
COMBINATORIAL OPTIMIZATION IN

TELECOMMUNICATIONS

MAURICIO G. C. RESENDE

Abstract. Combinatorial optimization problems are abundant in the telecom-
munications industry. In this paper, we present four real-world telecommunica-
tions applications where combinatorial optimization plays a major role. The
first problem concerns the optimal location of modem pools for an internet
service provider. The second problem deals with the optimal routing of per-
manent virtual circuits for a frame relay service. In the third problem, one
seeks to optimally design a SONET ring network. The last problem comes up
when planning a global telecommunications network.

1. Introduction

Combinatorial optimization problems are abundant in the telecommunications
industry. In this paper, we present four real-world telecommunications applications
where combinatorial optimization plays a major role.

In Section 2, we consider the PoP (point-of-presence) placement problem, an
optimization problem confronted by internet access providers. The most common,
and potentially least expensive, way for a customer to access the internet is with a
modem by making a phone call to a PoP of the provider. It has been conjectured
that potential customers are more likely to subscribe to internet access service if
they can make a local (free unmetered) phone call to access at least one of the
internet provider’s PoPs. Given that the number of PoPs that can be deployed is
limited by a number of constraints, such as budget and office capacity, one would
like to place (or locate) the PoPs in a configuration that maximizes the number of
customers than can make local calls to at least one PoP. We call this number of
customers the coverage. A greedy randomized adaptive search procedure (GRASP)
is used to find solutions to this location problem that, in real-world situations, are
shown to be near-optimal.

A Frame Relay (FR) service offers virtual private networks to customers by pro-
visioning a set of permanent (long-term) virtual circuits (PVCs) between customer
endpoints on a large backbone network. During the provisioning of a PVC, rout-
ing decisions are made either automatically by the FR switch or by the network
designer, through the use of preferred routing assignments, without any knowledge
of future requests. Over time, these decisions usually cause inefficiencies in the
network and occasional rerouting of the PVCs is needed. The new PVC routing
scheme is then implemented on the network through preferred routing assignments.
Given a preferred routing assignment, the FR switch will move the PVC from its
current route to the new preferred route as soon as that move becomes feasible.

Date: July 2001.
Key words and phrases. Telecommunications, combinatorial optimization, linear program-

ming, GRASP, local search, multi-commodity flows.

1

2 MAURICIO G. C. RESENDE

Section 3, deals with a GRASP for optimal routing of permanent virtual circuits
for a frame relay service.

Survivable telecommunications networks with fast service restauration capabil-
ity are increasingly in demand by customers whose businesses depend heavily on
continuous reliable communications. Businesses such as brokerage houses, banks,
reservation systems, and credit card companies are willing to pay higher rates for
guaranteed service availability. The introduction of the Synchronous Optical Net-
work (SONET) standard has enabled the deployment of networks having a high
level of service availability. In Section 4, we describe an approach for optimal
design a SONET ring network.

With the worldwide market liberalization of telecommunications, the interna-
tional telecommunications environment is changing from the traditional bilateral
mode of operation, where each network between pairs of administrations (AT&T
and British Telecom, AT&T and France Telecom, British Telecom and France Tele-
com, etc.) is planned separately, to a more global, alliance-based, environment,
where the network needs of several administrations may be planned simultaneously.
This allows network planning to be done more in the manner that a single national
network is designed, as opposed to many individual networks [6, 3, 24]. In Section 5,
we describe a problem that comes up when planning a global telecommunications
network.

2. Pop placement for an internet service provider

In this section, we consider the PoP (point-of-presence) placement problem, an
optimization problem confronted by internet access providers. The most common,
and potentially least expensive, way for a customer to access the internet is with a
modem by making a phone call to a PoP of the provider. It has been conjectured
that potential customers are more likely to subscribe to internet access service if
they can make a local (free unmetered) phone call to access at least one of the
internet provider’s PoPs. Given that the number of PoPs that can be deployed is
limited by a number of constraints, such as budget and office capacity, one would
like to place (or locate) the PoPs in a configuration that maximizes the number of
customers than can make local calls to at least one PoP. We call this number of
customers the coverage.

A formal statement of the problem is given next. Let J = {1, 2, . . . , n} denote
the set of n potential PoP locations. Define n finite sets P1, P2, . . . , Pn, each cor-
responding to a potential PoP location, such that I = ∪j∈JPj = {1, 2, . . . , m} is
the set of the m exchanges that can be covered by the n potential PoPs. With
each exchange i ∈ I , we associate a weight wi ≥ 0, denoting for example, the
number of lines served by exchange i. A cover J∗ ⊆ J covers the exchanges in set
I∗ = ∪j∈J∗Pj and has an associated weight w(J∗) =

∑
i∈I∗ wi. Given the number

p > 0 of PoPs to be placed, we wish to find the set J ∗ ⊆ J that maximizes w(J∗),
subject to the constraint that |J∗| = p.

This problem, also known as the maximum covering problem (MCP) [23], has
been applied to numerous location problems, including rural health centers [4],
emergency vehicles [11], and commercial bank branches [25], as well as other ap-
plications [7, 9, 10]. It has an compact integer programming formulation, first
described by Church and ReVelle [8]. For i = 1, . . . , m and j = 1, . . . , n, let xj and

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 3

yi be (0, 1) variables such that

xj =

{
1 if j ∈ J∗

0 otherwise

and

yi =

{
1 if i ∈ I∗

0 otherwise.

Define

aij =

{
1 if i ∈ Pj
0 otherwise.

The following is an integer programming formulation for the maximum covering
problem:

max
m∑

i=1

wiyi

subject to:
n∑

j=1

aijxj ≥ yi, i = 1, . . . , m,

n∑

j=1

xj = p,

xj = (0, 1), j = 1, . . . , n

yi = (0, 1), i = 1, . . . , m.

The solution to the linear programming relaxation of the above integer program
produces as its optimal objective function value, an upper bound on the maximum
coverage. We shall call this bound, the LP upper bound, denoted by

UB = max{w>y | Ax ≥ y, e>x = p, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
where w = (w1, w2, . . . , wm), y = (y1, y2, . . . , ym), A = [a·1, a·2, . . . , a·n], x =
(x1, x2, . . . , xn), and e = (1, 1, . . . , 1) of dimension n.

In this subsection, we describe a greedy randomized adaptive search procedure
(GRASP) for PoP placement that finds approximate, i.e. good though not nec-
essarily optimum, placement configurations. GRASP [14] is a metaheuristic that
has been applied to a wide range of combinatorial optimization problems, includ-
ing set covering [15], maximum satisfiability [21], and p-hub location [19], all three
of which have some similarities with the PoP placement problem. GRASP is an
iterative process, with a feasible solution constructed at each independent GRASP
iteration. Each GRASP iteration consists of two phases, a construction phase and
a local search phase. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one ele-
ment at a time. At each construction iteration, the choice of the next element to
be added is determined by ordering all elements in a candidate list with respect to
a greedy function. This function measures the (myopic) benefit of selecting each
element. The heuristic is adaptive because the benefits associated with every ele-
ment are updated at each iteration of the construction phase to reflect the changes

4 MAURICIO G. C. RESENDE

procedure grasp(α,MaxIter,RandomSeed)
1 BestSolutionFound= ∅;
2 do k = 1, . . . , MaxIter →
3 ConstructGreedyRandomizedSoln(α,RandomSeed,p,J ∗);
4 LocalSearch(J∗);
5 if w(J∗) > w(BestSolutionFound) → BestSolutionFound =
J∗;
6 od;
7 return(BestSolutionFound)
end grasp;

Figure 1. A generic GRASP pseudo-code

brought on by the selection of the previous element. The probabilistic component
of a GRASP is characterized by randomly choosing one of the best candidates in
the list, but not necessarily the top candidate. This choice technique allows for dif-
ferent solutions to be obtained at each GRASP iteration, but does not necessarily
compromise the power of the adaptive greedy component of the method.

As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to sim-
ple neighborhood definitions. Hence, it is usually beneficial to apply a local search
to attempt to improve each constructed solution. While such local optimization
procedures can require exponential time from an arbitrary starting point, empiri-
cally their efficiency significantly improves as the initial solutions improve. Through
the use of customized data structures and careful implementation, an efficient con-
struction phase can be created which produces good initial solutions for efficient
local search. The result is that often many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge from
a single random start. Furthermore, the best of these GRASP solutions is generally
significantly better than the solution obtained from a random starting point.

An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned (candidate list size and
number of GRASP iterations) and therefore development can focus on implement-
ing efficient data structures to assure quick GRASP iterations. Finally, GRASP
can be trivially implemented on a parallel processor in an MIMD environment. For
example, each processor can be initialized with its own copy of the procedure, the
instance data, and an independent random number sequence. The GRASP itera-
tions are then performed in parallel with only a single global variable required to
store the best solution found over all processors.

The TM is organized as follows. In Subection 2.1, we describe the GRASP. In
Subsection 2.2, we show how the GRASP solution is better than the pure random or
pure greedy alternatives. On a large instance arising from a real-world application,
we show how the GRASP solution is near optimal. Parallelization of GRASP is
also illustrated.

2.1. GRASP for PoP placement. As outlined in Section 2, a GRASP possesses
four basic components: a greedy function, an adaptive search strategy, a proba-
bilistic selection procedure, and a local search technique. These components are

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 5

procedure ConstructGreedyRandomizedSoln(α,RandomSeed,p,J ∗)
1 J∗ = ∅;
2 do k = 1, . . . , p →
3 RCL = MakeRCL(α, J, J∗, γ);
4 s = SelectPoP(RCL,RandomSeed,J ∗);
5 J∗ = J∗ ∪ {s};
6 AdaptGreedyFunction(s, J, J∗, Γ, Γ−1, γ);
7 od;
end ConstructGreedyRandomizedSoln;

Figure 2. GRASP construction phase pseudo-code

interlinked, forming an iterative method that, at each iteration, constructs a fea-
sible solution, one element at a time, guided by an adaptive greedy function, and
then searches the neighborhood of the constructed solution for a locally optimal
solution. Figure 1 shows a GRASP in pseudo-code. The best solution found so far
(BestSolutionFound) is initialized in line 1. The GRASP iterations are carried
out in lines 2 through 6. Each GRASP iteration has a construction phase (line 3)
and a local search phase (line 4). If necessary, the solution is updated in line 5.
The GRASP returns the best solution found.

In the remainder of this subsection, we describe in detail the ingredients of the
GRASP for the PoP placement problem, i.e. the GRASP construction and local
search phases. To describe the construction phase, one needs to provide a candidate
definition (for the restricted candidate list) and an adaptive greedy function, and
specify the candidate restriction mechanism. For the local search phase, one must
define the neighborhood and specify a local search algorithm.

2.1.1. Construction phase. The construction phase of a GRASP builds a solution,
around whose neighborhood a local search is carried out in the local phase, pro-
ducing a locally optimal solution. This construction phase solution is built, one
element at a time, guided by a greedy function and randomization. Figure 2 de-
scribes in pseudo-code a GRASP construction phase. Since in the PoP placement
problem there are p PoP locations to be chosen, each construction phase consists
of p iterations, with one location chosen per iteration. In MakeRCL the restricted
candidate list of PoP locations is set up. The index of the next PoP location to be
chosen is determined in SelectPoP. The PoP location selected is added to the set
J∗ of chosen PoP locations in line 5 of the pseudo-code. In AdaptGreedyFunction

the greedy function that guides the construction phase is changed to reflect the
choice just made. As before, let J = {1, 2, . . . , n} be set of indices of the sets of
potential PoP locations. Solutions are constructed by selecting one PoP location at
a time to be in the set J∗ of chosen PoP locations. To define a restricted candidate
list, we must rank the yet unchosen PoP locations according to an adaptive greedy
function.

The greedy function used in this algorithm is the total weight of yet-uncovered
exchanges that become covered after the selection in each construction phase iter-
ation. Let J∗ denote the set (initially empty) of chosen PoP locations being built
in the construction phase. At any construction phase iteration, let Γj be the set of
additional uncovered exchanges that would become covered if PoP location j (for

6 MAURICIO G. C. RESENDE

j ∈ J \ J∗) were to be added to J∗. Define the greedy function

γj =
∑

i∈Γj

wi

to be the incremental weight covered by the choice of PoP location j ∈ J \J ∗. The
greedy choice is to select the PoP location k having the largest γk value. Note that
with every selection made, the sets Γj , for all yet unchosen PoP location indices
j ∈ J \J∗, change to reflect the new selection. This consequently changes the values
of the greedy function γj , characterizing the adaptive component of the heuristic.

We describe next the restriction mechanism for the restricted candidate list
(RCL) used in this GRASP. The RCL is set up in MakeRCL of the pseudo-code
of Figure 3. A value restriction mechanism is used. Value restriction imposes a
parameter based achievement level, that a candidate has to satisfy to be included
in the RCL. Let

γ∗ = max{γj | PoP location j is yet unselected, i.e. j ∈ J \ J ∗}
and α be the restricted candidate parameter (0 ≤ α ≤ 1). We say a PoP location j
is a potential candidate, and is added to the RCL, if γj ≥ α× γ∗. MakeRCL returns
the set RCL with the indices of all potential PoP locations that have greedy function
values within α × 100% of the value of the greedy choice. Note that by varying
the parameter α the heuristic can be made to construct a set of p random PoP
locations (α = 0) or act as a greedy algorithm (α = 1).

Once the RCL is set up, a candidate from the list must be selected and made
part of the solution being constructed. SelectPoP selects, at random, the PoP
location index s from the RCL. In line 5 of ConstructGreedyRandomizedSoln, the
choice made in SelectPoP is added to the set of PoP locations J ∗.

The greedy function γj is changed in AdaptGreedyFunction to reflect the choice
made in SelectPoP. This requires that some of the sets Γj as well as the values γj
be updated. Let Γ−1

i denote the set of PoP locations to which a caller in exchange
i can make a local call to. Let s be the newly added PoP location. The potential
PoP locations j whose elements Γj need to be updated are those not yet in the PoP
location set J∗ for which exchanges in Ps are covered by PoP location j.

2.1.2. Local search phase. Given a solution neighborhood structure N(·) and a
weight function w(·), a local search algorithm takes an initial solution J 0 and seeks
a locally optimal solution with respect to N(·). For a maximization problem, such
as the PoP placement problem, a local optimum is a solution J ∗ having weight
w(J∗) greater than or equal to the weight w(J+) for any J+ ∈ N(J∗). The lo-
cal search algorithm examines a sequence of solutions J 0, J1, . . . , Jk = J∗, where
J i+1 ∈ N(J i), i.e. immediately after examining solution J i, it can only examine
a solution J i+1 that is a neighbor of J i. Figure 5 illustrates a generic local search
algorithm that finds a local maximum of the function w(·). If in line 2 there exists
a solution J+ in the neighborhood of the current solution J ∗ with a weight greater
than that of the current solution, then in line 3 the improved solution is made the
current solution. The loop from line 2 to 4 is repeated until no local improvement
is possible.

A combinatorial optimization problem can have many different neighborhood
structures. For the PoP placement problem, a simple structure is 2-exchange. Two
solutions (sets of PoP locations) J 1 and J2 are said to be neighbors in the 2-
exchange neighborhood if they differ by exactly one element, i.e. | J 1 ∩ ∆J | =

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 7

procedure MakeRCL(α, J, J∗, γ)
1 RCL = ∅;
2 γ∗ = max{γj | j ∈ J \ J∗};
3 do s ∈ J \ J∗ →
4 if γs ≥ α× γ∗ →
5 RCL = RCL ∪ {s};
6 fi;
7 od;
8 return(RCL);
end MakeRCL;

Figure 3. MakeRCL pseudo-code

procedure AdaptGreedyFunction(s, J, J ∗, Γ, Γ−1, γ)
1 do i ∈ Γs →
2 do j ∈ Γ−1

i ∩ {J \ J∗} (j 6= i) →
3 Γj = Γj − {i};
4 γj = γj − wi;
5 od;
6 od;
end AdaptGreedyFunction;

Figure 4. AdaptGreedyFunction pseudo-code

procedure LocalSearch(J0, N(·), w(·), J∗)
1 J∗ = J0;
2 do ∃ J+ ∈ N(J∗) 3 w(J+) > w(J∗) →
3 J∗ = J+;
4 od;
end LocalSearch;

Figure 5. A generic local search algorithm

procedure LocalSearch(J∗)
1 do local maximum not found →
2 do s ∈ J∗ →
3 do t ∈ J \ J∗ →
4 if WeightGain(J∗, t) > WeightLoss(J∗, s) →
5 J∗ = J∗ ∪ {t} \ {s};
6 fi;
7 od;
8 od;
9 od;
end LocalSearch;

Figure 6. The local search procedure in pseudo-code

8 MAURICIO G. C. RESENDE

| J2 ∩ ∆J | = 1, where ∆J = (J1 ∪ J2) \ (J1 ∩ J2). The local search starts
with a set J∗ of p PoP locations, and at each iteration attempts to find a pair of
locations s ∈ J∗ and t ∈ J \ J∗ such that w(J∗ \ {s} ∪ {t}) > w(J∗). If such a
pair exists, then location s is replaced by location t in J ∗. A solution is locally
optimal with respect to this neighborhood if there exists no pairwise exchange that
increases the total weight of J∗. This local search algorithm is described in the
pseudo-code in Figure 6. Though it is not the objective of this TM to delve into
implementation details, it is interesting to observe that the total weight of the
neighborhood solutions need not be computed from scratch, Rather, in line 4 of the
pseudo-code, procedures WeightGain and WeightLoss compute, respectively, the
weight gained by J∗ with the inclusion of PoP location j and the weight loss by J ∗

with the removal of PoP location i from J∗. The weight gained can be computed
by adding the weights of all exchanges not covered by any PoP location in J ∗ that
is covered by j, while the weight loss can be computed by adding up the weights of
the exchanges covered by PoP location i and no other PoP location in J ∗.

The GRASP construction phase described in Subsection 2.1.1 computes a feasi-
ble set of chosen PoP locations that is not necessarily locally optimal with respect
the 2-exchange neighborhood structure. Consequently, local search can be applied
with the objective of finding a locally optimal solution that may be better than
the constructed solution. In fact, the main purpose of the construction phase is
to produce a good initial solution for the local search. It is empirically known
that simple local search techniques perform better if they start with a good initial
solution. This will be illustrated in the computational results subsection, where
experiments indicate that local search applied to a solution generated by the con-
struction phase, rather than random generation, produces better overall solutions,
and GRASP converges faster to an approximate solution.

2.2. Computing PoP placements with GRASP. In this subsection, we illus-
trate the use of GRASP on a large PoP placement problem. We consider a problem
with m = 18, 419 calling areas and n = 27, 521 potential PoP location. The sum
of the number of lines over the calling areas is 27,197,601. We compare an imple-
mentation of the GRASP described in Subsection 2.1 with implementations of an
algorithm having a purely greedy construction phase and one having purely random
construction. All three algorithms use the same local search procedure, described
in Subsection 2.1.2. Furthermore, since pure greedy and pure random are special
cases of GRASP construction, all three algorithms are implemented using the same
code, simply by setting the RCL parameter value α to appropriate values. For
GRASP, α = 0.85, while for the purely greedy algorithm, α = 1, and for the purely
random algorithm, α = 0. All runs were carried out on a Silicon Graphics Chal-
lenge computer (196MHz IPS R10000 processor). The GRASP code is written in
Fortran and was compiled with the SGI Fortran compiler f77 using compiler flags
-O3 -r4 -64.

Two experiments are done. In the first, the number of PoPs to be place is
fixed at p = 146 and the three implementations are compared. Each code is run
on 10 processors, each using a different random number generator seed for 500
iterations of the build–local search cycle, thus each totaling 5000 iterations. Because
of the long processing times associated with the random algorithm, the random
algorithm processes were interrupted before completing the full 500 iterations on
each processor. They did 422, 419, 418, 420, 415, 420, 420, 412, 411, and 410

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 9

0
5

10
15
20
25
30
35
40

2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

freq

random algorithm (phase 1 solution)

0

50

100

150

200

250

9.55e+06 9.6e+06 9.65e+06 9.7e+06 9.75e+06 9.8e+06 9.85e+06

freq

GRASP (phase 1 solution)

50

100

150

200

250

300

350

400

2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+071.1e+07

freq

The three algorithms (phase 1 solution)

Figure 7. Phase 1 solution distribution for random algorithm
(RCL parameter α = 0), GRASP (α = 0.85), and greedy algo-
rithm (α = 1)

iterations on each corresponding processor, totaling 4167 iterations. In the second
experiment, GRASP was run 300 times on PoP placement problems defined by
varying p, the number of PoPs, from 1 to 300 in increments of 1. Instead of running
the algorithm for a fixed number of iterations, the LP upper bound was computed
for each instance and the GRASP was run until it found a PoP placement within
one percent of the LP upper bound.

10 MAURICIO G. C. RESENDE

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 500 1000 1500 2000 2500 3000 3500 4000

weight

(×106)

GRASP iteration (sorted by phase 2 weight)

phase 2 soln
phase 1 soln

Figure 8. GRASP phase 1 and phase 2 solutions, sorted by phase
2, then phase 1 solutions. RCL parameter α = 0.0 (purely random
construction)

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 11

9.50

9.55

9.60

9.65

9.70

9.75

9.80

9.85

9.90

9.95

10.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

weight

(×106)

GRASP iteration (sorted by phase 2 weight)

phase 2 soln
phase 1 soln

Figure 9. GRASP phase 1 and phase 2 solutions, sorted by phase
2, then phase 1 solutions. RCL parameter α = 0.85

Figure 7 illustrates the relative behavior of the three algorithms. The top and
middle plots in Figure 7 show the frequency of the solution values generated by the
purely random construction and GRASP construction respectively. The plot on
the bottom of Figure 7 compares the constructed solutions of the three algorithms.
As can be observed, the purely greedy algorithm constructs the best quality solu-
tion, followed by the GRASP, and then by the purely random algorithm. On the
other hand, the purely random algorithm produces the largest amount of variance
in the constructed solutions, followed by the GRASP and then the purely greedy
algorithm, which generated the same solution on all 5000 repetitions. High quality
solutions as well as large variances are desirable characteristics of constructed so-
lutions. Of the three algorithms, GRASP captures these two characteristics in its
phase 1 solutions. As we will see next, the tradeoff between solution quality and
variance plays an important role in designing a GRASP.

The solutions generated by the purely random algorithm and the GRASP are
shown in Figures 8 and 9, respectively. The solution values on these plots are sorted
according to local search phase solution value. As one can see, the differences be-
tween the values of the construction phase solutions and the local search phase
solutions are much smaller for the GRASP than for the purely random algorithm.
This suggests that the purely random algorithm requires greater effort in the local
search phase than does GRASP. This indeed is observed and will be shown next.
Figures 10 and 11 illustrate how the three algorithms compare in terms of best
solution found so far, as a function of algorithms iteration and running time. Fig-
ure 10 shows local search phase solution for each algorithm, sorted by increasing
value for each algorithm. The solution produced by applying local search to the
solution constructed with the purely greedy algorithm is constant. Its value is only

12 MAURICIO G. C. RESENDE

9.80

9.82

9.84

9.86

9.88

9.90

9.92

9.94

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

weight

(×106)

GRASP iteration (sorted by phase 2 weight)

GRASP
random
greedy

Figure 10. Phase 2 solutions, sorted by phase 2 for random,
GRASP, and greedy algorithms

better than the worst 849 GRASP solutions and the worst 2086 purely random so-
lutions. This figure illustrates well the effect of the tradeoff between greediness and
randomness in terms of solution quality as a function of the number of iterations
that the algorithm is repeated.

Figures 12 and 13 correspond to the second experiment, where GRASP was run
until a solution within one percent of the LP upper bound was produced. For all
300 problems, the GRASP produced a design within 1% of the LP upper bound.
Figure 12 shows the error of the GRASP solution as a percentage off of the LP upper
bound when the algorithm was terminated. As can be observed, GRASP found
tight solutions (GRASP solution equal to LP upper bound) for several instances
and almost always produced a solution less than .5% off of the LP upper bound the
first time it found a solution less than 1% of the upper bound. Figure 13 shows CPU
times for each of the runs. CPU time grows with the complexity of the problem,
as measured by the number of PoPs in the design. For up to about 50 PoPs (a
number of PoPs found in practical incremental designs) the GRASP solution takes
less than 30 seconds on a 196MHz Silicon Graphics Challenge. The longest runs
took a little less than 3 minutes to conclude.

3. Rotuing permanent virtual circuits for frame relay service

A Frame Relay (FR) service offers virtual private networks to customers by pro-
visioning a set of permanent (long-term) virtual circuits (PVCs) between customer
endpoints on a large backbone network. During the provisioning of a PVC, rout-
ing decisions are made either automatically by the FR switch or by the network
designer, through the use of preferred routing assignments, without any knowledge
of future requests. Over time, these decisions usually cause inefficiencies in the
network and occasional rerouting of the PVCs is needed. The new PVC routing

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 13

9.88

9.89

9.90

9.91

9.92

9.93

9.94

10 100 1000 10000 100000

weight

(×106)

CPU time (in seconds)

GRASP
random
greedy

Figure 11. Incumbent phase 2 solution of random algorithm (α =
0), GRASP (α = 0.85), and greedy algorithm (α = 1) as a function
of CPU time (in seconds), running 10 processes in parallel.

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300

% off of
LP UB

number of PoPs

Figure 12. Percentage off of LP upper bound when stopping with
a solution at most 1% off of bound

14 MAURICIO G. C. RESENDE

20

40

60

80

100

120

140

160

50 100 150 200 250 300

cpu time
(secs)

number of PoPs

Figure 13. CPU time to stop when stopping with a solution at
most 1% off of bound

scheme is then implemented on the network through preferred routing assignments.
Given a preferred routing assignment, the FR switch will move the PVC from its
current route to the new preferred route as soon as that move becomes feasible.

One way to create the preferred routing assignments is to appropriately order
the set of PVCs currently in the network and apply an algorithm that mimics the
routing algorithm used by the FR switch to each PVC in that order. However, more
elaborate routing algorithms, that take into consideration factors not considered by
the FR switch, could further improve the efficiency of network resource utilization.

Typically, the routing scheme used by the FR switch to automatically provision
PVCs is also used to reroute PVCs in the case of trunk or card failures. Therefore,
this routing algorithm should be efficient in terms of running time, a requirement
that can be traded off for improved network resource utilization when building
preferred routing assignments off-line.

This section describes a greedy randomized adaptive search procedure (GRASP)
for the problem of routing off-line a set of PVC demands over a backbone network
such that PVC delays are minimized and network load is balanced. We refer to
this as the PVC preferred routing problem. The set of PVCs to be routed can
include all or a subset of the PVCs currently in the network, and/or a set of
forecast PVCs. The explicit handling of delays as opposed to just number of hops
(as in the routing algorithm implemented in Cisco FR switches) is particularly
important in international networks, where distances between backbone nodes vary
considerably. Network load balancing is important for providing the maximum
flexibility to handle the following three situations:

• Overbooking, which is typically used by network designers to account for
non-coincidence of traffic;

• PVC rerouting due to a link or card failure;

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 15

• Bursting above the committed rate, which is not only allowed but sold to
customers as one of the attractive features of FR.

The Technical Memorandum is organized as follows. In Section 3.1, we formulate
the PVC preferred routing problem. In Section 3.2, the GRASP for PVC routing
is described.

3.1. Problem Formulation. Let G = (V, E) represent the FR network where
routing takes place. Let V denote the set of n backbone nodes, where FR switches
reside, and let E denote the set of m trunks that connect the backbone nodes.
Parallel trunks are allowed. For each trunk e ∈ E, let ce denote the trunk bandwidth
(the maximum kbits/sec rate) allowed to be routed on the trunk, te denote the
maximum number of PVCs that can be routed on the trunk, and de denote the
delay associated with the trunk. The bound on the number of PVCs allowed on a
trunk depends on the port card used to implement the trunk. The delay represents
propagation delay, as well as the delay associated with hopping. The set P of PVCs
to be routed is represented by a list of origin-destination (O-D) pairs,

P = {(o1, d1), (o2, d2), . . . , (o|P|, d|P|)},
where we associate with each pair a bandwidth requirement, known as effective
bandwidth, which takes into account the actual bandwidth required by the customer
in the forward and reverse directions, as well as an overbooking factor. Let bp denote
the effective bandwidth of PVC p.

The ultimate objective is to minimize PVC delays while balancing trunk loads,
subject to several technological constraints. Network load balancing is achieved by
minimizing the load on the most utilized trunk. Routing assignments with mini-
mum PVC delays may not achieve the best trunk load balance. Likewise, routing
assignments having the best trunk load balance may not minimize PVC delays. A
compromising objective is to route all PVCs in set P such that a desired point in
the tradeoff curve between PVC delays and trunk load balancing is achieved.

A route for PVC (o, d) is a sequence of adjacent trunks, where the first trunk
originates in node o and the last trunk terminates in node d. A set of routing
assignments is feasible, if for all trunks e ∈ E, the total PVC effective bandwidth
requirements routed on e does not exceed ce and the number of PVCs routed on
trunk e is not greater than te.

3.2. A GRASP for PVC Routing. In this section, we propose GRASP con-
struction and local search procedures for the PVC Preferred Routing Problem, and
comment on implementation issues.

3.2.1. Construction Procedure. To describe a GRASP construction procedure, we
present greedy functions and RCL construction mechanisms. As stated in Sec-
tion 3.1, the objective of the optimization is to minimize PVC delays while balanc-
ing trunk loads.

Let P1, . . . ,Pm be the sets of PVCs routed on trunks 1, . . . , m, respectively.
The delay component D(P1, . . . ,Pm) of the objective function is defined to be the
sum of delays over all trunks, i.e.

D(P1, . . . ,Pm) =
∑

e∈E
z(e),

where z(e) is a trunk delay function that needs to be appropriately defined. Let de
be the delay associated with trunk e. Two plausible delay functions are:

16 MAURICIO G. C. RESENDE

procedure ConstructGRSolution(P,R1, . . . ,R|P|){
1 P̃ = P;
2 for e ∈ E {
3 Pe = ∅;
4 }
5 while P̃ 6= ∅ {
6 for e ∈ E {
7 Compute edge length LP\P̃e ;
8 }
9 for p ∈ P̃ {
10 Rp = sp(op, dp,LP\P̃1 , . . . ,LP\P̃m);
11 for e ∈ E {
12 if e ∈ Rp {
13 P̃e = Pe ∪ {p};
14 }
15 else {
16 P̃e = Pe;
17 }
18 }
19 g(p) = G(P̃1, . . . , P̃m);
20 }
21 g = min{g(p) | p ∈ P̃};
22 g = max{g(p) | p ∈ P̃};
23 RCL = {p ∈ P̃ | g ≤ g(p) ≤ g + α(g − g)};
24 Pick p∗ at random from the RCL;
25 for e ∈ Rp∗ {
26 Pe = Pe ∪ {p∗};
27 }
28 P̃ = P̃ \ {p∗};
29 }
}

Figure 14. GRASP construction phase pseudo code

• z(e) = nede, where ne is the number of PVCs routed on trunk e;
• z(e) = de

∑
p∈Pe bp, where bp is the effective bandwidth of PVC p.

The former delay is an unweighted delay, while the latter is weighted by the amount
of bandwidth used in the trunk.

The trunk load balance component of the objective function is

B(P1, . . . ,Pm) = max
e∈E
{ce −

∑

p∈Pe
bp}.

Given subsets of PVCs P1, . . . ,Pm, the objective function is defined to be a
convex combination of the two above components, i.e.

G(P1, . . . ,Pm) = δD(P1, . . . ,Pm) + (1− δ)B(P1, . . . ,Pm),

where δ (0 ≤ δ ≤ 1) can be set to indicate preference for delay minimization (δ
close to 1) or load balancing (δ close to 0).

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 17

We next describe the GRASP construction phase which is presented in pseudo
code in Figure 14. The idea in this construction procedure is to build the PVC
routing solution by routing one PVC at a time until all PVCs (p ∈ P) have been

routed. At anytime, the greedy choice selects from the set P̃ of PVCs not yet
routed, the one that, when routed, minimizes the delay while balancing the trunk
loads. To implement such a greedy selection procedure, circuits are always routed
from their origination node to their destination node on a shortest path route. The

length LP\P̃e of trunk e in the shortest path computation can be for example,

LP\P̃e =

(
ce

ce − xe

)β
d1−β
e or LP\P̃e = β

ce
ce − xe

+ (1− β)de,

where ce is the bandwidth of trunk e, de is the delay associated with trunk e, β
(0 ≤ β ≤ 1) is a parameter that determines whether delay or load balancing is
emphasized in the routing, and

xe =
∑

p∈Pe
bp

is the effective bandwidth of the traffic routed on trunk e, where here Pe is the set
of PVCs routed so far on trunk e.

The route chosen for a PVC depends on the routing decisions previously made,

since LP\P̃e depends on which PVCs were previously routed and how they were
routed. Since PVCs cannot be routed on trunks that cannot accommodate the
PVC’s bandwidth requirement or that have reached their maximum number of
PVCs, the shortest path computation disregards any such trunk.

The GRASP construction procedure takes as input the set P of PVCs to be
routed and returns the p routes R1, . . . ,R|P|. The set P̃ of PVCs to be processed
is initialized with P in line 1 and the sets of PVCs routed so far on each trunk
are initialized empty in lines 2-4. The construction loop (lines 5–29) is repeated
until all PVCs have been routed. To route the next PVC, as well as to compute
the incremental cost associated with each PVC routing, in lines 6–8 the trunk cost

functions LP\P̃e (e = 1, . . . , m) are computed. The incremental cost g(p) incurred

by routing each PVC p ∈ P̃ on its corresponding shortest path from op to dp, is
computed in lines 9–20. The smallest and largest incremental costs are computed
in lines 21 and 22, respectively, and the restricted candidate list is set up in line 23.
In line 24, a PVC p∗ is selected, at random, from the RCL. In lines 25–28, the sets
of PVCs routed in each trunk are updated, as well as is the set of PVCs yet to be
routed.

3.3. Local Search Procedure. Once all PVCs have been routed in the construc-
tion phase of GRASP, an improvement is attempted in the local search phase. The
local search proposed here reroutes each PVC, one at a time, checking each time
if the new route taken together with the other |P| − 1 fixed routes improves the
objective function. If it does, the new route is kept and the local search procedure
is called recursively. If no individual rerouting improves the total cost, the local
search procedure terminates with a locally optimal routing scheme.

Figure 15 describes the local search procedure in pseudo-code. The procedure
takes the current solution (P ,R1, . . . ,R|P|) as input. The sets of PVCs routed
on each trunk are computed in lines 1–8 and the cost of the current solution is
computed in line 9. The tentative rerouting of the PVCs takes place in the loop in

18 MAURICIO G. C. RESENDE

lines 9–33. For each PVC p, the search procedure tentatively reroutes p (lines 11–
26) and computes the cost of the new rerouting scheme (line 27). To reroute PVC p,
in lines 11–14 the edge lengths are computed and the rerouting of the PVC through
the shortest path computation takes place in line 15. To compute the cost of the
tentative routing scheme, the sets P̂1, P̂2, . . . , P̂m, of PVCs riding on the different
trunks need to be revised (lines 16–26).

If the rerouting scheme is better than the original routing, the rerouting is made
the current solution and the local search procedure is called recursively (lines 28–
32).

4. SONET ring network design

Survivable telecommunications networks with fast service restauration capabil-
ity are increasingly in demand by customers whose businesses depend heavily on
continuous reliable communications. Businesses such as brokerage houses, banks,
reservation systems, and credit card companies are willing to pay higher rates for
guaranteed service availability. The introduction of the Synchronous Optical Net-
work (SONET) standard has enabled the deployment of networks having a high level
of service availability. SONET is generally configured as a network of self-healing
rings, offering at least two paths between each pair of demand points. SONET com-
patible equipment is capable of detecting problems with the signal and quickly react
to reestablish communications, often in milliseconds. Arslan, Loose, and Strand [2]
identify unit cost reduction, increased reliability, higher bandwidth, SONET/SDH
hands-off, and SONET services as the needs of AT&T business units that can be
impacted by SONET ring deployment.

The design of cost-effective SONET ring designs is a crucial step to enable AT&T
to make good use of SONET technology. In this section, we describe several linear
programming based models for designing low-cost SONET ring networks.

The section is organized as follows. In Subsection 4.1, we define the network
design problem. An integer programming model of a basic network design problem
is described in Subsection 4.2. In Subsection 4.3, we present a heuristic approach
used to find approximate solutions of the integer programming model. The lower
bound produced by solving the linear programming relaxation of the integer pro-
gram provides an indication of the quality of the approximate solution found. A
small network design problem is used to illustrate the solution procedure in Subsec-
tion 4.4. In Subsection 4.5, extensions to the basic model, dealing with dual-ring
interworking, are described.

4.1. The SONET ring network design problem. A telecommunications net-
work can be viewed as a graph G = (V, E) having a set V of vertices or nodes, each
representing a large customer or a remote terminal (where low bandwidth traffic
from a group of customers is aggregated) or a central office where switching takes
place, and a set E of edges or links, each representing fiber cable connecting two
nodes.

Demand between pairs of nodes (not necessarily all pairs of nodes have demand
between themselves) in the network is an estimate of the number of circuits needed
to provide communications between that pair of nodes. Demands are expressed in
units of DS3 (51.84 Mbits/sec).

To ensure rapid restauration, SONET equipment is configured on logical rings.
A ring is simply a cycle in the graph induced by a subset of vertices of V . The

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 19

SONET ring network is a set of rings that covers the nodes of G and that allows the
demand to be satisfied. A demand between a pair of nodes is said to be satisfied if
bandwidth equal to the number of required DS3s is reserved on one or more paths
between the pair of nodes, where each path traverses only nodes with SONET
equipment.

SONET equipment are associated with rings and interring nodes (nodes where
traffic moves from one node to the next). Every node on a ring has one add-drop
multiplexer (ADM) per OC48 (48 units of DS3). An ADM is capable of adding or
dropping signals going through it without having to multiplex or demultiplex the
entire digital hierarchy. Each link on a ring has two dense wave division multiplexer
(DWDM) per each eight units of OC48 that traverse that link. Furthermore, every
multiple of 75 miles on a link requires an optical amplifier (OA) per OC48 and every
multiple of 225 miles on a link requires a signal regenerator (REGEN) per OC48.
Finally, digital cross-connect systems (DCS) or low-speed terminators are used to
add, drop, or interconnect signals between ADMs within the central offices. Each
three units of DS3 at demand points and interring crossconnect points require one
DS3 circuit pack.

In the network design, the allowable rings are usually restricted to be from a
set of predetermined rings. We call this set the set of candidate rings. One ring
generation scheme developed at AT&T is described by Rosenwein and Wong [22].

The SONET ring design problem we consider in this technical memorandum can
be stated as follows:

Given a network of nodes and links, a set of point-to-point demands,
and a set of candidate rings covering the nodes, find a minimum cost
SONET ring network using only rings from the candidate ring set such
that the resulting equipment and fiber links have sufficient capacity
to satisfy the demands. Technical constraints can further restrict the
configuration of a network design.

4.2. An integer programming formulation. In this subsection, we describe an
integer programming formulation for the first, and simplest, network design problem
considered in this memorandum, the single node interworking ring network design
problem. In this problem, demand is loaded and unloaded from nodes and demands
flow on ring links within a ring and can crossconnect between two rings having a
common node at any of their common nodes. Table 1 defines sets needed to describe
the integer programming formulation.

The model described in this technical memorandum is based on multicommodity
flows on a network. Point-to-point demands are commodities that flow on the
network, sharing link and node resources. Ring size is a function of the maximum
capacity over all link capacities on a ring. Costs are linear functions of ring, link,
and node capacities. The objective is to move demand between demand pairs only
on links that are part of at least one ring, satisfying flow conservation and demand
requirements while minimizing the total cost. The model seeks the optimal values
for flows, as well as ring and link capacities. The integer program uses several
integer variables described in Table 2.

In the multicommodity flow model, a commodity could be defined as a unique
point-to-point traffic. Point-to-point demand is given an arbitrary direction (one
point is the source, the other is the sink) and we move demands from sources to
sinks. This definition, however, can result in a large number of commodities if there

20 MAURICIO G. C. RESENDE

Table 1. Set definitions for integer programming model

N ←− set of nodes in network

L ←− set of undirected links (arcs) in network

R ←− set of rings

RNn ←− set of rings containing node n ∈ N
RLl ←− set of rings containing link l ∈ L
K ←− set of commodities

NRr ←− set of nodes on ring r ∈ R
ARr ←− set of undirected links on ring r ∈ R
~ARr ←− set of directed links on ring r ∈ R

Table 2. Variable definitions for integer programming model. All
variables are integer valued.

yrk ←− demand of commodity k unloaded at sink node k from ring r

zri,k ←− demand of commodity k loaded on ring r at node i

fr,ki,j ←− flow of commodity k on ring r directed from node i to node j

xr,sn,k ←− crossover flow at node n of commodity k from ring r to ring s

ur ←− size of ring r

wl ←− size of link l

is a large number of pont-to-point demands, generating large hard to solve models.
In our model, we use the concept of aggregate flow as commodities. A commodity k
is defined to be the aggregate flow having node k as sink. Nodes are picked as sinks,
one by one, and all unassigned demand terminating at that node is aggregated into
a commodity. At this point, the flows of demand are given a direction, i.e. a source
node and a sink node. Nodes are picked until no further point-to-point demand is
unassigned to a commodity. In this fashion, |K| ≤ |N | commodities are produced.

The problem of generating the smallest number of commodities is a node covering
problem on the graph H = (V, D) where D is a set of edges such that (i, j) ∈ D
if and only if nodes i and j have positive point-to-point demand. Vertex covering
is an NP-complete [17] problem, thus computing the guaranteed smallest number
of commodities in reasonable time is probably only possible for small instances [5].
A quick way to get an approximate assignment of demands to commodities is to
apply a greedy algorithm. A greedy algorithm for this problem selects as the next
sink the node in H with the greatest degree. The graph H is redefined as the
original H with the all sink nodes and all edges incident to them removed. The
process is repeated until no node is available for picking. An easy way to improve
upon greedy algorithms is by using GRASP (greedy randomized adaptive search
procedures) [14]. If the instance is small enough, an exact algorithm for minimum

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 21

set covering or maximum independent set or maximum clique could be used to find
the best set of commodities [18].

The individual point-to-point flows corresponding to a given commodity can
be recovered from the aggregate flows of that commodity by solving a series of
maximum flow problems on auxiliary networks. Define the set of nodes of the
auxiliary network to be all node-ring pairs n, r, such that node n is in ring r, i.e.
n ∈ NRr . For each commodity, we define a different set of directed arcs in each
auxiliary network. Consider the auxiliary network associated with commodity k.
For all i, j, r such that f r,ki,j > 0, define a directed arc from node i on ring r (we

call this node n-r) to node j on ring r (node j-r) with capacity f r,ki,j . Likewise, for

all r1, r2, n such that xr1,r2n,k > 0, define a directed arc from node n-r1 to node n-r2

having capacity xr1,r2n,k . Define sink node t and uncapacitated arcs from all nodes k-r

such that r ∈ RNk , to node t. Consider demand pair s, k. Define a source node s∗

and an auxiliary node as and define an arc from s∗ to as having capacity ds,k > 0,
the point-to-point demand between s and k. Finally define uncapacitated arcs from
as to all s-r such that r ∈ RNs . The maximum flow from s∗ to t is the point-to-point
flow between demand points s and k. To proceed with another demand pair of the
same commodity, subtract that maximum flow from all arc capacities of arcs used
in that flow, and repeat.

As stated in the problem definition in Subsection 4.1, point-to-point demands
are given between pairs of nodes in the network. We denote by Dk the demand
sink node n = k has for commodity k and by Skn the demand source node n 6= k
has for commodity k.

We next describe the set of constraints that defines the set of feasible solutions.
At every sink node k (for which there corresponds a commodity k), the total demand
for commodity k unloaded at that node, off of all rings, must equal the demand for
commodity k at node k, i.e.

∑

r∈RN
k

yrk = Dk, k ∈ K.

Likewise, the amount of commodity k loaded at source node n, onto all rings, must
equal the demand for commodity k at node n, i.e.

∑

r∈RNn

zrn,k = Skn, k ∈ K, n ∈ N .

Flow conservation of each commodity at each node is done at the ring level. For
every ring r ∈ R, ring node n ∈ NRr , and commodity k ∈ K, the sum of flows of
commodity k into node n carried on ring r together with the amount of commodity
k loaded onto ring r at node n and the amount of commodity k crossconnected
onto ring r at node n from all rings sharing node n must equal the sum of flows of
commodity k out of node n carried on ring r together with the amount of commodity
k loaded off of ring r at node n and the amount of commodity k crossconnected

22 MAURICIO G. C. RESENDE

Table 3. Cost coefficients for integer programming model.

cRr ←− unit cost of ring r

cLl ←− unit cost of link l

cX ←− unit crossconnect cost

cI ←− unit load / unload cost

from ring r at node n to all rings sharing node n, i.e. for r ∈ R, n ∈ NRr , k ∈ K,

(1)
∑

i3(i,n)∈ ~ARr

fr,ki,n + zrn,k +
∑

s∈RNn \{r}
xs,rn,k −

∑

i3(n,i)∈ ~ARr

fr,kn,i −
∑

s∈RNn \{r}
xr,sn,k =

{
ykr if n = k,
0 if n 6= k

.

Ring size is determined by the maximum size of the links that make up the ring.
For all rings r ∈ R and every undirected link (i, j) ∈ Ar, the sum of flows of all
commodities moving on ring r from node i to node j together with the sum of flows
of all commodities moving on ring r from node j to node i must be no greater than
48 times the size of the ring (rings sizes are expressed in OC48, while flows are
given in units of DS3 and thus the factor of 48), i.e. for r ∈ R, (i, j) ∈ ARr ,

∑

k∈K
fr,ki,j +

∑

k∈K
fr,kj,i ≤ 48ur.

Ring sizes are limited by link sizes. Since each unit of link can carry 8 OC48
signals, the sum of all sizes of rings that contain link l ∈ L (this set of rings is
denoted by RLl) can be at most 8 times the size of that link, i.e.,

∑

r∈RL
l

ur ≤ 8wl, l ∈ L.

In the heuristic used to approximately solve the integer program, upper bounds
on the ring sizes are needs, i.e.

0 ≤ ur ≤ ur, r ∈ R.

The objective of the integer programming problem is to minimize the total cost.
The total cost consists of five major components, ring cost, link cost, crossconnect
cost, loading cost, and unloading cost. We use the cost coefficients defined in
Table 3. The total ring cost is defined to be

∑

r∈R
cRr ur.

The total link cost is defined as ∑

l∈L
cLl wl.

The total crossconnect cost is

∑

r∈R,s∈R(r 6=s)





∑

n∈NRr ∩NRs

(∑

k∈K
cXxr,sn,k

)
 .

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 23

The total loading cost is defined to be

∑

r∈R




∑

n∈NRr


 ∑

k∈K3Skn>0

cIzrn,k





 .

The total unloading cost defined as

∑

r∈R





∑

n∈NRr ∩K
cIyrn



 .

The cost coefficients are computed as follows. Some costs are associated with
rings. A link l ∈ ARr has associated with it a link distance dl > 0. Every 225
miles, a distance requires a signal regenerator (REGEN) per ring containing that
link per DS3 of capacity. Therefore, link l requires bdl/225c regenerators per ring.
Furthermore, each ring link requires two add drop multiplexer (ADM), hence ring
r has 2|ARr | ADMs. To account for the backup ring, these numbers are doubled.
Hence we have

cRr = 2 · bdl/225c · REGENCOST+ 4 · |ARr | · ADMCOST,
where REGENCOST is the unit cost of a regenerator and ADMCOST is the unit cost of
an add drop multiplexer.

Some costs are associated with links. Link l requires one optical amplifier (OA)
every 75 miles, i.e. bdl/75c OAs are needed on link l. Two dense wave division
multiplexer (DWDM) are required per link, with an additional two per REGEN
site on that link. Hence, 2 · (1 + bdl/225c) DWDMs are needed on link l. Finally,
each link has, per DS3 of capacity, a low-speed terminator used on the add drop
multiplexer (ADM) associated with the link. To account for the backup links, these
numbers must be doubled. Therefore, the link cost

cLl = 2 · bdl/75c · OACOST+ 4 · (1 + bdl/225c) · DWDMCOST+ 2 · LOWCOST,
where OACOST is the unit cost of an optical amplifier, DWDMCOST is the unit cost
of a dense wave division multiplexer, and LOWCOST is the unit cost of a low-speed
terminator.

At each crossconnect point two DACSs and 17/24 low-speed terminators per
DS3 are needed. With the doubling to account for backup, we have

cX = 4 · DACSCOST+ 17/12 · LOWCOST,
where DACSCOST is the cost of a DACS terminal.

Finally, each point of loading and unloading demand requires one DACS and
17/96 low-speed terminators per DS3. Therefore,

cI = 2 · DACSCOST+ 17/48 · LOWCOST.
The integer programming problem for designing SONET ring networks with

single ring interworking is

min
∑

r∈R
cRr ur +

∑

l∈L
cLl wl +

∑

r∈R,s∈R(r 6=s)





∑

n∈NRr ∩NRs

(∑

k∈K
cXxr,sn,k

)
+

∑

r∈R




∑

n∈NRr


 ∑

k∈K3Skn>0

cIzrn,k





+

∑

r∈R





∑

n∈NRr ∩K
cIyrn





24 MAURICIO G. C. RESENDE

subject to
∑

r∈RNk

yrk = Dk, k ∈ K,

∑

r∈RNn

zrn,k = Skn, k ∈ K, n ∈ N ,

(2)
∑

i3(i,n)∈ ~ARr

fr,ki,n + zrn,k +
∑

s∈RNn \{r}
xs,rn,k −

∑

i3(n,i)∈ ~ARr

fr,kn,i −
∑

s∈RNn \{r}
xr,sn,k =

{
ykr if n = k,
0 if n 6= k

, r ∈ R, n ∈ NRr , k ∈ K,

∑

k∈K
fr,ki,j +

∑

k∈K
fr,kj,i ≤ 48ur, r ∈ R, (i, j) ∈ ARr ,

∑

r∈RLl

ur ≤ 8wl, l ∈ L,

yrk ≥ 0, r ∈ R, k ∈ K, integer,

zri,k ≥ 0, r ∈ R, i ∈ NRr , k ∈ K, integer,

fr,ki,j ≥ 0, r ∈ R, k ∈ K, (i, j) = l ∈ ARr , integer,

xr,sn,k ≥ 0, r, s ∈ R 3 NRr ∩ NRs 6= ∅, n ∈ NRr ∩NRs , k ∈ K, integer,

wl ≥ 0, l ∈ L, integer,

0 ≤ ur ≤ ur, r ∈ R, integer.

4.3. Heuristic solution of the integer program. The integer program pre-
sented in Subsection 4.2 is, for practical purposes, far larger than current integer
programming software can handle. Therefore we will will settle for a heuristic that
produces an approximate solution to the integer program, i.e. an integer solution
not guaranteed to be optimal. In this subsection we describe one such heuristic
solution method. Since the value of the objective function of the linear program
provides us with a lower bound on the value of the optimal integer solution, we can
in some sense measure the quality of the integer solution produced.

The procedure for producing an integer solution starts with the optimal solution
of the linear programming relaxation of the integer program. Since ring sizes may
be fractional in the optimal linear programming solution, an easy way to produce
a feasible integer ring solution is to round up each fractional ring size. Rounding
all ring sizes up by one, may produce enough slack to allow one or more ring sizes
to be reduced by one or more units. This is the central scheme of the heuristic
described in this subsection.

The heuristic begins by setting the upper bounds ur on each ring size are set
to dure and proceeds by attempting to find a ring for which the upper bound can
be reduced by a unit and still produce a feasible solution. This is done, greedily
and with randomization, in the manner prescribed by the construction phase of

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 25

a GRASP [14]. The procedure repeats itself until no ring can be reduced in size
without causing infeasibility, thus producing a feasible integer solution. Since ran-
domization is present in the construction phase, this construction phase can itself
be repeated several times, each one using a different random number generator
seed, thus producing possibly different integer solutions, the best of which is kept
as the heuristic solution to the integer program.

We next describe in detail this heuristic procedure. In a GRASP construction
phase one builds a solution one element at a time. In this context, a solution is
built by setting one ring size variable ur at a time to an integer value. The variable
to be set is selected in a greedy randomized fashion. A greedy choice is to pick a
variable that has a high cost associated with it, or that was only slightly above an
integer value in the linear programming solution but had to be rounded up because
it was fractional. For example a variable that was rounded up from 1.02 to 2.0
would be preferred to a variable that was rounded up from 1.95 to 2.0, given that
their costs were identical. To take both greedy components into account, define the
parameter

ξr = 1 + ur − dure,
to be a measure of how much a ring size was rounded up. Rings with a small ξr
value were rounded up by a large amount, while rings with a large ξr value were
rounded up slightly. Ignoring costs, a greedy choice would pick rings having small
ξr values to attempt size reduction.

To take into consideration costs, define the parameter

γr =
cRr
ξr

.

This parameter is larger for rings with a high cost and that have be rounded up by
a large amount than for rings with small cost that have been rounded up slightly.
A greedy choice picks the ring having the largest γr value as the ring to attempt
size reduction.

Picking the greedy choice limits the number of solutions that can be generated. If
a deterministic rule breaks ties, then this algorithm would produce a single solution.
Even if ties are broken at random, the number of solutions is still somewhat limited.
A GRASP construction increases the number of greedy-like solutions generated by
defining a set of well ranked choices (with respect to the greedy parameter γr)
and picks one candidate from this set at random. This set is called the restricted
candidate list (RCL). To restrict the candidates, let

γ = min {γr | ring r has not yet been selected},
and

γ = max {γr | ring r has not yet been selected}.
A ring r is made a member of the RCL if

γr ≥ γ + α(γ − γ),

where α (0 ≤ α ≤ 1) is a parameter that controls the greediness or randomness of
the choice. A value of α = 1 produces a greedy algorithm, while a value α = 0
generates a random algorithm. Good quality diverse solutions are generated using
a value of α between 0 and 1.

26 MAURICIO G. C. RESENDE

Table 4. Point-to-point demand

a b c d e f
a · · 10 10 10 10
b · · 10 10 10 10
c 10 10 · · 10 10
d 10 10 · · 10 10
e 10 10 10 10 · ·
f 10 10 10 10 · ·

Once a ring is selected to be reduced, its upper bound is reduced by a unit, i.e.
ur = ur − 1, and the linear programming relaxation is reoptimized. If a feasible
(linear programming) solution is produced, the choice is accepted. If the upper
bound ur = 0, then ring r is no longer considered as a candidate for reduction.
If the resulting linear program is infeasible, the choice is rejected and the upper
bound is reset to its previous value, i.e. ur = ur + 1. This ring is no longer a
potential candidate to enter the RCL. The construction procedure is repeated until
no further candidate exists.

Figure 16 illustrates the heuristic solution method with pseudo-code. The linear
programming relaxation is solved in line 2 of the pseudo-code using unlimited ring
sizes (upper bounds are set to ∞ in line 1). The possibly fractional ring sizes
produced by the linear program is array u∗. In line 3, ring size upper bounds are
saved in u′ as the fractional ring size values rounded up and BestCost is initialized
in line 4. The GRASP iterations are carried out in the loop in lines 5 to 26. In
line 6 of each iteration, the set of possible candidate rings R̃ is initially set to the
set of all rings and the ring size upper bounds are initialized to the original rounded
up bounds u′. The construction of an integer ring solution is done in lines 7 to 26.
The greedy function is computed in lines 8 and 9 and the restricted candidate list
is built in lines 10 and 11. A ring r∗ is picked at random from the RCL in line 12
and the upper bound of that ring size is decreased by a unit (line 13) and the linear
programming relaxation using the newly set upper bounds is solved in line 14 (u∗

is the vector of optimal ring sizes generated by the linear program, if the linear
program is feasible). However, the linear program may be infeasible for this set of
ring size upper bounds. If that is the case, the upper bound of ring r∗ is reset to
its previous value (line 16) and ring r∗ is removed from further consideration as a
candidate for size reduction in line 17. If the linear program is feasible, then if ring
r∗ has been removed from the network (ur∗ = 0), then ring r∗ is removed from the

set of possible candidate rings R̃ in line 20. If the design cost using the current
settings of upper bounds is the best so far, it is saved in lines 22 and 23.

4.4. A small example of SONET ring network design. In this subsection,
we illustrate, on a small network, a possible application of the SONET ring network
design tool.

Assume we are given the network shown in Figure 17. This network has 12 nodes
(labeled “a,” “b,” . . . , “f”) and 15 links (labeled “1,” “2,” . . . , “15”). Only nodes
“a,” “b,” “c,” “d,” “e,” and “f” have point-to-point demands (shown in Table 4)
associated with them.

The task we seek to accomplish is design a SONET ring network using rings
from a set of seven candidate rings, identified by their links in Table 5 and shown

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 27

procedure LocalSearch(P,R1, . . . ,R|P|){
1 for e ∈ E {
2 Pe = ∅;
3 for p ∈ P {
4 if e ∈ Rp {
5 Pe = Pe ∪ {p};
6 }
7 }
8 }
9 Compute routing cost: cost = G(P1, . . . ,Pm);
10 for p ∈ P {
11 P̃ = P \ {p};
12 for e ∈ E {
13 Compute edge length LP̃e ;
14 }
15 Reroute p: Rrrp = sp(op, dp,LP̃1 , . . . ,LP̃m);
16 for e ∈ E {
17 P̂e = Pe;
18 }
19 for e ∈ E {
20 if e ∈ Rp {
21 P̂e = P̂e \ {p};
22 }
23 if e ∈ Rrrp {
24 P̂e = P̂e ∪ {p};
25 }
26 }
27 Compute rerouting cost: rrcost = G(P̂1, . . . , P̂m);
28 if rrcost < cost {
29 Rp = Rrrp ;
30 LocalSearch(P,R1, . . . ,R|P|);
31 return;
32 }
33 }
}

Figure 15. GRASP local search phase pseudo code

Table 5. Definition of rings by link set

ring links

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 3 7 11 13 14 15
5 1 2 13 7 14 11 15 4
6 5 6 14 11 15 3 13 8
7 9 10 15 3 13 7 14 12

28 MAURICIO G. C. RESENDE

procedure mkSonet

1 u =∞;
2 u∗ = SolveLP(u);
3 do r ∈ R → u′r = du∗re od;
4 BestCost =∞;
5 do Gitr = 1, . . . , maxGitr→
6 R̃ = R; do r ∈ R → ur = u′r od;

7 do R̃ 6= ∅ →
8 do r ∈ R̃ → ξr = 1 + u∗r − ur od;

9 do r ∈ R̃ → γr = cRr /ξr od;

10 γ = min{γr | r ∈ R̃}; γ = max{γr | r ∈ R̃};
11 RCL = {r ∈ R̃ | γr ≥ γ + α(γ − γ)};
12 r∗ = Pick@Random(RCL);
13 ur∗ = ur∗ − 1;
14 u∗ = SolveLP(u);
15 if LP is infeasible →
16 ur∗ = ur∗ + 1;
17 R̃ = R̃ \ {r∗}
18 fi;
19 if LP is feasible →
20 if ur∗ = 0→ R̃ = R̃ \ {r∗} fi;
21 if LPcost(u) < BestCost→
22 u∗ = u;
23 BestCost = LPcost(u∗)
24 fi
25 fi
26 od
27 od
end mkSonet;

Figure 16. Pseudo-code for a SONET ring design tool heuristic

Table 6. Cost parameters used in small example

parameter description value

REGENCOST regenerator $165,000.00
ADMCOST add drop multiplexer $92,500.00
OACOST optical amplifier $251,000.00
DWDMCOST dense wave division multiplexer $266,000.00
LOWCOST low-speed terminator $4,500.00
DACSCOST DACS terminator $900.00

in Figure 18. For costing purposes, we assume that all links are of length 50 miles
and use the cost parameters shown in Table 6.

To apply the multicommodity flow model, we require the definition of the set of
commodities. Applying the greedy algorithm, described in Subsection 4.2, results

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 29

•©

•

•©

•©

•

•

•©

•

•

•

•©

•©...........
...........
...........
............
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...
............

...........
...........

...........
...........

...........
............

...........
...........

...........
...........

...........
...........

............
......... ...

...........
...........
............
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...
............

...........
...........

...........
...........

...........
............

...........
...........

...........
...........

...........
...........

............
.........

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
.

a

b

h

g

i

c

d

j

k

ef

l

1 2 8 5

4 3 7 6

13

15 14

11

10 12

9

Figure 17. Example network.

Table 7. Point-to-commodity demand

a b c d
c 10 10 · ·
d 10 10 · ·
e 10 10 10 10
f 10 10 10 10

in commodities “a,” “b,” “c,” and “d” and point-to-commodity demands shown in
Table 7.

Note that, as presented, this problem is symmetric with respect to nodes, links,
demand requirements, and ring sets. As such, one should expect several designs of
equal cost. Using the arbitrary set of commodities reduces the symmetry by fixing
sinks and sources, making sink nodes “a” and “b” each demand 40 DS3s, sink nodes
“c” and “d” each demand 20 DS3s, while source nodes “c” and “d” each supply 10
DS3s, and source nodes “e” and “f” each supply 40 DS3s.

The heuristic was run 200 iterations, with each GRASP iteration using RCL
parameter α = 0.5. Table 8 shows the ring configurations produced by the heuristic.
In each solution, each ring was dimensioned with one OC48 of capacity. Seven ring
configurations were produced. In 72% of the iterations, a ring configuration having
cost $23.3 million was produced. In 27.5%, the cost of the configuration was $25.5
million, while in 1 out of the 200 iterations a ring configuration of cost $27.0 million
was generated. Note that the $23.3 million designs each have two small rings and

30 MAURICIO G. C. RESENDE

•©

•

•©

•............
...........
............
...........
...........
............
...........
............
...........
..

...........
............

...........
............

...........
...........

............
...........

....a

b

h

g

R1 •

•

•

©

•©............
...........
............
...........
............
...........
...........
............
...........
...

...........
...........

...........
...........

...........
............

...........
............

......i

c

d

j

R2 •©

•

•©

•..
........
........
........
........
........
........
........
........
........
........
.. k

ef

l

R3

•

•

•

•

•

•

...

..

...........
...........

............
...........

............
...........

...........
............

...........
.....

..
...........

............
...........

............
...........

............
...........

...........
.....

h

g

i

j

kl

R4 •©

•

•©

•

•

•

•

•

...........
...........
............
...........
............
...........
...........
............
...........
..

...........
...........

............
...........

............
...........

............
...........

...........
..... ..

...........
...........

............
...........

............
...........

............
...........

...........
.....

..
............

...........
............

...........
...........

............
...........

...........
.....

a

b

h

g

i

j

kl

R5

•

•

•

•

•

•

•©

•©...

...
...........
...........
............
...........
...........
............
...........
............
...

...........
...........

...........
...........

...........
...........

...........
...........

........

h

g

i

c

d

j

kl

R6

•

•©

•

•

•©

•

•

•

...

..

...........
...........

...........
...........

............
...........

............
...........

...........
......

...
........
........
........
........
........
........
........
........
........
........
........
........
............

...........
...........

...........
...........

...........
...........

...........
...........

.........

h

g

i

j

k

ef

l

R7

Figure 18. Seven candidate rings for network design

Table 8. Ring configurations produced by SONET ring design model

occurrences rings cost

37 1,2,7 $23,356,437.50
52 1,3,6 $23,356,437.50
55 2,3,5 $23,356,437.50
18 1,6,7 $25,510,718.75
19 2,5,7 $25,510,718.75
18 3,5,6 $25,510,718.75
1 5,6,7 $26,990,718.75

one large ring. The $25.5 million designs each have two large rings and one small
ring, while the $27.0 million configuration has three large rings and no small ring.
The model generated all ring configurations having one large and two small rings,

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 31

Table 9. Aggregate link flow solution produced by SONET ring model

orientation
ring link from to commodity flow

1 2 h b b 40
1 4 g a a 40

2 5 c d b 10
2 5 d c a 10
2 6 d j b 20
2 6 j d d 20
2 7 j i b 20
2 7 j i c 20
2 8 c i a 20
2 8 i c c 20

7 3 g h b 20
7 3 h g a 20
7 9 e f a 10
7 9 e f b 10
7 9 f e c 10
7 9 f e d 10
7 10 f l a 20
7 10 f l b 20
7 12 e k c 20
7 12 e k d 20
7 13 i h a 20
7 13 i h b 20
7 14 k j c 20
7 14 k j d 20
7 15 l g a 20
7 15 l g b 20

Table 10. Aggregate crossconnect solution produced by SONET
ring model

ring 1 ring 2 node commodity flow

2 7 i a 20
2 7 i b 20
7 1 g a 40
7 1 h b 40
7 2 j c 20
7 2 j d 20

two large and one small ring and three large rings. Intermediate size ring R4 was,
as expected, not used in any solution, since it is superfluous.

32 MAURICIO G. C. RESENDE

Table 11. Point-to-point demand routes

demand
from to flow route: sequence of node-rings

c a 10 c-2 i-2 i-7 h-7 g-7 g-1 a-1
c b 10 c-2 d-2 j-2 i-2 i-7 h-7 h-1 b-1
d a 10 d-2 c-2 i-2 i-7 h-7 g-7 g-1 a-1
d b 10 d-2 j-2 i-2 i-7 h-7 h-1 b-1
e a 10 e-7 f-7 l-7 g-7 g-1 a-1
e b 10 e-7 f-7 l-7 g-7 h-7 h-1 b-1
e c 10 e-7 k-7 j-7 j-2 i-2 c-2
e d 10 e-7 k-7 j-7 j-2 d-2
f a 10 f-7 l-7 g-7 g-1 a-1
f b 10 f-7 l-7 g-7 h-7 h-1 b-1
f c 10 f-7 e-7 k-7 j-7 j-2 i-2 c-2
f d 10 f-7 e-7 k-7 j-7 j-2 d-2

Consider now one of the lowest-cost solutions, with ring configuration “1,2,7.”

For that design, the model produced aggregate link flow (f r,ki,j) shown in Table 9

and aggregate crossconnect flows (xr1,r2n,k) shown in Table 10.
To extract the individual point-to-point flows from the aggregate solution, four

auxiliary networks are set up, one for each commodity, as prescribed in our dis-
cussion in Subsection 4.2. These networks are shown in Figures 19, 20, 21, and
22, respectively, for commodities “a,” “b,” “c,” and “d.” Consider the case of
commodity “a” in Figure 19. Four point-to-point demand pairs (“c”-“a,” “d”-“a,”
“e”-“a,” and “f”-“a”) have “a” as commodity (or sink node), each with a demand
requirement of 10 DS3s. Solving the four maximum flow problems (from “c” to “a,”
from “d” to “a,” from “e” to “a,” and from “f” to “a”) on the auxiliary network,
yields the individual point-to-point flows. Flow from “c” to “a” begins on ring R2,
and is routed through node “i,” where it switches to ring R7. From node “i” it goes
to node “h” and node “g,” where it switches to ring R1 and arrives in node “a.”
Table 11 lists routes for all node pairs. Note that here, all demand for a particular
node pair is routed on a single route, though this need not be the case. Further-
more, the aggregate flows produced by the model were all integer. This also need
not always occur since the linear programming coefficient matrix is not necessar-
ily unimodular and thus the linear program can have fractional optimal solutions.
However, since the extraction of the individual flows is done with a maximum flow
algorithm, if the aggregate flows are all integer, then there exist integer flows for
the individual demand pairs and most maximum flow algorithms produce integer
flows.

Adding up the directed flows in the network produces the link capacities shown
in Figure 23, where one can see the result of arbitrarily selecting commodities “a,”
“b,” “c,” and “d,” in that order.

4.5. Extensions to the basic model. In this subsection, we consider some ex-
tensions of the basic model. We consider changes needed to allow for dual ring

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 33

interworking, discuss the use of mesh in a hybrid routing scheme, and consider dif-
ferent levels of routing to reduce the number of linear programming variables. We
show how to modify the basic model to disallow U-turning and identify two known
problems with the currently proposed method.

4.5.1. Dual Ring Interworking. The basic model allows inter-ring traffic to cross
between rings r1 and r2 if r1 and r2 have a node n in common (see Figure ??).
But this does not make the SONET network survivable for a node failure at n.
In order to achieve survivability in the SONET network a number of variations
of Dual Ring Interworking (DRI) have been standardized. In this subsection we
will describe how to extend the basic model to handle all the currently proposed
methods of doing DRI.

Each interworking method is determined by a start ring, a start node on the
start ring, an end ring, an end node on the end ring, and a set of links used (both
primary and secondary) by the interworking method. For example, in same side
interworking if ring r1 and r2 share a link l = (a, b) then the same side routing
interworking method has start ring r1, start node a, end ring r2, end node a, and
links (r1, l) and (r2, l) (we describe each link with a (ring,link) pair).

For any interworking method, c, we let startc = (r1, n1) ∈ R × N , where r1 is
the start ring and n1 the start node, and endc = (r2, n2) ∈ R × N , where r2 is
the end ring and n2 the end node, and linksc is the subset of R × L used. We
assume that we are given as input an enumeration C of the possible methods of
interworking, and for each c ∈ C, startc, endc, and linksc.

Note that this input formulation does not assume any specific variant of DRI. A
given problem instance may include some interworking methods and not others. We
have software that, given the candidate ring set, will construct the enumerations
for three scenarios: SRI (single node interworking, i.e., as described in the basic
model), basic DRI (using same and opposite side interworking), extended DRI (also
using common node DRI). Other scenarios are very easy to construct.

In the extended linear programming formulation we have the following changes
of the basic model. The crossover variables xr,sn,k are replaced by variables xck, where
k ∈ K and c ∈ C, changing constraints

(3)
∑

i∈NRr \{n}
fr,ki,n + zrn,k +

∑

c ∈ C
(r, n) = endc

xck =

∑

i∈NRr \{n}
fr,kn,i + yrk +

∑

c ∈ C
(n, r) = startc

xck, r ∈ R, n ∈ NRr , k ∈ K,

and
∑

k∈K
fr,ki,j +

∑

k∈K
fr,kj,i +

∑

c ∈ C
(r, l) ∈ linksc

xck ≤ 48ur, r ∈ R, l = (i, j) ∈ ARr .

4.5.2. Mesh. In the transition from using a mesh based network to a fully SONET
ring based network there will be a need for hybrid solutions where some demands
are routed on the mesh and some are routed on the rings. It is quite straightforward
to extended the basic model to incorporate the mesh network.

34 MAURICIO G. C. RESENDE

4.5.3. Different Levels of Routing Detail. As a way of speeding up the linear pro-
gram by reducing the number of variables and constraints, it is useful to have two
levels of routing detail. The high detail routing is the one described in the basic
model. If a demand k is to be routed at low detail on a ring r then all we require is
that half of the demand be routed one way on the ring and the other half the other
way. This ensures that the demand incurs the same load on every link on the ring.
For a given ring we may have some demand being routed at high detail and some
at low detail.

For example, given an office in Rochester, NY, there may be no demand for traffic
to Rochester from anywhere in California. Thus there is not much chance that any
traffic to Rochester will use any ring located in California. Thus we can route the
Rochester traffic at low detail on the rings in California, whereas we would route
them at high detail on rings closer to Rochester.

This trick reduces the size of the linear program by an order of magnitude. The
decision of which level to route the traffic at is done iteratively. In the first iteration
all demands are routed at low detail on all rings. In the following iteration we route
at high detail a demand k on ring r if, in the solution of the previous iteration, ring
r was actually used to route demand k.

This framework allows us to solve instances covering the whole AT&T network,
using large sets of candidate rings.

4.5.4. Disallowing U-turns. In a SONET ring, a demand cannot “make a u-turn”
at a node. Our basic model, however, has no constraint imposing this. In order
to take care of this problem we have to keep track of the direction that the flow is
taking on each ring.

The solution is to split each flow conservation constraint (for (r, n)) into two
constraints; one for each direction. This roughly doubles the number of constraints
and adds a small number of new variables (we need to splits the y’s and the z’s,
too). One might expect the time to solve the LP would increase, but in fact the
time decreases since the solver takes advantage of the more constrained problem.

This splitting also allows us to avoid other routing problems: e.g., a route that
only touches a node on a ring but never uses an edge.

4.5.5. Currently Known Problems.

4.5.6. Slotting. The model does not assign time slots to the demands, and we know
of examples where the solutions generated by our system cannot be slotted in the
given number of rings. We have found this not to be a problem for SRI, but for
DRI roughly 2% more rings are required than our system suggests in order to assign
time slots.

If one were willing and able to perform a small number (about 1%) of time slot
interchanges, it would be possible to do the time slotting using the number of rings
given by our solution. It is also possible that rerouting a small number of demands
after performing slotting would solve the problem. Otherwise, a few extra rings are
be required.

4.5.7. Integrality of Flows. In the LP solution there is no constraint that says that
the flows have to be integral. In practice almost all are integral, eg. of 18890
demands all except 103 (.5%) could be integrally routed. Of those 103 many (maybe
all) could be rerouted within the rings provided by our system.

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 35

5. Global network planning

With the worldwide market liberalization of telecommunications, the interna-
tional telecommunications environment is changing from the traditional bilateral
mode of operation, where each network between pairs of administrations (AT&T
and British Telecom, AT&T and France Telecom, British Telecom and France Tele-
com, etc.) is planned separately, to a more global, alliance-based, environment,
where the network needs of several administrations may be planned simultane-
ously. This allows network planning to be done more in the manner that a single
national network is designed, as opposed to many individual networks [6, 3, 24].

In this section, we describe a methodology for analyzing global facility capacity
requirements which includes, in its core, a linear programming (LP) model for mul-
ticommodity flows. Techniques are applied to reduce the problems to manageable
sizes. In particular, we use the concept of some aggregate flow as commodities,
as opposed to the traditional point-to-point traffic [20], which results in drastic
reduction in the size of the derived LP problem.

5.1. Problem Description. The minimum cost capacity problem that we address
assumes the following data is provided:

• a set of nodes from which traffic originates and terminates,
• an existing facility network from which capacity may be acquired,
• demand for both switched and dedicated services between the nodes.

It is also assumed that any aggregation of low bandwidth traffic from a group of
locations and its homing into pre-specified locations, called backbone nodes, have
already occurred. In this problem, we seek to determine the amount of capacity
on the different facilities of the existing underlying network, so that the demand
forecast is satisfied at minimum cost. For the problems of interest to us, the costs in
the objective function will be formulated as yearly depreciation or leased costs plus
operations and maintenance costs. Depending on the financial arrangements under
which the network will operate, the costs associated with facilities already owned
may, or may not, be different from the costs of facilities that must be acquired to
satisfy the demand.

The heuristic approach we propose to analyze the minimum cost capacity prob-
lem described, encompasses two main steps, circuit demand forecast determination,
and facility capacity requirements determination, each to be described next.

5.2. Circuit Demand Determination. Demand between a pair of backbone
nodes in the network is an estimate of the number of circuits needed to provide
communications between that pair of nodes. Switched demand forecast, however,
is usually initially developed as an estimate of the number of minutes needed be-
tween the node pairs. Determining the number of circuits required to satisfy a given
number of minutes under a given blocking assumption is a well known procedure
[6, 13]. It is also well known that when dealing with this problem in a worldwide
basis, non-coincidence of demand plays an important role and should be taken into
account so that overestimation of circuit requirements does not occur [6, 12].

Our heuristic for determining the facility capacity requirements involves the com-
putation of the circuit demand for each of the 24 hours of the day, based on the
CCITT load profiles [6], for each demand pair for which minute demand forecast

36 MAURICIO G. C. RESENDE

exists. The circuit demand requirements for each demand pair is computed in-
dependently of each other. Non-coincidence of demand is considered during the
facility capacity requirements determination step.

To finalize the determination of the circuit demand forecast to be considered in
the facility capacity analysis step, the dedicated demand forecast is added to the
switched circuit requirements of each of the twenty four periods.

5.3. Facility Capacity Analysis: A Mathematical Programming Formula-
tion. The problem addressed in the next step of the heuristic is the determination
of the minimum cost set of facility requirements that satisfy the circuit demand
forecast for all twenty four time periods. Depending on the scenario one wants to
analyze, an embedded network representing facility capacity already owned, may
or may not be considered.

Our heuristic approach involves first determining the minimum cost set of facility
requirements for each of the twenty four periods separately, and then computing the
overall capacity requirement for a given facility as the maximum requirement for
that facility obtained from all the twenty four individual minimization problems.

The model used for computing the minimum set of facility requirements for a
given time period is based on multicommodity flows on a network, a well known
mathematical programming problem. Point-to-point demands are commodities
that flow on the network, sharing link and node resources. Costs are linear func-
tions of link capacities. The objective is to move demand between demand pairs
satisfying flow conservation and demand requirements while minimizing the total
cost.

5.3.1. The Multicommodity Flow Problem. A telecommunications network can be
viewed as a graph having a set of vertices, each representing a backbone node or
a cable landing point housing cable heads of major cable systems, and a set of
edges or arcs, each representing cable connecting two vertices. Let G = (V, A)
be a directed network consisting of a set V of vertices and a set A of arcs whose
elements are ordered pairs of distinct vertices with a cost cij and a capacity uij
associated with every arc (i, j) ∈ A. Let N ⊂ V be the set of pre-defined backbone
nodes of the network. We associate with each backbone node pair i ∈ N , j ∈ N ,
an integer dij representing the demand forecast between backbone nodes i and
j. In the multicommodity flow model, a commodity could be defined as a unique
point-to-point traffic. Point-to-point demand is given an arbitrary direction (one
point is the source, the other is the sink) and we move demands from sources to
sinks. This definition, however, can result in a large number of commodities if
there is a large number of point-to-point demands, generating large hard to solve
models. In our model, we use the concept of aggregate flow as commodities. The
definition of commodities as an aggregate flow has the disadvantage of not explicitly
providing the facility routing used in the solution found by the optimization model
to satisfy the demand. However, if desired, the actual routes may be determined by
a maximum flow type of algorithm as described in [1]. In our model, a commodity
k is defined to be the aggregate flow having node k as sink. For that, the demand
flows are given a direction, i.e. a source node and a sink node, and all demand
terminating at each sink is aggregated into a commodity. Therefore, |K| ≤ |N |,
where K is the set of commodities.

Cable capacity around the world can be wholly owned by a telecommunication
carrier or jointly owned by two or more telecommunication carriers. If we want

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 37

to consider already owned capacity and want to differentiate between the two dif-
ferent types of capacity already owned (e.g. AT&T whole owned and AT&T joint
ownership with a foreign TA) so that one type of capacity is used before the other,
then based on the earlier definitions, the minimum cost network flow problem can
be formulated as a multicommodity minimum cost flow problem as follows:

min
∑

(i,j)∈A
(c1
ijyij + c2

ijzij) +
∑

(i,j)∈A
c3
ij(

|K|∑

k=1

xijk − yij − zij)(4)

subject to

|K|∑

k=1

xijk ≤ u1
ij + yij + zij , for all (i, j) ∈ A such that i > j,(5)

∑

i:(i,n)∈A
xink −

∑

j:(n,j)∈A
xnjk =

∑

i∈N
din, for all n ∈ N and k ∈ K such that n = k,

(6)

∑

i:(i,n)∈A
xink −

∑

j:(n,j)∈A
xnjk = −dnk, for all n ∈ N and k ∈ K such that n 6= k,

(7)

xijk ≥ 0, yij ≥ 0, zij ≤ u2
ij , for all (i, j) ∈ A and all k ∈ K.

In this formulation, commodity k is defined as the demand going to backbone
node k from all other backbone nodes of the network, xijk represents the amount
of flow (load) for commodity k on arc (i, j), i.e. flow going from node i to node j,
while zij and yij represent the amount of jointly owned capacity and the amount of
extra capacity on arc (i, j) required to satisfy the requirements for all commodities,
respectively. Associated with zij are its upper bound u2

ij (available amount of

jointly owned capacity) and its utilization cost c2
ij . Parameter c1

ij is the annualized
cost of acquiring extra capacity on arc (i, j). Associated with wholly owned capacity
are its utilization cost c3

ij and its available amount u1
ij . The bundle constraints (5)

indicate that the total flow on any arc cannot exceed the available wholly-owned
plus jointly-owned capacities plus any acquired capacity. Each constraint (6) and
(7) implies that the total flow out of a node minus the flow into that node must
equal the net supply/demand of the node. These constraints are usually referred to
as mass balance constraints. Since dij > 0, then constraints (7) imply that node n
is a supplier of commodity k, and constraints (6) imply that node n is the demand
node for commodity k, which by definition is the aggregate flow having node k
as sink. With the presence of the bundle constraints, the essential problem is to
determine where to acquire extra capacity and to distribute the capacity (wholly
owned, jointly owned, or to be acquired) of each arc to individual commodities in
a way that minimizes overall flow costs.

The generic multicommodity model described allows for changes in the types of
scenarios to be run by setting some of its parameters to zero. Some of the changes
may be as follow:

38 MAURICIO G. C. RESENDE

• If u1
ij = 0, u2

ij = 0, c2
ij = 0, and c3

ij = 0, then no embedded network (already
owned capacity) is considered. In this case the problem is to acquire capacity
from scratch to satisfy the demand forecast.

• If c2
ij = 0 and c3

ij = 0, then the already owned capacity will be used at zero
cost before any extra capacity is acquired.

5.3.2. Overall Capacity Requirements Determination. After obtaining the hourly
facility capacity requirements by solving the described multicommodity flow prob-
lem for each of the twenty four hour periods, the overall facility capacity requirement
is obtained by finding the maximum capacity requirement over all periods. This
approach may produce some overestimation of the capacity requirements, since it
does not take full advantage of non-coincidence of demand.

5.4. Commodities Determination. If a non-zero forecast exists between every
backbone node pair, then the minimum number of commodities when using the
aggregate flow definition is |N |−1. However, if only a subset of backbone node pairs
have non-zero demand forecast, then the number of commodities can be significantly
reduced by the right choice of nodes as sinks. As described in [1], the problem
of generating the smallest number of commodities, when using the aggregate flow
commodity definition, is a node covering problem on the graph H = (V, D) where D
is a set of edges such that (i, j) ∈ D if and only if nodes i and j have positive point-
to-point demand. Given the inherent intractability of node covering, approximate
heuristics, such as GRASP (greedy randomized adaptive search procedures) [16],
can be used if the problem instance is not small enough so that an exact algorithm
could be applied. We used GRASP on a problem containing 36 backbone nodes
and found that only 18 needed to be defined as sinks, therefore leading to 18
commodities. This resulted in 39% reduction in the number of variables and 26%
reduction in the number of constraints, yielding in a 22% reduction in the solution
time, as shown in Table 12.

5.5. Problem Size and Computational Results. A few global network sce-
narios were used to test this methodology. The scenarios were run on a Silicon
Graphics Challenge computer (250MHz MIPS R10000) using AMPL as the model
generator and the parallel CPLEX 4.0 barrier (interior point) solver to solve the
linear programs. We run the twenty four periods in four simultaneous batches
containing six periods each. Therefore, the overall solution time for the minimum
capacity problem is four times what appears in Table 12. The solution times re-
ported include the model generation by AMPL as well as the time spent by the
solver. All scenarios involved an underlying facility network, from which capacity
could be acquired, containing over 1500 facilities and over 300 vertices. The desert
model implies no initial capacity is owned by the partners in the global network
being planned, while the embedded model takes into consideration the existence of
capacity already owned by the partnership. The difference in the number of com-
modities presented in the last two rows in Table 1, is due to the difference between
choosing the commodities using the node covering approach described in section 5.4
as opposed to randomly choosing them.

Acknowledgement

The author would like to acknowledge the following people who worked with him
on the projects described in this paper. David Johnson, Anja Feldman, and Chris

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 39

Table 12. Computational Results

Backbone Demand Model Sol. Time
Nodes Pairs Comm. Var. Const. Characteristics per Period

16 120 15 49905 6210 Embedded 2 1/2 hr
16 120 15 40068 5928 Desert 2 hr
36 56 25 80887 9306 Embedded 4 1/2 hr
36 56 18 49230 6858 Embedded 3 1/2 hr

Sorensen suggested local search strategies and provided data for th PoP placement
study. Lucia Resende introduced the author to the private virtual circuit routing
problem and modeled and implemented the routing tool. David Applegate, Carsten
Lund, David Johnson, Steven Phillips, Nick Reingold, and Peter Winkler proposed,
designed, and implemented the SONET network design tool. Larry Fosset, Dah
Nain Lee, and Lucia Resende proposed, modeled, and implemented the tool for
global network planning.

References

[1] D. Applegate, C. Lund, D. S. Johnson, S. Phillips, N. Reingold, M. G. C. Resende, and
P. Winkler. A sonet ring design tool, 1997. Manuscript.

[2] A.V. Arslan, R.W. Loose, and J.L. Strand. Transport Plan of Record, Issue 2.0. Technical
report, AT&T Network Services Division, Holmdel, NJ, January 1996.

[3] G. R. Ash, R. H. Cardwell, and R. P. Murray. Design and optimization of networks with
dynamic routing. The Bell System Technical Journal, 60:1787–1820, 1981.

[4] V. L. Bennett, D. J. Eaton, and R. L. Church. Selecting sites for rural health workers. Social
Science Medicine, 16:63–72, 1982.

[5] R. Carraghan and P.M. Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9:375–382, 1990.

[6] CCITT Blue Book, Fascicle II.3, Telephone Network and ISDN Quality of Service, Network
Management and Traffic Engineering Recommendations.

[7] C. H. Chung. Recent applications of the maximal covering location planning (M. C. L. P.)
model. Journal of the European Operational Research Society, 37:735–746, 1986.

[8] R. Church and C. ReVelle. The maximal covering location problem. Papers of the Regional
Science Association, 32:101–118, 1974.

[9] M. S. Daskin, P. C. Jones, and T. J. Lowe. Rationalizing tool selection in a flexble manufac-
turing system for sheet metal products. Operations Research, 38:1104–1115, 1990.

[10] F. P. Dwyer and J. R. Evans. A branch and bound algorithm for the list selection problem
in direct mail advertising. Management Science, 27:658–667, 1981.

[11] D. J. Eaton, M. S. Daskin, D. Simmons, B. Bulloch, and G. Jansma. Determining medical
service vehicle deployment in Austin, Texas. Interfaces, 15:96–108, 1985.

[12] M. Eisenberg. Engineering traffic networks for more than one busy hour. B.S.T.J., 546:1–20,
1977.

[13] A. K. Erlang. Solution of some problems in the theory of probabilities of significance in
automatic telephone exchanges. P. O. Elect. Engrs. J., 10:189, 1917.

[14] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109–133, 1995.

[15] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67–71, 1989.

[16] Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

[17] M.R. Garey and D.S. Johnson. Computers and intractability - A guide to the theory of NP-
completeness. W.H. Freeman and Company, 1979.

40 MAURICIO G. C. RESENDE

[18] David S. Johnson and Michael A. Trick, editors. Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. DIMACS Series on Discrete Mathematics and Theoret-
ical Computer Science. American Mathematical Society, 1996.

[19] J. G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research, 40:283–302, 1992.

[20] M. Minoux. Network synthesis and optimum network design problems: Models, solution
methods and applications. Networks, 19:313–360, 1989.

[21] M. G. C. Resende, L. S. Pitsoulis, and P. M. Pardalos. Approximate solution of weighted
MAX-SAT problems using GRASP. In D.-Z. Du, J. Gu, and P. M. Pardalos, editors, Sat-
isfiability Problem: Theory and Applications, DIMACS Series on Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, Providence, R.I., 1996.

[22] M.B. Rosenwein and R.T. Wong. Physical ring generation for SONET ring networks. Techni-
cal memorandum AK0313500-960328-01TM, AT&T Laboratories, Holmdel, NJ, March 1996.

[23] D. Schilling, V. Jayaraman, and R. Barkhi. A review of covering problems in facility location.

Location Science, 1:25–55, 1993.
[24] R. R. Stacey and D. Songhurst. Dynamic alternative routing in the british telecom trunk

network. In Innovations in Switching Technology, Proceeding of the International Switching
Symposium, New York, NY, 1987. IEEE Communications Society.

[25] D. J. Sweeney, R. L. Mairose, and R. K. Martin. Strategic planning in bank location. In AIDS
Proceedings, November 1979.

(M.G.C. Resende) Information Sciences Research, AT&T Labs Research, Florham
Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 41

•

•

•

•

©

•

•©

•

•

•©

•

•

©

©

............
...........

...........
...........

............
...........

...........
............

...........
...........

...........
............

.................................
...........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
............

...........
...........

....................................
...........................

..
.........
........

..............
.............

...
.

...........................

..
.........
........

..............
.............

..
.........
........

..............
.............

...........
............

...........
...........

............
...........

...........
...........

............
...........

...........
...........

..................................
...........................

..
.............................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................................

...........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
............

...........
...........

....................................
...........................

a-1

c-2

d-2

g-1
h-7

g-7

i-7

i-2

e-7f-7

l-7

20

40 20
20

20

20

10

40

20 10

Figure 19. Flows and crossconnect solution for commodity a.

• •

•

•

•

©

•©

•

•

•©

•

•

©

•

©

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.....................................
...........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....................................

...........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.....................................
...........................

..
.............................

...
.........
........
.

..............
.............

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
.....................................

...........................

...
.........
........
.

..............
.............

..
.............

.........
.........
........
.

..
.............................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................................

...........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.....................................
...........................

b-1 c-2

d-2
h-1

h-7

g-7

i-7

i-2

j-2

e-7f-7

l-7

40 10

20
40

20 20

20
20

20

20

10

Figure 20. Flows and crossconnect solution for commodity b.

42 MAURICIO G. C. RESENDE

•

•© •©

•

•

•

©

•.....................
...........

...........
...........

...........
...........

............
...........

...........
...........

............
....................................

...........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
...........
....................................

...........................

...........
............
...........
...........
...........
............
...........
...........
...........
............
...........
...........
..................................

...........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
............
...........
...........
....................................

...........................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................................

...........................

..
.........................

..

c-2

i-2

j-2

j-7

k-7

e-7f-7

20

20

20

20

20

10

Figure 21. Flows and crossconnect solution for commodity c.

•

•© •©

•

•

•

©

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....................................

...........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....................................

...........................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....................................

...........................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

................................

...........................

..
.........................

..

d-2

j-2

j-7

k-7

e-7f-7

20

20

20

10

20

Figure 22. Flows and crossconnect solution for commodity d.

COMBINATORIAL OPTIMIZATION IN TELECOMMUNICATIONS 43

•©

•

•©

•©

•

•

•©

•

•

•

•©

•©

...
...........

...........
...........

...........
...........

...........
............

...........
...........

...........
............

........ ..
...........
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
..
...........

...........
...........

...........
...........

...........
............

...........
...........

...........
............

........

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..........
...........

...........
...........

...........
............

...........
...........

...........
............

...........
...........

...........
...

a

b

h

g

i

c

d

j

k

ef

l

40 40 20

40 40 40 40
40

40 40

40 40

40

Figure 23. Link usage on small example (in DS3’s)

