
Hybrid method with CS and BRKGA applied to the
Minimization of Tool Switches Problem

A.A. Chavesa,∗, L.A.N. Lorenab, E.L.F. Sennec, M.G.C. Resended

aFederal University of São Paulo, São José dos Campos, Brazil, 12231-280,
antonio.chaves@unifesp.br

bNational Institute for Space Research, São José dos Campos, Brazil, 12201-970,
lorena@lac.inpe.br

cSão Paulo State University, Guaratinguetá, Brazil, 12516-410, elfsenne@feg.unesp.br
dAmazon.com, Mathematical Optimization and Planning (MOP), Seattle, USA, 98109,

resendem@amazon.com

Abstract

The minimization of tool switches problem (MTSP) seeks a sequence to
process a set of jobs so that the number of tool switches required is min-
imized. The MTSP is well known to be NP-hard. This paper presents a
new hybrid heuristic based on the Biased Random Key Genetic Algorithm
(BRKGA) and the Clustering Search (CS). The main idea of CS is to iden-
tify promising regions of the search space by generating solutions with a
metaheuristic, such as BRKGA, and clustering them to be further explored
with local search heuristics. The distinctive feature of the proposed method
is to simplify this clustering process. Computational results for the MTSP
considering instances available in the literature are presented to demonstrate
the efficacy of the CS with BRKGA.

Keywords: Hybrid heuristics, Clustering Search, Genetic Algorithm,
Scheduling, Tool switches.

1. Introduction

The minimization of tool switches problem (MTSP) considers a set of
jobs T = {1, ..., N} to be processed on a single machine. Let F = {1, ...,M}
be the set of tools available for this machine and Tf the set of jobs that
require the tool f ∈ F . Each job t ∈ T requires a subset of tools Ft ∈ F
and can only process this job when all of this subset of tools is on the

∗Corresponding author.

Preprint submitted to Computers & Operations Research October 2, 2016

machine. Consider that the machine is capable of holding a maximum of C
tools at a time, and C ≥ maxt{|Ft|}. It is assumed that C is less than the
total number of tools required to process all jobs. Thus, tool switches are
necessary, i.e., remove a tool from the machine and add another in its place.
In the MTSP we are seeking a sequence to process a set of jobs so that the
number of tool switches required is minimized.

MTSP is NP-hard [1, 2] and it has been studied by several authors,
mostly through heuristics. Tang and Denardo [1] show that the MTSP for a
given sequence of jobs can be solved in polynomial time by a policy known
as KTNS (Keep Tool Needed Soonest). This policy states that when tool
switches are required, the first tools required for the next job should be the
first to be held in the machine.

Crama et al. [2] propose heuristics, based on heuristics for the traveling
salesman problem, to solve the MTSP. Hertz et al. [3] also present and com-
pare heuristics based on the traveling salesman problem, but the authors use
a more appropriate definition of the “distance” between tools to be mini-
mized. This improvement provides superior performance over the heuristics
of Crama et al. [2].

Matzliach and Tzur [4] present three heuristics for the MTSP with non-
uniform tool sizes in a dynamic (online) environment. The proposed heuris-
tics are based on the static problem and consider various assumptions with
respect to the randomness of the process.

Shirazi and Frizelle [5] assess the efficiency of the methods currently
employed by seven manufacturing companies for solving the tool switches
problem and compare these methods with some available tool switching
heuristics.

Fathi and Barnette [6] propose three heuristic procedures for solving the
problem of scheduling a set of parts with given processing times and tool
requirements on m identical parallel machines. The paper shows that these
heuristics are effective to find a tool-switching plan for each machine in order
to minimize the makespan.

Song and Hwang [7] propose an optimal tooling policy utilizing the con-
cept of early insertions of tools in order to minimize the frequency of move-
ments of the tool transporter for a flexible machine. This machine must
process a set of parts with its production sequence already prescribed.

Ghrayeb et al. [8] consider the problem of scheduling printed circuit
packs on sequencers. The authors present a mathematical model and a
fast heuristic to solve this problem. The proposed heuristic is effective in
reducing the number of changeovers of input tapes and can be used for the
MTSP.

2

Al-Fawzan and Al-Sultan [9] present a tabu search algorithm to solve the
MTSP. Senne and Yanasse [10] present three variants of the Beam Search
algorithm for the MTSP. The authors adopt a depth first strategy of the enu-
meration tree and a scheme that considers partially ordered job sequences.
All approaches found good results for the 1350 instances tested.

Konak and Kulturel-Konak [11] propose an Ant Colony Approach to
minimize the number of tool switching instants, when the tool switch time
is independent of the number of tool switches. The algorithm was applied to
solve large sized instances of practical importance. Konak et al. [12] apply
two Tabu Search approaches to solve this problem and show that they find
solutions close to optimal in reasonable times.

Amaya et al. [13] present a memetic algorithm that combines Genetic
Algorithm and local search heuristics. A hill climbing heuristic is used just
after the mutation operator on every new individual generated. Computa-
tional tests show that hybrid evolutionary approaches are effective to solve
the MSTP. Later, Amaya et al. [14] study three cooperative methods with
local search mechanisms and one cooperative method with a model based on
heterogeneous techniques. The last approach provides better solutions than
those found by the Beam Search and Tabu Search. Also, Amaya et al. [15]
combine a Genetic Algorithm with three different local search heuristics: hill
climbing, Tabu Search and Simulated Annealing. The memetic algorithm
with hill climbing found the best results.

Chaves et al. [16] present a new heuristic for the MTSP. This heuristic
has a constructive phase, based on a graph where the nodes correspond to
tools and an arc links two nodes if and only if these tools are required to
execute some job. An additional improvement phase is based on Iterated
Local Search (ILS).

The success in solving the MTSP exactly is limited to small instances.
Laporte et al. [17] report that just a few instances among a set of 25 jobs in-
stances were solved to optimality using the branch-and-bound scheme they
proposed. Yanasse and Rodrigues [18], Yanasse et al. [19] present an enu-
meration algorithm based on partial orders that obtained good results on
instances in which the algorithm of Laporte et al. [17] failed. The computa-
tional results of Chaves et al. [16] show that the hybrid heuristic contributes
to a significant reduction in the number of nodes in the tree of the enumer-
ation algorithm.

This paper presents a new application of the hybrid method Clustering
Search (CS) [20] to solve the MTSP. The CS detects promising areas of the
search space using a metaheuristic that generates solutions to be clustered.
These promising areas should be explored with local search heuristics as

3

soon as they are discovered. A Biased Random Key Genetic Algorithm
(BRKGA) [21] was chosen to generate solutions for the clustering process.
A BRKGA encodes a solution as a vector of random keys and produces
a feasible solution through the decoder. The use of the BRKGA made it
possible to simplify some components of the CS. The users have at their
disposal a robust method in which they need to implement only the decoder
and local search heuristics. The computational results are compared with
other methods found in the literature.

The remainder of the paper is organized as follows. Section 2 describes
the basic ideas of CS and BRKGA. In Section 3 we introduce the new ap-
proach, describing in detail the BRKGA and CS applied to the MTSP. Sec-
tion 4 reports computational experiments and Section 5 makes concluding
remarks.

2. Methods

In this section we present the basic ideas of the CS and the BRKGA,
including descriptions of the solution encoding and decoding, clustering pro-
cess and local search.

2.1. Clustering Search

The Clustering Search (CS) (Oliveira et al. [20]) is a hybrid method
which combines metaheuristic-based heuristics and local search heuristics.
The search is intensified only in areas of the search space that deserve special
attention (promising regions). The CS introduces intelligence and priority
to the choice of solutions on which to apply local search, instead of randomly
choosing or applying local search to all solutions. Therefore, an improve-
ment is expected in the convergence process associated with a decrease in
computational effort through a more rational employment of the heuristics.

The CS divides the search space in regions called clusters. A solution
center, c, represents the location of a cluster. This center is, generally,
initialized at random and tends to progressively traverse promising points
in the search space. The number of clusters NC is defined a priori.

The value ofNC has no influence on the amount of local search performed
by the CS. Thus, there is little impact on computational time. However,
with a larger number of clusters, CS can efficiently discover more promising
regions and intensify the search in only those regions.

Chaves [22] analyzes the behavior of CS with different numbers of clus-
ters. The author shows that a number of clusters in the interval [10, 25]

4

provides good results in solution quality and increases the efficiency of local
search.

The CS consists of four components: the search metaheuristic-based
heuristic (SM), the iterative clustering (IC), the analyzer module (AM),
and the local searcher (LS). Fig. 1 shows the conceptual design of these
components.

The SM component can be implemented by any optimization algorithm
that generates diversified solutions in the search space. It must work as a
full-time solution generator, exploring the search space by manipulating a
set of solutions, according to its specific search strategy.

Solutions sk generated by the SM are sent to the IC. The IC gathers
similar solutions into groups, maintaining a representative cluster center for
each group. A distance metric, ∆, must be defined to provide a similarity
measure for the clustering process. For example, in combinatorial optimiza-
tion, the similarity can be defined as the number of movements needed to
change a solution into the cluster center [20].

An assimilation process is applied over the closest center ci to each newly
generated solution sk. The assimilation can assume two different forms:
crossover and path [20]. In crossover assimilation, we alter one or more
positions in the center ci with information derived from solution sk, resulting
in a new center. Path assimilation can generate several solutions, keeping
the best one to be the new center. These exploratory moves are commonly
referred to in path relinking theory [23].

The AM component examines each cluster when it is active, indicating
a probable promising cluster. A cluster density, δj , is a measure that indi-
cates the activity level inside the cluster j. For simplicity, δj can count the
number of solutions generated by SM and grouped into cluster j. Whenever
δj reaches a certain threshold λ, i.e. some information template becomes
predominantly generated by SM, such cluster must be further investigated
to accelerate the convergence process in it.

If the value of λ is large, the LS component will be applied a few times,
while small values of λ results in many local searches. This parameter has
to be tuned before the execution of the CS. The parameter λ may have a
strong influence on the efficiency and effectiveness of the search as well as
on computational time.

Finally, the LS component is an internal searcher module that provides
the exploitation of a potentially promising search area, represented by a
cluster.

5

2.2. Biased Random Key Genetic Algorithm

The Biased Random Key Genetic Algorithm (BRKGA) is a recent meta-
heuristic proposed by Gonçalves and Resende [21]. It has been used to solve
sequencing and optimization problems. In the BRKGA, solutions are en-
coded as vectors of randomly generated real numbers in the interval [0, 1].
These numbers are called random keys.

The decoder, a deterministic algorithm, takes as input a solution vector
and associates with it a feasible solution of the problem for which an objec-
tive value or fitness can be computed [24]. Thus, points in the random keys
space are mapped to points in the problem space for evaluation [25].

A BRKGA evolves a population of random-key vectors, or individuals,
over a number of generations. The initial population is made up of p real
n-vectors of random keys. Each component of an initial solution vector is
generated randomly and independently in the real interval [0, 1]. The fitness
of each individual is computed by the decoder. Then, the population is par-
titioned into two groups of individuals: a small group of pe elite individuals,
i.e., those with the best fitness values, and the remaining set of p− pe non-
elite individuals. To evolve the population, a new generation of individuals
must be produced. All elite individuals in the population of generation k
are copied without modification to the population of generation k + 1 [21].

The BRKGA implements mutation by introducing mutants into the pop-
ulation. A mutant is simply a vector of random keys generated in the same
way as an individual in the initial population. At each generation, a small
number (pm) of mutants are introduced into the population. With the pe
elite individuals and the pm mutants accounted for in population k + 1,
p − pe − pm additional individuals are needed to produce the p individuals
that make up the new population. This is done by producing p − pe − pm
offspring through the process of crossover, by combining pairs of individuals
of the current population.

The parameterized uniform crossover [26] is used in BRKGA. Let ρe be
the probability that an offspring inherits the vector component of its elite
parent. Let n denote the number of components in the solution vector of an
individual. For i = 1, ..., n, the ith component of the offspring vector takes
on the value of the ith component e(i) of the elite parent e with probability
ρe and the value of the ith component ne(i) of the non-elite parent ne with
probability 1− ρe [27]. Parameter ρe is always greater than 0.5.

The important feature of random keys is that all offspring formed by
crossover are feasible solutions. Toso and Resende [28] concluded that the
BRKGA has two distinct parts: one consisting of the genetic algorithm with

6

its chromosome methods and generations, called problem-independent and
the other consisting of the decoder, called problem-dependent.

2.3. CS with BRKGA

In this paper we propose to use the BRKGA as the SM component of CS.
Thus, we seek to make the implementation of CS more independent in rela-
tion to the optimization problem. We use a random-key vector to represent
a solution of any problem. Therefore, the distance metric is the Euclidean
distance and the assimilation process is performed over the random-key vec-
tor. The local search (LS) is the only component that works with decoded
solutions. Figure 1 shows the conceptual design of CS with BRKGA.

generate individuals
with random keys

decode each
individual

begin

[IC] apply clustering
process in offspring

create cluster centers
with random keys

[AM]
promising

regions
detected?

yes

[SM] BRKGA Clustering process

no

A

A

B

B

generate offspring for
next generation

create mutants for
next generation

copy elite individuals
into next generation

classify individuals as
elite or non-elite

stopping
rule

satisfied?

end

[LS] apply local search
in promising centersyes

no

Problem-independent

Problem-dependent

decode each
promising center

Figure 1: Components of CS with BRKGA.

Initially, we define a number of clusters NC. Their centers are generated
with random keys by the method used in the BRKGA to generate the initial

7

population. This set of solutions is not part of the population of BRKGA,
and it evolves separately.

The BRKGA generates solutions for the clustering process. After each
generation, the offspring are analyzed and clustered according to their sim-
ilarities.

The IC component determines a distance metric to compute the similar-
ity between a given solution and a cluster center. With centers represented
by random keys, the similarity is based on the Euclidean distance. Thus,
we avoid the cost of computing the number of movements needed to change
a solution into the cluster center.

The assimilation process is applied over the closest center, considering
the new grouped solution, causing a kind of perturbation on the solution. In
this paper, we use a path assimilation. Then, we generate several solutions
keeping the best evaluated solution to be the new center. These exploratory
moves are commonly referred to in path relinking theory [23]. In the case
of random keys, a move consists of replacing the value of the ith component
of two solutions. The process terminates when a percentage of solutions in
the path have been analyzed.

After performing the assimilation process, we conduct an analysis of
the density δj (AM component), verifying if this cluster can be considered
promising. A cluster becomes promising when its density reaches the thresh-
old λ (δj ≥ λ).

The local search of CS (i.e. the LS component) intensifies the search in
the neighborhood of a promising cluster center. The center is first decoded
into a solution of the problem and then specific local search heuristics are
applied to find the best possible solutions in the corresponding region.

Changes in the solution made by the local search need to be taken into
account in the new cluster center. Then, the cluster center is adjusted to
reflect these changes carrying out the inverse steps taken by the algorithm
used to decode a random-key solution.

3. CS with BRKGA applied to MTSP

In this paper, we encode a solution to the problem as a vector of random
keys that is later used by a decoding procedure to obtain a solution. A
solution to the MTSP is represented indirectly by the following solution
structure:

solution = (k1, . . . , kn)

where n is the number of jobs. The decoding of the n random keys k1, . . . , kn
of each solution into a sequence of jobs is accomplished by sorting the jobs in

8

ascending order of their corresponding random keys values. Figure 2 shows
an example of the decoding process for the MTSP. In this example there are
five jobs. The sorted random keys correspond to the jobs sequence (3, 5, 1,
2, 4).

1 2 3 4 5

0.45 0.62 0.02 0.87 0.23

0.02 0.23 0.45 0.62 0.87

Unordered jobs

Unordered keys

Sorted keys

Jobs sequence 3 5 1 2 4

Figure 2: Decoding of the job sequence

The fitness of a solution with the job sequence is obtained with the KTNS
algorithm [1]. It returns the total number of tool switches needed to process
the jobs in this sequence. The pseudo-code of the KTNS is presented in
Appendix A.

The initial clusters of CS and the initial population of BRKGA are made
up of vectors with n random keys. Each component of the solution vector,
i.e. each random key, is generated independently at random in the real
interval [0, 1].

This paper uses a greedy method based on maximum diversity to create
the initial centers. It generates a large set with q (q >> NC) random key
vectors and a subset of cardinality NC with the largest diversity selected
based on Euclidean distance. A possible example of initial clusters (with
NC = 3 and n = 5) is:

c1 = (0.45, 0.62, 0.02, 0.87, 0.23) ≡ (3, 5, 1, 2, 4) δ1 = 0,
c2 = (0.71, 0.12, 0.89, 0.38, 0.57) ≡ (2, 4, 5, 1, 2) δ2 = 0,
c3 = (0.21, 0.47, 0.84, 0.41, 0.38) ≡ (1, 5, 4, 2, 3) δ3 = 0.

To implement a BRKGA, we simply need to specify how solutions are
encoded and decoded, including how their corresponding fitness values are
computed. When the next population is complete, the vector of random

9

keys are decoded and their corresponding fitness values are computed for
all of the newly created random-key vectors. The population is partitioned
into elite and non-elite individuals to start a new generation.

The offspring of a new population are used in the clustering process of
CS. At each iteration, one individual sk is grouped into the closest cluster
j; i.e. the cluster that minimizes the Euclidean distance between sk and the
cluster center. The density δj is increased by one unit and the center cj is
updated with the new attributes of sk (assimilation process). For example,
if sk = (0.41, 0.92, 0.02, 0.27, 0.68) ≡ (3, 4, 1, 5, 2), the Euclidean distances to
the centers (c1, c2, c3) are, respectively:

∆sk,c1 =
5∑

i=1

√
(sk(ki)− c1(ki))2 = 1.39,

∆sk,c2 =
5∑

i=1

√
(sk(ki)− c2(ki))2 = 2.19,

∆sk,c3 =
5∑

i=1

√
(sk(ki)− c3(ki))2 = 1.91.

Then, the cluster c1 is the closest cluster for this individual sk. The density
δ1 is increased by one unit.

The assimilation process uses the path-relinking method [29]. The pro-
cedure starts by computing the symmetric difference between the center cj
and the solution sk, i.e., the set of moves needed to reach sk from cj . A path
of solutions is generated, linking cj and sk. At each step, the procedure ex-
amines all moves from the current solution s and selects the one that results
in the best-cost solution, applying the best move to solution s. The set of
available moves is updated.

The procedure terminates when a percentage ρ of the solutions in the
path have been analyzed. Thus, the center is not moved to a new location
too far away from the current one. The new center cj is the best solution
along this path. In this paper, one move is to replace a single random key
of cj by a random key of sk. An example of path-relinking moves between
c1 and sk are:

c1 = (0.45, 0.62, 0.02, 0.87, 0.23)

(0.41,−, 0.02,−,−) (−,0.92, 0.02,−,−) (−,−, 0.02,0.27,−) (−,−, 0.02,−,0.68)

(0.41,−, 0.02, 0.27,−) (−,0.92, 0.02, 0.27,−) (−,−, 0.02, 0.27,0.68)

(0.41,0.92, 0.02, 0.27,−) (0.41,−, 0.02, 0.27,0.68)

sk = (0.41, 0.92, 0.02, 0.27, 0.68)

10

where solutions in the path are represented by the random-key replaced (in
bold) and the random-keys that are already equal in sk. Random-keys that
do not appear in the solution (−) are the same as in c1. The underlined
solution is the best solution in an iteration, and the new center c1 is the
best solution of the path analyzed.

After performing the path-relinking, we conduct an analysis of the den-
sity δj , verifying if this cluster can be considered promising. A cluster be-
comes promising when its density reaches the threshold λ (δj ≥ λ).

If the density δj reaches λ, local search heuristics are applied to the
center cj . In this paper, the Variable Neighborhood Descent (VND) [30] is
implemented as local search component of CS, intensifying the search in the
neighborhood of a promising cluster. The promising centers are decoded into
a feasible solution of MTSP. For example, let us assume that the density δj
of the center cj = (0.32, 0.78, 0.02, 0.41, 0.93) reaches the threshold λ. Thus,
we apply the VND on the decoded solution cj ≡ (3, 1, 4, 2, 5).

Our VND utilizes four descent heuristics: Shift(1), Swap (1,1), Shift(2),
and Swap(2,2) (see examples of these neighborhoods in Figure 3):

(a) Shift(1) - N (1): a job k is transferred from its current position to
position i;

(b) Swap(1,1) - N (2): permutation between a job k and a job l;

(c) Shift(2) - N (3): two adjacent jobs k and l are transferred from their
current positions to positions i and i+ 1;

(d) Swap(2,2) - N (4): permutation between two adjacent jobs k and l, and
two other adjacent jobs k′ and l′. Two different ways for exchanging
jobs (k, l) and (k′, l′) are considered.

The descent heuristics are applied in the order {N1, N2, N3, N4}. When-
ever a given heuristic fails to improve the incumbent solution, the VND
chooses the next heuristic to continue the search. It returns to the first
heuristic each time a better solution is found.

The solution spaces of the neighborhoods can be explored exhaustively,
that is, all possible combinations are examined, and the best improving move
is considered. When no improvement can be obtained, we stop.

The CS attempts to apply the VND only in promising regions. Thus,
one strives to obtain the best possible solution within the neighborhood of
a promising center.

At the end of VND, we adjust the cluster center to reflect the new order
of the jobs. For example, if the solution c′j = (3 5 4 2 1) presented in

11

cj  (3 1 4 2 5)

c'j  (4 3 1 2 5)

(a) Shift (1)

cj  (3 1 4 2 5)

c'j  (3 5 4 2 1)

(b) Swap (1,1)

cj  (3 1 4 2 5)

c'j  (3 2 5 1 4)

(c) Shift (2)

cj  (3 1 4 2 5)

c'j  (4 2 3 1 5)

(d) Swap (2,2)

c"j  (2 4 1 3 5)

Figure 3: Examples of the four neighborhood structures for MTSP.

Figure 3(b) is a local optimal solution of this cj , we use the sorted keys
(0.02, 0.32, 0.41, 0.78, 0.93) and sort the sequence of jobs of c′j in ascending
order maintaining the corresponding random keys values. Thus, the new
center cj is (0.93, 0.78, 0.02, 0.41, 0.32).

This process of CS+BRKGA is applied repeatedly. The stopping crite-
rion used in this paper is a fixed number of generations. There are other
possible stopping criteria, including stopping after a fixed number of gen-
erations since the generation of the last solution improvement, after a time
limit is reached, or after a solution at least as good as a given threshold is
found.

4. Computational Results

The CS and BRKGA were coded in C++ and the computational tests
carried out on an Intel Core i7 3.4 GHz processor with 16GB of RAM. Nine
problem sets are used in these tests: five sets introduced by Yanasse and
Rodrigues [18] named A, B, C, D and E, and four sets introduced by Crama
et al. [2], named C1, C2, C3 and C4.

Table 1 shows the values of the parameters of the five sets of Yanasse and
Rodrigues [18] and the four sets of Crama et al. [2]. These instances as well as
our best solutions can be found at http://www.sjc.unifesp.br/docente/chaves.

We chose a subset of instances to tune the parameters of the proposed
method. We tune one parameter at a time. Its best value (in terms of

12

Table 1: Characteristics of MTSP instances.
Number of jobs Number of tools Capacity Number of instances

Group Min Max Min Max Min Max

A 8 8 15 25 5 20 340

B 9 9 15 25 5 20 330

C 15 15 15 25 5 20 340

D 20 25 15 25 5 20 260

E 10 15 10 20 4 12 80

C1 10 10 10 10 4 7 40

C2 15 15 20 20 6 12 40

C3 30 30 40 40 15 25 40

C4 40 40 60 60 20 30 40

quality of solutions and computational time) is determined empirically. Al-
though setting these parameters is kind of an art form, our experience and
suggestions from [21] have led us to the parameters values shown in Table
2. We can observe that the population size of CS+BRKGA was smaller
and the number of mutants was larger than for the BRKGA. Though the
CS+BRKGA used a small population, it was robust and enjoyed sufficient
diversity.

Table 2: Values for the BRKGA and CS parameters.

Parameter Meaning BRKGA CS+BRKGA

p Number of individuals in population 2000 1000

Gen Number of generations 100 100

pe Size of the elite set in population 0.20 0.20

pm Number of mutants to be introduced in population at each generation 0.15 0.20

ρe Probability that an allele is inherited from the elite parent 0.70 0.70

NC Determines the number of clusters - 20

ρ Percentage of the analyzed path in the path-relinking - 0.3

λ Defines the maximum density for the local search - 15

Tables 3-8 present the results for the ILS [16], BRKGA, and CS+BRKGA.
The entries in tables are the number of jobs (N), the number of tools (M),
the machine capacity (C), the best solution (S*), the average solution (S)
over 20 runs, the average running time to find the best solution (T*), and
the average running time (T) in seconds. The values in boldface show the
best objective function value for each instance.

Chaves et al. [16] propose a ILS based in [31]. It starts from an initial
solution generated by a constructive heuristic based on a graph where the
vertices correspond the tools and an arc k = (i, j) binding vertices i and j

13

exists if tools i and j are necessary for the execution of task k. The pertur-
bation uses swap(1,1) moves to escape from local optima. The local search
phase is also based on this move, with all solutions in the neighborhood
being evaluated before the best one is returned. The stopping criterion of
the ILS is a maximum number of iterations, defined as 3000 iterations.

Table 3: MTSP: Comparison of the results for instances of group A.
ILS [16] BRKGA CS+BRKGA

N M C S* S T* T S* S T* T S* S T* T

8 15 5 12.00 12.00 0.00 0.98 12.00 12.00 0.00 1.03 12.00 12.00 0.00 2.39

8 15 10 6.83 6.83 0.00 1.03 6.83 6.83 0.00 0.98 6.83 6.83 0.00 2.65

8 20 5 16.80 16.80 0.00 1.30 16.80 16.80 0.00 1.32 16.80 16.80 0.01 2.97

8 20 10 13.07 13.07 0.00 1.49 13.07 13.07 0.00 1.36 13.07 13.07 0.00 3.54

8 20 15 7.08 7.08 0.00 1.34 7.08 7.08 0.00 1.25 7.08 7.08 0.00 3.57

8 25 5 20.10 20.10 0.00 1.60 20.10 20.10 0.00 1.67 20.10 20.10 0.00 4.54

8 25 10 18.20 18.20 0.00 1.70 18.20 18.20 0.01 1.73 18.20 18.20 0.01 4.37

8 25 15 12.95 12.95 0.00 1.62 12.95 12.95 0.01 1.64 12.95 12.95 0.01 4.61

8 25 20 6.61 6.61 0.00 1.47 6.61 6.61 0.01 1.48 6.61 6.61 0.01 4.72

average 12.63 12.63 0.00 1.39 12.63 12.63 0.00 1.38 12.63 12.63 0.00 3.71

Table 4: MTSP: Comparison of the results for instances of group B.

ILS [16] BRKGA CS+BRKGA

N M C S* S T* T S* S T* T S* S T* T

9 15 5 12.20 12.20 0.00 1.39 12.20 12.20 0.00 1.10 12.20 12.20 0.01 2.72

9 15 10 7.37 7.37 0.00 1.27 7.37 7.38 0.01 1.07 7.37 7.37 0.01 3.15

9 20 5 17.40 17.40 0.01 1.82 17.40 17.40 0.03 1.38 17.40 17.40 0.02 3.13

9 20 10 14.17 14.17 0.02 1.81 14.17 14.19 0.01 1.43 14.17 14.17 0.02 3.92

9 20 15 7.60 7.60 0.01 1.58 7.60 7.62 0.01 1.32 7.60 7.60 0.01 3.99

9 25 5 20.40 20.40 0.01 2.22 20.40 20.40 0.01 1.73 20.40 20.40 0.01 4.08

9 25 10 18.77 18.77 0.02 2.34 18.77 18.80 0.05 1.81 18.77 18.77 0.03 5.08

9 25 15 14.74 14.74 0.02 2.23 14.74 14.77 0.04 1.77 14.74 14.75 0.03 5.10

9 25 20 7.19 7.19 0.01 2.30 7.19 7.20 0.01 1.62 7.19 7.19 0.01 5.26

average 13.31 13.31 0.01 1.88 13.31 13.33 0.02 1.47 13.31 13.32 0.02 4.05

The tables of results show that CS+BRKGA performed better than ILS
[16]. For groups A, B (Tables 3 and 4), C and E (Tables 5 and 7), the
CS+BRKGA found optimal solutions for all instances (proven by enumer-
ation using the ILS upper bound [19, 16]). The ILS [16] does not find the
optimal solution for two instances of C and one instance of E.

For group D (Table 6), the CS+BRKGA found optimal solutions for 189
of 260 instances (enumeration proved optimality of only those 189 instances)
while ILS [16] did not find optimal solutions for 13 of these 189 instances.

14

Table 5: MTSP: Comparison of the results for instances of group C.
ILS [16] BRKGA CS+BRKGA

N M C S* S T* T S* S T* T S* S T* T

15 15 5 16.60 16.64 0.69 5.90 16.60 17.25 0.23 1.53 16.60 16.69 0.21 5.31

15 15 10 9.80 9.86 0.41 6.15 9.87 10.12 0.07 1.53 9.80 9.88 0.09 7.10

15 20 5 20.60 20.74 0.95 9.60 20.60 21.25 0.24 2.02 20.60 20.77 0.51 7.26

15 20 10 18.40 18.58 0.72 9.11 18.43 19.00 0.16 2.07 18.33 18.52 0.32 8.93

15 20 15 10.52 10.58 0.63 7.07 10.57 10.90 0.09 1.92 10.52 10.65 0.21 9.61

15 25 5 27.50 27.67 0.80 9.99 27.70 28.24 0.33 2.51 27.50 27.70 0.38 9.30

15 25 10 25.07 25.21 1.30 11.49 25.17 25.81 0.21 2.65 25.07 25.30 0.41 13.52

15 25 15 19.07 19.19 1.10 10.74 19.17 19.70 0.17 2.50 19.07 19.27 0.36 13.63

15 25 20 9.66 9.76 0.52 8.59 9.70 10.02 0.10 2.31 9.66 9.79 0.27 13.82

average 17.47 17.58 0.79 8.74 17.53 18.03 0.18 2.12 17.53 17.62 0.31 9.83

Table 6: MTSP: Comparison of the results for instances of group D.
ILS [16] BRKGA CS+BRKGA

N M C S* S T* T S* S T* T S* S T* T

20 15 5 21.20 21.72 3.55 15.00 21.40 22.45 0.47 3.38 21.10 21.58 0.80 10.78

20 15 10 8.20 8.41 0.97 12.62 8.40 8.78 0.26 3.46 8.20 8.44 0.41 12.34

20 20 5 24.40 24.86 6.17 23.21 24.80 25.93 0.64 5.49 24.30 24.93 1.24 14.84

20 20 10 10.60 10.66 0.96 21.99 10.60 10.76 0.16 5.78 10.60 10.76 0.38 16.08

20 20 15 6.67 6.72 0.61 17.90 6.67 6.85 0.12 5.09 6.67 6.79 0.33 24.66

20 25 5 30.40 30.87 4.41 23.74 30.40 31.68 0.76 5.89 30.10 30.74 1.40 19.16

20 25 10 15.40 15.48 1.02 22.30 15.40 15.56 0.26 6.11 15.40 15.47 0.80 21.49

20 25 15 21.43 21.79 3.58 22.65 21.55 22.45 0.47 5.92 21.25 21.75 0.93 28.11

20 25 20 6.18 6.24 0.58 18.34 6.18 6.35 0.18 5.21 6.15 6.28 0.52 35.53

25 15 10 5.90 5.96 0.93 21.87 6.00 6.12 0.11 4.18 5.90 6.00 1.02 21.14

25 20 10 11.60 11.93 3.55 31.27 11.90 12.40 0.38 5.45 11.60 12.05 1.94 27.48

25 20 15 7.60 7.73 2.07 27.81 7.70 8.02 0.22 5.07 7.60 7.82 1.57 25.66

25 25 10 16.60 16.86 6.51 41.19 16.70 17.45 0.51 6.63 16.60 17.06 2.66 36.88

25 25 15 10.00 10.00 0.00 38.92 10.00 10.00 0.04 6.61 10.00 10.00 0.01 54.70

25 25 20 5.50 5.53 0.91 35.91 5.53 5.65 0.13 6.12 5.50 5.59 1.14 66.10

average 13.44 13.65 2.39 24.98 13.55 14.03 0.31 5.36 13.40 13.68 1.01 27.66

Table 7: MTSP: Comparison of the results for instances of group E.
ILS [16] BRKGA CS+BRKGA

N M C S* S T* T S* S T* T S* S T* T

10 10 4 9.50 9.50 0.02 1.17 9.50 9.53 0.03 0.76 9.50 9.50 0.02 1.55

10 10 5 6.20 6.20 0.00 1.12 6.20 6.20 0.02 0.82 6.20 6.21 0.01 1.96

10 10 6 4.30 4.30 0.00 1.09 4.30 4.30 0.00 0.89 4.30 4.30 0.00 2.88

10 10 7 3.00 3.00 0.00 1.07 3.00 3.00 0.00 0.92 3.00 3.00 0.00 3.45

15 20 6 21.40 21.54 1.07 8.84 21.40 22.11 0.17 2.01 21.40 21.71 0.31 7.09

15 20 8 14.30 14.35 0.62 7.88 14.30 14.53 0.06 2.06 14.20 14.33 0.20 7.68

15 20 10 10.30 10.30 0.01 7.58 10.30 10.34 0.04 2.25 10.30 10.34 0.11 12.71

15 20 12 8.20 8.20 0.00 7.36 8.20 8.20 0.01 2.26 8.20 8.20 0.00 14.97

average 9.65 9.67 0.21 4.51 9.65 9.78 0.04 1.50 9.64 9.70 0.08 6.54

15

Table 8: MTSP: Comparison of the results for instances of Crama et al. [2].
best(I) a Enumerative b ILS [16] BRKGA CS+BRKGA

N M C S* S* T S* S T* T S* S T* T S* S T* T

10 10 4 13.20 9.10 0.01 9.10 9.10 0.01 0.48 9.10 9.21 0.01 0.18 9.10 9.11 0.01 1.57

10 10 5 11.20 6.20 0.01 6.20 6.20 0.00 0.43 6.20 6.20 0.00 0.19 6.20 6.20 0.00 2.05

10 10 6 10.30 4.30 0.01 4.30 4.30 0.00 0.46 4.30 4.30 0.00 0.20 4.30 4.30 0.00 2.64

10 10 7 10.10 3.10 0.00 3.10 3.10 0.00 0.39 3.10 3.10 0.00 0.22 3.10 3.10 0.00 3.41

15 20 6 26.50 20.60 1.94 20.60 20.90 0.41 3.62 20.80 21.66 0.08 0.56 20.60 20.87 0.32 8.18

15 20 8 21.60 13.70 3.04 13.70 13.70 0.11 2.86 13.70 14.12 0.05 0.58 13.70 13.72 0.13 8.88

15 20 10 20.00 10.10 60.79 10.10 10.10 0.03 2.80 10.10 10.23 0.02 0.61 10.10 10.10 0.09 11.20

15 20 12 19.60 7.60 95.41 7.60 7.60 0.00 2.68 7.60 7.60 0.00 0.63 7.60 7.60 0.01 18.05

30 40 15 113.60 96.10 3600.00 94.00 96.73 31.55 71.77 96.80 101.32 1.61 2.80 91.80 93.03 14.99 140.05

30 40 17 95.90 76.80 3600.00 74.00 76.38 29.32 65.11 76.60 81.00 1.28 2.56 71.70 72.98 15.66 127.09

30 40 20 76.80 56.90 3600.00 52.20 54.20 26.48 62.41 55.80 58.67 0.93 2.40 50.70 51.85 11.07 121.43

30 40 25 56.80 35.40 3600.01 28.80 30.18 17.23 50.80 31.00 33.42 0.65 2.04 28.10 28.97 10.94 104.02

40 60 20 211.60 192.60 3600.00 188.40 191.93 146.46 298.26 192.50 199.70 5.03 6.51 179.80 182.25 63.30 599.34

40 60 22 189.70 167.10 3600.01 161.00 164.34 145.01 276.31 164.50 171.52 4.55 6.31 153.30 155.28 60.39 557.97

40 60 25 160.50 137.70 3600.01 128.70 132.26 135.49 262.15 131.80 139.27 3.99 5.80 122.50 124.35 57.68 533.52

40 60 30 127.40 102.40 3600.01 90.70 93.07 114.41 233.97 93.90 99.58 2.96 5.17 84.50 86.94 50.54 473.56

average 72.80 58.73 1810.08 55.78 57.13 40.41 83.41 57.36 60.06 1.32 2.30 53.57 54.42 17.82 169.56

The ILS [16] found a better solution than CS+BRKGA for only one instance.
Moreover, the CS+BRKGA obtained new upper bounds for three instances.

The instances of Crama et al. [2] were solved by enumeration [18, 19], the
ILS [16], the BRKGA, and CS+BRKGA. For each problem size (N,M,C),
10 instances were generated. Table 8 also shows the number of tool switches
required by the best sequence found by the heuristics of Crama et al. [2]. The
enumeration algorithm [18, 19], limited to 3,600 seconds of computational
time, was able to get the optimal solution only for instances with 10 and
15 jobs. For these instances, the ILS and CS+BRKGA found all optimal
solutions. Considering instances with 30 jobs, CS+BRKGA found better
solutions than ILS in 32 of 40 instances and solutions with the same number
of tool switches for 8 instances (5 in set C4, that have larger capacities). For
the instances with 40 jobs, CS+BRKGA found better solutions than ILS on
all tested instances.

To show the advantage of the CS+BRKGA with respect to ILS when
applied to MTSP, we calculated minimum (Min), maximum (Max), mean
(Mean), median (Median), and standard deviation (StdDev) of the solution
values obtained over 20 independent runs of these methods for each instance
with 30 and 40 jobs. We also analyzed two other criteria for which lower
values represent better results: the number of runs where the best known
solutions (BK) was not obtained (Nopt) and the average relative distance
value to best known solution for those runs that did not reach BK (Avd),

16

expressed in percentages. Table 9 shows these results.

Table 9: MTSP: Comparison between ILS and CS+BRKGA using seven criteria.
CS+BRKGA ILS [16]

N M C BK Min Max Mean Median StdDev Nopt (%) Avd (%) Min Max Mean Median StdDev Nopt (%) Avd (%)

30 40 15 91.80 91.80 94.40 93.03 93 0.73 0.80 1.38 94.00 99.00 96.73 97 1.33 1.00 5.41

30 40 17 71.70 71.70 74.30 72.88 73 0.81 0.78 1.64 74.00 78.50 76.39 76 1.27 1.00 6.54

30 40 20 50.70 50.70 53.00 51.79 51 0.69 0.76 2.14 52.20 56.10 54.20 54 1.08 0.99 6.89

30 40 25 28.10 28.10 29.80 28.94 29 0.49 0.66 2.92 28.80 31.50 30.18 30 0.74 0.92 7.24

40 60 20 179.80 179.80 184.50 182.01 184 1.31 0.86 1.24 188.40 195.10 191.93 195 1.79 1.00 6.76

40 60 22 153.30 153.30 157.00 155.16 157 1.13 0.84 1.22 161.00 167.20 164.34 167 1.68 1.00 7.21

40 60 25 122.50 122.50 126.10 124.20 126 1.10 0.80 1.38 128.70 134.90 132.26 134 1.55 1.00 7.96

40 60 30 84.50 84.50 88.60 86.55 87 1.31 0.78 2.42 90.70 95.00 93.07 94 1.22 1.00 10.14

average 97.80 100.96 99.32 99.94 0.95 0.78 1.79 102.23 107.16 104.88 105.75 1.33 0.99 7.27

We observe that the CS+BRKGA found the best-known solutions for
all instances. Moreover, the CS+BRKGA found the BK solution in 22%
of tests (average Nopt = 0.78) and the deviation from the BK solution,
when the BK solution was not found, was, on average, 1.79% (column Avd).
The ILS found the BK solutions on a very small number of tests (only for
sets (30, 40, 20) and (30, 40, 25)) and its deviation from the BK solution was
greater than 7%. The average improvement of the CS+BRKGA with respect
to the ILS was 5% and 6% for instances with 30 and 40 jobs, respectively.
The CS+BRKGA algorithm was robust, producing low percentage deviation
from the best solution found (the average deviation found by CS+BRKGA
was 0.8% for the instances of Yanasse and Rodrigues [18] and 1.5% for the
instances of Crama et al. [2]).

Finally, we performed a statistical analysis to compare our CS+BRKGA
and ILS proposed in [16] considering the 80 instances of 30 and 40 jobs with
20 independents runs for each one (two sets of 1600 solutions). First, we
apply the Shapiro-Wilk normality test, which reject the null hypothesis that
the data are normally distributed (W = 0.685, p-value < 2.2 e-16).

We also apply a Wilcoxon signed-rank test (WSR) a non-parametric
statistical hypothesis test [32]. This test is used to compare the two sets
of solutions to investigate if a significant difference exists between the solu-
tions of CS+BRKGA and ILS. The WSR indicated that the CS ranks were
statistically less significant than the ILS ranks (Z = 580, p < 2.2e − 16).
This result suggests that the use of CS+BRKGA on this set of instances
improves the results found in comparison with ILS.

The local search method (LS) is responsible, on average, for 60% of the
computational time and the assimilation process (path-relinking method) is
responsible for 30% of the computational time. Therefore, the total compu-

17

tational time of the ILS were better than the CS+BRKGA. However, the
computational time of CS+BRKGA to find the best solution (T*) is, on
average, less than for the ILS. The CS+BRKGA converges to best solutions
in approximately 2% of the total time for smaller instances and 10% for
instances with 30 and 40 jobs. Whereas the ILS converges within 7% and
47% of the total time, respectively. Generally the computational times of
CS+BRKGA were competitive, finding very good solutions within few sec-
onds for the instances up to 25 jobs and in a reasonable time for instances
with 30 and 40 jobs.

For the 80 instances with 30 and 40 jobs, we made a boxplot analysis
based on the computational time needed to find the best solution in each
algorithm execution. In Figure 4 we observe that CS+BRKGA had a better
overall behavior, being more efficient with regard to computational time.

BRKGA+CS ILS

0
50

10
0

15
0

T
im

e(
s)

Figure 4: Time to find the best solution with CS+BRKGA and ILS (time in seconds).

We can also observe that BRKGA without search intensification did not

18

find good results for the tested instances, although the computational time
is very low. This same fact was reported by Amorim [33], Roque et al. [34],
who studied the application of BRKGA to solve the p-Median and the unit
commitment problem, respectively. The authors obtained good results when
a local search heuristic was added to decoder of the BRKGA. Therefore, the
proposed CS introduces intelligence and priority to the choice of solutions to
apply, generally costly, local searches, instead of applying random or elitist
choices.

We perform computational tests applying the VND in all the offspring
generated by the BRKGA. However, this approach did not result in better
solution quality than those obtained with CS+BRKGA. Furthermore, there
was a significant increase of computational time. In some cases this increase
reached 30% of the time. Chaves [22] had shown that the combination of
metaheuristic, path-relinking and local search proposed by CS is usually
better than the combination of just two of these techniques.

Figure 5 illustrates run-time distributions, or time-to-target (TTT) plot
[35], for MTSP instances. The experiment consists in running the ILS and
CS+BRKGA 100 times on the instances of type (40,60,20). Each run is
independent of the other and stops when a solution with a cost which is
at least as good as a given target value is found. In these experiments, we
observe an integer value at most 5% greater than the best-known solution.

Regarding these experiments, we observe that the relative position of the
curves implies that, given any fixed amount of running time, CS+BRKGA
has a higher probability than does ILS of finding a solution whose objective
function value is at least as good as the target objective function value. For
example, in Figure 4 the probability of the CS+BRKGA to find a solution
at least as good as the target value in at most five seconds is about 80%, in
at most 10 seconds is about 95%, and in at most 20 seconds is about 99%.
The probability of the ILS to find a solution at least as good as the target
value in at most 20 seconds is only 20%. For a probability of 90% over 150
seconds are required. Other tested instances also had this same behavior.

5. Conclusions

This paper presents a new method based on the Biased Random Key
Genetic Algorithms (BRKGA) and the Clustering Search (CS) to solve the
Minimization of Tool Switches Problem (MTSP). The BRKGA and CS have
been applied with success in many combinatorial optimization problems [21,
16]. However, this work is the first approach where both methods are used
to solve an optimization problem.

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target solution (seconds)

CS+BRKGA
ILS

Figure 5: Time to target distributions of CS+BRKGA and ILS for MTSP instances of
type (40,60,20) (time in seconds).

The idea of this paper was to simplify the clustering process of the CS
based on the concept of random keys. With this, users have available an
application in which one needs to only implement the decoder and local
search heuristics.

Furthermore, this hybrid method detects the promising regions in the
search space and applies local search only in these regions. The detection of
promising areas becomes an interesting option and prevents the indiscrimi-
nate use of local search heuristics.

This paper reports results found by BRKGA and CS on over 1,510 in-
stances for the MTSP. The CS+BRKGA found optimal solutions for 1,360
instances (proven by Yanasse et al. [19], Chaves et al. [16]) and the best
known solutions for the others. The results show that the CS+BRKGA is
competitive for solving the MTSP. New different instances in size, difficul-
ties and structure may be randomly generated to evaluate the performance
of the CS+BRKGA.

For further work, it is intended to develop an API for the CS+BRKGA
(coded in C++ and based on Toso and Resende [28]). Then, it should be
easy to apply this method to other combinatorial optimization problems.
We also want to explore an automated algorithm for parameters tuning, as

20

iterated F-race [36]. Other aspects of the CS may be analyzed by paralleliz-
ing its various algorithmic components and by applying it for multiobjective
optimization problem.

Appendix A. KTNS pseudo-code

Figure A.6 present the pseudo-code of the Keep Tool Needed Soon-
est (KTNS) policy, proposed by [1], to minimize the total number of tool
switches for a fixed job sequence.

KTNS Procedure

Step 1: Set Ji = 1 for C values of i having minimal values of L(i, 0).
Break the ties arbitrarily. Set Ji = 0 for the remaining M – C
values of i. Set n = 1.

Step 2: Set Wn = J. Stop if n = N.

Step 3: If each i having L(i, n) = n also has Ji = 1, set n = n + 1 and
go to Step 2.

Step 4: Pick i having L(i, n) = n and Ji = 0. Set Ji = 1.

Step 5: Set Jk = 0 for a k that maximizes L(p, n) over {p: Jp = 1}. Go
to Step 3.

Figure A.6: KTNS pseudo-code [1].

Where:

• J is the vector whose ith entry Ji is equal to 1 if tool i is on the
machine at a given instant n, and 0 otherwise;

• L(i, n) is the first instant at or after instant n at which tool i is needed;

Acknowledgments

This work was supported by the FAPESP under Grant 2012/17523-
3; and CNPq under Grants 482170/2013-1, 304979/2012-0, 476862/2012-4,
300692-2009-9 and 300692/2009-9. The research of Mauricio G. C. Resende
was done while he was employed at AT&T Labs Research.

References

[1] C. S. Tang, E. V. Denardo, Models arising from a flexible manufac-
turing machine, part I: minimization of the number of tool switches,
Operations Research 36 (5) (1988) 767–777.

21

[2] Y. Crama, A. W. Kolen, A. Oerlemans, F. C. Spieksma, Minimizing the
number of tool switches on a flexible machine, International Journal of
Flexible Manufacturing Systems 6 (1) (1994) 33–54.

[3] A. Hertz, G. Laporte, M. Mittaz, K. E. Stecke, Heuristics for minimizing
tool switches when scheduling part types on a flexible machine, IIE
Transactions 30 (8) (1998) 689–694.

[4] B. Matzliach, M. Tzur, The online tool switching problem with non-
uniform tool size, Int. Journal of Production Research 36 (1998) 3407–
3420.

[5] R. Shirazi, G. D. M. Frizelle, Minimizing the number of tool switches
on a flexible machine: an empirical study, International Journal of Pro-
duction Research 39 (2001) 3547–3560.

[6] Y. Fathi, K. W. Barnette, Heuristic procedures for the parallel ma-
chine problem with tool switches, International Journal of Production
Research 40 (1) (2002) 151–164.

[7] C. Y. Song, H. Hwang, Optimal tooling policy for a tool switching prob-
lem of a flexible machine with automatic tool transporter, International
Journal of Production Research 40 (2002) 873–883.

[8] O. A. Ghrayeb, N. Phojanamongkolkij, P. R. Finch, A mathematical
model and heuristic procedure to schedule printed circuit packs on se-
quencers, International Journal of Production Research 41 (16) (2003)
3849–3860.

[9] M. Al-Fawzan, K. Al-Sultan, A tabu search based algorithm for mini-
mizing the number of tool switches on a flexible machine, Computers
& Industrial Engineering 44 (1) (2003) 35 – 47.

[10] E. L. F. Senne, H. H. Yanasse, Beam Search Algorithms for Minimizing
Tool Switches on a Flexible Manufacturing System, in: Proceedings of
the 11th WSEAS International Conference on Mathematical and Com-
putational Methods in Science and Engineering, MACMESE’09, World
Scientific and Engineering Academy and Society (WSEAS), Stevens
Point, Wisconsin, USA, 68–72, 2009.

[11] A. Konak, S. Kulturel-Konak, An Ant Colony Optimization Approach
to the Minimum Tool Switching Instant Problem in Flexible Manufac-
turing System, in: 2007 IEEE Symposium on Computational Intelli-

22

gence in Scheduling, CISched 2007, Honolulu, Hawaii, USA, April 2-4,
2007, 43–48, 2007.

[12] A. Konak, S. Kulturel-Konak, M. Azizoglu, Minimizing the number
of tool switching instants in Flexible Manufacturing Systems, Interna-
tional Journal of Production Economics 116 (2) (2008) 298–307.

[13] J. Amaya, C. Cotta, A. Fernndez, A Memetic Algorithm for the Tool
Switching Problem, in: M. Blesa, C. Blum, C. Cotta, A. Fernandez,
J. Gallardo, A. Roli, M. Sampels (Eds.), Hybrid Metaheuristics, vol.
5296 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
190–202, 2008.

[14] J. Amaya, C. Cotta, A. Leiva, Hybrid Cooperation Models for the Tool
Switching Problem, in: J. Gonzlez, D. Pelta, C. Cruz, G. Terrazas,
N. Krasnogor (Eds.), Nature Inspired Cooperative Strategies for Opti-
mization (NICSO 2010), vol. 284 of Studies in Computational Intelli-
gence, Springer Berlin Heidelberg, 39–52, 2010.

[15] J. E. Amaya, C. Cotta, A. J. Fernandez-Leiva, Solving the tool switch-
ing problem with memetic algorithms, Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 26 (2012) 221–235.

[16] A. A. Chaves, E. L. F. Senne, H. H. Yanasse, Uma nova heuŕıstica
para o problema de minimização de trocas de ferramentas, Gestão &
Produção 19 (2012) 17 – 30.

[17] G. Laporte, J. J. Salazar-González, F. Semet, Exact algorithms for the
job sequencing and tool switching problem, IIE Transactions 36 (1)
(2004) 37–45.

[18] H. H. Yanasse, R. C. M. Rodrigues, A partial ordering enumeration
scheme for solving the minimization of tool switches problem, in: IN-
FORMS ANNUAL MEETING SEATTLE, 2007, Seattle, Washington.
Proceedings..., Seattle, 299–299, 2007.

[19] H. H. Yanasse, R. C. M. Rodrigues, E. L. F. Senne, Um algoritmo enu-
merativo baseado em ordenamento parcial para resolução do problema
de minimização de trocas de ferramentas, Gestão e Produção 16 (3)
(2009) 370–381.

[20] A. C. M. Oliveira, A. A. Chaves, L. A. N. Lorena, Clustering search,
Pesquisa Operacional 33 (2013) 105 – 121.

23

[21] J. Gonçalves, M. Resende, Biased random-key genetic algorithms for
combinatorial optimization, Journal of Heuristics 17 (2011) 487–525.

[22] A. A. Chaves, A hybrid metaheuristic with clustering search ap-
plied to combinatorial optmization problems, Ph.D. thesis, In-
stituto Nacional de Pesquisas Espaciais (INPE), sid.inpe.br/mtc-
m18@80/2009/02.09.19.31, thesis (Applied Computing), 2009.

[23] F. Glover, R. Mart́ı, Fundamentals of scatter search and path relinking,
Control and Cybernetics 39 (2000) 653–684.

[24] J. F. Gonçalves, M. G. Resende, A biased random key genetic algo-
rithm for 2D and 3D bin packing problems, International Journal of
Production Economics 145 (2) (2013) 500 – 510.

[25] J. C. Bean, Genetic Algorithms and Random Keys for Sequencing and
Optimization, ORSA Journal on Computing 6 (2) (1994) 154–160.

[26] W. M. Spears, K. A. D. Jong, On the Virtues of Parameterized Uniform
Crossover, Proc. of the Fourth International Conference on Genetic
Algorithms (1991) 230–236.

[27] L. S. Buriol, M. J. Hirsch, P. M. Pardalos, T. Querido, M. G. Resende,
M. Ritt, A biased random-key genetic algorithm for road congestion
minimization, Optimization Letters 4 (4) (2010) 619–633.

[28] R. Toso, M. Resende, A C++application programming interface for bi-
ased random-key genetic algorithms, Optimization Methods and Soft-
ware 30 (1) (2015) 81–93.

[29] F. Glover, Tabu search and adaptive memory programing ? Advances,
applications and challenges, in: Interfaces in Computer Science and
Operations Research, Kluwer, 1–75, 1996.

[30] P. Hansen, N. Mladenovic, A Tutorial on Variable Neighborhood
Search, Tech. Rep., LES CAHIERS DU GERAD, HEC MONTREAL
AND GERAD, 2003.

[31] H. Lourenco, O. Martin, T. Stützle, Iterated local search, in: F. Glover,
G. A. Kochenberger (Eds.), Handbook of Metaheuristics, vol. 57 of
International Series in Operations Research & Management Science,
Springer, New York, 320–353, 2003.

24

[32] D. Rey, M. Neuhauser, Wilcoxon-signed-rank test, in: M. Lovric (Ed.),
International Encyclopedia of Statistical Science, Springer Berlin Hei-
delberg, 1658–1659, 2014.

[33] F. M. S. Amorim, Metaheuŕısticas aplicadas ao problema das p-
medianas, Master’s thesis, Centro Federal de Educação Tecnológica de
Minas Gerais, Brazil, 2011.

[34] L. Roque, D. Fontes, F. Fontes, A hybrid biased random key genetic
algorithm approach for the unit commitment problem, Journal of Com-
binatorial Optimization (2014) 1–27.

[35] R. Aiex, M. Resende, C. Ribeiro, TTT plots: a perl program to create
time-to-target plots, Optimization Letters 1 (4) (2007) 355–366.

[36] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, M. Birattari, The
irace package, Iterated Race for Automatic Algorithm Configuration,
Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Brux-
elles, Belgium, 2011.

25

