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ABSTRACT. OSPF, or Open Shortest Path First, is a commonly used interior gateway
protocol. Given a network topology, a set of link types to be deployed, each having a
different capacity, and predicted traffic demands, the problem considered in this paper is to
find a set of OSPF weights that minimizes network cost subject to single arc failures. We
propose a genetic algorithm to find near-optimal or optimal solutions for this problem. At
each iteration (or generation) of the algorithm, OSPF weights are assigned to the arcs of
each member of the population and an external procedure determines which links are to be
deployed and the corresponding cost associated with the deployment. Four heuristics used
to implement this external procedure are the main topic of this paper. They are designed
to minimize the overall cost of the network, but some have additional constraints imposed
by specific applications. We show the results of an experiment with the four heuristics on
a real network with 54 routers and 278 arcs.

1. INTRODUCTION

OSPF, or Open Shortest Path First, is a commonly used interior gateway protocol. An
integer weight is assigned to each arc and the entire network topology and arc weights are
known to each router. Each router computes a graph of shortest weight paths from itself
to every other router in the network. Traffic is routed on the shortest weight paths. All
traffic leaving router s with destination router t is split among all arcs leaving s and on the
shortest path graph from s to t.

Given a network topology, a set of link types to be deployed, each having a different
capacity, and predicted traffic demands, the problem considered in this paper is to find
a set of OSPF weights that minimizes network cost subject to single arc failures. More
precisely, we are given a directed network G = (N,A), where N is the set of routers, A
is the set of potential arcs where capacity can be installed, and a demand matrix D that,
for each pair (s, t) ∈ N ×N, specifies the demand Ds,t between s and t. Arc a ∈ A has
length da. Link types are numbered 1,2, . . . ,T , where link type i has capacity ci and cost
per unit of length pi. We wish to determine integer OSPF weights wa ∈ [1,65535] as
well as the number of copies of each link type to be deployed at each arc such that when
traffic is routed according to the OSPF protocol in a no-failure or any single arc failure
situation there is enough installed capacity to move all of the demand and the total cost of
the installed capacity is minimized. For routing purposes, we assume that each arc has a
single multiplicity, i.e. the installed capacity does not influence routing.

Given an arc weight assignment, OSPF determines, for a given demand matrix D, the
loads la on each arc a ∈ A. The cost of the network is defined by the number of each type
of link deployed on each arc in the network.
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We propose a genetic algorithm similar to the one described in [2] to find near-optimal
or optimal solutions for this problem. The algorithm works with a population of solutions.
Each solution is represented by an |A|-vector of integer weights. At each iteration (or gen-
eration) of the algorithm, weights are assigned to the arcs of each member of the population
and an external procedure determines which links are to be deployed and the correspond-
ing cost associated with the deployment. This external procedure is the main topic of this
paper. The population evolves using the random keys crossover scheme of Bean [1]. The
elements are classified according to their cost. The x% least-cost solutions are placed in
category I and the y% highest-cost solutions are put in category III. The remaining so-
lutions fall into category II. Population dynamics works as follows. All solutions in the
initial population have randomly generated weights. All category I elements are promoted
to the next generation unchanged. All category III elements are replaced by random weight
elements in the next generation. The remaining elements of the population of the next gen-
eration are created as follows. A solution (parent) is selected at random from the set of
category I solutions. Similarly, a parent is selected at random from the union of the sets of
categories II and III. Parents can be selected more than once per generation. A crossover
operation is performed on these two parent solutions to produce a child solution. Each
weight of the child’s arcs is that of the category I parent with probability π (0.5 < π ≤ 1)
and that of the other parent with probability 1− π. Each weight is determined indepen-
dently of the other. The crossovers are repeated until the population of the new generation
is of the same size as the current generation.

2. HEURISTICS

Because of the limited space in this abstract, we restrict our discussion to the no-failure
case. The OSPF weight vector of an element of the population determines a set of loads
li j for each arc (i, j) in the network. To fulfill those loads we have to assign capacities
ci j to the arcs, such that li j ≤ ci j. To attain a given capacity, one may compose several
different link types that sum up to the desired capacity (ci j = ∑t used in (i, j) mtct , where ct is
the capacity of link type t and mt is the number of copies of this link type).

Naturally, there are different ways to compose link types to satisfy the load. The goal of
the heuristic is to satisfy the load while optimizing some objective function. For example,
in this paper, we consider as objective function the minimization of the network cost, where
the network cost is defined by the sum of the costs of every arc.

Recall that given a set of link types {1,2, . . . ,T}, we consider two parameters for each
link type i: the capacity ci and the price per unit of length pi. We make the following
assumptions on these parameters:

1. Given capacities c1 < c2< .. . < cT and prices p1 < p2< .. .< pT , we have (pT/cT )<
(pT−1/cT−1) < .. . < (p1/c1). In other words, the price per unit of capacity is
smaller for links with greater capacities.

2. Given capacities c1 < c2 < .. . < cT , we have ci = αci−1 (α ∈ �
,α > 1). In other

words, the capacities are multiples of each other by powers of α.
The first assumption is an economies of scale, i.e. unit cost drops for bigger quantities.

The second assumption reflects the reality of link types available in real world applications.
For instance, link types could be OC3, OC12, OC28, and OC192, which have capacities
155 Mb/s, 622 Mb/s, 2.5 Gb/s, and 10 Gb/s, respectively.

We have designed four heuristics to solve this subproblem. The heuristics were designed
to minimize the overall cost of the network, but some have additional constraints imposed
by specific applications.
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FIGURE 1. Network cost versus GA’s number of generations.

1. Min capacity: Starting with load l, the heuristic uses as much as possible of the
biggest capacity link type without exceeding the load. This means that bl/cT c units
of link t are used. Then, it updates the remaining load (l := l−bl/cTc), and repeats
the operation on the next link type (T − 1), until the link type (1) with smallest
capacity is reached. Then, we satisfy the remaining load with dl/c1e units of link
type 1.

2. Min cost: This heuristic follows the same idea of the Decreasing capacities heuris-
tic, but instead of satisfying the load only with the last link type, for each step it
also stores the price of satisfying the load with the current link type. At the end, the
smallest price configuration is used.

3. Min cost k types: This heuristic follows the same idea of the Min cost heuristic,
but it can use at most k different link types. For practical reasons this additional
constraint may be imposed by some applications.

4. Min multiplicities: This strategy minimizes the number of copies of a link used to
satisfy the load.

Under Assumptions (1) and (2), all of the above heuristics can be implemented to take
O(T ) time to execute per arc. Moreover, heuristic Min capacity gives the optimal solution
for the minimum capacity objective function1, and the heuristic Min cost gives the optimal
solution for the minimum cost objective function1. On the other hand, without Assump-
tions (1) and (2), to find the minimum capacity solution or the minimum cost solution, we
would have to solve a Knapsack Problem.

1For the given set of loads.
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3. EXPERIMENTAL RESULTS

Here we show the results of an experiment on a real network with 54 routers and 278
arcs. Three link types were considered with the following parameters: c2 = 4c1, c3 = 16c1;
p2/c2 = 0.95p1/c1, p3/c3 = 0.90p1/c1. All 4 heuristics were tested, and heuristic (3) was
tested for k = 1 and 2. The number of generations of the GA was varied from 100 to 1000
in steps of 100. The GA parameters x = 25, y = 5, and π = 0.7 were used and the GA
population size was 100.

Figure 1 shows how the four2 heuristics behave as a function of the number of gener-
ations of the GA. In all cases the solution improves as the number of generations grows.
Such behavior is expected because if more generations are tried, more solutions are visited,
and greater are the chances of finding a better solution.

As for the individual heuristics, Min cost achieves the best results of all, as expected.
Min cost 2 types performs better than Min cost 1 type. Min capacity and Min multiplicities
do not perform as well as Min cost, or even as Min cost 2 types, showing how the results
are affected by heuristics that were not designed to optimize the objective function of the
problem.
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2There are five curves because heuristic (3) was tested with two parameters of k.


