them in the corresponding list, and then maintaining appropriate counters while the lists
are being constructed. The relevant portions of the lists for each facility f are accessed at most
four times, once at the start, once when (and if) f is added to the cover, once in preparation for
minimalization, and once when (and if) f is deleted. Another detail: Because we are storing the
data three times, we trade a bit of time to save space, by running the triple generation code twice.
The first run is used to compute the number of triples, which then allows us to reserve the correct
amount of space for each list of triples, rather than simply pre-allocating room for the maximum
number |C| · |F | · (|F | − 1) of triples.

Our second nonobvious implementation detail consists of the data structures used to handle
minimalization, where we need an efficient way of noticing when facilities are required, that is, can
no longer be deleted. Let us call a pair of facilities {f, f ′} valid for a customer c if the pair covers
c in the appropriate fashion, and both its members are still in our current cover. A facility f can
become required for one of two reasons:

1. f is also a customer and there are no longer any valid pairs for it.

2. There is a customer c such that every valid pair for c contains f .

In order to determine when these situations occur, we keep track of two types of counts. First, for
each customer c, we keep track of the current number mycount(c) of valid pairs for c. This makes it
easy to check when the first of the above two conditions occurs. Second, for each customer/facility
pair (c, f), we keep track of the current number covercount(c, f) of valid pairs for c that contain
f . This information is then stored in a set of linked lists, one for each customer c and number
n of pairs, where the list for (c, n) contains all those facilities f with covercount(c, f) = n. To
determine whether the second condition occurs, we simply look at the lists for (c, mycount(c)) for
all customers with mycount(c) less than the size of the current cover, since for a cover of size s,
there can be at most s − 1 valid pairs containing the same facility. It is not difficult to see that
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the total time for maintaining the data structures is O(|T |), and the total time for spotting all
the changes from nonrequired to required is at most |C| times the number of deletions, which is
O(|C| · |F |).

5.2. Genetic Algorithm

Genetic algorithms are variants on local search that mimic the evolutionary process of survival of the
fittest. Our genetic algorithm, called Genetic in what follows, uses the “random key” evolutionary
strategy proposed by Bean (1994), as modified by Gonçalves and Resende (2011) so as to bias the
choices of parents and the operation of crossovers. In this approach, the “chromosomes” that do
the evolving are not solutions themselves, but “random-key” vectors from which solutions can be
derived. (This is in contrast to traditional genetic algorithms, in which the chromosomes are the
solutions themselves.)

As with Greedy which it uses as a subroutine, our Genetic algorithm applies to the MIP
formulation of the set-disjoint and path-disjoint versions of the problem, and does not directly
exploit any graph-theoretical properties of the underlying network. Let the set of facilities F =
{f1, f2, . . . , fk}. In Genetic, each chromosome is a 0-1 vector (gene1, . . . , genek) of length k. We
derive a solution (cover) F ′ from such a chromosome as follows: Start with F ′ = {fi : genei =
1, 1 ≤ i ≤ k}. If F ′ is already a cover, halt. Otherwise, complete F ′ to a cover using our basic
Greedy algorithm (without randomization or minimalization). The “fitness” of the chromosome
is then the size of the resulting cover F ′.

The overall genetic algorithm starts by creating a population of p randomly generated chromo-
somes, in which each gene has an equal probability of being 0 or 1. The population then evolves in a
sequence of generations. In each generation we start by computing the solution for each member of
the population, yielding its fitness. The top 15% of the population by fitness (the “elite” members)
automatically pass on to the next generation’s population. In addition, to provide diversity, 10%
of the next generation consists of randomly generated chromosomes, like those generated initially.
For the remaining 75%, we repeat the following “biased crossover” construction: Pick a random
member (x1, x2, . . . , xk) of the top 15% of the current generation’s population and a random mem-
ber (y1, y2, . . . , yk) of the remaining 85%. The “child” (z1, z2, . . . , zk) of this pairing is determined
as follows: For each i, independently, set zi = xi with probability 70%, and otherwise set zi = yi.

This scheme insures that the best solution always survives into the next generation, where it
may continue as champion or be dethroned by a better solution. Generations are continued until q
have gone by without any improvement in the fitness (cardinality) of the best solution, which we
then output. Our code includes the option of minimalizing this final solution, but in practice this
never has helped.

In our results for Genetic we typically took p = min{300, |F |} and q = |V |. For these and
the other parameters of the algorithm (top 15%, etc.) we chose values based on preliminary exper-
imentation and on intuition derived from applications of this approach to other problems. They
appear to yield a good tradeoff between running time and quality of solution for our application,
but we make no claim as to their optimality.

In our experiments, Genetic did not prove competitive for the set-disjoint case. The much
faster heuristics of the next two sections, which exploit the properties of that case, found optimal
solutions for all our test instances. In the path-disjoint case, where, for our larger test instances,
multiple-iteration Greedy is the only competition, and where we have no readily-computable lower
bound that is as good as HSLB is for the set-disjoint case, Genetic can at least give us some idea
of the extent to which Greedy(400) can be improved upon.

5.3. The Single Hitting Set Heuristic (SHS)

This section describes a simple heuristic that applies to the set-disjoint variant of our problem
(SDFL), and is based on Lemma 6 and our Hitting Set lower bound for that variant. Instead
of optimally solving the NP-hard Hitting Set problem described in Section 4.2, we find a not-
necessarily optimal solution using a straightforward greedy hitting set heuristic: Let X ⊆ F denote
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the hitting set we are building, initially the empty set. While X is not a valid hitting set, repeatedly
add that facility that hits the most as-yet-unhit (customer,neighbor) pairs, ties broken randomly,
where a facility f hits a pair (c, v) if either f = c or v /∈ N(c, f). Once X is a valid hitting set,
we check whether it is also a valid cover of all the customers and, if not, we extend it to one using
Greedy, this time including randomization and minimalization. (Minimalization is applied even
if X is itself already a cover.)

As in Greedy(400) we use this simple heuristic in a multi-iteration scheme, where we take
the best solution found. This allows us to exploit the variance introduced by all the randomization
– in addition to all the randomized tie-breaking, we also alternate between reverse delete and
randomized delete in the minimalization phases. We shall denote this scheme by SHS(k), where k
is the number of iterations, again typically 400.

Since SHS(k) is a polynomial-time algorithm, Theorem 4 implies that we cannot prove a poly-
logarithmic worst-case performance guarantee for it unless a widely-believed conjecture is false.
However, in practice the initial hitting set X is typically close to a cover, and so the following
provides an informative bound.

Theorem 7. For a given instance I of SDFL based on a graph G = (V,A), let OPT(I) be an
optimal cover, and suppose we run SHS one time, with X(I) being the hitting set generated and
SHS(I) being the final cover. Then, if we set ∆ = |SHS(I)| − |X(I)|, the number of facilities that
needed to be added (removed) to turn X into a minimalized cover, we have

SHS(I) ≤ (ln(|A|) + 1) ·OPT(I) + ∆.

Proof. This follows from the fact that the optimal solution to the hitting set problem of Section
4.2 is a lower bound on OPT(I), together with the result of Johnson (1974) and Lovász (1975) that
the greedy algorithm for Set Cover (and hence for Hitting Set) has worst-case ratio at most
lnn+ 1, where n is the size of the set being covered/hit. �

Note that the lnn + 1 bound for the greedy Hitting Set heuristic is essentially the best
possible guarantee for a polynomial-time algorithm for this problem, as follows from Bellare et al.
(1993), Feige (1998), and Alon et al. (2006). In practice, however, the greedy Hitting Set
heuristic typically returns a set of size much closer than this to the optimal, often only a single-
digit percentage above optimal. As we shall see, the performance of SHS(k) is similarly good.

5.4. The Double Hitting Set Heuristic (DHS)

This section describes a second heuristic for SDFL that exploits Lemma 6, as well as the way OSPF
weights tend to be set. It involves computing two hitting sets rather than one, but is a good match
for SHS, in that both heuristics perform very well and neither consistently dominates the other.

As remarked above, while OSPF can split traffic in the case of multiple shortest c → f paths,
the amount of splitting that occurs in practice seems to be limited. The following two definitions
provide a new way to quantify this effect.

Definition 4. A potential facility location f is good for customer vertex c if f 6= c and |N(c, f)| = 1,
that is, all shortest c→ f paths leave c via the same arc.

If there is just one shortest c → f path, clearly f is good for c, but f may be good for c even
when there are many c → f paths. Note that if f is good for c, then, under OSPF, there can be
no splitting at c of the traffic from c to f , although splitting at later vertices in the path would be
possible.

Definition 5. Let t be an integer, 1 ≤ t ≤ |F |. A customer vertex c is t-good if there are t or
more good potential facility locations f for c (and t-bad otherwise).
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For our test instances, inspired or derived from real-world networks and models, a large majority
of the customers tend to be t-good, even for t ∼ |F |/2, and almost all are 1-good. Our Double
Hitting Set heuristic (DHS) takes t as a parameter, and is designed to cover the t-good customers
nearly optimally, via a union X ∪ Y of two hitting sets, leaving the t-bad customers, if any, to be
covered via the Greedy algorithm. Let Ct denote the set of all t-good customers. For a given t,
we shall, when it makes a difference, denote the algorithm by DHSt.

The first step of DHSt is to choose one good potential facility location f ∈ F for each c ∈ Ct,
without choosing too many vertices in total. For each such c, let Sc be the set consisting of c plus
all the good potential facility locations for c. By the definition of t-good and the fact that C ⊆ F ,
we must have |Sc| ≥ t+ 1 ≥ 1. We want to choose a small set X ⊆ F such that X ∩ Sc 6= ∅ for all
t-good customers c. In other words, we want an X that hits (intersects) all such sets Sc. We again
settle for using the standard greedy Hitting Set heuristic, as described in the previous section,
to construct a hitting set X that we hope is near-optimal.

Next, let C ′ ⊆ Ct be the set of t-good customers c covered by X, either because c ∈ X or because
there exist distinct f1, f2 ∈ X such that c is covered by {f1, f2} in a setwise disjoint fashion. Let
C ′′ = Ct−C ′, and for each customer c ∈ C ′′, choose a facility fc ∈ X ∩Sc. Note that by definition
of C ′′, we have fc 6= c, so let xc ∈ N(c) be the unique neighbor of c which is on all shortest paths
from c to fc. This choice is unique since the fact that fc ∈ Sc implies that fc is good for c, and so
by definition all shortest paths from c to f leave c through the same arc.

Our second Hitting Set problem is designed so any solution Y will, for each c ∈ C ′′, contain
either c itself or a facility f 6= c such that {fc, f} covers c is a setwise disjoint fashion. The Hitting
Set problem is specified as follows. For each such customer vertex c, let Fc consist of c together
with all potential facility locations f 6= c for which all shortest c→ f paths avoid xc. Note that by
Lemma 6, for any f ∈ Fc (other than c itself), the fact that fc is good for c and the definition of xc
together imply that the pair {fc, f} will cover c in the desired fashion. We thus have the following:

Lemma 8. Given X as above, any hitting set Y of {Fc : c ∈ C ′′} is such that X ∪ Y is a cover of
C ′ ∪ C ′′ = Ct, the set of all the t-good customer nodes c.

For the DHS algorithm, we also use the greedy Hitting Set heuristic to produce Y . At this point,
we have a cover X ∪Y for Ct. DHS concludes by using Greedy to extend X ∪Y to a minimalized
cover F ′ of all the customers, not just the t-good ones.

As with SHS, we will consider multi-iteration schemes, DHSt(k), where we perform k inde-
pendent runs of DHSt, in each using randomized tie breaking when running the greedy Hitting
Set heuristic and the final Greedy completion phase, and alternating between reverse and ran-
dom deletes in the minimalization phases. Our main experiments will be with DHS1(400) and
DHSb|F |/2c(400), which seemed somewhat complementary in our initial, single-iteration trials. For
simplicity, we shall denote the latter by DHSH(400) (with the H standing for “half”).

As with SHS(k), since DHSt(k) is a polynomial-time algorithm, Theorem 4 implies that we
cannot prove a polylogarithmic worst-case performance guarantee for it unless a widely-believed
conjecture is false. However, in practice the initial hitting set X is typically quite small, and often
there are very few t-bad customers, so meaningful bounds are possible.

Theorem 9. Suppose 1 ≤ t ≤ |F |, and let I be an instance of SDFL with at least one t-good
customer. Let OPTt(I) be the size of an optimal cover for the set Ct of all t-good customers in
I. Suppose we run DHSt one time on I, with X(I) and Y (I) being the two hitting sets generated,
which, as observed constitute a cover of Ct. Then,

|X ∪ Y | ≤ (ln(|Ct|) + 1) ·OPTt(I) + |X|

and, if t ≥ |F |/3, we have

|X ∪ Y | ≤ (3.47 · ln(|Ct|) + 2) ·OPTt(I)

Note that, for our implementation choice of t = b|F |/2c, we have t ≥ |F |/3 as long as |F | ≥ 2.
Also, the cover of all of C produced by DHSt can exceed |X ∪ Y | by at most the number |C − Ct|
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of t-bad customers, so if almost all customers are t-good, the above bounds will reflect the overall
performance of DHS. Finally, note that the logarithm here is of |C| or something less, whereas for
the analogous Theorem 7 for SHS, the logarithm was over the potentially much larger |A|, which
might affect the relative constant factors in the bounds.

Proof. Observe that the sets Fc in our second hitting set constitute a subset of those used in our
Hitting Set lower bound, restricted to the t-good customers. Thus the optimal hitting set for
this second problem cannot be larger than OPTt(I). Thus, by the results of Johnson (1974) and
Lovász (1975) and the fact that, by assumption, Ct 6= ∅, we have |Y | ≤ (1 + ln |C|) ·OPTt(I), and
the first claim follows.

We cannot apply the same argument to the setX, since in constructingX we restricted attention
to good potential facility locations, and OPTt(I) need not be so restricted. However, a different
argument applies when t ≥ |F |/3, which will lead to the proof of our second claim. This choice of
t means that, for each t-good vertex c, |Sc| ≥ |F |/3. Therefore,

∑
c is t-good |Sc| ≥ |Ct| · |F |/3,

and so some potential facility location f must be in at least |Ct|/3 of the sets. Consequently, the
greedy choice must hit at least that many sets. By essentially the same argument, it must hit at
least 1/3 of the remaining unhit sets each time it makes a choice, and so must have completed
constructing its hitting set X after y steps, where (2/3)y|C| < 1. This means it suffices that
y > ln(|C|)/ ln(3/2) > 2.47 · ln(|C|), and so |X| ≤ 1 + 2.47 · ln(|C|). The second claim follows. �

5.5. Triple Generation.

All our cover-generation algorithms require the generation of the set of relevant triples (c, f1, f2)
(set-disjoint or path-disjoint) used by our basic Greedy algorithm – the algorithms other than
Greedy, either use it as a core-subroutine (Genetic) or as a fallback device to complete the
cover they generate (SHS and DHS). Because this set is potentially of size Θ(|C| · |F |2), and would
naively take significantly more time than that to generate, its computation typically constitutes a
significant portion of the running time. In this section we show how the time can be reduced to
O(|V |3) for real-world networks, in both the set- and path-disjoint cases.

In what follows, let n = |V | and m = |A|. For real-world data networks, we may assume that
m ≤ an for some relatively small constant a. We also have that |C| ≤ |F | ≤ n, although both |C|
and |F | may be proportional to n. Let TS and TP be the sets of triples needed by Greedy in the
set-disjoint and path-disjoint cases, respectively.

Let us first consider the set-disjoint case. A triple (c, f1, f2) is in TS if c ∈ C, f1, f2 ∈ F , and
no shortest path from c to f1 shares any vertex other than c with any shortest path from c to f2.
The naive way to test this would be to construct, for each fi, the set Si of vertices on shortest
paths from c to fi, and then testing whether Si ∩Sj = {c}. These sets could conceivably be of size
proportional to n, yielding a running time that could be proportional to |C||F |2n, so the best we
can say about the running time of such an algorithm is that it is O(n4).

However, recall from Lemma 6 that if Si∩Sj contains some vertex other than c, then it contains
a vertex that is a neighbor of c. Thus we may restrict attention to the sets Ni of vertices adjacent
to c that are on shortest paths to fi. To compute these sets we first construct a shortest path graph
from c to all other vertices in time O(m log n), and then for each facility f we can compute Ni by
a single backward traversal of the shortest path graph from f in time O(m). For each pair fi, fj ,
the intersection test can then be performed in time O(outdegree(c)). Amortized over all customers
in C, the tests for a given pair fi, fj take time O(

∑
c∈C outdegree(c)) = O(m). Thus we get an

overall time bound of O(m log n|C| + m|F | · |C| + m|F |2) = O(n2m) under our assumptions that
m is O(n).

For the pathwise-disjoint problem, the naive algorithm is even worse, since for a given triple
c, f1, f2, there may be exponentially many paths of potential length Ω(n) to compare. Here we
must be more clever. We first observe that we can actually reduce the test to a simple network flow
problem, by augmenting the shortest path graph with a new vertex t, adding arcs from f1 and f2
to t, giving all vertices and edges capacity one, and asking whether there is a flow of value 2 from
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c to t. Next, we observe that this is a particularly easy flow problem, which can be solved in linear
time as follows.

As before, for a given customer c we begin by computing a shortest path graph from c to all
other vertices in time O(m log n), to be amortized over all facilities. Set the capacities of all the
arcs to 1. We then add a new vertex t, and edges of length and capacity 1 from all facilities f to
t. To handle a given candidate pair (f1, f2), we pick some shortest path from c to f1 using the
shortest path graph, and extend it to a shortest path from c to t by adding the link from f1 to t.
This yields a flow of 1 from c to t. Now add a link of capacity 1 from f2 to t. There will be disjoint
paths from c to f1 and to f2 if and only if there is now a flow of value 2 from c to t, and such a flow
will exist if and only if there is an augmenting path from c to t in the graph. This can be found in
linear time by a breadth-first search in the residual graph, where each arc (u, v) in the first path is
replaced by an arc (v, u) of capacity 1.

Finally, we observe that, having fixed the shortest path to t through f1 and constructed the
residual graph, we can actually solve the network flow problems for all pairs (f1, fi) in parallel with
a single breadth-first search. The overall running time thus becomes O(m log n|C|+m|C| · |F |) =
O(n2m), once again O(n3), assuming m = O(n).

What we have just described is actually the algorithm for generating path-disjoint triples when
“disjoint” only means “arc-disjoint.” To get vertex-disjointness as well, one replaces each vertex v
in the shortest path graph be a directed arc (vin, vout), with each arc (u, v) replaced by (u, vin) and
each arc (v, u) replaced by (vout, u).

In conclusion, we note that for our HSLB code in the set-disjoint case, some of the above work
can be avoided, as the triples need only be considered implicitly. To construct the Hitting Set
linear program, we need only consider (customer,neighbor,facility) triples, at an amortized cost
(and space) of O(mn). The same triples can be reused in the verification phase, where we check to
see whether the computed hitting set is actually a feasible solution to our problem, although now
O(mn2) time may be required.

6. Network Test Instances

We tested our algorithms on both synthetic and real-world instances. The two classes modeled
different types of data networks and had distinctly different characteristics, enabling us to test the
generality of our methods. In this section we will discuss each type of instance, and compare the
structural properties of the resulting testbeds.

6.1. Synthetic LAN/WAN Instances

Our 630 synthetic instances were designed to reflect the structure of large real-world local- and
wide-area networks (LAN’s and WAN’s) and were sized so that we could study the scalability of
our algorithms and the solutions they produce. They were generated via the following four-step
process.

1. A transit-stub skeleton graph is generated using the Georgia Tech Internetwork Topology
Models (GT-ITM) package (Calvert et al., 1997). We generated 10 graphs each for parameter
settings that yielded |V | = 50, 100, 190, 220, 250, 300, 558, 984. (The value of |V | is an indirect
result of one’s choice of the allowed input parameters.)

2. Traffic demand is generated between all pairs of vertices in the skeleton graph using a gravi-
tational model (described below) with the shortest path metric.

3. Using the heuristic network design algorithms of Buriol et al. (2007), we determine link
capacities and OSPF link weights such that all traffic can be routed in a balanced way on the
resulting network using the OSPF routing protocol. Links with no traffic routed on them are
deleted.

22



Figure 7: A transit stub network with three transit domains and 16 stub domains.

4. For specified numbers of customer and facility location vertices, the sets C ⊆ F are then
randomly generated.

6.1.1. Step 1: Transit-Stub Skeleton Graphs

Transit-stub graphs (Calvert et al., 1997) are hierarchical graphs made up of transit vertex com-
ponents and stub vertex components. The stub node components can be thought of as access
networks while the transit node components make up the backbone of the network. See Figure 7.

The GT-ITM package provides a parameterized method for generating such graphs randomly.
The relevant papers and documentation are not totally consistent or clear, and the following de-
scription is our best guess as to how the networks are generated, based on the documentation
and our inspection of selected outputs. The generation process involves many parameters, but we
based our generation on the settings used in the illustrative example identified as “file t100” in
the documentation file itm-doc.txt available at http://www.cc.gatech.edu/projects/gtitm/,
varying only the parameters T , NT , S, NS , which determine the number of vertices.

The constructed graphs consist of T ·NT transit vertices assigned randomly to T transit domains.
It is required that T ≥ 1 and NT ≥ 1, and it appears that the generation process starts by placing
one transit vertex in each transit domain so that none are empty. In addition, there are S · T ·NT

stub domains (one per transit vertex), and S ·NS · T ·NT stub vertices, assigned randomly to the
stub domains. Again we must have S ≥ 1 and NS ≥ 1 and it appears that the generation process
starts by placing one stub vertex in each stub domain. Edges appear to be added to the network
as follows:

• Each transit domain has an average of two edges to other transit domains. The endpoints of
each edge are chosen randomly from the transit vertices in the two relevant domains. If the
chosen edges fail to connect all the transit domains, they are deleted and the experiment is
repeated until we do get a connected graph.

• Each transit vertex is associated with an average of S stub domains, and is connected by an
edge to a random member of each.

• For each pair of vertices within a given transit domain, there is an edge with probability 0.6.
If the resulting choices do not make the transit domain connected, the experiment is repeated
until a connected graph results.
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T NT S NS |V | Average |A| Average Degree
1 2 3 8 50 91.1 3.6
1 4 3 8 100 177.2 3.5
2 5 3 6 190 284.6 3.0
2 5 3 7 220 360.2 3.3
2 5 3 8 250 435.0 3.5
2 6 3 8 300 531.6 3.5
3 6 3 8 558 1172.2 4.2
4 6 4 10 984 2083.3 4.2

Table 1: Input parameters and measured statistics of generated transit-stub graphs.

• For each pair of vertices within a given stub domain, there is an edge with probability 0.42.
If the resulting choices do not make the stub domain connected, the experiment is repeated
until a connected graph results.

In addition, it appears that the code also adds a few extra edges between stub domains or between
stub and transit domains, even though there should be none, given the parameter settings we
chose. We deduce this from the fact that, although the above description suggests that the largest
2-connected component should be of size max(NS , T ·NT ), we typically find that the largest is two
to four times larger than that.

Note that this process yields a network with a fixed number T · NT · S · NS vertices, but a
random number of edges (some of which may be deleted in Step 3). Before proceeding to Step 2,
we convert our graphs to symmetric directed graphs by replacing each edge {u, v} with the two
arcs (u, v) and (v, u). Since the original graph was designed to be connected, this directed graph
will be strongly connected. The GT-ITM generator also produces a length l(u, v) for each edge
{u, v}, which we use in Step 3.

We generated 10 graphs each for eight different sets of parameters, chosen to yield increasing
values for |V |, from 50 to 984. In Table 1 we present the parameter choices, the corresponding
values for |V |, the final average number of edges and the average degree (when the graph is viewed
as undirected). The graphs for instances with up to 558 vertices were generated by the 32-bit
version of the GT-ITM code, which is apparently no longer supported. Those for the graphs with
984 vertices, which we generated more recently, were produced using the new, 64-bit code from Ver-
sion 2.33 on ns-allinone, downloaded from http://sourceforge.net/projects/nsnam/files/.
This version apparently has a bug, in that the parameters for the edge densities seem to be ig-
nored. Consequently, both the stub and transit domains start out as complete graphs, and their
sparsification, while still substantial, is due only to the Step 3 deletions, described in more detail
below.

6.1.2. Step 2: Traffic Demands

The traffic demands are created via a randomized “gravitational” method from Fortz and Thorup
(2000). We first generate random numbers o(v) and d(v) for each vertex v, chosen independently
and uniformly from the interval (0, 1). Here “o” stands for origin and “d” for destination. Then,
for each pair of vertices (u, v), we compute D(u, v), the shortest length (in edges) of a path from
u to v. Let Dmax be the largest of these distances. Then, for any ordered pair (u, v) of distinct
vertices, we choose a random number r(u, v) ∈ (0, 1) and set the traffic demand from u to v to be
the (nonzero) value

t(u, v) = r(u, v) · o(u) · d(v) · e−
(
D(u,v)
Dmax

)
.

Note that, since our network is strongly connected, all of this traffic can be routed.
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6.1.3. Step 3: OSPF Weights

We next choose OSPF weights and arc capacities that allow for an efficient routing of the traffic
specified by the matrix t(u, v) : u, v ∈ V . To do this, we apply the survivable IP network design
tool developed by Buriol et al. and described in Buriol et al. (2007). The tool takes as input the
skeleton graph and the traffic matrix. For each arc (u, v), it produces an integer OSPF weight
w(u, v) in the range [0, 30] and an integer capacity c(u, v), such that if all traffic is routed according
to the OSPF weights (with traffic splitting if there is more than one shortest path from one vertex
to another), no arc will have traffic load exceeding 85% of its capacity.

It does this while attempting to minimize the total arc cost
∑

(u,v) l(u, v) · c(u, v). The op-
timization is done via a biased random key genetic algorithm, using a population of size 50 and
run for 100 iterations. For more details, see Buriol et al. (2007). (Running with larger parameter
values would likely produce lower-cost solutions to the design problem, but this would increase the
running time, and our goal here is simply to produce a sparse network on which the demand can
be routed.)

Note that any arc (u, v) that is on some shortest path for the computed OSPF weights must
have nonzero capacity c(u, v), since every traffic demand is nonzero and so every shortest path must
carry some traffic. We thus can safely delete all capacity-zero arcs from our network. In order to
insure that our graphs remain symmetric, however, we only delete a capacity-zero arc (a, b) if its
partner (b, a) also has zero capacity.

6.1.4. Step 4: Customers and Potential Facility Locations

For each of our 80 skeleton graphs (10 for each of our eight sets of GT-ITB parameters), we
generated seven networks, differing in their choices of the sets C ⊆ F of customer vertices and
potential facility locations. The sizes were chosen as a set of fixed fractions of the set V of vertices.
Let (Cx,Fy) denote the set of instances with |C| = d|V |/xe and |F | = d|V |/ye. For each graph we
generated one instance of each of the following types: (C1,F1), (C2,F2), (C4,F4), (C8,F8), (C2,F1),
(C4,F1), and (C8,F1).

Our synthetic instance testbed thus contains a total of 560 instances, each consisting of a
network, OSPF weights (which determine the shortest paths in the network), and the sets C and
F . The full set of synthetic instances is available from author Resende, and currently can be
downloaded from http://mauricio.resende.info/covering-by-pairs/.

6.2. Real-World ISP-Based Instances

The 70 real-world instances in our testbed were derived from 10 proprietary Tier-1 Internet Service
Provider (ISP) backbone networks and many of them use actual OSPF weights. Because of the
proprietary nature of these instances, we will not be able to report as detailed and precise results
about them, although we shall summarize how they differ from the synthetic instances, and how
the results for the two instance types compare.

The ISP networks ranged in size from a little more than 100 routers to over 5000, each with
between 3.5|V | and 4.3|V | arcs (similar to the range for our synthetic instances). We shall denote
them by R100a, R100b, R200, R300, R500, R700, R1000, R1400, R3000, and R5500. where the
number following the R is the number of routers, rounded to the nearest multiple of 100. (Because
of their proprietary nature, these instances cannot be made publicly available.)

For four of these instances (R100a, R100b, R200, and R500), we only had information about
the topology, but not the roles of the routers. For each of these, we constructed 16 instances,
starting with the case in which F = C = V . The other instances also had F = V , but C was a
random sample of roughly 1/2, 1/4, or 1/8 of the vertices. Following our notation for the synthetic
instances, we shall refer to these four alternatives as (C1,F1), (C2,F1), (C4,F1), and (C8,F1). In
addition to the single (C1,F1) instance, we generated five distinct instances for each alternative
from (C1,F2), (C1,F4), (C1,F8), based on different random choices for C.
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For R300, R700, R1000, R1400, R3000, and R5500, where we have more detailed information
about the roles played by the routers, we constructed instances, one for each topology, that took
those roles into account: routers most closely associated with network customers (access routers,
etc.) served as the customer vertices, and the potential facility locations consisted of these, together
with all other routers except for the backbone routers (thus modeling the likely situation in which
extra monitoring equipment cannot easily be connected to the backbone routers). The number of
customer vertices ranged between 50% and 93% of the total, and the number of vertices that were
neither customers nor potential facility locations ranged from 2% to 41%.

6.3. Instance Properties
Our synthetic instances reflect the structure of real-world LANs and WANs, and consist of many,
relatively small 2-connected components. For instances with |V | ≥ 100, the largest 2-connected
component averages around 12% of the vertices (112.5 vertices for our |V | = 984 instances). In
contrast, the Tier-1 ISP instances consist of one very large 2-connected component, typically con-
taining over 95% of the vertices, with small 2-connected components hanging off of it, most of size
2. One consequence of this difference in topology is differing numbers of triples for the two instance
types.

For a given instance with a set C of customers and a set F of potential facility locations,
there are |C|(|F | − 1)(|F | − 2)/2 potential triples (c, f, f ′), each one containing a customer c and
two distinct potential facility locations in F − {c}, For our synthetic instances, only a relatively
small fraction of the potential triples are actually valid triples in the set-disjoint case. For each
class (Cx, Fy), the percentage of valid triples declines as N increases, until it appears to stabilize
somewhere between 4 and 5%. See Table 2. The ISP-based instances yield substantially more
set-disjoint triples than the synthetic ones of the same size. The percentage of valid triples, with
one exception, ranges between 20 and 35%, the exception being R1000, which at 11.2% still has
more than double the percentage for the large synthetic instances. See Table 3. Note that, because
of the cubic growth in the number of potential triples, the actual number of triples can become
quite large. For our largest instance, R5500, there are over 5.7 billion valid triples in the set-disjoint
case.

The choice of arc weights also has an effect on our instances. The optimized weights of our
synthetic instances lead to relatively few shortest-path ties, and so the pathwise-disjoint instances
typically have only 5 to 6% more valid triples than the corresponding set-disjoint instances. The
weights in the ISP instances were constrained by a variety of factors in addition to traffic balancing,
and yield far more ties. As a result, the number of path-disjoint triples exceeds the number of set-
disjoint triples by from 24 to 335%, that latter occurring for our anomalous R1000 instance.

We also measured the effect of relaxing the constraints on our path-disjoint instances, by re-
quiring only that the paths be arc-disjoint, not vertex-disjoint. (Although vertex-disjointness adds
robustness to our monitoring application, the mathematics of the application only requires arc-
disjointness.) Here the effects were relatively minor for both synthetic and ISP-based instances,
typically yielding an increase of less than 2% in the number of valid triples. Instance R1000 was
again the major exception, yielding an increase of 15%, to reach a total of more than half the
maximum possible number of triples.

Finally, to further explore the effect of increased numbers of ties in the set-disjoint case, we
considered modified versions of our instances in which all edge weights are set to 1. As might be
expected for such weights, the number of set-disjoint triples drops substantially for almost all our
synthetic and ISP-based instances (the only exception again being instance R1000, where we saw
a 16% increase).

7. Summary of Experimental Results

This section evaluates our algorithms in three areas.

• Accuracy: How close to optimal were the solutions provided by each of heuristics Greedy,
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Synthetic Instances

Class 50 100 190 220 250 300 558 984

Average Number of Triples in Thousands

C1,F1 12.9 57.8 224.8 340 487 756 4,111 19,954
C2,F1 6.3 31.6 119.1 184 270 375 2,070 10,310
C4,F1 3.5 15.1 53.6 92 118 185 1,131 5,136
C8,F1 2.2 7.5 28.0 44 59 98 471 2,642
C2,F2 1.5 6.7 26.9 43 55 93 507 2,438
C4,F4 0.2 0.8 3.7 5 8 11 62 299
C8,F8 0.0 0.1 0.4 1 1 1 6 38

Average Percent of Total Number of Possible Triples for Set-Disjoint Instances

C1,F1 21.99 11.92 6.66 6.48 6.30 5.65 4.76 4.20
C2,F1 21.58 13.02 7.05 7.00 6.98 5.61 4.79 4.34
C4,F1 22.63 12.43 6.28 7.00 6.09 5.53 5.22 4.33
C8,F1 26.42 11.92 6.56 6.60 5.94 5.80 4.35 4.45
C2,F2 22.03 11.33 6.48 6.59 5.73 5.65 4.72 4.12
C4,F4 22.03 11.30 7.20 6.50 6.82 5.63 4.64 4.07
C8,F8 20.10 15.23 7.32 7.24 6.99 5.57 3.83 4.16

Average Percent Increase in Triples for Pathwise-Disjoint Instances over Set-Disjoint Ones

C1,F1 6.94 6.63 4.96 5.99 3.88 6.68 4.29 5.60
C2,F1 6.93 5.73 5.05 5.10 3.25 5.99 4.09 4.90
C4,F1 7.52 5.00 4.87 6.08 3.84 7.10 2.74 4.23
C8,F1 5.28 5.14 3.93 7.49 3.26 5.60 3.37 2.88
C2,F2 8.32 7.13 4.36 5.37 4.50 6.62 3.88 6.15
C4,F4 3.99 6.98 7.46 8.12 4.38 7.60 4.97 5.69
C8,F8 17.71 7.20 5.61 3.32 1.98 5.63 4.62 6.15

Average Percent Decrease in Triples for Equal-Weights on Set-Disjoint Instances

C1,F1 16.88 13.82 9.07 10.29 14.53 13.22 26.89 31.13
C2,F1 15.48 15.12 10.48 9.67 15.11 14.89 26.68 31.09
C4,F1 11.82 15.48 9.52 9.79 14.50 14.44 30.95 32.24
C8,F1 22.68 8.64 4.92 7.68 12.71 15.31 24.03 39.41
C2,F2 13.81 14.27 4.47 13.34 11.84 11.26 26.48 30.23
C4,F4 13.60 13.03 7.46 9.13 20.49 3.16 24.81 32.15
C8,F8 8.35 17.06 5.55 19.95 14.86 4.89 27.72 37.81

Table 2: Average numbers of triples for synthetic instances, the percentage of all possible triples
that these numbers represent, the percentage increases in numbers of triples for the arc-disjoint
version of pathwise-disjoint instances, and for equal-weight instances.
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ISP-Based Instances

Class R100a R100b R200 R300 R500 R700 R1000 R1400 R3000 R5500

Average Number of Triples in Millions

C1,F1 0.22 0.36 1.44 2.47 17.7 22.0 47.2 134 816 8,156
C2,F1 0.11 0.18 0.73 8.8
C4,F1 0.06 0.09 0.36 4.4
C8,F1 0.03 0.05 0.20 2.2

Average Percent of Total Number of Possible Triples for Set-Disjoint Instances

C1,F1 30.0 34.0 25.6 33.7 23.9 28.2 11.2 21.4 35.0 20.9
C2,F1 30.1 34.1 26.0 23.5
C4,F1 32.2 32.7 25.4 23.6
C8,F1 26.5 32.8 27.0 23.3

Average Percent Increase in Triples for Pathwise-Disjoint Instances over Set-Disjoint Ones

C1,F1 43.6 40.1 59.8 41.7 24.9 31.0 335.6 33.0 25.9 101.7
C2,F1 42.6 39.9 58.4 25.3
C4,F1 41.2 46.5 63.6 26.7
C8,F1 53.4 36.2 56.8 24.0

Average Percent Increase in Triples for Arc-Disjoint over Vertex Disjoint Instances

C1,F1 1.0 1.3 1.3 .1 1.8 .3 15.5 1.5 .1 5.5
C2,F1 1.0 1.3 1.2 1.9
C4,F1 1.4 1.4 1.3 1.9
C8,F1 .8 1.6 1.3 .9

Average Percent of Total Number of Possible Triples for Arc-Path-Disjoint Instances

C1,F1 43.5 48.3 41.5 47.8 30.3 37.0 56.4 28.9 44.1 44.3
C2,F1 43.2 48.3 41.6 30.0
C4,F1 46.2 48.4 42.0 30.4
C8,F1 40.9 45.1 42.4 29.2

Average Percent Decrease in Triples for Equal-Weights on Set-Disjoint Instances

C1,F1 27.4 16.0 4.9 29.4 14.2 31.6 -16.7 15.7 55.1 58.7
C2,F1 26.1 16.1 5.7 13.7
C4,F1 27.0 11.9 6.3 12.0
C8,F1 30.1 15.3 2.7 16.9

Table 3: Average percentage of valid triples for real world instances, the percentage increases in
numbers of triples for the vertex- and arc-disjoint versions of pathwise-disjoint instances, and for
equal-weight instances.
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SHS, and DHS? For small instances, for which the exact optimal can be computed using
CPLEX, we can compare to that. In the set-disjoint case, where the SHS lower bound turns
out to equal the optimal solution value for all our instances, we can compare to that. For
large path-disjoint instances, we have no good, readily computable, standard of comparison.
We consider two options. First, we can compare the results to the (very weak but linear-time
computable) lower bound obtained when one requires only that paths be vertex-disjoint, not
that they be shortest paths. Second, we can evaluate the results for Greedy(400) in the
path-disjoint case by attempting to improve on them using the Genetic algorithm and large
amounts of computing time. (Note that Genetic optimally solved all the bad set-disjoint
instances for Greedy(400) except R5500, which is too big for Genetic to handle.)

• Running Time: How fast are the algorithms? Our runs were primarily performed on two
machines. We used a shared-memory machine with 1.5 Ghz Itanium processors and 256
Gigabytes of random access memory, running SUSE LINUX with kernel 2.6.16.60-0.81.2-
default, for the heuristic runs on instance R5500, where 80 gigabytes of main memory were
needed because of the large number of triples involved. In the text this will be referred to
as “our slower machine.” The remainder of our runs were primarily performed on a shared
memory multiprocessor machine with 24 2.7 Ghz Intel Xeon processors and 50 gigabytes of
random access memory running CentOS Linux with kernel 2.6.32-431.11.2.el6.x86 64Linux.
In addition, we did some confirmatory runs on a MacBook Pro with a 2.4 Ghz dual-core Intel
i5 processor and 8 gigabytes of RAM, running Mac OS 10.9.4 and with Gurobi 5.6 replacing
CPLEX 11.0 as our MIP solver. When we report running times, we give the sum of the system
and user times, and will specify the machine used. (Each algorithm run used only a single
processor/core of the respective machine.) All our codes were written in C, and compiled
using gcc. Unless otherwise stated, the running times reported are for code compiled with
no optimization flags set, although, where appropriate, we will indicate the kinds of speedups
one might expect using -O2 optimization.

It should be noted that on none of these machines were running times precisely repeatable.
Differences of 20% or more on duplicate runs were not uncommon. So our running time reports
can provide only order-of-magnitude information, and can provide evidence that one code is
faster than another only if the differences are substantial and hold across many instances.

• Solution Quality (Cost Reduction): The first two measures address the quality of the algo-
rithms. This one addresses what they tell us about the applications. Even an optimal solution
will not be enough to justify the proposed monitoring scheme of Gu et al. (2008) if it does
not provide a significant savings over the default solution that simply takes all customers
(which for our instances are themselves facility locations) and is likely to yield more reliable
measurements. We also consider how much further improvement is obtainable when going
from the setwise-disjoint to the pathwise-disjoint versions of the problem.

7.1. Accuracy and Running Times for the Set-Disjoint Case

7.1.1. Optimization via our MIP Code

In Table 4, we summarize the results for our MIP optimization code on our synthetic and ISP-based
set-disjoint instances. All the runs were performed on the faster of our two Linux machines. The
first section of the table reports how many of the 10 instances of each type that the code was able
to solve within a 24-hour time bound. For |V | = 190, we eventually solved the missing (C4,F1) and
(C8,F1) instances, although the longest (C4,F1) took slightly more than a week. We also solved
the two missing (C4,F1) instances based on the ISP-based R200 instances, although the longer
took over a week. On the other hand, for 299 of the 383 solved instances, MIP took less than 10
minutes. The second section of the table reports the worst running times (system time plus user
time, rounded to the nearest second) for the classes where all instances were solved in less than 24
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Synthetic Instances ISP-Based Instances

Class 50 100 190 220 250 300 558 984 R100a R100b R200

Number of Instances Solved in Less Than 24 Hours by MIP

(C1,F1) 10 10 10 - - - - - 1 1 1
(C2,F1) 10 10 10 - - - - - 5 5 -
(C4,F1) 10 10 9 - - - - - 5 5 3
(C8,F1) 10 10 9 - - - - - 5 5 5
(C2,F2) 10 10 10 10 10 10 - -
(C4,F4) 10 10 10 10 10 10 10 10
(C8,F8) 10 10 10 10 10 10 10 10

Worst Running Times (in Seconds) for Instances of Each Completed Class

(C1,F1) 20 89 23 518 42,998 - - - 0 0 74
(C2,F1) 18 86 1725 - - - - - 8 1 -
(C4,F1) 36 46 - - - - - - 291 92 -
(C8,F1) 35 803 - - - - - - 13 46 33,789
(C2,F2) 0 0 0 0 2 25 - -
(C4,F4) 0 0 0 0 0 0 0 227
(C8,F8) 0 0 0 0 0 0 0 0

Table 4: Results for our MIP optimization code on set-disjoint instances.

hours. For our testbed in general, the code tends to run into trouble as the number of customers
grows beyond 100, with exceptions when the number of facilities is also relatively small. Its running
times seem clearly to be growing in exponential fashion as |C| increases. Note also that, when all
vertices are potential facility locations, reducing the number that are also customers can actually
make the instance harder.

7.1.2. Lower Bounds and Solutions via our HSLB Code

Fortunately, the exponential behavior of our MIP code is not an insurmountable difficulty in the
case of our set-disjoint instances. Not only did our HSLB code produce a lower bound that equals
the optimal solution value for all our instances, but the hitting set it constructed was always itself
a feasible, and hence optimal, solution. Moreover, it took no more than 4 seconds on any instance
besides R5500, for which it only took 22 seconds. In general, it was far faster than any of our
heuristics, often by a factor of 100 or more, even though it involves finding an optimal solution to
an instance of the NP-hard Hitting Set problem. Moreover, its space requirements are much less
than those of our heuristics, given that the (Customer,Neighbor,Facility) triples it stores are far
fewer in number than the standard (Customer,Facility,Facility) triples required by the heuristics
(and stored by them in triplicate). Consequently, for our largest instance, R5500, it required just
over 1 GB, whereas the heuristics need in excess of 65 GB.

7.1.3. The Heuristics

As for the heuristics, the “best-of-400-iterations” versions of Greedy, SHS, and our two variants
on DHS also all performed well in general on our test bed, although two instances were seriously
problematical for at least one of them.

The best solutions found (over 400 runs) by SHS were optimal for all the instances in our
testbeds, both synthetic and ISP-based. DHSH and Greedy performed almost as well. The
former failed to produce an optimal solution for just two instances, on one missing optimal by just
a little, but on the other missing by a lot. Its solution for one of our (C1,F1), |V | = 984 synthetic
instances was one facility larger than optimal, but its solution for the ISP-based instance R1000 was
off by more than a factor of 3. Greedy was optimal for all our synthetic instances and all but three
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Algorithm R200 R300 R500 R700 R1000 R1400 R3000 R5500*

Linux Machine(s), Compiled without Optimization

HSLB 0.1 0.1 0.4 0.3 1 1 4 23
Triple Gen 0.1 0.2 0.9 1.4 4 8 41 1,800

SHS 7.3 4.7 68.3 32.0 125 361 452 23,170
DHS1 7.2 6.7 73.1 37.9 147 389 524 24,560
DHSH 8.4 11.6 74.1 75.8 396 730 1165 47,970

Greedy 11.8 14.0 116.1 90.9 578 704 2171 70,100

MacBook Pro, Compiled with Optimization

HSLB 0.8 0.7 1.2 1.0 1 1 3 14
Triple Gen 0.5 0.5 0.8 0.9 2 3 14 -

SHS 2.2 2.0 17.7 8.8 32 94 179 -
DHS1 2.4 2.5 19.0 13.4 44 113 265 -
DHSH 2.5 2.3 19.8 14.9 130 119 277 -

Greedy 3.2 4.1 30.3 25.9 188 198 866 -

Table 5: Running times in seconds for triple construction, full 400-iteration heuristic runs, and
HSLB computations. *For R5500, all Linux times except those for HSLB are on the slower of our
two machines, because of memory constraints, and for 80-iteration runs. Memory constraints also
prevented running anything except HSLB on the MacBook Pro for this instance.

of our ISP-based instances. It was slightly worse than DHSH on R1000 and off by a factor of 2.2
on R5500. Its third nonoptimality was minor, consisting of a solution with one more facility than
optimal on the second of five (C2,F1) variants on R500. Although DHS1 found optimal solutions
on all our ISP-based instances, if failed to find optimal solutions for seventeen of our synthetic
instances, six of the ones with |V | = 558 and eleven of those with |V | = 984, including the one that
on which DHSH failed. On twelve it was off by one facility, on four it was off by two, and on one
it was off by five. In no case, however, was the discrepancy greater than 3.3%. The better of the
DHSH and DHS1 solutions was always optimal.

To further compare these heuristics, let us consider two other metrics, running time and robust-
ness, together with the tradeoffs between the two. See Table 5, which reports the running times
in seconds for the 400-iteration versions of our heuristics on our faster Linux machine (80-iteration
runs on our slower machine for R5500, which would not fit on the faster machine), and on our
MacBook Pro, where Gurobi 5.6 replaced CPLEX 11.0 as our MIP solver, and we compiled with
the -O2 optimization flag set. The instances covered are the largest ones in our testbed for each
ISP topology with |V | ≥ 200, i.e., the single instance for each topology where we knew the OSPF
weights and router types, and the (C1,F1) instance for each of the instances where we optimized
the weights ourselves. For comparison purposes, the table also breaks out the time devoted to con-
structing the triples used by the heuristics, and the times for our code that computes the HSLB
and determines whether the optimal hitting set produced is a feasible solution. Running times for
our synthetic instances of similar sizes were roughly comparable.

The algorithms are typically ranked SHS, DHS1 DHSH , Greedy in order of increased run-
ning times for both machines, although there are minor inversions for a few instances. The large
differences typically seen between DHSH and DHS1 on the Linux machines occurred for only one
instance (R1000) on the MacBook Pro runs. The fact that, for the smaller instances, the running
times for HSLB and triple generation are larger on the optimized MacBook Pro runs than on the
unoptimized Linux runs is attributable to larger system times for triple construction. For the (facil-
ity,neighbor,facility) triples used in computing the HSLB, the system time was roughly 0.7 seconds,
independent of instance size, on the MacBook Pro, versus 0.1 seconds on the Linux machine, and
the differences in system times for computing standard triples in our heuristics were similar. It is
interesting to note that, on both machines, the growth in user time for triple construction appears
to be somewhat slower than our theoretical bound of Θ(|V |3), although no firm conclusions can be
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k N = 100 N = 200 N = 400 N = 800 N=1600
1 0.77855704 0.60615106 0.36741911 0.13499680 0.01822414
2 0.60577044 0.36695782 0.13465804 0.01813279 0.00032880
3 0.47103323 0.22187230 0.04922732 0.00242333 0.00000587
4 0.36603234 0.13397967 0.01795055 0.00032222 0.00000010
5 0.28425652 0.08080177 0.00652893 0.00004263 0.00000000
6 0.22060891 0.04866829 0.00236860 0.00000561 0.00000000
7 0.17110232 0.02927600 0.00085708 0.00000073 0.00000000
8 0.13261956 0.01758795 0.00030934 0.00000010 0.00000000
9 0.10272511 0.01055245 0.00011135 0.00000001 0.00000000

10 0.07951729 0.00632300 0.00003998 0.00000000 0.00000000
11 0.06151216 0.00378375 0.00001432 0.00000000 0.00000000
12 0.04755251 0.00226124 0.00000511 0.00000000 0.00000000
13 0.03673647 0.00134957 0.00000182 0.00000000 0.00000000
14 0.02836164 0.00080438 0.00000065 0.00000000 0.00000000
15 0.02188134 0.00047879 0.00000023 0.00000000 0.00000000

Table 6: Probabilities of failure to find an optimal solution in N independent runs when the
probability of finding one in 400 runs is k/400.

drawn given the differences in topology and weight settings for the various instances.
The general take-away from these results, however, is that all of our algorithms have running

times that would be practical in the context of our proposed applications, where the time for
implementing a solution will still greatly exceed the time to compute it. The main obstacle to
practicality is the memory requirement for instances significantly larger than R3000, and in the
final section of this paper, we will discuss ways that this memory requirement might be reduced
while keeping running times practical.

Of course, although running time is not a substantial obstacle, it is always worthwhile to find
ways to reduce it (beyond simply using optimized compilation). One obvious way would be to
perform fewer than 400 iterations. Conversely, we might want give up running time and perform
more iterations, if that would improve the robustness of our results. How robust are they?

In the context of our experiments, let k be the number of runs (out of our 400) that returned
an optimal solution. We can then roughly estimate the probability of finding an optimal solution
to be k/400, and the probability that such a solution will not be found if we perform another N
independent random runs is ((400 − k)/400)N . Table 6 gives the probabilities for 1 ≤ k ≤ 15
and N ∈ {100, 200, 400, 800, 1600}. Using this table, we can evaluate the likely robustness of our
heuristics, based on the instances with the smallest values of k for each heuristic. If we want to
reduce the failure probability to, say, 0.1%, we would need to have observed a 400-iteration success
count of 2 if we were going to perform 1600 iterations, 4 if 800 iterations, 7 if 400 iterations, 14
if 200 iterations, and more than 15 if 100 iterations (actually, a count of 27 would suffice in this
case). Given that the counts given by single 400-iteration runs give noisy estimate of the true
probabilities, it might be safer to inflate the above count thresholds in practice.

To help us evaluate our four heuristics in this context, Table 7 gives the 15 smallest success
counts for each, both for synthetic and ISP-based instances, together with derived counts for an
algorithm DHS1H , which performs 200 runs each for DHS1 and DHSH , and reports the best
solution overall. Note that the entries for the derived heuristic are not simply the averages of the
values for DHS1 and DHSH in the same row of the table, since these may represent counts for
different instances – the hardest instances for one of the two need not be the same as those for the
other. The counts tend to be higher for our ISP-based instances, since 15 represents over 21% of
our 70 instances of that type, whereas it represents only about 2.4% of our 630 synthetic instances,

Based on the results in the table, one can conclude that Greedy is the most robust for synthetic
instances, with SHS almost as good. Neither DHS1 nor DHSH is competitive for such instances,
and their combination seems less robust than DHSH , the better of the two, by itself. In contrast,
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Synthetic Instances ISP-Based Instances
k SHS DHS1 DHSH DHS1H Greedy SHS DHS1 DHSH DHS1H Greedy
1 10 0 0 0.0 10 1 3 0 6.0 0
2 10 0 1 0.5 19 25 5 0 8.5 0
3 13 0 1 1.0 29 27 13 0 20.5 7
4 16 0 4 2.0 50 35 23 1 21.0 7
5 39 0 4 2.0 52 68 37 7 26.5 29
6 47 0 5 2.5 55 73 40 14 40.0 29
7 52 0 5 3.5 61 80 44 28 41.5 33
8 57 0 6 3.5 65 91 49 30 44.0 35
9 57 0 8 4.0 66 95 60 44 58.0 53

10 60 0 8 4.0 69 101 67 46 68.0 57
11 64 0 9 4.5 72 110 68 56 79.5 66
12 65 0 9 5.0 74 136 80 68 87.0 85
13 65 0 10 5.0 79 139 100 93 100.0 88
14 67 0 10 5.5 80 163 107 100 100.0 89
15 67 0 10 6.0 82 177 123 100 103.5 98

Table 7: The 15 smallest numbers of optimal solutions found in 400 independent runs over synthetic
and ISP-based instances.

for the ISP-based instances, the combination is distinctly more robust than either DHS1 or DHSH

alone, and also dominates Greedy, although SHS is the best overall, having only one count less
than 25. The corresponding instance, where SHS found an optimal solution only once in 400 times,
is troublesome, however. This suggests performing a hybrid of SHS with one of our other three
heuristics (again running each 200 times and taking the best). If we blend with Greedy, the
smallest counts are 61 (synthetic) and 6.0 (ISP-based). Blending with DHS1 yields corresponding
smallest counts of 34.5 and 9.0, and blending with DHSH yields smallest counts of 46.5 and 10.0.
The last choice would seem to be the best overall, as 400 total iterations should likely be enough
to keep the failure rate for all instances less than 0.1%, and, depending on the accuracy of our
sample, 200 iterations might suffice. All three blends, however, offer significant improvements in
robustness over any of the individual heuristics.

7.1.4. Challenging HSLB: Equal-Weight Edges

Given the fact that our HSLB code produced hitting sets that were optimal solutions for all 700
instances in our set-disjoint testbed, one might wonder why we should bother with heuristics at all
for the set-disjoint case. Perhaps instances where the HSLB is smaller than the optimal solution
value, or where the HSLB solution is otherwise infeasible, simply do not arise in practice, possibly
because of the restricted topologies in real world LAN/WANs and ISP networks, or because edge
weights are optimized to manage traffic. To investigate the latter possibility, we repeated our
experiments with all the weights set to 1 – not a very good choice for traffic management, but
certainly a natural default, and one that yields a major change in the set of triples in the derived
“cover-by-pairs” instances, as observed in Section 6.3.

With these instances, the hitting sets constructed by our HSLB code were still legal and hence
optimal covers for all 70 of our ISP-based instances. However, for 51 of our 630 synthetic instances,
the hitting set was not a legal cover, and for nine of these, the best solution found by our 400-
iteration SHS run was still larger than the computed lower bound (although never by more than
2.1%). These were all (C1,F1) instances, five with |V | = 984, three with |V | = 558, and one with
|V | = 250, and in all nine cases, the HSLB nevertheless continued to equal the optimal solution
size. The optimal solutions for these nine were not found by any of our 400-iteration runs of
DHS1 or DHSH . As in our experiments on the synthetic instances in our standard testbed, it
was Greedy that proved to have the best synergies with SHS. Our 400-iteration runs of Greedy

33



Synthetic Instances ISP-Based Instances

Class 50 100 190 220 250 300 558 984 R100a R100b R200

Number of Instances Solved in Less Than 24 Hours by MIP

(C1,F1) 10 10 10 10 10 - - - 1 1 1
(C2,F1) 10 10 9 - - - - - 5 5 -
(C4,F1) 10 10 8 - - - - - 5 5 3
(C8,F1) 10 10 9 - - - - - 5 5 5
(C2,F2) 10 10 10 10 10 10 - -
(C4,F4) 10 10 10 10 10 10 10 10
(C8,F8) 10 10 10 10 10 10 10 10

Worst Running Times (in Seconds) for Instances of Each Completed Class

(C1,F1) 21 9 28 19,362 78,660 - - - 0 0 146
(C2,F1) 18 212 - - - - - - 17 21 -
(C4,F1) 35 818 - - - - - - 335 474 -
(C8,F1) 25 321 - - - - - - 50 644 40,739
(C2,F2) 0 0 0 0 4 13 - -
(C4,F4) 0 0 0 0 0 0 0 8106
(C8,F8) 0 0 0 0 0 0 0 0

Table 8: Results for our MIP optimization code on vertex-disjoint instances.

found solutions matching the HSLB for three of the 984’s, for one of the 558’s, and for the 250.
For the remaining four instances, we needed to increase the number of iterations. For the two
remaining 984’s, 4000-iteration runs of SHS found solutions matching the HSLB. For one of the
two remaining 558’s, a 100,000-iteration run of Greedy found a lower-bound matching solution
(three times), although a 200,000-iteration of SHS failed to find any. For the other remaining
558, a 100,000-iteration run of SHS found a lower-bound matching solution (twice), although a
200,000-iteration run of Greedy failed to find any.

Thus the track record of HSLB equaling the optimal solution value for “real world” WAN
and ISP topologies remains unblemished. We can conclude, however, that we should not count on
our HSLB code always producing feasible optimal solutions, and that SHS and Greedy remain
valuable, and complementary, backups.

7.2. Accuracy and Running Times for the Path-Disjoint Case

7.2.1. Optimization via our MIP Code

Table 8 summarizes our optimization results for the path-disjoint versions of our instances, and
shares the format of Table 4, which covered the set-disjoint versions. Once again, we report the
number of instances of each class that were solved to optimality within 24 hours, and, for each class
with all instances so solved, the worst running time encountered, as a measure of robustness. Note
that we were able to solve about the same number of instances of each type within the 24-hour
time bound as we did in the set-disjoint case, with the worst time for each type usually slightly
worse. In more extended runs, we were able to compute the optimum for the one missing |V | = 190,
(C2,F1) synthetic instance (in 39 hours), and the two missing R200, (C4,F1) ISP-based instances
(in 49 and 77 hours).

The results for the arc-disjoint versions of our path-disjoint instances were roughly the same
as reported in Table 8 for the vertex-disjoint versions. We were able to solve essentially the same
types of instances as before, with times that were roughly equivalent. The maximum for each class
tended to be shorter for the arc-disjoint versions, although not so often as to provide a statistically
meaningful distinction.
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Algorithm R200 R300 R500 R700 R1000 R1400 R3000 R5500*

Linux Machine(s), Compiled without Optimization

Path-disjoint Triple Gen 1.0 1.2 6.9 8.2 56 72 558 17,400
Arc-disjoint Triple Gen 0.7 0.6 4.9 5.4 33 39 262 11,200
Set-disjoint Triple Gen 0.1 0.2 0.9 1.4 4 8 41 1,800

Path-disjoint Greedy(400) 19.7 22.6 154.8 130.3 715 664 3612 79,000
Arc-disjoint Greedy(400) 20.3 20.3 154.3 96.1 767 548 2801 68,500
Set-disjoint Greedy(400) 11.8 14.0 116.1 90.9 578 704 2171 70,100

MacBook Pro, Compiled with Optimization

Path-disjoint Triple Gen 0.7 0.7 2.7 3.5 17 24 347 -
Arc-disjoint Triple Gen 0.6 0.6 1.5 1.8 9 10 95 -
Set-disjoint Triple Gen 0.5 0.5 0.8 0.9 2 3 14 -

Path-disjoint Greedy(400) 4.6 5.4 38.3 35.8 239 224 1865 -
Arc-disjoint Greedy(400) 4.4 5.2 36.3 32.7 254 198 1360 -
Set-disjoint Greedy(400) 3.2 4.1 30.3 25.9 188 198 866 -

Table 9: Running times in seconds for triple construction and Greedy(400) runs on path-disjoint
instances (both vertex- and arc-disjoint versions), with results for set-disjoint instances included
for comparison. *For R5500, all Linux times except those for HSLB are on the slower of our two
machines, because of memory constraints, and for 80-iteration runs.

7.2.2. Heuristic Results

In evaluating heuristics for the path-disjoint case, we suffer from several limitations in comparison
to the set-disjoint case. First, the HSLB no longer applies, so we do not have a good standard
of comparison for those instances that our MIP approach failed to solve. Second, we cannot use
SHS or either of our DHS heuristics, which only apply to the set-disjoint case, and so only have
Greedy(400) and its higher-iteration variants (including Genetic) to consider.

Fortunately, Greedy(400) seems to do very well. It finds the optimal solution on all the
instances for which that is known, and we have not been able to find any better solutions than the
ones it provides on any of the instances for which the optimum is not known. In particular, we
performed 1000-generation runs of our Genetic algorithm, on each of these instances, and only
matched the Greedy(400) solutions on each.

We had hopes that, if anything could improve on Greedy(400), then Genetic would, based
on results we obtained in the set-disjoint case. There, Genetic found optimal solutions for two
of the three ISP-based instances where Greedy(400) failed to find the optimum (the third was
R5500, which was far too large for Genetic to handle). Most impressively, for R1000 it found
the optimum, whereas the best of even 100,000 independent runs of Greedy was over three times
optimal. The failure of Genetic to find any improvements in the path-disjoint case thus at least
suggests that our Greedy(400) path-disjoint results might indeed be optimal across the board.

The results were also robust. For each of our 720 synthetic instances, the best solution found
was found at least 20 times out of 400. For each of our 69 ISP-based instances other than R5500,
the best solution found was found at least four times out of 400 (and for all but one, the count was
34 or greater). The best solution for R5500 was found 72 times out of 80.

For the arc-disjoint versions of our path-disjoint instances, the results were again similar, both
as to accuracy and robustness. For every instance where the optimum was known, Greedy(400)
found it. For all 720 synthetic instances, the best solution found was found at least 34 times out of
400. For all 69 ISP-bases instances other than R5500, the best solution found was found at least
six times out of 400 (and for all but one, the count was 41 or greater). The instance with the low
count was the same for both vertex- and arc-disjoint versions of the problem. The best solution for
R5500 was found 79 times out of 80.

As to running times, see Table 9, which mimics Table 5 in covering the maximum-customer
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versions of our ISP-based instances with more than 200 vertices, and both the times for triple-
generation and the overall Greedy(400) times. As before, we present running times for unopti-
mized code on our Linux machines and optimized code on our MacBook Pro. We list times for both
the vertex- and arc-disjoint versions of our path-disjoint instances, and, for comparison purposes,
copy from Table 5 the corresponding times for our set-disjoint instances.

Recalling from Table 3 that the number of triples associated with an instances increases as one
goes from set-disjoint to vertex-disjoint to arc-disjoint instances, one might expect running times to
behave similarly, but this is not the case. For triple generation, the arc-disjoint triples take less time
to generate than the vertex-disjoint ones. The explanation for relative triple-generation running
times is algorithmic. As described in Section 5.5, the path-disjoint constructions should take longer
than the set-disjoint ones because they need an extra network-flow step, and the vertex-disjoint
constructions take longer than the arc-disjoint ones because they need to add an extra edge for
each vertex in order to insure vertex-disjointness as well as arc-disjointness. Note, however, that,
as with the set-disjoint case, the time for vertex- and arc-disjoint triple generation again may well
be growing at slightly less than the cubic rate of our worst-case analysis.

Our overall running times also do not precisely track triple counts The times for the path-
disjoint versions of the instances are indeed significantly slower than for the set-disjoint versions
(except in the case of R1400), but once again the arc-disjoint times tend to be faster than those
for the vertex-disjoint versions. Further study will be needed to understand these discrepancies.

7.3. Cost Reduction

In this section we consider the savings our heuristics can provide over simply choosing the cover
consisting of the set C of all customer vertices, which is always a feasible solution, and would be
the default solution for network path monitoring if we did not use our proposed monitoring scheme.

We first consider the results for our synthetic instances. Table 10 presents our results for the
seven classes of instances for each value of |V | ∈ {984, 558, 300, 190, 100}. (For space reasons, we
omit the results for |V | ∈ {250, 220, 50}, but they do not evince any strikingly different behavior.)
For each algorithm and instance class, we give both the average percentage of customers that
are in the covers produced by the algorithm, and (in parentheses) the percentage reduction over
the results in the column to the left. Here “Greedy” stands for Greedy(400), the algorithm
that takes the best of 400 independent runs of Greedy. “Opt” stands for the cover produced
by our HSLB code for set-disjoint instances, which for these instances was always optimal. “DP”
stands for the optimum when we do not require our vertex-disjoint paths to be shortest paths, as
computed by the linear-time dynamic programming algorithm described in Section 3.2. This value
is not relevant to either of our applications, but does provide a lower bound on what is possible in
the path-disjoint case.

These results clearly show that using our scheme for disjoint path monitoring offers a substantial
reduction in the number of vertices needed to cover all the customers. In the set-disjoint case, the
reduction is typically by a factor of 4 or more for the (C1,F1) instances, in which all vertices are
customers, and grows to a factor of 6 when |V | ∈ {558, 984}. As the proportion of vertices that
are customers is reduced for a given value of |V |, the savings decreases, but is always more than
29%. Perhaps not surprisingly, when not all vertices are customers, the reduction is greater in
the (Ck,F1) classes, where all vertices are potential facility locations, than in the (Ck,Fk) classes,
where the only potential facility locations are the customers themselves. Note that, as remarked
before, Greedy(400) finds optimal set-disjoint solutions in all cases, so we omit the parenthetical
“percentage reduction” column for Opt.

Going from the set-disjoint to the path-disjoint instances requiring vertex-disjointness typically
offers a significant reduction (up to 7% in the (C1,F1) classes with |V | ∈ {558, 984}), although the
percentage reduction declines with |V | and |C|. Only requiring arc-disjoint paths often yields a
small additional improvement, although typically less than 1%. Allowing unbounded vertex-disjoint
paths would allow a much more significant reduction, up to almost 40% in one case, and typically
more for the (Ck,Fk) classes, k ≥ 2, than in the corresponding (Ck,F1) classes, although the actual
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Set-Disjoint Path-Disjoint
Vertex-Disjoint Arc-Disjoint Unbounded

|V | Class |C| Greedy Opt Greedy Greedy DP
(C1,F1) 984 16.2 (83.8) 16.2 15.1 (7.1) 15.1 (0.0) 10.7 (29.2)
(C2,F1) 492 24.0 (76.0) 24.0 23.2 (3.6) 23.1 (0.4) 19.1 (17.1)
(C2,F2) 492 25.7 (74.3) 25.7 23.9 (6.9) 23.9 (0.2) 19.0 (20.6)

984 (C4,F1) 246 37.9 (62.1) 37.9 37.5 (1.1) 37.4 (0.3) 34.2 ( 8.5)
(C4,F4) 246 40.1 (59.9) 40.1 38.4 (4.4) 38.3 (0.2) 33.3 (13.0)
(C8,F1) 123 55.4 (44.6) 55.4 55.1 (0.6) 55.1 (0.0) 52.3 ( 5.2)
(C8,F8) 123 58.2 (41.8) 58.2 57.2 (1.8) 57.1 (0.1) 51.2 (10.3)

(C1,F1) 558 16.0 (84.0) 16.0 14.9 ( 7.3) 14.9 ( 0.0) 10.7 (28.3)
(C2,F1) 279 24.6 (75.4) 24.6 23.6 ( 4.2) 23.5 ( 0.2) 19.6 (16.7)
(C2,F2) 279 25.8 (74.2) 25.8 24.5 ( 5.3) 24.4 ( 0.1) 19.2 (21.4)

558 (C4,F1) 140 37.8 (62.2) 37.8 37.1 ( 1.7) 37.1 ( 0.0) 34.4 ( 7.3)
(C4,F4) 140 42.1 (57.9) 42.1 41.2 ( 2.2) 41.1 ( 0.3) 34.6 (15.7))
(C8,F1) 70 56.3 (43.7) 56.3 56.1 ( 0.3) 56.1 ( 0.0) 53.0 ( 5.6)
(C8,F8) 70 60.0 (40.0) 60.0 59.1 ( 1.4) 58.7 ( 0.7) 54.7 ( 6.8)

(C1,F1) 300 24.0 (76.0) 24.0 23.0 ( 4.2) 23.0 ( 0.0) 14.9 (35.5)
(C2,F1) 150 33.7 (66.3) 33.7 32.6 ( 3.2) 32.6 ( 0.0) 25.2 (22.7)
(C2,F2) 150 36.1 (63.9) 36.1 34.8 ( 3.5) 34.8 ( 0.0) 24.7 (29.1)

300 (C4,F1) 75 49.1 (50.9) 49.1 47.7 ( 2.7) 47.7 ( 0.0) 41.1 (14.0)
(C4,F4) 75 50.8 (49.2) 50.8 50.0 ( 1.6) 49.9 ( 0.3) 40.5 (18.7)
(C8,F1) 38 64.5 (35.5) 64.5 63.7 ( 1.2) 63.7 ( 0.0) 58.4 ( 8.3)
(C8,F8) 38 68.4 (31.6) 68.4 68.4 ( 0.0) 68.4 ( 0.0) 57.4 (16.2)

(C1,F1) 190 28.7 (71.3) 28.7 27.7 ( 3.5) 27.7 ( 0.0) 21.0 (24.3)
(C2,F1) 95 40.3 (59.7) 40.3 39.6 ( 1.8) 39.6 ( 0.0) 33.4 (15.7)
(C2,F2) 95 41.7 (58.3) 41.7 40.2 ( 3.5) 40.1 ( 0.3) 33.2 (17.3)

190 (C4,F1) 48 55.8 (44.2) 55.8 55.2 ( 1.1) 55.2 ( 0.0) 51.7 ( 6.4)
(C4,F4) 48 55.4 (44.6) 55.4 54.4 ( 1.9) 54.4 ( 0.0) 47.7 (12.3)
(C8,F1) 24 67.1 (32.9) 67.1 66.7 ( 0.6) 66.7 ( 0.0) 60.4 ( 9.4)
(C8,F8) 24 70.8 (29.2) 70.8 70.8 ( 0.0) 70.8 ( 0.0) 61.2 (13.5)

(C1,F1) 100 24.1 (75.9) 24.1 23.6 ( 2.1) 23.6 ( 0.0) 14.3 (39.4)
(C2,F1) 50 34.2 (65.8) 34.2 34.0 ( 0.6) 34.0 ( 0.0) 23.4 (31.2)
(C2,F2) 50 35.4 (64.6) 35.4 34.4 ( 2.8) 34.4 ( 0.0) 22.6 (34.3)

100 (C4,F1) 25 46.8 (53.2) 46.8 46.4 ( 0.9) 46.4 ( 0.0) 38.4 (17.2)
(C4,F4) 25 49.2 (50.8) 49.2 48.4 ( 1.6) 48.4 ( 0.0) 37.2 (23.1)
(C8,F1) 13 61.5 (38.5) 61.5 61.5 ( 0.0) 61.5 ( 0.0) 48.5 (21.3)
(C8,F8) 13 63.8 (36.2) 63.8 62.3 ( 2.4) 61.5 ( 1.2) 47.7 (22.5)

Table 10: Average percentages of customer vertices in algorithmically generated covers for all
seven classes of our |V | ∈ {984, 558, 300, 190, 100} synthetic instances. Entries in parentheses are
the percentage reduction in cover size from the results in the preceding column.
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Set-Disjoint Path-Disjoint
Approx Vertex-Disjoint Arc-Disjoint Unbounded

Instance |C| Greedy Opt Greedy Greedy DP
R5500 3200 37.7 (62.3) 17.0 (55.0) 2.8 (83.5) 2.8 ( 0.0) 0.6 (80.0)
R3000 1500 1.8 (98.2) 1.8 ( 0.0) 1.3 (25.9) 1.3 ( 0.0) 0.1 (90.0)
R1400 900 14.3 (85.7) 14.3 ( 0.0) 3.2 (77.6) 3.2 ( 0.0) 0.3 (90.0)
R1000 900 35.5 (64.5) 10.1 (71.5) 3.8 (62.0) 3.8 ( 0.0) 0.9 (77.1)
R700 500 4.9 (95.1) 4.9 ( 0.0) 2.8 (43.5) 2.8 ( 0.0) 0.6 (76.9)
R500 500 13.9 (86.1) 13.9 ( 0.0) 12.4 (10.8) 12.4 ( 0.0) 1.9 (84.8)
R300 200 4.1 (95.9) 4.1 ( 0.0) 3.6 (11.1) 3.6 ( 0.0) 2.7 (25.0)
R200 200 7.6 (92.4) 7.6 ( 0.0) 6.7 (11.8) 6.7 ( 0.0) 2.2 (66.7)
R100a 100 10.9 (89.1) 10.9 ( 0.0) 7.8 (28.6) 7.8 ( 0.0) 4.7 (40.0)
R100b 100 10.9 (89.1) 10.9 ( 0.0) 7.8 (28.6) 7.8 ( 0.0) 4.7 (40.0)

Table 11: Average percentages of customer vertices in algorithmically generated covers for our 10
ISP-based instances. Entries in parentheses are the percentage reduction in cover size from the
results in the preceding column.

sizes of the covers still remain lower in the latter case.
The results for our ISP-based instances are presented in Table 11, where we only include the

(C1,F1) versions of those instances where we did not know the types of routers and so could not
deduce what the actual sets F and C should be. The resulting value |C|/|V | = 1 is reasonably
close to the corresponding values for the instances where we can estimate the actual sets F and
C; for these the ratio ranges from about 0.6 to 0.9. Because the instances where we do have this
information are proprietary, the column labeled by “|C|” only lists the value of C rounded to the
nearest 100. The average cover sizes reported, however, are given as percentages of the true value
of |C|. Note that in this table we do include a parenthetical improvement column for Opt over
Greedy(400), since here there are improvements for two of the instances.

As we can see, the effectiveness of our disjoint path monitoring scheme is even more substantial
for these instances than for our synthetic ones. The best point of comparison is to the (C1,F1)
variants of the latter, where the smallest ratio of set-disjoint cover size to |C| was roughly 16%.
Here the largest percentage is 17%, and four of the ten are less than 10%, with the percentage for
R3000 being just 1.8%. Moreover, going to the path-disjoint case now offers major improvements,
in comparison to the at-most 7.3% improvement for our synthetic instances. Here the range is from
10.8% to 83.5%, and now all but one of our instances have covers with size less than 8% of |C|.

Allowing arc-disjoint paths offers no further improvement. However, if one could consider
arbitrarily long vertex-disjoint paths, even more substantial reductions are possible. Now half the
instances have covers with size less than 1% of |C|. This should not be a surprise, however. As we
already observed in Section 6.3, typically 95% or more of the vertices in our ISP-based instances
are in a single large 2-connected component. By the definition of 2-connectedness, any two vertices
in such a component will constitute a cover. Additional vertices are only needed to handle the few
additional small components hanging off the large one.

8. Further Results and Directions

The problems described here can be generalized in a variety of directions, for two of which we
already have some preliminary results.

1. Variants of SDFL and PDFL in which we omit the requirement that every customer vertex
also be a potential facility location (i.e., that C ⊆ F ). In our monitoring application, it might
well be the case that some of the customer vertices are housed in locations that do not have
enough free physical space to house our monitoring equipment, or are in leased space into
which we do not have permission to add additional equipment.
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2. Variants in which for each vertex a given nonnegative cost must be paid if that vertex is used
as a facility, and our goal is to minimize total cost. Note that the second variant includes the
first as a special case, since we can simply set the cost of each member of F to be 1 and the
cost of all other vertices to be |F |+ 1.

Most of our algorithms and lower bounds carry over more-or-less directly to both types of
generalization, with the two exceptions being the linear-time algorithms of Section 5 and Section
4.3 for computing the optimum covers in the special case of trees and our general lower bound for
the path-disjoint case. Linear-time algorithms still exist for both of these tasks, but the simple
combinatorial characterizations that previously sufficed must now be replaced by dynamic programs
of some complexity. Our other algorithms and lower bounds carry over with almost no change for
the first type of generalization. For the second type, the integer programs for computing the
optimum and for computing the Hitting Set lower bound must change their objective functions so
that the variables xf are multiplied by the corresponding costs. And the various cover-constructing
heuristics must modify their greedy choices by taking costs into account, for instance by choosing
the f ∈ F which yields the highest ratio (increase in coverage)/(cost of f).

One question that arises for the first type of variant that was not an issue in our original version
of the problems is the question of feasibility. In the original version, where C ⊆ F , there was always
a feasible cover, mainly the set C itself, with each customer covering itself. When not all customers
are potential facility locations, it may be that no cover exists. Thus the first question one must
ask is whether such a cover exists. This will be true if and only if the full set F is a valid cover, a
property that can easily be checked in O(n2m) tine by generating the corresponding SCP problem
and verifying that there is a valid triple for each customer.

We leave the empirical testing of our algorithms for these generalizations of SDFL and PDFL
for further research. At present the variety of potential instance classes is too large for any one
or two choices to provide meaningful insights, although future research into potential applications
may identify particular instance classes whose practical relevance justifies such study.
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