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Abstract. Virtual private networks are often used to distribute live content,

such as video or audio streams, to a potentially large number of destinations.

Streaming caches (also called splitters) are deployed in these multicast sys-

tems to allow content distribution without overloading the network. In this

paper, we consider two related combinatorial optimization problems that arise

in multicast networks. In the tree cache placement problem, the objective is

to find a routing tree in which the number of cache nodes needed for (fea-

sible) multicasting is minimized. In a generalization of this problem, called

the flow cache placement problem, we seek any feasible flow from the source

to the destinations that minimizes the number of cache nodes. We prove that

these problems are NP-hard using a transformation from Satisfiability. This

transformation allows us to give a proof of hardness of approximation by show-

ing that it is gap-preserving. We also consider approximation algorithms, as

well as special cases where these problems can be solved in polynomial time.

1. Introduction

Virtual private networks are often used to distribute live content, such as video

or audio streams, to a potentially large number of destinations. The process of

reserving bandwidth for data sent simultaneously between the involved nodes is

resource consuming, and can easily overload the network. One way to decrease

congestion is to deploy streaming caches or splitters throughout the system, which

is then called a multicast network. Each cache receives a single stream and sends

out multiple copies of the stream to other caches or destinations. Clearly, deploying

caches at every non-source node will minimize the amount of bandwidth that must
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be set aside for content distribution. However, since there is a cost associated with

the deployment of each cache, there is a tradeoff between the decrease of bandwidth

required and the increase in number of caches deployed.

We will assume in this paper that the input network has enough capacity to

individually route the stream from the source node to each destination, but may

not have enough capacity to route two or more streams simultaneously. Given

the capacitated network and the bandwidth requirement of the stream, we wish to

locate the minimum number of nodes on which to deploy streaming caches such

that each destination can receive a copy of the data and network link capacities are

not violated.

In this paper, we consider two combinatorial optimization problems that arise

in multicast networks. In the tree cache placement problem, the objective is to find

a routing tree in which the number of cache nodes needed for multicasting is mini-

mized. In the flow cache placement problem (a generalization of the first problem)

we seek any feasible flow from the source to the destinations that minimizes the

number of cache nodes.

In the remainder of Section 1, we discuss previous work related to cache place-

ment problems. In Section 2, we formally describe the two problems that will be

discussed in this paper. In Section 3, we prove that these problems are NP-hard us-

ing a transformation from Satisfiability. This transformation allows us to derive

a hardness of approximation result in Section 4, by showing that the transforma-

tion is gap-preserving. In the same section we discuss improvents to the hardness

results, giving a lower bound of log |D| to the approximation of cache placement

problems. In Section 5, we present some approximation algorithms for the cache

placement problems. Finally, concluding remarks are made in Section 6.

1.1. Literature Review. Applications of multicast routing occur in diverse areas.

They range from the deployment of corporate services, such as automatic software

updates [10] and groupware [3], to end-user programs for video-conferencing [7] and

even game communities [21]. Such problems have also a strong combinatorial ap-

peal, due to the tradeoffs that must be exercised during the design of the network.

Examples of problems occurring in multicast networks are the minimum cost mul-

ticast tree problem [11, 12, 15, 16], center based tree computation [2, 4, 23], and
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the multicast packing problem [22, 27, 28]. A survey by Oliveira and Pardalos [19]

gives several other examples of problems and algorithms for multicast networks.

Multicast tree construction is a problem heavily studied by network engineers [11,

12, 15, 16, 27, 28]. The objective is to find a distribution tree, such that source and

destination nodes are connected at minimum cost. The problem is a generalization

of the well-known Steiner tree problem in graphs [6]. Here, in contrast to our cache

location problems, it is assumed that all nodes in the network act as caches. Solution

methods for the minimum cost multicast tree include approximation algorithms [5,

26] (mostly based on the corresponding algorithms for Steiner tree) and distributed

implementations of heuristics [11, 12, 15].

Shi and Turner [25] discuss multicast networks with a a reduced number of cache

servers, organized in a way similar to the one described in the present paper. The

authors proposed algorithms for improved routing in this situation, using simulation

methods for performance evaluation. In a second paper [24], the same authors

studied the minimization of servers required in a multicast network. However they

did not consider capacity constraints (as we do in the present paper), since they

were more interested in reducing the delay associated with transmission. For this

reason, the problem becomes easily reducible to set cover, which has a large number

of available algorithms.

The tree cache placement problem, which is one of the main problems discussed

in this paper, was introduced by Mao et al. [17]. In that paper, the general problem

is proved to be NP-hard using a transformation from Exact Cover by 3-Sets [9].

This is however the only complexity result derived by the authors, and they pro-

ceed directly to propose heuristics for the problem. The algorithms were tested

empirically, in order to find cache placements under different situations.

Other interesting related work includes the problem of placing replicas of objects

in content distribution networks [13, 14]. The objective of this problem, as studied

by Kangasharju et al. [13], is to minimize the average number of hops traversed

by the content being downloaded. The problem has been proved NP-hard by a

reduction from bin packing, and some heuristics have been provided for its solution.

However, the problem does not consider any form of multicast routing for data

delivery.
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Figure 1. Simple example of the tree cache placement problem.

2. Problem Definition

2.1. The Tree Cache Placement Problem. Consider a weighted, capacitated

network G = (V, E), where V is the set of nodes and E is the set of arcs, with a

source node s. Let T = (V, ET ) be a routing tree, where ET ⊆ E, rooted at s and

spanning all nodes in V . Node s is required to send a data stream to each node in

set D ⊆ V \ {s}. The stream follows the path defined by T from s to the demand

nodes and takes up to B units of bandwidth on every edge it traverses. For each

demand node d ∈ D, a separate copy of the stream is sent.

Since the network may not have enough capacity to handle all the demand, we

deploy stream splitters (also known as caches), at specific nodes in the network. A

single copy of the stream is sent from s to a cache node r and from there multiple

copies are sent down the tree. The optimization problem is to find a routing tree

T and locate a minimum number of cache nodes such that all the data streams can

be sent without violating arc capacities.

Figure 1 shows a simple example for this problem, where each edge has unit

capacity. In this example, if nodes a and b each require a stream (with B = 1)

from s, and r is not a cache node, then two units are sent from s to r, one unit

is sent from r to a, and one unit is sent from r to b. This leads to an infeasibility

on edge (s, r), since it is being traversed by two units, and it has capacity csr = 1.

However, if r becomes a cache node, then we can send one unit of data from s to

r, one unit from r to a, and one unit from r to b, resulting in a feasible flow. To

simplify the formulation of the problem, we can consider without loss of generality,

that unit bandwidth is used by each stream. Thus, B = 1 in the remainder of this

paper.
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The tree cache placement problem (from now on referred to as TCPP) is defined

as follows. Given a graph G = (V, E) with capacities cuv on the edges, a source

node s ∈ V , and a subset D ⊆ V \ {s} representing the destination nodes, find

a spanning tree T (which determines the paths followed by a data stream from s

to v ∈ D) such that the subset R ⊆ V \ {s}, which represents the cache nodes,

has minimum cardinality. For each node v ∈ D ∪ R, there must be a data stream

coming from some node w ∈ R ∪ {s} to v such that the total bandwidth taken by

all streams using edge (i, j) ∈ T does not exceed the edge capacity cij .

Note that we need to consider only instances where the capacity of each edge

is equal to one. To demonstrate this, suppose that we are given an instance with

capacities that are integer and greater than one (the network sends only an integer

number of streams, thus any fractional capacity may be rounded down to the nearest

integer value). Then, create an instance of the problem where each edge (u, v)

with capacity k is replicated k times, having as extreme nodes ui, and vi, for

i ∈ {1, . . . , k}. These new nodes u1, . . . , uk will be linked to the original node u,

and similarly to the nodes corresponding to v.

The transformation above increases the size of the problem at most by a factor

equal to the largest capacity in the graph G, and can be performed in pseudo-

polynomial time (but, in practice, capacities have small values). It is easy to see

that a similar transformation can be used for the directed and undirected cases of

the problem. Therefore, we will consider in this paper that all instances have unit

capacity.

2.2. The Flow Cache Placement Problem. An interesting extension of the

TCPP arises if we relax the constraint that data streams must be routed from the

source node s to the destinations using a tree rooted at s. To see why this extension

is interesting, consider the example shown in Figure 2. In this example all edges

have capacity equal to one. In a solution to the TCPP on this graph, a stream can

be sent through only one of the two edges (s, a) or (s, b) (to avoid cycles). Suppose

that we use edges (s, a) and (a, c). Then, to satisfy demand nodes d1 and d2, c

must be a cache node. However, by relaxing the restriction of routing the streams

on a tree, the number of caches can be reduced. For example, if another stream is

routed over edges (s, b) and (b, c), no cache node is needed.



6 C.A.S. OLIVEIRA, P.M. PARDALOS, O.A. PROKOPYEV, AND M.G.C. RESENDE

s

d2

d1

a

b

c

Figure 2. Simple example for the flow cache placement problem.

In the flow cache placement problem (referred to as FCPP), we seek a feasible

flow of data from source s to the set of destinations D, such that the size of the set

of cache nodes R ⊆ V \ {s} is minimized.

3. Complexity of the Cache Placement Problems

In this section, we prove that the TCPP and the FCPP are NP-hard, using

a reduction from Satisfiability [9]. Note that the proof is different from the

one in [17], which as described in the previous section was based on the Exact

Cover by 3-Sets. We use a different technique, since we are interested in showing

hardness not only for TCPP but also for FCPP, in the directed, and undirected

cases. Another advantage of this transformation is that it can be used to derive

approximation bounds for the considered problems, as shown in Section 4.

3.1. Complexity of the TCPP. We first prove that the TCPP is NP-hard. To

do this, we use a reduction from the Satisfiability problem (SAT).

Definition 1. In the Satisfiability Problem, we are given a set of clauses C1, . . .,

Cm, where each clause is the disjunction of |Ci| literals (each literal is a variable

xj ∈ {x1, . . . , xn} or its negation xj). The objective of SAT is to find if there is a

truth assignment for variables x1, . . . , xn such that all clauses are satisfied.

The decision version of the TCPP (TCPP-D) will be used for a formal reduction

of SAT. The TCPP-D is the problem where, given an instance of the TCPP and

an integer k, the objective is to determine if there is a feasible solution with size
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at most k. In the following theorem we describe a transformation from SAT to the

TCPP-D problem, which determines its complexity.

Theorem 1. The TCPP-D problem is NP-complete.

Proof. This problem is clearly in NP, since for each instance I it is enough to give

the spanning tree and the nodes in R to determine, in polynomial time, if this is a

“yes” instance.

We reduce SAT to TCPP-D. Given an instance I of SAT, composed of m clauses

C1, . . . , Cm and n variables x1, . . . , xn, we build a graph G = (V, E), with ce = 1

for all e ∈ E, and choose k = n. The set V is defined as

V = {s} ∪ {x1, . . . , xn} ∪ {x1, . . . , xn} ∪ {T
′
1, . . . , T

′
n}

∪ {T ′′
1 , . . . , T ′′

n} ∪ {T
′′′
1 , . . . , T ′′′

n } ∪ {C1, . . . , Cm},

and the set E is defined as

E =

n
⋃

i=1

{(s, xi), (s, xi)} ∪
n
⋃

i=1

{(xi, T
′
i ), (xi, T

′
i )} ∪

n
⋃

i=1

{(xi, T
′′
i )}∪(1)

n
⋃

i=1

{(xi, T
′′′
i )} ∪

m
⋃

i=1







⋃

xj∈Ci

(xj , Ci)
⋃

xj∈Ci

(xj , Ci)







.

Figure 1 shows the construction of G for a small SAT instance. Define D =

{C1, . . . , Cm}∪ {T ′
1, . . . , T

′
n} ∪ {T

′′
1 , . . . , T ′′

n}∪ {T
′′′
1 , . . . , T ′′′

n }. The objective of des-

tination nodes T ′
i , T ′′

i , and T ′′′
i is to saturate the arcs leaving s and force one of the

literals xi or xi to be chosen as a cache node. Each node Ci forces the existence

of at least one cache among the nodes corresponding to literals appearing in clause

Ci.

Suppose that the solution of the resulting TCPP-D problem is true. Then, we

assign variable xi to true if node xi is in R, otherwise we set xi to false. This

assignment is well-defined, since exactly one of the nodes xi, xi must be selected.

Clearly, this truth assignment satisfies all clauses Ci, because the demand of each

node Ci is satisfied by at least one node corresponding to literals appearing in clause

Ci.

Conversely, if there is a truth assignment Γ that makes the SAT formula satisfi-

able, we can use it to define the nodes which will be caches, and, by construction of
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Figure 3. Small graph G created in the reduction given by The-

orem 1. In this example, the SAT formula is (x1 ∨ x2 ∨ x3)∧ (x2 ∨

x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

G, all demands will be satisfied. Finally, the resulting construction is polynomial

in size, thus SAT reduces in polynomial time to TCPP-D. �

Corollary 1. The TCPP is NP-hard.

3.2. Complexity of the FCPP. We can use the transformation from SAT to

TCPP to show that FCPP is also NP-hard. In the case of directed edges, this is

simple, since given a graph G provided by the reduction, we can give an orientation

of G from source to destinations. This is stated in the next theorem.

Theorem 2. The FCPP is NP-hard if the instance graph is directed.

Proof. The proof is similar to the proof of Theorem 1. We need just to make sure

that the polynomial transformation given for the TCPP-D also works for a decision
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version of the FCPP. Given an instance of SAT, let G be the corresponding graph

found by the reduction. We orient the edges of G from s to the destination nodes

in D, i.e. use the implicit orientation given in (1). It can be checked that in

the resulting instance the number of cache nodes cannot be reduced by sending

additional flow on edges other than the ones forming the tree in the solution of

TCPP. Thus, the resulting R is the same, and FCPP is NP-hard in this case. �

Next we prove a slightly modified theorem for the undirected version. To do this

we need the following variant of SAT.

Definition 2. 3Sat(5): Given an instance of Satisfiability with at most three

literals per clause and such that each variable appears in at most five clauses, is

there a truth assignment that makes all clauses true?

The 3Sat(5) is well known to be NP-complete [9].

Theorem 3. The FCPP is NP-hard if the instance graph is undirected.

Proof. When the instance of FCPP is undirected, it may be possible that some of

the destinations T ′
i , T ′′

i , or T ′′′
i are being satisfied by flow coming from nodes Cj

connected to their respective xi, xi nodes. What can be done to prevent this is

bounding the number of occurrences of each variable and add enough absorbing

destinations to the subgraph corresponding to that variable. We do this by reduc-

tion from 3Sat(5). The reduction is essentially the same as the reduction from

SAT to TCPP, but now for each variable xi we have nodes xi, xi, T ′
i , T ′′

i , and T k
i ,

for 1 ≤ k ≤ 6 (see Figure 4). Also, for each variable xi we have edges (s, xi), (s, xi),

(xi, T
′
i ), (xi, T

′′
i ), (xi, T

k
i ), (xi, T

k
i ), for 1 ≤ k ≤ 6.

...

xi

s

T ′
i

T ′′
i

xi
T 6

i

T 2
i

T 1
i

Figure 4. Part of the transformation used by the FCPP.
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We claim that in this case for each pair of nodes xi, xi, one of them must be a

cache node (which says that the corresponding variable in 3SAT(5) is true or false).

This occurs because from the eight destinations not corresponding to clauses (T ′
i ,

T ′′
i , and T k

i , for 1 ≤ k ≤ 6) attached to xi, xi, two can be directly satisfied from

s without caches. However, the remaining six cannot be satisfied from nodes Cj

linked to the current variable nodes, because there are at most five such nodes.

Thus, we must have one cache node at xi or xi, for each variable xi. It is clear that

these are the only cache nodes needed to make all destinations satisfied. This gives

us the correct truth assignment for the original 3SAT(5) instance. Conversely, any

non-satisfiable formula will transform to a FCPP instance which needs more than

n cache nodes to satisfy all destinations. Thus, the decision version of FCPP is

NP-complete, and this implies the theorem. �

3.3. Polynomially Solvable Cases. Although the TCPP and the FCPP are NP-

hard in general, some particular classes of instances can be solved in polynomial

time. For instance, if G is the complete graph Kn, then the optimal solution is

simply a star graph with s at the center, and R = ∅.

A less trivial example of graphs where the problem is solvable in polynomial

time is given by a tree. If the graph is a tree with n nodes, then the set of required

caches is implied by the edges appearing on the tree, and the optimal solution is

completely determined. Algorithm 1 shows how to find this optimal set for a given

tree T . The algorithm works recursively. Initially it finds the demand for all leaves

of T . Then it goes up the tree determining at each step if the current node needs

to become a cache node. The correctness of this method is proved below.

Theorem 4. Given an instance of the TCPP, in which the input network is a tree

T , an optimal solution is given by Algorithm 1.

Proof. The proof is by induction on the height h of a tree analyzed when Algo-

rithm 1 reaches line (1). If h = 1 then the number of cache nodes is clearly equal to

zero. Assume that the theorem is true for trees with height h > 1. If the capacity of

the arc (p, v) is greater than the demand at v, then there is no need of a new cache

node, and therefore the solution remains optimal. If, on the other hand, (p, v) does

not have enough capacity to satisfy all demand at v, then we do not have a choice
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Algorithm 1: Find the optimal R for a fixed tree.

Input: A tree T .

Output: A set R of cache nodes.

forall v ∈ V do

if v ∈ D then demand(v)← 1

else demand(v)← 0

call findR(s)

return R

procedure findR(v)

begin

forall w such that (v, w) ∈ T do call findR(w)

1 if v = s then return R

else p← parent(v)

if cp,v < demand(v) then

R← R ∪ {v}

demand(p)← demand(p) + 1

else demand(p)← demand(p) + demand(v)

end

other than making v a cache node. Combining this with the assumption that the

solution for all children of v is optimal, we conclude that the new solution for a tree

of height h + 1 is also optimal. �

Turning now to the FCPP, a case that is solvable in polynomial time occurs

when k = 0, i.e., the problem of determining if any cache node is needed at all.

The solution for this problem is given by the following algorithm. Initially, run the

maximum flow algorithm from node s to all nodes in D (this can be accomplished,

for example, by creating a dummy destination node d and linking all nodes v ∈ D

to d by arcs with capacity equal to 1). If the maximum flow from s reaches each

node in D, then the answer is true, since no cache node is needed to satisfy the

destinations. Otherwise, the answer must be false because then at least one cache

node is needed to satisfy all nodes in D.
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4. Hardness of Approximation Results

The transformation used in Theorem 1 provides a method for proving a hardness

of approximation result for the TCPP and FCPP. We employ standard techniques,

based on the gap-preserving transformations. To do this, we use an optimization

version of 3Sat(5).

Definition 3. Max-3Sat(5): Given an instance of 3Sat(5), find the maximum

number of clauses that can be satisfied by any truth assignment.

Definition 4. For any ε, 0 < ε < 1, an approximation algorithm with guarantee

ε (or equivalently, an ε-approximation algorithm) for a maximization problem Π

is an algorithm A such that, for any instance I ∈ Π, the resulting cost A(I) of

A applied to instance I satisfies ε · OPT (I) ≤ A(I), where we denote by OPT (I)

the cost of the optimum solution. For minimization problems, A(I) must satisfy

A(I) ≤ ε ·OPT (I), for any fixed ε > 1.

The following theorem from [1] is very useful to prove hardness of approximation

results.

Theorem 5. There is a polynomial time reduction from SAT to Max-3Sat(5)

which transforms formula φ into a formula φ′ such that, for some fixed ε ( ε is in

fact determined in the proof of the theorem),

• if φ is satisfiable, then OPT (φ′) = m, and

• if φ is not satisfiable, then OPT (φ′) < (1− ε)m,

where m is the number of clauses in φ′.

In the following theorem we use this fact to show the hardness of approximating

the TCPP.

Theorem 6. The transformation used in the proof of Theorem 1 is a gap-preserving

transformation from Max-3SAT(5) to TCPP. In other words, given an instance

φ of Max-3SAT(5) with m clauses and n variables, we can find an instance I of

TCPP such that

• If OPT (φ) = m then OPT (I) = n; and

• If OPT (φ) ≤ (1− ε)m then OPT (I) ≥ (1 + ε1)n,
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where ε is given in Theorem 5 and ε1 = ε/15.

Proof. Suppose that φ is an instance of Max-3SAT(5). Then, we can use the

transformation given in the proof of Theorem 1 to construct a corresponding in-

stance I of TCPP. If φ has a solution with OPT (φ) = m, where m is the number

of clauses, then by Theorem 1, we can find a solution for I such that OPT (I) = n.

Now, if OPT (φ) ≤ (1 − ε)m, then there are at least εm clauses unsatisfied. In

the corresponding instance I, we have at least n cache nodes due to the constraints

from nodes T ′
i , T ′′

i , and T ′′′
i , for 1 ≤ i ≤ n. These cache nodes satisfy at most

(1 − ε)m destinations corresponding to clauses. Let U be the set of unsatisfied

destinations. The nodes in U can be satisfied by setting one extra cache (in a total

of two, for nodes xj and xj) for at least one variable xj appearing in the clause

corresponding to ci, for all ci ∈ U .

Thus, the number of extra cache nodes needed to satisfy U is at least |U |/5,

since a variable can appear in at most 5 clauses. We have

OPT (I) ≥ n + |U |/5 ≥ n + εm/5 ≥ (1 + ε/15)n.

The last inequality follows from the trivial bound m ≥ n/3. The theorem follows

by setting ε1 = ε/15. �

Definition 5. A PTAS (Polynomial Time Approximation Scheme) for a minimiza-

tion problem Π is an algorithm that, for each ε > 0 and instance I ∈ Π, returns a

solution A(I), such that A(I) ≤ (1+ε)OPT (I), and A has running time polynomial

in the size of I, depending on ε (see, e.g., [20, page 425]).

Corollary 2. Unless P = NP , the TCPP cannot be approximated by (1 + ε2) for

any ε2 ≤ ε1, where ε1 is given in Theorem 6, and therefore there is no polynomial

time approximation scheme (PTAS) for the TCPP.

Proof. Given an instance φ of SAT, we can use the transformation given in Theo-

rem 5, coupled with the transformation given in the proof of Theorem 1, to give a

new polynomial transformation τ from SAT to TCPP. Now, let I be the instance

created by τ on input φ. Suppose there is an ε2 approximation algorithm A for

TCPP, with 0 ≤ ε2 ≤ ε1. Then, when A runs on an instance I constructed by τ

from a satisfiable formula φ, the result must have cost A(I) ≤ (1+ ε2)n < (1+ ε1)n.
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Otherwise, if φ is not satisfiable, then the result given by this algorithm must be

greater than (1 + ε1)n, because of the gap introduced by τ . Thus, if there is an

ε2-approximation algorithm, then we can decide in polynomial time if a formula φ

is satisfiable or not. Assuming P 6= NP, there is no such algorithm.

The fact that there is no PTAS for the TCPP is a consequence of this result and

the definition of PTAS. �

The above theorem and corollary can be easily extended to the FCPP. The

fact that the same transformation can be used for both problems can be used to

demonstrate the hardness of approximation result for the FCPP as well. We state

this as a corollary.

Corollary 3. Unless P = NP , the FCPP has no PTAS.

Proof. The transformation from SAT to FCPP is identical, so Theorem 6 is also

valid for the FCPP. This implies that the FCPP has no PTAS, unless P = NP. �

4.1. An Improved Lower Bound. In this section we improve the hardness of

approximation result for the cache placement problem, showing that there is no

approximation algorithm for the problems with performance guarantee better than

log k, where k is the number of destinations. The proof appeared first in [18], but

we extend it here for the undirected version of the problems. The technique used

is based on a reduction from the Set Cover problem.

Set Cover: Given a ground set T = t1, . . . , tn, with subsets S1, . . . , Sm ⊂ T , find

the minimum cardinality set C ⊆ {1, . . . , m} such that
⋃

i∈C Si = T .

It is known [8] that Set Cover does not have approximation algorithms for any

guarantee better than O(log n). Thus, if we find a transformation from Set Cover

to SCPP that preserves approximation, we can provide a similar result for SCPP.

We show how this transformation, which will be represented by φ : SC → SCPP,

can be done.

For each instance ISC of set cover, we must find a corresponding instance ISCPP

of the SCPP. The instance ISC is composed of sets T and S1, . . . , Sm as shown

above. The transformation consists of defining a capacitated graph G with a source



CACHE PLACEMENT PROBLEMS: COMPLEXITY AND ALGORITHMS 15

s

w1 w2 w3s1 s2 s3

v1 v2 v3 v4 v5 v6

Figure 5. Example for the transformation in Theorem 7.

and a set D of destinations. Let G be the graph composed of the following nodes:

V = {s} ∪ {w1, . . . , wm} ∪ {v1, . . . , vn} ∪ {s1, . . . , sm}.

Also, let the edges E of the graph G be

E = {(wj , vi) | ti ∈ Sj} ∪
m
⋃

i=1

{(s, wi)} ∪
m
⋃

i=1

{(wi, si)}.

In the instance of SCPP, the set of destination nodes D is given by

D = {v1, . . . , vn} ∪ {s1, . . . , sm},

and s is the source node. Thus, there is a one to one correspondence between nodes

wi and sets Si, for 1 ≤ i ≤ m. There is also a one to one correspondence between

nodes vi and ground elements ti ∈ T , for 1 ≤ i ≤ n. There is a directed edge

between the source and each node wi, and between nodes wi and nodes representing

elements appearing in the set Si. Nodes wi are also linked to each si. Finally,

each edge e has capacity ce = 1. See an example of such reduction in Figure 5.

The ground set in this example is T = {t1, . . . , t6}, and the subsets are S1 =

{t1, t2, t4, t5}, S2 = {t1, t3, t4, t6}, and S3 = {t2, t4, t6}.

Theorem 7. The transformation described above is a polynomial time reduction

from Set Cover to SCPP.

Proof. Let ISC be the instance of Set Cover and ISCPP the corresponding in-

stance of the SCPP. It is clear that the transformation is polynomial, since the

number of edges and nodes is given by a constant multiple of the number of ele-

ments and sets in the instance of Set Cover. We must prove that IIS and ISCCP
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have equivalent optimal solutions. Let S′ be an optimal solution for ISC . First we

note that the destination nodes si, 1 ≤ i ≤ m, can be reached only from nodes wi,

and therefore each si must be satisfied with flow coming from wi. Thus, each node

si saturates the corresponding wi, which means that to satisfy any other node from

wi we must make it a cache node. Then, we can clearly make R = {wi | i ∈ S′},

and serve all remaining destinations in v1, . . . , vn, by definition of S′. Each node in

R will be a cache node, and therefore R is a solution for ISCPP . This solution must

be optimal, because otherwise we could use a smaller solution R′ to construct a

corresponding set S′′ ⊂ {1, . . . , m} with |S′′| < |S′|, covering all elements of T , and

therefore contradicting the fact that S′ is an optimum solution for the SC instance.

Thus, the two instances ISC and ISCPP have equivalent optimal solutions. �

Corollary 4. Given an instance I of SC, and the transformation φ described above,

then we have OPT (I) = OPT (φ(I)).

The following theorem, proved by Feige [8] is the base for our main result.

Theorem 8 ([8]). If there is some ε > 0 such that a polynomial time algorithm

can approximate set cover within (1− ε) log n, then NP⊂ TIME(nO(log log n)).

This theorem implies that finding approximate solutions with guarantee better

than (1 − ε) log n for Set Cover is equivalent to solving any problem in NP in

sub-exponential time. It is strongly believed that this is not the case. We use this

theorem and the reduction above to give a related bound for the approximation of

SCPP. To do this, we need a gap preserving transformation from SC to SCPP, as

stated in the following lemma.

Lemma 1. If I is an instance Set Cover, then the transformation φ from SC to

SCPP described above is gap preserving, that is, it has the following property:

(a) If OPT (I) = k then OPT (φ(I)) = k; and

(b) If OPT (I) ≥ k · log n then OPT (φ(I)) ≥ k(log |D| − 1),

where k is a fixed value, depending on the instance.

Proof. Part (a) is a simple consequence of Corollary 4. Now, for part (b), note

that according to [8] the hardness of approximation result is valid for instances
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with number of subsets less or equal to n. Consequently, in the instance of SCPP

created by transformation φ, |D| = m + n ≤ 2n. Thus, we have

log |D| ≤ log(2n) = log n + 1.

This implies that

OPT (φ(I)) ≥ k log n ≥ k(log |D| − 1). �

The reduction shown in Theorem 7 is gap preserving, since it maintains an

approximation gap, introduced by the instances of Set Cover. We see that the

approximation guarantee log |D| implied by the previous result is asymptotically

optimal. This is formalized in the next theorem.

Theorem 9. If there is some ε > 0 such that a polynomial time algorithm A can ap-

proximate SCPP within (1−ε) log k, where k = |D|, then NP ⊂ TIME(nO(log log n)).

Proof. Suppose that an instance I of the SC is given. The transformation φ de-

scribed above can be used to find an instance φ(I) of the SCPP. Then, A can be

used to solve the problem for instance φ(I). According to Lemma 1, transformation

φ reduces any gap of log n to log k. Thus, with such an algorithm one can differen-

tiate between instances I with a gap of log n. But this is not possible in polynomial

time, according to [8, Theorem 10] unless NP⊂ TIME(nO(log log n)). �

4.2. Extending the Approximation Bound. It is interesting to observe that

the transformation presented above is not enough to show the hardness result for

the undirected version of the SCPP problem. In this case, the difference is that

an algorithm can send flow to one of the ground set destinations, turning it into

a cache, and from there satisfying other destinations corresponding to subsets.

Such interactions could allow some destinations to be served without increasing the

number of cache nodes.

To solve this problem, we employ a technique similar to the one used in the

transformation from SAT to FCPP in Section 3.2: use additional destinations that

need to be satisfied at each node wi, in order to “saturate” edges coming from a node

vi. Thus, we can substitute the edge (si, wi) by a set of edges (si0, wi), . . . , (sin, wi),

for i ∈ {1, . . . , m}, where the sij ’s are destination nodes. Doing this, we know that

the n+1 nodes si0, . . . , sin cannot all be satisfied by streams coming from the nodes
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v1, . . . , vn, and therefore they perform the same task that the edge (si, wi) does in

Lemma 1.

The extension of this result to the directed and undirected versions of FCPP is

trivial: the same constructions used above work for the FCPP as well, since it is

just a generalization of the SCPP.

5. Approximation Algorithms

In this section, we present approximation algorithms for the TCPP and FCPP

and analyze their approximation guarantee. To simplify our results, we use the

notation A(I) = |R ∪ {s}|, where R is the set of cache nodes found by algorithm

A applied to instance I. Also, OPT (I) = |R∗ ∪ {s}|, where R∗ is an optimal set

of cache nodes for instance I. Note that A(I) ≥ 1 and OPT (I) ≥ 1, which makes

Definition 4 valid for our problems.

5.1. A Simple Algorithm for TCPP. It is easy to construct a simple approxi-

mation algorithm for the TCPP. We denote by δG(v) the degree of node v in the

network G.

Algorithm 2: Spanning Tree Algorithm

Input: Network G, destinations D, source s.

Output: A set R of cache nodes.

Step 1: Construct a spanning tree T of G

Step 2: Remove recursively all leaves of T which are not in D ∪ {s}

Step 3: Let S1 be the set of internal nodes v with δT (v) > 2

Step 4: Let S2 be the set of internal nodes v with δT (v) = 2 and v ∈ D

Step 5: Return R = S1 ∪ S2.

The correctness of the algorithm is shown in the next lemma.

Lemma 2. Algorithm 2 returns a feasible solution to the TCPP.

Proof. The operation in Step 2 maintains feasibility, since leaves cannot be used to

reach destinations. The result R includes all internal nodes v with δT (v) > 2, and

all internal nodes v with δT (v) = 2 and v ∈ D. It suffices to prove that if δT (v) = 2

and v 6∈ D then v is not needed in R.



CACHE PLACEMENT PROBLEMS: COMPLEXITY AND ALGORITHMS 19

Suppose that v is an internal node with δT (v) = 2 and v 6∈ D. If the number of

destinations down the tree from v is equal to 1, then v does not need to be a cache.

Now, assume that the number of cache nodes down the tree from v is two or more.

Then, there are two cases. In the first case, there is a node w, between v and the

destinations, with δT (w) > 2. In this case, w is in R, and we need just to send one

unit of flow from v to w, thus v does not need to be in R. In the second case, there

must be some destination w with δT (w) = 2 between v and the other destinations.

Again, in this case w will be included in R from S2. Thus v does not need to be in

R. This shows that R is a feasible solution to the TCPP. �

Lemma 3. Algorithm 2 gives an approximation guarantee of |D|.

Proof. Let us partition the set of destinations among D1 and D2, where D1 = D\S2

and D2 = S2. Denote by D′ the set of destinations which are leaves in T . Initially,

note that for any tree the number of nodes v with degree δ(v) > 2 is at most |L|−2,

where L is the set of nodes with δ(v) = 1 (the leaves). Since L, in this case, is

D′ ∪ {s} ⊆ D1 ∪ {s}, then |S1| ≤ |D1 ∪ {s}| − 2. Thus,

|R| = |S1 ∪ S2| ≤ |D1 ∪ {s}| − 2 + |D2| = |D| − 1,

and

A(I) = |R|+ 1 ≤ |D| ≤ |D|OPT (I),

since OPT (I) ≥ 1. �

Let ∆ = ∆(G) be the maximum degree of G. In the case in which all capacities

ce, for e ∈ E(G), are equal to one, we can give a better analysis of the previous

algorithm with an improved performance.

Theorem 10. Algorithm 1 is a min{∆(G), |D|}-approximation algorithm.

Proof. The key idea to note is that if ce = 1 for all e ∈ E, then d|D|/∆e ≤ OPT (I),

for any instance I of the TCPP. This happens because each cache node (as well as

the source) can serve at most ∆ destinations. Let A(I) be the value returned by

Algorithm 2 on instance I. We know from the previous analysis of Lemma 3 that

A(I) ≤ |D|. Thus A(I) ≤ ∆OPT (I). The theorem follows, since we know that this

is also an |D|-approximation algorithm. �
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5.2. A Flow-based Algorithm for FCPP. In this section, we present an ap-

proximation algorithm for the FCPP. The algorithm is based on the idea of sending

flow from the source to destination nodes. We show that this algorithm performs

at least as well as the previous algorithm for the TCPP. In addition, we show that

for a special class of graphs, this algorithm finds the optimal solution. Therefore,

for this class of graphs the FCPP is solvable in polynomial time.

Let f(x, y) ∈ R
+ be the amount of flow sent on edge (x, y), for (x, y) ∈ E. A

flow is feasible for the SCPP if it satisfies the flow conservation constraints, i.e.,

the amount of data entering a node is the same amount leaving minus its demand;

unless the node is a cache, in which case any amount of data can be sent. Let

F (f, s, t) =
∑

v∈V f(s, v) be the total flow sent from node s. We assume that s

can send at most
∑

(s,v)∈E csv units of flow, and t can receive at most
∑

(u,t)∈E cut

units of flow. We say that a feasible flow f is the maximum flow from s to t if there

is no feasible flow f ′ such that F (f ′, s, t) > F (f, s, t). A node v is reached from s

by flow f if
∑

w∈V f(w, v) > 0. It is well known that when f is the maximum flow,

then F (f, s, t) = C(s, t), where C(s, t) represents the minimum capacity of any set

of edges separating s from t in G (the minimum cut). We also use the notation

C(U, U) to denote the total capacity of edges linking nodes in U to nodes in U ,

where U ⊂ V and U = V \ U .

Denote any feasible flow starting from node v by fv. The algorithm works by

finding the maximum flow from s to all nodes in D. If the total cost of this maximum

flow is F (fs, s, D) ≥ |D|, then the problem is solved, since all destinations can be

reached without cache nodes. Otherwise, we put all nodes reachable from s in a set

Q. Then we repeat the following steps until D \Q is empty:

• For all nodes v ∈ Q, compute the maximum flow fv from v to D.

• Find the node v∗ such that fv∗ is maximum.

• Add v∗ to R and add to Q all nodes reachable from v∗.

• Reduce the capacity of the edges in E by the amount of flow used by fv∗ .

These steps are described more formally in Algorithm 3.

In the following theorem, we show that the running time of this algorithm is

polynomial and depends on the time needed to find the maximum flow. Denote

by CM (G) the maximum value of the minimum cut between any pair of nodes
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Algorithm 3: Flow algorithm.

Q← {s}

while D \Q 6= ∅ do

forall v ∈ Q do

find the maximum flow fv from v to D \Q

Let v∗ be the node such that F (fv∗ , s, D) is maximum

R← R ∪ {v∗}

Add to Q the nodes reached by fv∗

for each edge (u, v) ∈ E do

Reduce capacity cu,v by fv∗(u, v)

v, w ∈ V (G), i.e.

CM (G) = max
v,w∈V

C(v, w).

Similarly, we define

Cm(G) = min
v,w∈V

C(v, w).

Theorem 11. Algorithm 3 has running time equal to O(n · |D| · T mf/Cm(G)),

where T mf is the time needed to run the maximum flow algorithm.

Proof. The most costly operations in this algorithm are calls to the maximum flow

algorithm. Therefore we count the number of calls. Note that, at each of the N

iterations of the while loop, a new element is added to the set of cache nodes. Thus,

A(I) is equal to the number of such iterations.

Let vi be the node added to the set of cache nodes at iteration i, and Qi be

the content of set Q at iteration i of Algorithm 3. At each step, the number of

elements of D found by the algorithm is, according to the maximum-flow/minimum-

cut theorem, equal to the minimum cut from vi to the remaining nodes in D \Qi

(recall that all demands are unitary). Then,

|D| =
N

∑

i=1

C(vi, D \Qi) ≥
N

∑

i=1

min
w∈D

C(vi, w) ≥ A(I) min
v,w∈V

C(v, w).

Thus, we have

(2) N = A(I) ≤
|D|

Cm(G)
.
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At each iteration of the while loop, the number of calls to the maximum flow algo-

rithm is at most n. The total number nc of such calls is given by nc ≤ n|D|/Cm(G).

Thus, the running time of Algorithm 3 is O(n · |D| · T mf/Cm(G)). �

Based on the performance analysis just shown, the following theorem gives an

approximation guarantee for Algorithm 3.

Theorem 12. Algorithm 3 is a k-approximation algorithm, where

k = CM (G)/Cm(G).

Proof. If we denote by R the set of cache nodes in the optimal solution, we have

(3) |D| ≤
∑

vi∈R∪{s}

C(vi, D) ≤
∑

i∈R∪{s}

max
v,w∈V

C(v, w) = OPT (I)CM (G).

Combining inequalities (2) and (3) results in

A(I) ≤
CM (G)

Cm(G)
OPT (I).

�

Note that the quantity CM (G)/Cm(G) can become large. However, for some

types of networks, the preceding algorithm gives us a better understanding of the

problem. For example, if the network has maximum degree ∆(G), then it is easy

to see that
CM (G)

Cm(G)
≤ ∆(G).

If the edge capacity is not fixed, then CM (G)/Cm(G) becomes at most ∆(G) ·

cM/cm, where cM represents the maximum capacity and cm the smallest capacity

of edges in G.

6. Concluding Remarks

In this paper we presented and analyzed two combinatorial optimization prob-

lems that arise in multicast networks, the tree cache placement problem and its

flow-based, generalized version, the flow cache placement problem. We prove that

both problems are NP-hard and that they are not solvable by any PTAS unless

P = NP. We also develop approximation algorithms for both TCPP and FCPP.
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An open question for the problems discussed in this paper concerns the develop-

ment of approximation algorithms with good performance guarantee. We believe

that a performance guarantee of log |D| is possible, based on the reductions from

Set Cover previously presented. For problems similar to Set Cover, the greedy

algorithm is known to perform well. However, in this case there is no easy way

of defining a cover for the destination nodes, and therefore the use of the greedy

algorithm is not immediate. It would be interesting to find algorithms with better

approximation guarantee, or improved hardness of approximation results.
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