
A C++ Application Programming Interface for

Co-Evolutionary Biased Random-Key Genetic Algorithms for

Solution and Scenario Generation

Beatriz Brito Oliveiraa, Maria Antónia Carravillaa, José Fernando Oliveiraa, and
Mauŕıcio G.C. Resendeb,c

aINESC TEC, Faculty of Engineering, University of Porto;
bAmazon.com, Inc; cUniversity of Washington

ABSTRACT
This paper presents a C++ application programming interface for a co-evolutionary
algorithm for solution and scenario generation in stochastic problems. Based on a
two-space biased random-key genetic algorithm, it involves two types of populations
that are mutually impacted by the fitness calculations. In the solution population,
high-quality solutions evolve, representing first-stage decisions evaluated by their
performance in the face of the scenario population. The scenario population ulti-
mately generates a diverse set of scenarios regarding their impact on the solutions.

This application allows the straightforward implementation of this algorithm,
where the user needs only to define the problem-dependent decoding procedure and
may adjust the risk profile of the decision-maker.

This paper presents the co-evolutionary algorithm and structures the interface.
We also present some experiments that validate the impact of relevant features of
the application.

KEYWORDS
Genetic algorithm; application programming interface; stochastic programming;
scenario generation; co-evolutionary algorithm

1. Introduction

This paper proposes a C++ Application Programming Interface (API) for a co-
evolutionary biased random-key genetic algorithm (BRKGA) that simultaneously gen-
erates good solutions and a diverse set of scenarios for stochastic problems.

Co-evolutionary genetic algorithms for scenario and solution generation are espe-
cially useful in the context of two-stage stochastic problems. In these problems, there
are two distinct stages of decision-making: before and after uncertainty is revealed.
Scenarios are often used to represent uncertainty as combinations of possible realiza-
tions of the uncertain parameters. The decisions taken before uncertainty is realized
(first-stage decisions) cannot be changed later. However, in most of these problems,
recourse actions (second-stage decisions) can be taken afterwards to mitigate the effect
of the realized uncertainty. Therefore, we can model a two-stage stochastic problem
with Equations 1, where x represents the first-stage decisions, and the term Q(x) in
the objective function summarizes the value of the second-stage function or recourse
function. Q(x) = EsQ(x, s) weights the expected value for all scenarios s of their

CONTACT B. B. Oliveira. Email: beatriz.oliveira@fe.up.pt



impact on the first-stage solutions x, considering (or not) adequate posterior recourse
decisions. Stochastic programming has been successfully applied in several contexts,
such as supply chain planning [8], shipping [2], or fleet size, mix and assignment [6, 13].
For a more detailed reading on stochastic programs, see [3].

minF = cTx+ Q(x) (1)

s.t.Ax = b

x ≥ 0

Co-evolutionary algorithms for solution and scenario generation proposed in [10]
simultaneously evolve a population of solutions (first-stage decisions) and a population
of scenarios linked by the fitness evaluation. On the one hand, the fitness of solutions
will depend on how well they perform in the face of the scenarios in the scenario
population. On the other hand, the fitness of scenarios will measure their contribution
to the scenario population diversity, considering the impact they have on the solution
performance.

Using two types of populations in genetic algorithms to co-evolve solutions and
scenarios has been proposed by Herrmann [7] to solve minimax problems and find
robust solutions and the worst-case scenario. The innovation of the approach proposed
by Oliveira et al. [10] – implemented in this API – is that the goal is to obtain diverse
and representative sets of scenarios, regarding the impact they have on the recourse
value obtained by solutions. This approach towards uncertainty is more balanced and
less conservative than a pure “robustness-oriented” approach (for an interesting paper
comparing robust and stochastic models, in the case of dynamic pricing and inventory
control, see [1]). As for the solutions, the goal is to obtain good performance. In
this approach [10], we can select different criteria to define what “good performance”
means. The proposed API also allows the user to define these criteria.

The co-evolutionary algorithm proposed in [10] uses as a base for the evolutionary
procedures a biased random-key genetic algorithm (BRKGA) [5]. In BRKGAs the
chromosomes, which are vectors of numbers between 0 and 1 (i.e., the genes), repre-
sent solutions to the problem and are “translated” and evaluated through a decoding
procedure. This procedure also makes it easy to ensure feasibility. BRKGAs initiate
with an entirely random initial population of chromosomes that evolve throughout a
finite number of generations. The chromosomes are evaluated using a fitness function,
and the evolution from the current generation to the following follows three main
procedures:

- Copy the elite individuals (with the best fitness) to the following population;

- Add mutant individuals (randomly generated) to the new population;

- Generate as offspring the remaining individuals, by mating an elite and a non-
elite parent from the current population. In this cross-over procedure, the off-
spring can receive each gene from either parent, yet there is a predefined prob-
ability higher than 0.5 of inheriting from the elite parent (thus “biasing” the
algorithm).

Toso and Resende have proposed a C++ API for BRKGA [14], based on which
we built the API proposed in this paper. The decisive difference between the “tra-
ditional” BRKGA and the co-evolutionary BRKGA, besides the duplication of the
populations, resides on the decoding procedure, which involves both populations and
different processes, detailed in this paper. Figure 1 represents the algorithmic flow of

2



Figure 1. Algorithmic flow of a co-evolutionary BRKGA.

the co-evolutionary BRKGA and is based on a similar design for BRKGA in [14].
The most significant contribution of this paper is that it proposes an efficient and

easy-to-use C++ API, as the users are only required to adapt the problem-dependent
parts of the decoding procedure. This paper should work not only as a “proof of
concept” of the implementation of the co-evolutionary BRKGA proposed in [10] but
also as a self-contained guide or tutorial, even to users with limited experience with
genetic algorithms and their implementation.

Therefore, this paper is structured as follows. Section 2 describes in detail the struc-
ture of the API, highlighting its innovations and different features. Then, in Section 3,
we analyze the performance of the API and the impact of key parameters and user-
defined processes. Finally, Section 4 presents some concluding remarks.

2. API structure

We propose an application programming interface (API) – coEvolBrkgaAPI – built on
the brkgaAPI [14], which implements the co-evolutionary BRKGA proposed in [10] and
described in Section 1. Since this API was built on an existing API for (“traditional”)
BRKGA algorithms, we will focus on describing the key alterations made. We will
especially focus on the usability of the coEvolBrkgaAPI, describing the functions and
files that users should adapt to implement a co-evolutionary BRKGA for solution and
scenario generation, and other relevant and new parameters required.

This section starts by giving an overview of the adaptions required to build the
coEvolBrkgaAPI from the existing brkgaAPI. Then, the main adaptations are detailed,
dividing them into the changes to the existing classes and templates (part of the “black-
box”), and the adaptions and new blocks of the interface files, where the user can
adapt the problem-dependent part of the algorithm. Finally, we explain the problem
exemplified in the coEvolBrkgaAPI.

3



Figure 2. Structure of the brkgaAPI files, divided into header files (.h) and source files (.cpp).

2.1. From one to two types of population: overview of the required
adaptations

The coEvolBrkgaAPI is built on and follows the structure of brkgaAPI [14], which
was designed to be efficient and straightforward.

Overview on the brkgaAPI

The brkgaAPI comprises two main classes: Population, with methods to define and
manipulate populations of chromosomes, and BRKGA, where the problem-independent
procedures of the genetic algorithm are coded. Besides these classes, there are two
external blocks required: a random number generator, and a decoder that computes
the fitness of chromosomes. In the brkgaAPI, both are implemented as interfaces (RNG
and Decoder). However, as the former is problem-independent, users are not required
to adapt this component to implement their algorithm, whereas the latter is the key
interface module to implement the specific problem.

Figure 2 represents the file structure of the brkgaAPI, which contains six code files.
Classes BRKGA and Population and interface RNG are implemented as header files and
do not require the user to adapt or implement code. The main algorithmic flow is
controlled by the main source file, where the user defines the parameters and the
BRKGA procedure is called for each generation if the stopping criteria are not met.
The Decoder interface is implemented in a source file that users must adapt to each
problem, defining how a chromosome translates into a solution and how to evaluate
its fitness. This interface also has a corresponding header file where the functions are
defined, which the users do not need to adapt. The brkgaAPI also allows using multiple
populations that evolve independently and that exchange their elite individuals in a
predefined interval of generations.

Some parameters required concern the BRKGA procedures, such as the number of
mutants to include at each generation, or the probability of inheriting a gene from the
elite parent. Nevertheless, some parameters also relate to the algorithmic implementa-
tion, namely the number of independent populations, the number of elite elements to
exchange among these populations and the interval to generations to perform this ex-
change, the maximum number of generations (stopping criterion), and the maximum
number of threads to use in the parallel computation.

4



(a) Decoding procedure structure in the traditional

BRKGA.

(b) Decoding procedure structure in the co-

evolutionary BRKGA.

Figure 3. Differences between decoding procedures of BRKGA and the co-evolutionary BRKGA for solution
and scenario generation.

Changes towards the coEvolBrkgaAPI

The coEvolBrkgaAPI presented in this paper is built on the brkgaAPI [14] described
above. It uses and adapts its templates, file structure and design strategy since it is sim-
ple and efficient. Moreover, the brkgaAPI has been extensively used with success in a
variety of applications such as routing [12], nesting [9], facility location [4], or minimum
spanning trees [11]. As discussed before, the main innovation of the co-evolutionary
method is that two types of population evolve in parallel, one where the chromosomes
represent (first-stage) solutions, as in the traditional BRKGA, and other where the
chromosomes represent scenarios. The evolution of both populations mutually influ-
ences each other through the fitness evaluation process. The key innovation in this
co-evolutionary algorithm is, thus, in the decoding procedure, represented in Figure 3.
In BRKGA, the procedure is linear, as we translate the chromosome into a solution,
and then evaluate the fitness (Figure 3a). In the co-evolutionary BRKGA, after the
chromosomes are decoded into solutions and scenarios, the resulting impact of each
solution in the face of each scenario (problem-dependent) must be computed, and only
then the fitness of the individuals of each type of population (problem-independent) is
set. The fitness of solutions depends on the criterion selected, e.g., the average result
in the face of all scenarios, and the fitness of the scenarios represents their contribution
to population diversity, i.e., it is a metric of distance to the other individuals in the
scenario population (Figure 3b).

Converting the algorithm from one to two types of population required some adap-
tations, which we can divide into changes to the background API files (i.e., those that
work as a “black-box”, as the users do not need to consider them when implementing
the algorithm), and the changes to the interface files, which the users will have to
adapt. The following sections (Sections 2.2 and 2.3) describe these modules in detail,
and Section 2.4 explains the example made available in coEvolBrkgaAPI.

5



2.2. Adaptations to the background API files

In this section, we will describe the changes made to the main “black-box” files in
the API: the header files with the classes Population and BRKGA. Developing towards
a co-evolutionary algorithm did not require any adaptation of the external random
number generator; therefore, the coEvolBrkgaAPI uses the RNG class available in the
brkgaAPI.

Population class: This class is defined as a comprehensive tool to manage popula-
tions in genetic algorithms. Its methods consist of defining a population as a set of
vectors of double-precision floating points, with an associated fitness value. It contains
some functions that are critical for the algorithm evolution, such as ’void sortFit-

ness()’, which sorts the chromosomes in the population by the fitness value. Other
functions allow accessing information about the population, such as ’double getBest-

Fitness() const’, which returns the best fitness value in the population. The meth-
ods defined are general and can be applied to populations of solutions or scenarios,
since both are composed of chromosomes represented by vectors of numbers between 0
and 1 with an associated fitness value. The only change required was the addition of a
function to access all chromosomes in a population, required to compute the resulting
value of the solutions in the face of the scenarios (see Section 2.3):

• const std::vector< std::vector <double> >& getChromosomes() const:
returns a vector of all chromosomes, which are vectors of random-keys, in a
read-only reference.

BRKGA class: This class, as defined in brkgaAPI, manages all evolutionary procedures
required to implement a multi-population BRKGA, such as evolution (including copy-
ing elite individuals, cross-over and mutation) or exchange of top chromosomes be-
tween independent populations. This class requires the main user-defined parameters
of the algorithm described in Section 2.1, as well as the interfaces Decoder and RNG.
Due to the differences between the two types of population, some of these parameters
must be defined for each population independently, and we must consider two types
of decoder: a solution decoder (SoluDecoder) and a scenario decoder (ScenDecoder).
Moreover, some new additional parameters are required, such the (optional) theoret-
ical worst and best scenarios. This API also includes three alternative criteria for
solution fitness based on the risk profile of the decision-maker: it may consider the
worst case scenario (Pessimist criterion), the best case scenario (Optimist criterion),
or the average value across all scenarios (Laplace criterion). This will be further ex-
plained in Section 2.3. Table 1 explains the parameters required for the BRKGA class in
the coEvolBrkgaAPI.

Similarly, all functions defined in the class were adapted to consider the two types
of population. For most, the adaptations were straightforward and consisted of “mim-
icking” the process for the two types of populations. These functions can be divided
into:

• Functions that return copies of the internal parameters – e.g. unsigned getN()

const was adapted to unsigned getN solu() const and unsigned getN -

scen() const;
• Functions that return information on the algorithm, such as current popula-

tion, best fitness, best chromosome – e.g. double getBestFitness() const

was adapted to double getBestFitnessSolu() const and double getBest-

6



Table 1. Parameters required for the adapted BRKGA class.

Parameters that were adapted to the two types of population:

unsigned solu n unsigned scen n Number of keys in the (solution/scenario)
chromosome

unsigned solu p unsigned scen p Number of (solution/scenario) chromosomes
in the population

double solu pe double scen pe Percent of the (solution/scenario) population
that composes the elite

double solu pm double scen pm Percent of mutants in the (solution/scenario)
population

double solu rhoe double scen rhoe Probability of inheriting a gene from the elite
(solution/scenario) parent in cross-over

const SoluDeco-
der& SoluDecoder

const ScenDeco-
der& ScenDecoder

Reference to the interface class representing
the (solution/scenario) decoder

New parameters for the co-evolutionary approach:

const std::vector<double> extremeworst Vector of numbers representing the theoreti-
cal worst scenario

const std::vector<double> extremebest Vector of numbers representing the theoreti-
cal best scenario

const int solucriterion Criterion for evaluating solution fitness: =1
for Pessimist criterion, =2 for Laplace crite-
rion, =3 for Optimist criterion

Parameters that did not change:

RNG& RNG Reference to the interface class for random
number generation

unsigned K Number of independent pairs of (solution,
scenario) populations

unsigned MAX THREADS Number of threads used (maximum) for par-
allel calculations

FitnessScen() const;
• Functions used in the genetic algorithm, such as reset() or evolve(), where

some commands need to be called both for solution and scenario populations.

On the contrary, the adaptation of functions initialize() and evolution() re-
quired some algorithmic relevant changes due to the specificity of the co-evolutionary
process. Both functions include fitness computation of populations, where the main
changes are visible, as discussed before. Whereas in the original API, the fitness of each
chromosome was computed in a single line using the Decoder class (see Figure 3a),
here, additional steps are required (see Figure 3b). We create two auxiliary structures
to support the fitness assignment for both solutions are scenarios:

• Matrix F of size solu p×scen p stores the resulting value of each solution in the
face of each scenario. The function to calculate this matrix is problem-dependent
and is defined by the user with an interface.
• Matrix D of size solu p×2 stores the distance of each scenario to its nearest

neighbours based on its range of impact calculated on F .

Afterwards, the fitness of each chromosome is computed using the corresponding
decoder class and the previous structures as inputs. For the solution fitness calculation,
the user needs to define the criterion as well. The calculations to compute F , D, and
scenario and solution fitness are defined in an interface file. Therefore, we will further

7



describe and discuss them in the following Section 2.3.
The possibility to include theoretically extreme scenarios in the otherwise entirely

random initial generation of scenarios is also an essential part of the co-evolutionary
BRKGA. It required a relevant change in function initialize(), which generates the
initial solution and scenario populations. This only impacts the generation of the initial
scenario population, since the initial solution population remains entirely random. If
the user defines theoretical worst and best scenarios, these are assigned to the two first
chromosomes, and the remainder is randomly generated. In the following Section 2.3,
we will describe how the user can define these extreme scenarios.

It is important to note that the coEvolBrkgaAPI is still able to use multiple inde-
pendent populations of the same type. In this case, there can exist multiple pairs of
solution and scenario populations that evolve independently. At a predefined interval
of generations, exchanges of elite individuals can take place among these independent
pairs of populations. Nevertheless, the exchange will always occur between the solu-
tion populations. In the case of scenarios, since the focus is on population performance
rather than specific individuals, this is not extended.

2.3. Adaptations to the interface files

As described before, there are two main interface files: one where the main algorithmic
loop is defined (herein named Main.cpp), and other where the (problem-dependent)
decoding procedure is established (Decoder.cpp).

Main.cpp: The most significant adaptation of the Main.cpp file relates to the defi-
nition of parameters. Table 2 summarizes all parameters that the user must define in
coEvolBrkgaAPI. The BRKGA-specific parameters are adaptations of the parameters
defined in brkgaAPI related to the BRKGA class. The co-evolutionary parameters are
new parameters added due to the co-evolutionary procedures in this API. Finally, the
algorithm-related parameters are general and remain similar to brkgaAPI. Many of
these are directly applied in the BRKGA class, and we have thoroughly discussed them
in the previous section. Other changes are straightforward and also related to the two
types of population.

Decoder.cpp: As described before, the main innovation of the coEvolBrkgaAPI re-
sides in its decoding procedure. Figure 3 represents the alterations required and de-
scribe the main flow of this new decoding procedure.

In a general genetic algorithm, decoding consists of two main sequential steps:
“translating” the numeric keys of the chromosome to a solution of the original problem
and calculating the fitness value associated with that solution. Both of these steps are
dependent on the original problem. In the coEvolBrkgaAPI, the second step can be
divided into subsequent steps: calculating the value of each solution in the face of each
scenario, and calculating the fitness of each solution and scenario.

The co-evolutionary procedures proposed in [10], as represented in Figure 3b, have
a problem-independent part, as well as a problem-dependent part. As explained in
Section 2.2, the BRKGA class defines the following process:

(1) Calculating a matrix (F ) that contains the value of each solution in the face of
each scenario,

(2) Calculating D, the distance of each scenario to other individuals in the popula-

8



Table 2. Parameters defined by the user in coEvolBrkgaAPI

BRKGA-specific parameters

solu n Number of keys in the solution chromosome
solu p Number of solution chromosomes in the population
solu pe Percent of the solution population that composes the elite
solu pm Percent of mutants in the solution population
solu rhoe Probability of inheriting a gene from the elite solution parent in cross-over
scen n Number of keys in the scenario chromosome
scen p Number of scenario chromosomes in the population
scen pe Percent of the scenario population that composes the elite
scen pm Percent of mutants in the scenario population
scen rhoe Probability of inheriting a gene from the elite scenario parent in cross-over

Co-evolutionary parameters

extremeworst Chromosome (vector of keys) of the theoretically worst scenario. If not defined,
this must be an empty vector.

extremebest Chromosome (vector of keys) of the theoretically best scenario. If not defined,
this must be an empty vector.

solucriterion Criterion for evaluating solution fitness: =1 for Pessimist criterion, =2 for
Laplace criterion, =3 for Optimist criterion

Algorithm-related parameters

MAX GENS Maximum number of generations (stopping criterion)
X INTVL Interval of generations between exchanges among independent populations
X NUMBER Number of elite solutions to exchange among independent populations
K Number of independent pairs of populations (solution, scenario)
MAXT Maximum number of threads for parallel decoding

tion, based on its “impact range” (i.e., the bounds of values that are possible to
obtain in the presence of each scenario),

(3) Calculating fitness of solutions based on F and the criterion selected,

(4) Calculating fitness of scenarios based on their contribution to population diver-
sity (i.e., how “distant” they are from other scenarios in terms of impact range).

In coEvolBrkgaAPI, this is implemented by calling the required functions through the
BRKGA class, yet defining these function in the Decoder interface. Therefore, this file
includes the functions required to decode and compute the fitness of solutions and
scenarios:

• std::vector<std::vector<double>> matrixF(int MAX T, std::vector<

std::vector<double>> popx, std::vector<std::vector<double>> pops).
The function matrixF is highly problem-dependent, as it requires translat-

ing both types of chromosomes into solutions and scenarios and calculate the
second-stage value for each pair. It receives as inputs the solution and scenario
populations, as well as the number of threads if parallel processing is enabled.
• double SolutionDecoder::soludecode(const int id, const std::

vector<std::vector<double>> &F, const int solucriterion) const

The function soludecode is problem-independent, yet it depends on the solu-
tion fitness criterion defined by the user. It receives as input, besides the fitness
criterion, the matrix F calculated before, and the identification of the solu-
tion within the solution population (id). It calculates the fitness of the solution
(x = id) based on the value it obtains in the face of the scenarios (s) in the sce-
nario population. If the pessimist criterion is selected, the fitness equals the solu-

9



tion performance in the face of the worst scenario (fitnessx = maxs F (x, s)). On
the contrary, if the user selects the optimist criteria, the solution is awarded as fit-
ness the value obtained in the face of the best scenario (fitnessx = mins F (x, s)).
With the Laplace criterion, the solution fitness equals the average of the impact
of all scenarios (fitnessx =averagesF (x, s)).
• std::vector<std::vector<double>> neighDist(int MAX T, const std::

vector<std::vector<double>> &F)

The function neighDist is also problem-independent and calculates the dis-
tance of each scenario to other scenarios in the population, based on their impact
range. It receives as input matrix F (as well as the number of threads) and cal-
culates the projection of each scenario in a two-axis system, representing the
worst value obtained by a solution in the face of that scenario (how “bad” the
scenario can be) and the best value obtained (how “good” it can be) – its impact
range. Figure 4 represents this projection on a two-axis system of a population of
scenarios. As the fitness of a scenario represents its contribution to population
diversity, this projection supports the calculation of its distance to the near-
est neighbours in the scenario population (see Figure 4). For each “axis”, the
distance measure is the multiplication of absolute difference towards the next
scenario and the towards the previous scenario. To favour spreading the scenario
space, the extreme scenarios on each axis receive the highest distance value.
This function returns, for each scenario, the distance to the nearest neighbours
in these two axes (here denoted as dW and dB). This calculation is mathemat-
ically represented by Equation 2 for dW , where, for clarity, we introduce the
notation pWs = minx F (x, s) to represent the projection of scenario s on the
worst axis. The calculation for dB follows a parallel approach considering the
best value pBs = maxx F (x, s).

dWs =

{
maxscen p−1

s=1 dWs + 1, s = 0 ∨ s = scen p− 1

(pWs − pWs−1)× (pWs+1 − pWs), ∀s ∈ {1, scen p− 1} (2)

Since this function is problem-independent, it applies to any scenario decod-
ing the users might implement. Therefore, the user is not required to adapt it.
Nevertheless, if the users desire to change the distance metric and adapt this cal-
culation, this is possible since the full source code is available. Yet, it is essential
to ensure the connection with the other functions.
• double ScenarioDecoder::scendecode(const int id, const std::

vector<double> &D) const

The function scendecode calculates the fitness of a scenario, identified with
input id, based on the neighbour distances calculated with the previous function.
The fitness value favours the most extensive distance (comparing the distances
for the two axes).

The changes in file Decoder.cpp described above were translated into corresponding
developments within the function definitions in file Decoder.h. However, due to the
design selected for the implementation of this algorithm, the user does not need to
adapt the header file, as the function definitions are problem-independent. From the
four functions described for this interface, only one is problem-dependent – matrixF

– as it requires the translation of the chromosome and calculating the value resulting
for each pair (solution, scenario). The remaining functions are problem-independent,

10



Figure 4. Representation of the two-axis system where scenarios are projected in the fitness calculation
procedure. The distances of scenario s0 to its nearest neighbours in each axes are also represented.

and the user is not required to adapt them. Nevertheless, we decided to maintain them
in this interface so that users that want to build on this work and experiment, e.g.
different solution fitness criteria, can easily do so.

2.4. A simple example

In the coEvolBrkgaAPI made available, we use a simple example to implement a co-
evolutionary BRKGA and to test and validate the API. This problem is based on the
one used as sample code in the brkgaAPI, yet extends it to consider uncertainty, in
terms of the impact of different scenarios.

The brkgaAPI, as well as the proposed coEvolBrkgaAPI, are prepared to tackle
minimization problems, i.e., the algorithm favours individuals with the lowest fitness
value. In the brkgaAPI example, the genes of each (solution) chromosome were sorted,
and the fitness of the chromosome was equal to the first gene, i.e. the smallest. The
goal is to minimize this value. In coEvolBrkgaAPI, similarly, we sort the genes of
the solution chromosome, and the goal is to minimize the sum of the first N genes,
where the scenario defines N . N represents a fraction of the solution genes, determined
by the average gene value of the scenario chromosome. Equations 3 and 4 represent
this calculation, where soluChrom and scenChrom represent the vectors of genes that
compose the (sorted) solution chromosome and the scenario chromosome, respectively.

N =

⌊∑scen n
i=1 scenChrom[i]

scen n

⌋
(3)

F (x, s) =
∑N

i=1 soluChrom[i] (4)

Moreover, this simple problem allows defining theoretically extreme values. As we
aim to minimize the sum that composes F , the worst possible scenario is the one
that maximizes N , i.e., a chromosome such that the gene values g are all equal to
one: {g0, g1, ..., gscen n} = {1, 1, ..., 1}. Following the same logic, we can define the best
scenario as {g0, g1, ..., gscen n} = {0, 0, ..., 0}.

11



3. Experiments

In this section, we will test and validate the impact of the key coEvolBrkgaAPI pa-
rameters, as well as the potential and efficiency of parallel decoding. For the brkgaAPI,
the authors [14] analyse the impact of the population and chromosome sizes, the max-
imum number of threads available and the decoder complexity. Here, we focus on the
innovative aspects of coEvolBrkgaAPI and propose experiments that allow to investi-
gate the impact of the size of the two different types of populations and corresponding
chromosomes, of the different criteria for solution fitness, of the addition (or not) of
theoretical extremes to the initial population of scenarios, of the definition of multiple
independent pairs of populations, and of the potential of parallel computing. We focus
not only on the run time but also on the solution quality and the diversity of the
generated sets of scenarios.

For these tests, we implemented the problem described in Section 2.4 and made
available in the coEvolBrkgaAPI. For the parameters not analyzed in detail in this
section, we use the default values proposed in [14]. We set the stopping criterion to
3000 generations, and run all configurations with ten different seed numbers. All results
presented refer to the average values obtained. All experiments were run in a Windows
virtual machine, with a processor Intel Xeon Gold 6148 CPU @ 2.40 GHz with 96 GB
of installed RAM.

A complex real-world application of the method made available in the coEvolBrk-

gaAPI, as well as its main results and managerial insights, is described in [10].

3.1. Size of populations and chromosomes

For these experiments, we analyzed the the parameters that control problem size, as
described before, i.e., the solution and scenario chromosome size in terms of number of
genes (solu n and scen n). At the same time, we analyzed the impact of the population
sizes, i.e., the number of individuals in each population (solu p and scen p). While
the former parameters define intrinsically different instances, the latter impact solely
the structures of the solution method. Therefore, although both types of parameters
significantly influence the time required to run, they impact the method in distinct
ways.

For this specific experiment, we selected the Laplace solution fitness criteria, added
theoretically extreme scenarios to the initial population, and did not use multiple
independent solution populations. We run these experiments in a single-thread envi-
ronment. The values tested for the size of the chromosomes solu n and scen n were
10, 100, 500, and 1000. As for the size of the solution population solu p, we tested
50, 100, and 1000, since we expect it to have a direct impact on the quality of the
final solution ceteris paribus. As for the size of the scenario population scen p, since
the goal is to obtain a diverse solution, its size should not be too large. Therefore, we
tested the values 30, 50 and 100, ensuring it was not more extensive than the solution
population.

Figure 5 presents the total run time for the different configurations run. As ex-
pected, the time increases exponentially with the problem size and is also impacted by
the population size. The impact of increasing the populations is magnified for larger
problems in a relevant scale. When considering the number of pairs (solution, sce-
nario) that the decoding procedure evaluates (Figure 6), the time per evaluation is
approximately constant, depending solely on the size of the problem, or the instance,

12



10 100 500 1,000
0

2,000

4,000

6,000

8,000

10,000

12,000

solu n=scen n

Ti
m

e
(s

ec
on

ds
)

(solu p, scen p):
(50, 30)
(50, 50)
(100, 30)
(100, 50)
(100, 100)
(1000, 30)
(1000, 50)
(1000, 100)

Figure 5. Average total time in single-thread runs for different configurations.

Table 3. Distance between scenarios: average for the sets of the last 100 generations.

Size of problem (solu n=scen n)
Size of populations
(solu p, scen p)

10 100 500 1000

(50,30) 0.03 3.68 82.73 319.65
(100,30) 0.04 3.86 84.41 319.69
(1000,30) 0.05 4.24 89.20 332.09

(50,50) 0.01 1.27 31.01 119.51
(100,50) 0.01 1.33 31.15 119.13
(1000,50) 0.01 1.49 32.87 125.06

(100,100) 0.00 0.31 7.89 31.42
(1000,100) 0.00 0.34 8.28 32.40

considered.
It is also noteworthy to analyze the quality of the solution fitness and its evolution

throughout generations. Figure 7 shows, for each instance (i.e., chromosome size), the
evolution of the best solution fitness throughout generations. For larger problems, the
convergence is less steep, as expected. Interestingly, within each instance, there is a
distinct behaviour difference where the size of the solution population is the driver. On
the contrary, the size of the scenario population does not impact the rate of conver-
gence. It is important to remember that, especially under the Laplace solution fitness
criterion, the scenarios truly impact the value obtained by each solution. Nevertheless,
the size of this diverse population of scenarios does not impact the convergence to the
final solution.

On the contrary, when the diversity of the scenario populations is analyzed (Ta-
ble 3), the size of the solution population presents no significant impact, whereas the
smaller the scenario populations, the larger the average distance between scenarios.
This is expected since the theoretically extreme scenarios define the same bounds for
all configurations, and if there are more scenarios present, the average distance be-
tween them will tend to decrease. Nevertheless, the difference observed is perceptible
and underlines the importance of keeping a limited number of scenarios in this type
of population due to its evolutionary goal.

13



1 · 104 3 · 104 5 · 104 1 · 105
0

0.05

0.1

0.15

Number of pairs to evaluate (solu p×scen p)

Ti
m

e
pe

r
ev

al
ua

ti
on

(s
ec

on
ds

)
solu n=scen n:
10
100
500
1000

Figure 6. Average time per evaluation of pairs (solution, scenario) for different configurations.

Table 4. Best solution fitness obtained for different criterion and considering the addition (Yes) or not (No)

of the theoretically extreme scenarios to the otherwise random initial scenario population.

Theor. extreme
scenarios added?

Generation
Solution fitness criterion

Pessimist Laplace Optimist

Yes
Initial 10.57 42.10 0.00
Last 0.36 0.96 0.00

No
Initial 8.39 11.72 6.04
Last 0.08 0.20 0.00

For the remainder of the experiments, we used an instance of size solu n=scen -

n= 100, as it represents a large problem which the coEvolBrkgaAPI can solve quickly
in the number of generations defined. Based on the previous analyses, we set the size
of the populations to solu p= 100 and scen p= 30.

3.2. Solution fitness criteria and theoretically extreme scenarios

The objective of this analysis is to study the impact on solution fitness of using the
three different criteria, as well as the possibility to add theoretically extreme scenarios
to the initial population. In this minimization context, Figure 8 presents the evolution
of the best fitness throughout generations for the different combinations of these,
whereas Table 4 details the initial and final solution fitness value for these approaches.

When the user selects the Optimist criterion and adds theoretically extreme scenar-
ios, the fitness of solutions shows a distinct behaviour since it is always null throughout
the generations. This happens due to the structure of this specific problem. Since the
goal is to minimize the sum of the N first genes of the solution chromosome, with N
given by the scenario, the best scenario possible is the one where N = 0. With this
scenario, the solution fitness is always zero, independently of the solution genes. The
best solution fitness, evaluated with this criterion as the performance in the face of
the best scenario, is thus always zero.

When considering the other two criteria, a difference of magnitude of the values
obtained at the start of the algorithm is perceptible when theoretically extreme sce-

14



0 500 1,000 1,500 2,000 2,500 3,000
0

0.5

1

1.5

2

2.5

Generations

So
lu

ti
on

Fi
tn

es
s

(solu p, scen p): (100, 30) (1000, 30)
(50, 30) (100, 50) (1000, 50)
(50, 50) (100, 100) (1000, 100)

(a) solu n=scen n= 10

0 500 1,000 1,500 2,000 2,500 3,000
0

10

20

30

40

50

Generations

So
lu

ti
on

Fi
tn

es
s

(b) solu n=scen n= 100

0 500 1,000 1,500 2,000 2,500 3,000
0

50

100

150

200

250

Generations

So
lu

ti
on

Fi
tn

es
s

(c) solu n=scen n= 500

0 500 1,000 1,500 2,000 2,500 3,000
0

100

200

300

400

500

Generations

So
lu

ti
on

Fi
tn

es
s

(d) solu n=scen n= 1000

Figure 7. Evolution of solution best fitness throughout generations for different instances (i.e., sizes of chro-

mosomes solu n=scen n).

15



0 500 1,000 1,500 2,000 2,500 3,000
0

10

20

30

40

Generations

So
lu

ti
on

fit
ne

ss

Pessimist (with extremes)
Pessimist (without extremes)
Laplace (with extremes)
Laplace (without extremes)
Optimist (with extremes)
Optimist (without extremes)

Figure 8. Evolution of best solution fitness throughout generations for different criterion and considering the

addition or not of the theoretically extreme scenarios to the random initial scenario population).

narios are added, especially in the Laplace criterion. This results from the meaningful
difference between the impact of theoretical extremes and the remaining initial popu-
lation. On the one hand, the extreme scenarios cause the best and worst value for the
solutions in the initial population. On the other hand, the remaining entirely random
scenario chromosomes have similar – average – impact values.

Consequently, without theoretically extreme scenarios, the algorithm starts from
different positions in the initial generation and a faster convergence is visible (Figure 8).
Nevertheless, the final values obtained show also some interesting differences. Both for
Laplace and Pessimist criteria, adding theoretically extreme scenarios results in a
higher (worse) final solution fitness. However, this does not mean that the solutions
obtained are necessarily worse. They are evaluated against different sets of scenarios,
and the scenario sets that result from the initial addition of extreme scenarios tend to
be more diverse and, thus, create a broader range of impact on the solutions. On the
contrary, one could argue that solutions obtained in this case are more “robust”, as
their performance is evaluated against a broader range of scenarios.

Figure 9 allows to further understand this, at it represents the initial and final sce-
nario populations for each configuration run. Here, scatter points depict the scenarios,
representing their range of impact since the x-coordinate marks the best value F (x, s)
obtained in the presence of scenario s and the y-coordinate marks the worst value. For
all criteria, the initial populations follow the same behaviour. If entirely random, all
scenarios have similar, average impacts on solutions. When the two theoretical extreme
scenarios are added, they visibly mark the “scenario space” that random generation
overlooks.

For the Pessimist and Laplace criteria (Figures 9a and 9b), the impact of evolution is
similar. Since the solutions evolve towards better performance, the best value obtained
improves significantly, and the diversity of scenario impact is more visible in the worst
value obtained, especially, as expected, with the Pessimist criterion. It is also visible
that adding the theoretically extreme scenarios causes a more spread population of
scenarios, thus supporting the claim that solutions obtained with this configuration
are not necessarily weaker and may even show a stronger ability to perform under

16



Table 5. Distance between scenarios: average for the sets of the last 100 generations.

Solution fitness criterion K= 1 K= 3

Pessimist 3.81 4.65
Laplace 3.86 4.64
Optimist 4.13 5.09

severe scenarios.
As discussed before, the Optimist criterion (Figure 9c), in this specific problem, leads

to the solution characteristics not affecting the evaluation of F (x, s) if the theoretical
best scenario is present in the population. As solutions do not change significantly
throughout the evolutionary process (see Figure 8), the scenarios spread over a similar
space throughout generations. Even when the theoretically best scenario is not added,
as the algorithm evolves to spread the range of impact of scenarios, a similar behaviour
is observed.

3.3. Multiple independent populations

The coEvolBrkgaAPI allows the user to define multiple independent pairs of popula-
tions, as well as an interval of generations to exchange the top solutions between them.
In this section, we analyze the impact of using multiple independent populations on
the solution fitness and time to run.

Figure 10 presents the evolution of solution fitness throughout generations using the
Pessimist and Laplace criteria, both for the case where a single pair of populations is
considered (K = 1) and for three parallel pairs (K = 3). We considered the addition of
theoretically extreme scenarios. Since the Optimist criterion resulted in a constant fit-
ness evaluation (see Section 3.2), it was not represented in this figure. For both criteria,
using multiple independent pairs of populations allows convergence in a smaller num-
ber of generations. Nevertheless, the time per generation is also significantly higher.
In these cases, it was around 2.8 times slower.

As for the impact on the diversity of the final scenario population, Table 5 shows
that using multiple independent pairs of populations slightly increases the distance
between scenarios for all solution fitness criteria. Concluding, the use of this feature
will depend on the problem characteristics, and computation power and run time
available.

3.4. Efficiency of parallel decoding

To analyze the throughput and efficiency of parallel decoding, we varied the size of the
chromosomes, representing problems that are different in size, as well as the number
of chromosomes in the solution population. We selected as the baseline, as before,
the configuration with solu n=scen n= 100, solu p= 100 and scen p= 30, and we
analyzed the impact of increasing the problem size and the solution population size.
Due to the discussion in Section 3.1, the size of scenario chromosome was not changed.
We run each configuration varying the number of maximum threads used (MAX T) and
measured the wall-clock execution time. From this, we computed two metrics: through-
put, measured as the number of pairs (solution, scenario) evaluated per second, and
efficiency, calculated with Equation 5 [14], where i represents the number of proces-
sors. Since these experiments were run in a virtual machine and due to the ensuing
access rules to different processors, these analyses represent proxies for the values of

17



0 10 20 30 40
0

20

40

60

Best value obtained with s: minx F(x, s)

W
or

st
va

lu
e

ob
ta

in
ed

w
it

h
s1

:
m

ax
x
F
(x

,s
)

Scenario sets for
initial/final generation:
Final (with extremes)
Initial (with extremes)
Final (without extremes)
Initial (without extremes)

(a) Pessimist criterion

0 10 20 30 40
0

20

40

60

Best value obtained with s: minx F(x, s)

W
or

st
va

lu
e

ob
ta

in
ed

w
it

h
s1

:
m

ax
x
F
(x

,s
)

Scenario sets for
initial/final generation:
Final (with extremes)
Initial (with extremes)
Final (without extremes)
Initial (without extremes)

(b) Laplace criterion

0 10 20 30 40
0

20

40

60

Best value obtained with s: minx F(x, s)

W
or

st
va

lu
e

ob
ta

in
ed

w
it

h
s1

:
m

ax
x
F
(x

,s
)

Scenario sets for
initial/final generation:
Final (with extremes)
Initial (with extremes)
Final (without extremes)
Initial (without extremes)

(c) Optimist criterion

Figure 9. Representation of the initial and last scenario populations for three runs with the same seed value

and three different solution fitness criteria. Each scenario sis represented as a point, where the x-coordinate
represents the best value F (x, S) obtained with it and the y-coordinate represents the worst value.

18



0 500 1,000 1,500 2,000 2,500 3,000
0

10

20

30

40

Generations

So
lu

ti
on

fit
ne

ss

Pessimist (K = 1)
Pessimist (K = 3)
Laplace (K = 1)
Laplace (K = 3)

Figure 10. Evolution of solution fitness for Pessimist and Laplace criterion, using one or three independent

pairs of population (K).

0 10 20 30 40
0

1,000

2,000

3,000

MAX T

T
hr

ou
gh

pu
t

(e
va

lu
at

io
ns

pe
r

se
co

nd
)

solu n=scen n= 100, solu p= 100
solu n=scen n= 1000, solu p= 100
solu n=scen n= 100, solu p= 1000

Figure 11. Throughput, measured as number of pairs (solution, scenario) evaluated per second, for different
values of parameter MAX T.

throughput and efficiency. Nevertheless, they can bring relevant insights for the users
of coEvolBrkgaAPI.

efficiency(i) =
t1
i · ti

(5)

Figure 11 shows that increasing the number of available threads (MAX T) impacts
the throughput in a prominently different scale depending on the size of the problem
(given by solu n=scen n). For smaller sized problems, increasing the available threads
increases the throughput significantly up to around MAX T= 35, where it slightly de-
creases. Increasing the size of the solution population has some effect in decreasing
throughout, but the general trend and scale are similar. On the contrary, when the
size of the problem increases, this growing trend is still present but in a significantly
reduced scale.

19



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

MAX T

Ef
fic

ie
nc

y

solu n=scen n= 100, solu p= 100
solu n=scen n= 1000, solu p= 100
solu n=scen n= 100, solu p= 1000

Figure 12. Efficiency for different values of parameter MAX T.

As for efficiency (Figure 12), it decreases, as expected, with the increasing value of
MAX T. However, as the solution population or problem sizes increase, the efficiency
rate of decay seems to decelerate. For larger problems, the efficiency is above 50% up
to MAX T= 39. For the baseline and the increased solution population size, this value
decreases to MAX T= 6 and MAX T= 17, respectively. Nevertheless, parallel decoding
allows users to accelerate the time to run this algorithm, keeping a significant level of
efficiency for the more frequent number of processors available.

4. Concluding remarks

This work proposes an API for the co-evolutionary BRKGA for scenario and solution
generation – coEvolBrkgaAPI. Based on brkgaAPI, this API allows users to easily
implement this algorithm, providing an interface for decoding procedures for both so-
lution and scenario chromosomes. Some experiments allow to validate its potential use
and to analyze the impact of the main “algorithm-related” parameters, including the
addition of the theoretically extreme scenarios to the initial population, the possibility
to select different solution fitness criteria, as well as other “computation-related” pa-
rameters such as parallel decoding or using multiple independent pairs of populations.
The source code for this API is available for download at: https://drive.google.
com/file/d/1YtwZi-sn5PPaTrOvlv_rIyJvdzP2S-CI/view?usp=sharing1. As future
work, scenario generation using genetic algorithms can be explored, built on the crit-
ical idea of scenario diversity regarding impact on solutions. The resulting modular
algorithm would provide representative sets of scenarios that could be applied and
coordinated with other optimization settings.

1Repository to be updated after acceptance

20

https://drive.google.com/file/d/1YtwZi-sn5PPaTrOvlv_rIyJvdzP2S-CI/view?usp=sharing
https://drive.google.com/file/d/1YtwZi-sn5PPaTrOvlv_rIyJvdzP2S-CI/view?usp=sharing


Funding

This work is partially financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation -
COMPETE 2020 Programme and by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project “POCI-01-0145-
FEDER-029279”.

References

[1] E. Adida and G. Perakis, Dynamic pricing and inventory control: Robust vs. stochastic
uncertainty models-a computational study, Annals of Operations Research 181 (2010), pp.
125–157.

[2] R. Bakkehaug, E.S. Eidem, K. Fagerholt, and L.M. Hvattum, A stochastic programming
formulation for strategic fleet renewal in shipping, Transportation Research Part E: Lo-
gistics and Transportation Review 72 (2014), pp. 60–76.

[3] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed., Springer,
New York, 2010.

[4] M. Caserta and S. Voβ, A general corridor method-based approach for capacitated facility
location, International Journal of Production Research [In Press] (2019).

[5] J.F. Gonçalves and M.G.C. Resende, Biased random-key genetic algorithms for combina-
torial optimization, Journal of Heuristics 17 (2011), pp. 487–525.

[6] C. Gundegjerde, I.B. Halvorsen, E.E. Halvorsen-Weare, L.M. Hvattum, and L.M. Non̊as,
A stochastic fleet size and mix model for maintenance operations at offshore wind farms,
Transportation Research Part C: Emerging Technologies 52 (2015), pp. 74–92.

[7] J.W. Herrmann, A genetic algorithm for minimax optimization problems, Proceedings of
the 1999 Congress on Evolutionary Computation, CEC 1999 2 (1999), pp. 1099–1103.

[8] C. Lima, S. Relvas, and A. Barbosa-Póvoa, Stochastic programming approach for the
optimal tactical planning of the downstream oil supply chain, Computers and Chemical
Engineering 108 (2018), pp. 314–336.

[9] L.R. Mundim, M. Andretta, and T.A. de Queiroz, A biased random key genetic algorithm
for open dimension nesting problems using no-fit raster, Expert Systems with Applications
81 (2017), pp. 358–371.

[10] B.B. Oliveira, M.A. Carravilla, J.F. Oliveira, and A.M. Costa, A co-evolutionary
matheuristic for the car rental capacity-pricing stochastic problem, European Journal of
Operational Research 276 (2019), pp. 637–655.

[11] E. Ruiz, M. Albareda-Sambola, E. Fernández, and M.G. Resende, A biased random-key
genetic algorithm for the capacitated minimum spanning tree problem, Computers and
Operations Research 57 (2015), pp. 95–108.

[12] E. Ruiz, V. Soto-Mendoza, A.E. Ruiz Barbosa, and R. Reyes, Solving the open vehicle
routing problem with capacity and distance constraints with a biased random key genetic
algorithm, Computers and Industrial Engineering 133 (2019), pp. 207–219.

[13] H.D. Sherali and X. Zhu, Two-Stage Fleet Assignment Model Considering Stochastic Pas-
senger Demands, Operations Research 56 (2008), pp. 383–399.

[14] R.F. Toso and M.G.C. Resende, A c++ application programming interface for biased
random-key genetic algorithms, Optimization Methods and Software 30 (2015), pp. 1–16.

21


	Introduction
	API structure
	From one to two types of population: overview of the required adaptations
	Adaptations to the background API files
	Adaptations to the interface files
	A simple example

	Experiments
	Size of populations and chromosomes
	Solution fitness criteria and theoretically extreme scenarios
	Multiple independent populations
	Efficiency of parallel decoding

	Concluding remarks

