
43 Annals of Operations Research, 25 (1990) 43-58 

COMPUTATIONAL EXPERIENCE WITH AN INTERIOR POINT 
ALGORITHM ON THE SATISFIABILITY PROBLEM 

A.P. KAMATH, N.K. KARMARKAR, K.G. RAMAKRISHNAN 
and M.G.C. RESENDE 
Mathematical Sciences Research Center, AT&T Bell Laboratories, Murray Hill, NJ 07974 USA 

Abstract 

We apply the zero-one integer programming algorithm described in Karmarkar [12] and 
Karmarkar, Resende and Ramakrishnan [13] to solve randomly generated instances of the 
satisfiability problem (SAT). The interior point algorithm is briefly reviewed and shown to be 
easily adapted to solve large instances of SAT. Hundreds of instances of SAT (having from 
100 to 1000 variables and 100 to 32,000 clauses) are randomly generated and solved. For 
comparison, we attempt to solve the problems via linear programming relaxation with 
MINOS. 
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1. Introduction 

We consider here the satisfiability problem (SAT) in propositional calculus, a 
central problem in mathematical logic that was posed as the original NP-com­
plete problem [3]. 

A Boolean variable x is a variable that can assume only the values true or 
false. Boolean variables can be combined by the logical connectives or (V), and 
(t\) and not (x) to form Boolean formulae. A variable or a single negation of the 
variable is called a literal. A Boolean formula consisting of only literals combined 
by just the V connector is called a clause. 

The satisfiability problem (SAT) can be defined as follows. Given n clauses 
'til"'" 'tin involving m variables Xl"'" x m' is the formula 

'til t\ 'ti2 t\ '" t\ 'tin (1) 

satisfiable? What is wanted is an assignment of truth values to the Boolean 
variables so that the Boolean formula (1) has value true. Hence, the assignment of 
truth values to the Boolean variables must make each clause 'til' 'ti2 , ••• , 'tin true. 
We present a method for finding a satisfiable truth assignment, based on the 
interior point zero-one integer programming algorithm described in Karmarkar 
[12] and Karmarkar, Resende and Ramakrishnan [13]. Once we have a truth 
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assignment, it is trivial to prove satisfiability by substitution. In case the formula 
is not satisfied, our method does not construct a proof of nonsatisfiability. 

Consider the following three clauses, 

<6'1 = Xl V x2 V X 3, 

<6'2 = X 2 V X 3' 

<6'3 = Xl V x3. 

The formula <6'1 A <6'2 A <6'3 is clearly satisfiable, since the truth assignment 
Xl = true, x 2 = true and X 3 = false makes each clause <6'1' <6'2 and <6'3 true. 

There has been great interest in devising efficient algorithms for solving the 
satisfiability problem. One obvious way would be to try all possible truth 
assignments to see if one satisfies the formula. This has exponential complexity, 
since in the worst case one may have to try 2m truth assignments. The Davis­
Putnam procedure [4] is a technique that has been shown to take polynomial 
average time complexity, subject to certain restrictions. Unfortunately, these 
constraints substantially limit the application of the algorithm. Resolution is a 
widely used method for inference problems in propositional calculus [19]. Unfor­
tunately, resolution not only has exponential worst case complexity but fails to 
solve even moderately sized inference problems. The resolution method can find 
unsatisfiability quickly in certain classes of problems but is slow when it comes to 
verifying satisfiability, as all possible resolutions need to be tried out before 
concluding that the inference relation holds or that the problem is satisfiable. 
Hooker [9] has shown that mathematical programming methods are substantially 
faster than resolution. 

An interesting aspect of the problem is that it can be formulated as an integer 
program. The integer programming formulation is immediate if one identifies 
logical value true with the integer 1 and false with -1. The following procedure 
is standard to transform a clause into a linear inequality. First, all V connectives 
are transformed into the + of ordinary addition. The literal X is represented by 
the integer variable wand x is transformed into a - w. We impose the condition 
that each clause is true. Hence, if a clause <6' has n(<6') literals then at least one 
must be true, i.e. contribute to a + 1, while the rest are free to be true or false, 
thus contributing at least - 1 each, resulting in the constraint 

.E wj - .E wj ~ 2 - n(<6'), 
JEI... jEJ... 

where I ~ is the set of indices of all +w variables in clause <6', J~ is the set of 
indices of all - w variables in <6' and n(<6') = II ~ I+ IJ~ I. Hence, the clauses in 
the earlier example would give us the constraints 

wl - W2 + w3 ~ - 1, 

w2 + w3 ~ 0, 

wl - w3 ~ 0, 
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with the restriction that wj = ± 1, j = 1, 2, 3, requiring that extra constraints be 
added to insure that each wj be in the closed interval [-1, 1]. These constraints 
are 

-1 ~ wI ~ 1, 

-1 ~ W 2 ~ 1, 

-1 ~ w3 ~ 1. 

This ± 1 integer programming formulation of SAT is similar to the more 
common form of integer programming, where variables x j take on (0, 1) values. 
The ±1 problem can be transformed into the (0, 1) form with the change of 
variables 

1 + wj
 
x j = -2-' j= 1, ... , m.
 

Several authors have investigated integer programming approaches to resolving 
Boolean logic problems, e.g. [1,5-11,21-23]. A recent survey is given in [2]. 

Recently a cutting plane algorithm that uses resolvents as cuts has been 
introduced by Hooker [9], who has reported good computational results for 
certain problem classes. However, the method, based on the simplex method of 
linear programming, has been described ineffective on dense satisfiability prob­
lems. Moreover, as will be discussed later, Hooker allows for the presence of unit 
clauses in his sample problems which contribute toward making the problems less 
difficult than instances of SAT in which single literal clauses are disallowed. 
Hooker reports computational results for small sized problems and the behavior 
of his method for larger instances is hard to predict. 

An outline of the remainder of this paper is as follows. In section 2 we briefly 
review the integer programming algorithm. Specific details required to apply the 
integer programming algorithm to SAT are given in section 3. Computational 
results are provided in section 4. In section 5 we make concluding remarks. 

2. Zero-one integer programming 

In this section, we briefly review the interior point algorithm used in this study. 
We omit all proofs. They can be found in [12] and [14]. We consider the following 
integer programming problem: 

BE IR m x n INTEGER PROGRAMMING: Let and b e: IR n• Find wE IR m such 
that: 

BTW~ b , (2) 

Wi = ±1, i = 1, ... , m. (3) 

We propose an interior point approach to solve (2), (3), i.e. a heuristic that 
k,generates a sequence of points {wO, w\ ... , w . . . } where for all k = 0, 1, ... 

wkE{WElRmIBTw<b; -e<w<e}, 
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where eT = (1, ... ,1). In practice, this sequence often converges to a point from 
which one can round off to a ± 1 integer solution to (2)-(3). No guarantee can be 
made as to whether the heuristic will be successful, but in this paper we provide 
several large instances of SAT where it succeeds in proving satisfiability, 

To simplify notation, let I denote an m X m identity matrix, 

A = [B;I;-I] 

and 

and let 

J= {wElRmIATw~cand wi= ±1}. 

With this notation, INTEGER PROGRAMMING can be restated as: Find 
wEJ. 

Throughout this paper we assume that AT has full rank. Let 

.P= {w E IR m IATw ~ c} 

and consider the linear programming relaxation of (2)-(3), i.e. find w E.P. One 
way of selecting ± 1 integer solutions over fractional solutions in linear program­
ming is to introduce the quadratic objective function, 

maximize wTw = L 
m 

w/ (4) 
i= 1 

and solve the NP-complete [20] nonconvex quadratic programming problem 

subject to: ATw ~ c. (5) 

The following proposition establishes the relationship between (4)-(5) and IN­
TEGER PROGRAMMING. 

PROPOSITION 2.1 

Let w E.P. Then w EJ- wTw = m, where m IS the optimal solution to 
(4)-(5). 

We now consider an algorithm to solve (4)-(5) and show how to apply this 
algorithm to integer programming. Let 

wO E~ = {w E IR m IATw < c} 

be a given initial interior point. The algorithm generates a sequence of interior 
points of .P. Let w k E~ be the kth iterate. Around w k we construct a 
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quadratic approximation of the potential function 

cf> (W) = log!m - wTW - -
1 

L
n 

log dk (W) , n 
k=l 

where 

dk(w)=ck-alw, k=l, ... ,n. 

Let D=diag(d1(w), ... ,dn(w», e=(l, ... ,l), 10=m-wTw and C be a con­
stant. The quadratic approximation of cf>( w) around w k is given by 

Q(w)=t{w-wk) T 
H(w-wk)+hT(w-Wk)+C, (6) 

where the Hessian is 

2 4 k e 1 2TH= --I--w w +-AD-A (7)
10 102 n 

and the gradient is 

1 k 1 -1 ( )h = - -w + -AD e. 8 
10 n 

Minimizing (6) subject to ATw ~ c is NP-complete. However, if the polytope is 
approximated by an inscribed ellipsoid, 

C(r)={wElRml(w-wk)TAD-2AT(w-wk)~r2~1}, (9) 

the resulting approximate problem, 

minimize t{.1W)TH.1w + hT.1w (10) 

subject to: (.1w )TA D- 2AT(.1w) ~ r 2~ 1, (11) 

where.1w == w- wk, is easy. 
We now consider an algorithm to solve INTEGER PROGRAMMING based 

on nonconvex quadratic programming. The approach used to solve the noncon­
vex optimization problem 

minimize{cf>( w) IATw ~ c}, 

is similar to the classical Levenberg-Marquardt methods [16,17], first suggested 
in the context of nonlinear least squares. This algorithm solves (10)-(11) to 
produce a descent direction .1w * for the potential function cf>( w). A solution 
.1w* E R m to (10)-(11) is optimal if and only if there exists p. ~ 0 such that: 

.1w*{H + p.AD- 2AT) = -h, (12) 

2)p.({.1w*)TA D-2AT.1w* - r = 0, (13) 

H + p.AD- 2AT is positive semi-definite. (14) 
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With the change of variables y = 1/(1L + lin) and substituting (7) and (8) into 
(12) we obtain an expression for .::1w* satisfying (12): . 

2 T 4y k: kT 2Y) -1 ( 1 k: 1 1 )..1w* = - AD- A - -w w - -I y - -w + -AD- e . . (15) 
( 102 10 10 n 

Note that r does not appear in (15). However, (15) is not defined for all values of 
r. It can be shown that if the radius r of the ellipsoid (11) is kept within a certain 
size, then there exists an interval 0::::;; Y::::;; Y such thatmax 

AD-2AT _ 4y WkW kT _ 2y I (16)
102 10 

is nonsingular. The following proposition establishes a descent direction of 4>( w). 

PROPOSITION 2.4 

There exists y > 0 such that the direction ..1 w *, given in (15), is a descent 
direction of 4>( w). 

We now outline the steps of the algorithm to find a solution of (10)-(11) 
satisfying conditions (12)-(14) and show how to incorporate this approach into 
an algorithm to solve INTEGER PROGRAMMING. Each iteration of this 
algorithm is comprised of two tasks. To simplify notation, let 

He = AD- 2AT, (17) 

4 k e 2 ( )Ho = - 102 W W - 10 I, 18 

and define 

M= He +yHo ' 

Given the current iterate wk we first seek a value of y such that M..1 w = yh has a 
solution ..1 w ". This can be done by binary search, as we will see shortly. Once 
such a parameter y is found, the linear system 

M..1w* = yh (19) 

is solved for ..1w* == ..1w*(y(r)). It is easy to verify that the length, 

1(..1w*(y)) = (..1w*(y(r)))TA D- 2AT..1w*(y(r)), 

is a monotonically increasing function of y in the interval 0::::;; y::::;; Ymax' 

Optimality condition (13) implies that r = /1(..1w * (y)) if IL > O. Small lengths 
result in small changes in the potential function, since r is small and the optimal 
solution lies on the surface of the ellipsoid. A length that is too large may not 
correspond to an optimal solution of (10)-(11), since this may require r> 1. We 
maintain an interval (l, I) called the acceptable length region and accept a length 
1(..1w*(y)) if !::::;; 1( ..1 w *( y )) ::::;; I. If 1(.::1w*(y))<!, y is increased and (19) is 
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Pseudo code 2.1 
The ip algorithm 

procedure ip(A, c, Yo, t. io)
 

1 k := 0; Y:= Yo; !:=!; i:= io, K:= 0;
 
2 w k 

:= get_ start_ point(A, c);
 
3 wk 

:= round offt w");
i 

4 do ATwk ~ c--+
 
5 L1w* := descent_direction(y, w k , t, i);
 

k6 do </>( wk + aL1 w * ) ;;, </>( w ) and i > £ --+ 
7 i:=i/i ;r 

8 L1w* :=descent_direction(y, wk , !, i) 
9 00; 

k10 if </>( wk + aL1 w * ) < </>( w ) --+ 
k + 1:=11 w w k + aL1w*; 

112 wk + 1 := round_off(w k + ) ;
 

13 k:= k +1
 
14 Ii;
 
15 if i ~ £ --+
 
16 print("Converged to local minimum.");
 
17 exitr)
 
18 Ii
 
19 00
 
end ip;
 

Pseudo code 2.2 
The descent _direction algorithm 

kprocedure descent directiom y, w , t, i)i 

1 1:= 00;_LDkey := false; Ykey:= false; rkey:= false; 
2 do I> I or (l <l and LDkey = false) --+ 
3 M := He + yHo; b:= yh; 
4 do ML1 w = b has no solution --+ 
5 y:= Y/Yr; LDkey:= true; 
6 M:= He + yHo; b:= yh 
7 00; 
8 L1w*:=M- 1b; 1:= (L1w*)TAD- zATL1w*; 

9 if I<! and LD key = false --+ 
10 y := y; Ykey:= true; 
11 if Ykey ~ true --+ y := fiY Ii; 

12 if Ykey = false --+ r> v:Yrfi 
13 fi; 
14 if I> i.; 
15 Y:= y; Ykey:= true; 
16 if rkey = true --+ y := fiY Ii; 

17 if rkey= false--+Y:=Y/Yr Ii 
18 Ii 
19 00; 
20 do I<! and LD key = true <I> i/t, 00; 
21 retum( L1 w * ) 
end descent_direction; 
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resolved with the new M matrix and h vector. On the other hand, if 1(.::1w*(y)) 
> l, y is reduced and (19) is resolved. We shall say a local minimum has been 
found if the length is reduced below a tolerance E:. If a local minimum is found, 
several strategies can be considered. In one approach, the problem is modified 
(by adding a cut, for example) and the algorithm is applied to the new problem. 
Once an acceptable length is produced the new iterate W

k + 1 is computed by 
moving in direction .::1 w *(r) from w k: with a step size a < 1, 

k 1=wk+a.::1w*(y).w + (20) 

The current iterate W
k + 1 is rounded off to the nearest + 1 vertex: Wk+l = 

1 1 1(± 1, ... , ± 1). If Wk + is such that ATw k + ~ c then Wk + is a global optimal 
solution of (4)-(5). 

Pseudo code 2.1 details procedure lp, the integer programming algorithm that 
makes use of procedure descent j direction to optimize (10)-(11) producing the 
descent direction. In ip, procedure get _start _point returns an initial starting 
interior point and procedure round _off rounds a fractional solution to a ± 1 
integer solution. These procedures are discussed in more detail in section 3. 

Pseudo code 2.2 details procedure descent _direction. 

3. Application specific details 

In this section, we discuss algorithmic details specific to this application (SAT). 

3.1. INITIAL SOLUTION 

The algorithm requires an initial interior point solution to 

L wj- L wj~2-n(ce'J, i=l, ... ,n, (21) 
jE leo, jEJeo, 

-l~wj~l, j=l, ... ,m. (22) 

One way to obtain such a starting solution is to solve a Phase I artificial linear 
program and use its solution as the initial solution for the integer programming 
algorithm. Instead, we simply use the origin wO = (0, ... ,0) as the initial solution 
because, in practice, there is no apparent benefit from the linear programming 
approach. However, the origin is not an interior point to (21)-(22) if there exists 
any clause ce'; such that n(ce';) = 2. To get around this problem, we use an 
alternative right hand side to (21), resulting in 

L wj - L wj ~ 1 - n ( ce'J, i = 1, ... , n , (23) 
JEI"" jEJ"" 

-l~wj~l, j=l, ... ,m. (24) 
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PROPOSITION 3.1 
If n(<t?;) ~ 2, i = 1, ... , nand wj = ± 1, } = 1, ... , m, then (23)-(24) is a valid 

description of SAT. 

Proof 

We first show that WO = (0, ... ,0) satisfies the constraints. Constraints (24) are 
clearly satisfied. Constraints (23) are also satisfied, because 

L wj O - L wj O = 0 > 1 - n ( <t?; ) , i = 1, ... , n, 
jE/'G, jEJ~, 

since n(<t?;) ~ 2, i = 1, ... , n. We must now show that for all ± 1 integer solutions, 
at least one W = 1 for} E 1«/ or at least one WJ. = -1 for} E J«/ for i = 1, ... , n.J, , 

Assume the contrary, i.e. assume "iI} E 1«/" wj = -1 and vi E J«/" wj = 1. Then 
- 11«/, I - I J«/, I ~ 1 - 11«/j I - I J«/, I, which implies 0 ~ 1, a contradiction. 0 

3.2. ROUNDING OFF 

Rounding off can be done in a straightforward manner, for} = 1, ... , m, 

w
+ 1 if wj > 0,
 

j = ( -l'fI 0 .
~Wj 

We call this rounding scheme type A. 
Rounding scheme A does not discriminate between, say, positive interior point 

variables wk o = 0.01 and Wk , = 0.99, assigning both variables a + 1. Intuitively 
however, one should expect the Boolean variable Xk to be true with higher 

I 

probability than variable X k • Furthermore, scheme A takes no advantage of the 
o 

structure of the constraints. Assigning a truth value to a Boolean variable may 
force some other variable to take on a certain truth value. For example, if clause 
<t?: Xl V x2 is one of the clauses to be satisfied and variable Xl is set to true, then 
variable X 2 will necessarily have to be assigned a false value. 

Considering the above observations, we propose a second rounding procedure, 
called scheme type B. This scheme has two possible outcomes. Either it produces 
a satisfiable truth assignment and hence indicates that the interior point al­
gorithm should halt, or it does not find a satisfiable truth assignment, indicating 
that the interior point algorithm should proceed. Rounding scheme B can be 
described by the following five step procedure. 

STEP 0: Sort all interior point variables Wj' ) = 1, ... , m, in decreasing order of 
their absolute values and place the sorted variables in a priority queue 

f!l = {wj " wh " ' " wj m } , 

where 

I"), I ~ Iwh I ~ ... ~ IwjJ. 
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STEP 1: Select the first variable from fl, say Wk and set 

if Wk > 0,
W = { + 1
 

k -1 if wk ~ O.
 

Remove variable wk from fl. 
STEP 2: The Boolean variable X k' corresponding to Wk' IS assigned the ap­

propriate value, i.e. 

true if wk = + 1, 
x -

k - { false if wk = -1. 

STEP 3: Consider all clauses where X k occurs, negated or otherwise. As a 
consequence of the assignment of the truth value to x k some of these 
clauses may become satisfied, while others may be reduced. If there is 
any single literal clause in the reduced set of clauses, that Boolean 
variable is forced to take on a definite value. For example, if ~: Xl is a 
single literal clause, Xl is forced to be false. Remove that variable from 
fl. Set the Boolean variable to its required value. As a consequence, 
some clauses may be made satisfiable, some may be reduced. Further­
more, there may exist two clauses for which a variable must take on 
contradicting values. For example, if Xl = false in ~l: Xl V X 2 and ~2: 

Xl V x2 ' then any value given to x 2 will cause either ~l or ~2 to 
become unsatisfiable. If a contradiction is found, terminate the round­
ing procedure, indicating that a satisfiable truth assignment has not 
been found and proceed with the interior point algorithm. Note that the 
current state w k of the interior point algorithm is not affected if the 
rounding scheme fails to produce a satisfiable truth assignment. STEP 3 
is recursively executed until there are no more single literal clauses to 
process. 

STEP 4: If all clauses are satisfied, terminate the rounding procedure and the 
integer programming algorithm with a satisfiable truth assignment. Else, 
go to STEP 1. 

3.3. LOCAL MINIMA 

The integer programming algorithm is not guaranteed to converge to a satisfia­
ble solution. When the algorithm converges to a local minimum that is not global 
one could do as in [14] or [15]. We have not yet implemented any such scheme for 
this class of problems and therefore simply stop and say the algorithm failed to 
find a feasible truth assignment. 
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4. Computational results 

We now describe the computational experiments. We have generated hundreds 
of random instances of SAT using a model similar to the one described by 
Hooker [9,10]. 

As input to the random instance generator we provide the number of clauses n, 
the number of variables m and the expected number of literals per clause k. 
Elements aij of the constraint matrix A are assigned value + 1 with probability 
p/2, -1 with probability p/2 and 0 with probability 1 - p, where p is such that 
the expected number of nonzero elements per clause is k. All null clauses are 
rejected. We generate no single literal clauses, differing here from [9], since those 
clauses can be trivially removed. By removing single literal clauses, simple linear 
programming relaxation can no longer be used to prove unsatisfiability. In [10], 
Hooker also discards single literal clauses. 

All runs. were carried out on mhkorbx, a KORBX® * parallel/vector com­
puter. The KORBX® uses a variant of the UNIX® Operating System, called the 
KORBX® Operating System. The KORBX® machine we used operates in scalar 
mode at approximately 1 MFlops and at 32 MFlops with full vector concurrent 
mode. In our experiments all code was written in FORTRAN and C and 
compiled on the KORBX® fortran compiler with optimization flags - 0 - DAS 
and KORBX® CC compiler with optimization flag - O. No special care was 
taken to vectorize or parallelize the code. All times reported are user CPU times 
given by the system call timesty. 

We report for each problem class the number of instances proven satisfiable, 
the number of instances in which the algorithm converged to a local minimum, 
the minimum, average and maximum number of iterations and the minimum, 
average and maximum solution time of the integer programming algorithm. 

We used the following algorithm parameter settings for all problem instances: 
Yo = 10, to = 0.5, io = 1.0, e = 10- 12

, L; = 4, a = 0.5, Yr = fi and l, = 4. Our 
implementation uses a preconditioned conjugate gradient algorithm to solve (19) 
at each iteration. The conjugate gradient algorithm stops when 11 - cos () I < 
10- 8

, where () is the angle between MLlw and h. 
Table 1 summarizes the computational results for the integer programming 

algorithm using rounding scheme A. There, results are tabulated for instances 
varying from 50 variables by 100 clauses, with an average of 5 literals per clause 
to 1000 variables by 2000 clauses and an expected number of 15 literals per 
clause. Statistics for iterations and solution times include only instances in which 
the algorithm converged to a global minimum. Times are in seconds. 

• KORBX and UNIX are registered trademarks of AT&T. 
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Table 1
 
Computational results (rounding scheme A)
 

Problem	 Instances Iterations Solution time 

vars clauses E[n(~)l	 global local min mean max min mean max 
min min 

50 100 5 89 11 1 46.2 530 0.5 9.4 67.0 
100 200 5 82 18 1 136.2 1002 1.0 50.9 297.3 
200 400 7 81 19 1 412.6 2070 2.3 313.7 1450.7 
400 800 10 86 14 1 44.2 1320 4.8 63.6 1577.9 
500 1000 10 80 20 1 119.4 2350 6.0 230.9 4464.5 

1000 2000 10 6 4 1 1450.0 3374 18.2 4021.2 8183.2 
1000 2000 11 8 2 1 174.6 659 13.6 715.5 2032.1 
1000 2000 12 9 1 1 194.9 1535 13.6 571.0 4052.0 
1000 2000 13 10 0 1 78.0 7710 14.7 215.4 2008.0 
1000 2000 15 9 1 1 1.0 1 15.0 16.5 19.8 

We can make the following observations about the runs in table 1: 
- The interior point method produced satisfiable truth assignments for the 

majority of instances. 
- All problem classes (rows in the table) had at least one instance for which the 

algorithm produced a satisfiable solution in one iteration. 
- For the problems with m = 1000 variables and n = 2000 clauses, the interior 

point algorithm produces satisfiable truth assignments in more number of 
cases as the expected number of literals per clause increases, i.e. as the problem 
becomes easier. 
We reran all instances in which the integer programming algorithm with 

rounding scheme A took more than one iteration, this time using rounding 
scheme B. We also ran larger and comparatively more difficult problems with this 
scheme. These had 1000 variables and had from 2000 to 32,000 clauses. Those 
results are shown in table 2. 

We can make the following observations about the runs in table 2: 
- Scheme B went to a non-integer solution in very few (only 2) cases. 
- The majority of instances were resolved in only one iteration. 
- All ten instances of size m = 1000 variables and n = 32,000 clauses were 

resolved in less than 6 CPU minutes. 
- All problem classes (rows in the table), with the exception of (m = 1000, 

n = 4000, E[n(~)] = 4) had instances that were solved in a single iteration. 
Only two instances were tested for the class that had no single iteration 
solution. 
In [9], Hooker reports that by solving a linear programming relaxation of SAT 

one frequently produces an integer solution. We have used MINOS 5.1 [18] to 



55 A.P. Kamath et al. / Computational experience with an algorithm 

Table 2
 
Computational results (rounding scheme B)
 

Problem Instances Iterations Solution time 

vars clauses E[n(~)] global local min mean max min mean max 
min min 

50 100 5 52 0 1 1.7 35 0.5 0.7 7.7 
100 200 5 70 0 1 1.0 1 1.0 1.1 1.7 
200 400 7 69 0 1 1.0 1 2.4 3.5 6.3 
400 800 10 31 0 1 1.0 1 5.1 5.6 7.7 
400 800 7 20 0 1 1.0 1 4.7 7.8 16.1 
500 1000 10 49 0 1 1.0 1 6.5 7.4 9.8 

1000 2000 10 10 0 1 1.0 1 14.9 18.5 20.5 
1000 2000 7 50 0 1 1.0 1 18.1 21.5 27.3 
1000 2000 3 49 1 1 5.8 159 8.7 50.4 1537.8 
1000 4000 10 10 0 1 1.0 1 24.0 25.1 25.8 
1000 4000 4 1 1 110 110.0 110 1085.4 1085.4 1085.4 
1000 8000 10 10 0 1 1.0 1 37.5 38.0 38.8 
1000 16000 10 10 0 1 1.5 6 46.2 66.4 92.1 
1000 32000 10 10 0 1 24.4 235 80.1 232.4 311.3 

solve the linear programming relaxation 

minimize Zo 

subject to: 

L Z·- i=l, ... ,n,Zo + J L Zj ';?- 1 - I J'6', I, 
jEI~1 jEJ~1 

o~ (zo, z) ~ 1, j=l, ... ,m, 

corresponding to some of the smaller problems tested on the integer program­
ming algorithm. Table 3 summarizes the results. 

We can make the following observations about the runs in table 3: 
- Contrary to Hooker [9], where single literal clauses were admitted, the simplex 

method failed to find integral solutions to the linear programming relaxations 

Table 3 
Computational results - linear programming relaxation 

Problem Instances Iterations Solution time 

vars clauses E[n(~)] int frac min mean max min mean max 

50 100 5 23 77 46 93.4 139 1.6 3.5 5.5 
50 100 10 93 7 61 131.5 219 2.6 5.8 10.0 

100 200 5 11 89 157 355.1 574 10.7 24.7 41.0 
200 400 7 23 77 1011 1523.5 2042 142.9 231.1 316.2 
400 800 10 2 3 4799 5610.0 6593 1285.9 1790.0 2147.0 
400 800 7 0 15 4982 6143.3 7486 1616.3 2050.4 2802.7 
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Table 4 
Computational results - CPU time ratios 

Problem CPU time 
ratios 

vars clauses E[n(~)l 

50 100 5 5.0 
100 200 5 22.5 
200 400 7 66.0 
400 800 7 262.9 
400 800 10 319.6 

in the majority of instances tested. In fact, for n = 400 variables, m = 800 
clauses and E[n(~)] = 7 literals per clause, the simplex method failed in a1115 
instances. To achieve the performance reported by Hooker for (n = 50, m = 

100, E[n(~)] = 5), we had to double E[n(~)] to 10. 
- Large instances could not be solved because of excessive solution times. 
- The average solution time ratios between MINOS and the interior point 

method (using rounding scheme B) are shown in table 4. Because of these time 
ratios, we feel that simplex based branch and cut methods will encounter much 
difficulty to outperform this interior point approach, since at least one linear 
programming relaxation must be solved. 

5. Concluding remarks 

An interior point algorithm for integer programming [12,13] has been applied 
to find truth assignments in instances of SAT. The algorithm finds truth assign­
ments in the majority of large instances (up to 1000 variables and 32,000 clauses) 
with the straightforward rounding scheme A and takes very few iterations with 
the more involved rounding scheme B. We cannot, however, guarantee that the 
algorithm will find a truth assignment if one exists. Moreover, we cannot make 
any conclusion when the algorithm converges to a local minimum without finding 
a satisfiable truth assignment. 

Large instances of SAT were solved in little CPU time. In general, MINOS 5.1 
required more CPU time to solve only a linear programming relaxation of the 
problem, in which fractional solutions were frequently found. 

In this implementation of the interior point algorithm, no special treatment 
was given to local minima. We have observed in the computational experiments 
described in this paper, that when a local minimum is encountered, it is usually 
the case that very few constraints remain unsatisfied. Future work will focus on 
treating local minima. One possible approach is to add cuts and restart the 
algorithm, as in [14]. Another is to use a different potential function or a 
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branching scheme, as is done in [15]. The question whether one can prove 
nonsatisfiability with local minima information remains open. 

In light of the results presented here, the interior point approach can serve as 
an efficient tool in solving instances of SAT that before were considered unsolva­
ble simply because SAT is NP-complete. 
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