
Optimization Letters
DOI 10.1007/s11590-006-0021-6

O R I G I NA L PA P E R

Global optimization by continuous grasp

M. J. Hirsch · C. N. Meneses · P. M. Pardalos ·
M. G. C. Resende

Accepted: 25 May 2006
© Springer-Verlag 2006

Abstract We introduce a novel global optimization method called Continuous
GRASP (C-GRASP) which extends Feo and Resende’s greedy randomized
adaptive search procedure (GRASP) from the domain of discrete optimization
to that of continuous global optimization. This stochastic local search method is
simple to implement, is widely applicable, and does not make use of derivative
information, thus making it a well-suited approach for solving global optimi-
zation problems. We illustrate the effectiveness of the procedure on a set of
standard test problems as well as two hard global optimization problems.

1 Introduction

Optimization problems arise in numerous settings, including decision-making,
engineering, and science [24]. In many situations, convexity of the objective
function (or the feasible domain) cannot be easily verified, and it is reasonable

M. J. Hirsch (B)
Raytheon, Inc. Network Centric Systems, P.O. Box 12248, St. Petersburg,
FL 33733-2248, USA
e-mail: mjh8787@ufl.edu

M. J. Hirsch · C. N. Meneses · P. M. Pardalos
Department of Industrial and Systems Engineering, University of Florida,
303 Weil Hall, Gainesville, FL 32611, USA
e-mail: claudio@ufl.edu

P. M. Pardalos
e-mail: pardalos@ufl.edu

M. G. C. Resende
Algorithms and Optimization Research Department, AT&T Labs Research,
180 Park Avenue, Room C241, Florham Park, NJ 07932, USA
e-mail: mgcr@research.att.com

M. J. Hirsch et al.

to assume that multiple local optima exist. Global optimization [16,15] deals
with optimization problems with multiple extremal solutions. Global optimiza-
tion problems can be discrete or continuous. Mathematically, global minimiza-
tion (optimization) seeks a solution x∗ ∈ S ⊆ R

n such that f (x∗) ≤ f (x), ∀ x ∈ S,
where S is some region of R

n and the objective function f is defined by f : S → R.
Such a solution x∗ is called a global minimum. A solution x′ is a local minimum
in a local neighborhood S0 ⊂ S if f (x′) ≤ f (x), ∀ x ∈ S0. Global optimiza-
tion problems abound in many fields, including materials science [26], biology,
chemistry, and genetics [4,33], military science [20,19], electrical engineering
[11,27], robotics [17,31], and transportation science [24,35].

In this paper, we introduce a novel global optimization method called
Continuous-GRASP (C-GRASP), which extends the greedy randomized adap-
tive search procedure (GRASP) of Feo and Resende [7,6,8,28] from the domain
of discrete optimization to that of continuous global optimization. Heuristics
for global optimization have been previously proposed in the literature, e.g. [2,
3,5,12,14,29,30,32,34]. Our aim is to propose a stochastic local search method
that is simple to implement, can be applied to a wide range of problems, and
that does not make use of derivative information, thus making it a well-suited
approach for solving global optimization problems. We illustrate the effective-
ness of the procedure on a set of standard test problems as well as two hard
global optimization problems.

The paper is organized as follows. In Sect. 2, we describe C-GRASP. In
Sect. 3, we compare the results of our implementation of C-GRASP with other
heuristics from the literature [3,14,29,32] on a set of standard benchmark func-
tions used to test global optimization algorithms. We also show the performance
of the C-GRASP heuristic on two real-world problems from the fields of robot
kinematics [17,31] and chemical equilibrium systems [21–23]. Final remarks are
given in Sect. 4.

2 Continuous GRASP

Feo and Resende [7,6] describe the metaheuristic GRASP as a multistart local
search procedure, where each GRASP iteration consists of two phases, a con-
struction phase and a local search phase. Construction combines greediness and
randomization to produce a diverse set of good-quality solutions from which
to start local search. The best solution over all iterations is kept as the final
solution. GRASP has been previously applied to numerous discrete combina-
torial optimization problems [8]. This paper describes its first application to
continuous global optimization.

In this section, we present the C-GRASP metaheuristic for solving contin-
uous global optimization problems subject to box constraints and describe the
construction and local improvement phases. Without loss of generality, we take
the domain S as the hyper-rectangle S = {x = (x1, . . . , xn) ∈ R

n : � ≤ x ≤ u},
where � ∈ R

n and u ∈ R
n such that ui ≥ li, for i = 1, . . . , n. The minimization

Global optimization by continuous grasp

Fig. 1 Pseudo-code for C-GRASP

problem considered in this paper is: Find x∗ = argmin{f (x) | � ≤ x ≤ u}, where
f : R

n → R, and �, x, u ∈ R
n.

C-GRASP resembles GRASP in that it is a multistart stochastic search meta-
heuristic that uses a randomized greedy procedure to generate starting solutions
for a local improvement algorithm. The main difference is that an iteration of
C-GRASP does not consist of a single greedy randomized construction followed
by local improvement, but rather a series of construction-local improvement
cycles with the output of construction serving as the input of the local improve-
ment, as in GRASP, and the output of the local improvement serving as the
input of the construction procedure, unlike GRASP.

Pseudo-code for C-GRASP is shown in Fig. 1. The procedure takes as input
the problem dimension n, lower and upper bound vectors � and u, the objective
function f (·), as well as the parameters MaxIter, MaxNumIterNoImprov,
MaxDirToTry, NumTimesToRun, and α.

In line 1 of the pseudo-code, the objective function value of the best solution
found (f ∗) is initialized to infinity. C-GRASP is a multistart procedure. It is
repeated NumTimesToRun times in the loop from line 2 to line 16. At each
iteration, in line 3, an initial solution x is set to a random point distributed uni-
formly over the box in R

n defined by � and u. The parameter h that controls the
discretization of the search space is initialized to 1. The construction and local
improvement phases are then called MaxIters times, in sequence, in lines 5
and 6, respectively.

The new solution found after local improvement is compared against the cur-
rent best solution in line 7. If the new solution has a smaller objective value than
the current best solution, then, in line 8, the current best solution is updated
with the new solution, and the variable NumIterNoImprov, which controls
the search grid density, is reset to 0. Otherwise, in line 10, NumIterNoImprov

M. J. Hirsch et al.

Fig. 2 Pseudo-code for
C-GRASP construction phase

is increased by one. If NumIterNoImprov becomes larger than
MaxNumIterNoImprov, the grid density is increased in line 13, where h is
halved and NumIterNoImprov is reset to 0. This allows C-GRASP to start
with a coarse discretization and adaptively increase the density as needed,
thereby intensifying the search in a more dense discretization when a good
solution has been found. The best solution found, over all NumTimesToRun
iterations, is returned.

Procedures ConstructGreedyRandomized and LocalImprovement
called from procedure C-GRASP are described in pseudo-codes. The construc-
tion phase (see pseudo-code in Fig. 2) takes as input a solution x. We start by
allowing all coordinates of x to change (i.e., they are unfixed). In turn, in line 6
of the pseudo-code, a line search is performed in each unfixed coordinate direc-
tion i of x with the other n − 1 coordinates of x held at their current values. The
value zi for the ith coordinate that minimizes the objective function is saved, as
well as the objective function value gi in lines 6 and 7 of the pseudo-code. After
the line search is performed for each of the unfixed coordinates, in lines 12–17
we form a restricted candidate list (RCL) that contains the unfixed coordinates
i whose gi values are less than or equal to α ∗ max+ (1 − α) ∗ min, where max
and min are, respectively, the maximum and minimum gi values over all unfixed
coordinates of x, and α ∈ [0, 1] is a user defined parameter. From the RCL, in
lines 18 and 19 we choose a coordinate at random, say j ∈ RCL, set xj to equal
zj, and then fix coordinate j of x. Choosing a coordinate in this way ensures
randomness in the construction phase. We continue the above procedure until

Global optimization by continuous grasp

Fig. 3 Pseudo-code for
C-GRASP local improvement
phase

all of the n coordinates of x have been fixed. At that stage, x is returned from
the construction phase.

The local improvement phase (with pseudo-code shown in Fig. 3) can be seen
as approximating the role of the gradient of the objective function f (·). We make
no use of gradients in C-GRASP since the gradient is not efficiently comput-
able for all functions. From a given input point x ∈ R

n, the local improvement
algorithm generates a set of directions and determines in which direction, if
any, the objective function value improves.

For a problem in two dimensions (and easily generalized to n dimensions),
given a point x, the eight possible directions to be analyzed in the local improve-
ment algorithm are {(1, 0), (0, 1), (−1, 0), (0, −1), (−1, 1), (1−, 1), (1, −1),
(−1, −1)}. In general R

n space, each direction will be a vector of length n,
with each component of this vector being one of {1, 0, 1}. It is easy to see that
there will thus be 3n − 1 possible directions (we exclude the case where all ele-
ments of the direction vector are 0). There is a simple mapping between each
number in the set {1, . . . , 3n − 1} and each search direction. Let the function
Ternary map each r ∈ N to its ternary (base 3) representation. For example,
Ternary(15) = 120. If we look at a modifiedTernary function, sayTernary′,
where each r ∈ N gets mapped to its ternary representation, with each ‘2’ being
replaced by a ‘−1’ (e.g.Ternary′(15) = {1, −1, 0}), then the functionTernary′
maps each r ∈ N into one of the direction vectors. Therefore, rather than having
to generate all direction vectors at once, it is just required to call the function
Ternary′ with input a value r ∈ {1, . . . , 3n −1}. The output will be the appropri-
ate direction vector. Table 1 gives an example of the Ternary′ mapping when
n = 2.

M. J. Hirsch et al.

Table 1 Ternary′ mapping (n = 2)

i −→ Ternary(i) −→ Ternary′(i) i −→ Ternary(i) −→ Ternary′(i)

1 −→ 01 −→ {0, 1} 2 −→ 02 −→ {0, −1}
3 −→ 10 −→ {1, 0} 4 −→ 11 −→ {1, 1}
5 −→ 12 −→ {1, −1} 6 −→ 20 −→ {−1, 0}
7 −→ 21 −→ {−1, 1} 8 −→ 22 −→ {−1, −1}

The local improvement function is given a starting solution x ∈ S ⊆ R
n. The

current best local improvement solution x∗ is initialized to x in line 2. As seen
above, for even moderate values of n, the number of possible search directions
can be quite large. To keep the local improvement tractable, we set the vari-
able NumDirToTry equal to the minimum of 3n − 1 and a user-defined value
MaxDirToTry in line 3. Starting at the point x∗, in the loop from line 6 to
line 17, we construct up to NumDirToTry distinct random directions, in turn.
In line 9, direction d is constructed and the test point x = x∗ + h ∗ d is com-
puted, where h is the parameter defined earlier that controls the density of the
discretization. If the test point x is feasible and is better than x∗, then x∗ is set to
x and the process restarts with x∗ as the starting solution. It is important to note
that the set of directions chosen can change each time through this process, as
well as the order in which these directions are considered. Local improvement
is terminated upon finding a solution x∗ with f (x∗) ≤ f (x∗ + h ∗ d) for each of
the NumDirToTry directions d chosen.

3 Computational Experiments

We report on computational testing of the C-GRASP heuristic. First, we
describe our test environment. Then, we compare our implementation of
C-GRASP with other global optimization heuristics on a set of standard test
functions. Finally, we show the performance of C-GRASP on two real-world
problems from the fields of robot kinematics and chemical equilibrium systems.

3.1 Test environment

All experiments were run on a Dell PowerEdge 2600 computer with dual
3.2 GHz 1 Mb cache XEON III processors and 6 Gb of memory running Red
Hat Linux 3.2.3-53. The C-GRASP heuristic was implemented in the C++
programming language and compiled with GNU g++ version 3.2.3, using
compiler options-O6-funroll-all-loops -fomit-frame-pointer-
march=pentium4. CPU times were computed using the function getu-
sage().

The algorithm used for random-number generation is an implementation
of the multiplicative linear congruential generator [25], with parameters 16807
(multiplier) and 231 − 1 (prime number).

Global optimization by continuous grasp

Table 2 C-GRASP
parameter values

Parameter Value Parameter Value

α 0.4 h (Starting value) 1
MaxDirToTry 30 MaxIters 200
MaxNumIterNoImprov 20 NumTimesToRun 20

C-GRASP has six parameters that need to be set. Parameter α is used to set
up the restricted candidate list.MaxDirToTry is the maximum number of direc-
tions searched in the local improvement phase. For a fixed search space discret-
ization, MaxNumIterNoImprov is the maximum number of calls to the local
improvement procedure with no improvement. Parameter h is the initial search
space discretization value. Parameter MaxIters is the maximum number
of construction-local improvement cycles per major iteration and parameter
NumTimesToRun is the maximum number of multistart, or major, iterations.
Unless otherwise stated, the parameters for all C-GRASP runs are listed in
Table 2.

3.2 Comparing C-GRASP with other heuristics

We applied our implementation of C-GRASP to a set of 14 standard con-
tinuous global optimization test problems found in the literature. These test
problems are from eight classes of problem instances: Branin [2,3,5,13,14,18,
30,32,34], Eason [12–14], Goldstein-Price [2,3,5,9,12–14,29,30,32], Shubert
[2,5,12–14,18,30,34], Hartmann [2,3,5,12–14,29,32], Rosenbrock [12–14,29,
30,34], Shekel [3,12–14,29,30,32], and Zakharov [12–14,29]. These functions
were chosen for two reasons. First, previous papers have used these functions to
test and compare their algorithms. Second, according to Hedar and Fukushima
[14], “the characteristics of these test functions are diverse enough to cover
many kinds of difficulties that arise in global optimization problems.”

Since the global minimum is known for each of these functions, the C-GRASP
heuristic was run until the objective function value f̃ was significantly close to
the global optimum f ∗ or NumTimesToRun restarts were done. As in [12–14,
29], we define significantly close by

|f ∗ − f̃ | ≤ ε1|f ∗| + ε2, (1)

where ε1 = 10−4 and ε2 = 10−6.
For each problem, we made 100 independent C-GRASP runs. Each run

used a different starting seed for the pseudo-random number generator. We
recorded the number of function evaluations and the elapsed time for the
current solution to satisfy stopping criterion 1. To test robustness of the
heuristic, we computed the percentage of runs in which it finds a solution
satisfying Eq. 1 in less than NumTimesToRun restarts. We also computed the

M. J. Hirsch et al.

Table 3 Heuristics used in
testing

Method Reference

Enhanced simulated annealing (ESA) [29]
Monte Carlo simulated annealing (MCSA) [32]
Sniffer global optimization (SGO) [3]
Directed tabu search (DTS) [14]
Continuous GRASP (C-GRASP) This article

Table 4 Summary of results for heuristics on test functions

Function ESA MCSA SGO DTS C-GRASP

Branin – 100/557 100/205 100/212 100/59857/0.0016
Easom – – – 82/223 100/89630/0.0042
Goldstein-Price 100/783 99/1186 100/664 100/230 100/29/0.0000
Shubert – – – 92/274 100/82363/0.0078

Hartmann-3 100/698 100/1224 99/534 100/438 100/20743/0.0026
Hartmann-6 100/1638 62/1914 99/1760 83/1787 100/79685/0.0140

Rosenbrock-2 – – – 100/254 100/1158350/0.01320
Rosenbrock-5 – – – 85/1684 100/6205503/1.7520
Rosenbrock-10 – – – 85/9037 99/20282529/11.4388

Shekel-(4,5) 54/1487 54/3910 90/3695 75/819 100/5545982/2.3316
Shekel-(4,7) 54/1661 64/3421 96/2655 65/812 100/4052800/2.3768
Shekel-(4,10) 50/1363 81/3078 95/3070 52/828 100/4701358/3.5172

Zakharov-5 – – – 100/1003 100/959/0.0000
Zakharov-10 – – – 100/4032 100/3607653/1.0346

In all heuristic columns, the first entry refers to percentage of runs significantly close to optimum,
the second entry refers to average number of function evaluations, and (for C-GRASP) the third
entry refers to average time, in CPU seconds to find a solution significantly close to optimum

average time needed for the algorithm to find such a solution.1 In comparing the
C-GRASP with those previously published, we accepted those published results
as valid (i.e., we did not program those algorithms ourselves). The same mea-
sure of closeness used in the stopping criterion of C-GRASP was used for the
enhanced simulated annealing (ESA) [29] and directed tabu search (DTS) [14].
However, the Monte Carlo simulated annealing (MCSA) [32] and the Sniffer
global optimization (SGO) [3] heuristics used Eq. 1 in a slightly different form,
with ε1 = 10−3 and ε2 = 0.

Table 3 lists the heuristics used in the comparison. We chose these heuristics
because each was tested with most, if not all, of the test functions considered
in this paper. Table 4 displays the results of the heuristics for the functions
on which they were tested (a ‘–’ in the table indicates that a function was not
used in testing a heuristic). For each test function/heuristic pair, the first entry

1 In the single C-GRASP run where the closeness criterion was not met in fewer than
NumTimesToRun restarts, we used the total time of the run in the average time computation.

Global optimization by continuous grasp

denotes the percentage of runs significantly close to the global optimum, the
second entry denotes the average number of function evaluations, and for the
C-GRASP heuristic, the third entry is the average time (in seconds) needed to
find a solution satisfying termination criterion 1.

With respect to percentage of runs significantly close to the global optimum,
it is clear that C-GRASP outperforms the other heuristics. It is understandable
that C-GRASP, on average, performs more function evaluations than the other
algorithms – the C-GRASP construction phase performs a high number of func-
tion evaluations, and the C-GRASP heuristic uses neither a priori information
about the functions, nor derivative information. As stated in [1], “In a black
box situation where (virtually) no a priori information is available about the
structure of the optimization problem, a large number of function evaluations
is required before the location of the global optimum can be specified with con-
fidence.” However, despite the high number of function evaluations, Table 4
shows that the C-GRASP heuristic is still quite fast, i.e., taking at most a few
seconds to converge.

3.3 Robot kinematics application

We consider next a problem from robot kinematics [10,17,31]. We are given a
six-revolute manipulator (rigid bodies, or links, connected together by joints,
with each link connected to no more than two others), with the first link desig-
nated the base, and the last link designated the hand of the robot. The problem
is to determine the possible positions of the hand, given that the joints are
movable. In [31], this problem is reduced to solving a system of eight nonlinear
equations in eight unknowns. While this might seem like a simple task, Floudas
et al. [10] state that “this is a challenging problem.” Let us write the unknowns
as x = {x1, . . . , x8} ∈ [−1, 1]8 and the equations as f1(x), . . . , f8(x) (the interested
reader is directed to [10,17] for the actual equations). With this system, we form
the optimization problem

Find x∗ = argmin{F(x) =
8∑

i=1

f 2
i (x) | x ∈ [−1, 1]8}. (2)

Since F(x) ≥ 0 for all x ∈ [−1, 1]8, it is easy to see that F(x) = 0 ⇐⇒ fi(x) = 0
for all i ∈ {1, . . . , 8}. Hence, we have the following: ∃ x∗ ∈ [−1, 1]8
 F(x∗) =
0 �⇒ x∗ is a global minimizer of problem 2 and x∗ is a root of the system
of equations f1(x), . . . , f8(x). From [10,17], in the given domain, there are 16
known roots to this system. However, solving problem (2) 16 times using
C-GRASP (or any heuristic, for that matter) with different starting solutions
gives no guarantee of finding all 16 roots. It is entirely possible that some of the
roots would be found multiple times, while others would not be found at all.

To avoid this, we modified the objective function F(x). Suppose that heuris-
tic has just found the kth root (roots are denoted x1, . . . , xk). Then the main
C-GRASP will restart, with the modified objective function given by

M. J. Hirsch et al.

F(x) =
8∑

i=1

f 2
i (x) + β

k∑

j=1

e−‖x−xj‖χρ(‖x − xj‖), (3)

where

χρ(δ) =
{

1 if δ ≤ ρ

0 otherwise
(4)

β is a large constant, and ρ is a small constant. This has the effect of creating an
area of repulsion near solutions that have already been found by the heuristic.

For this problem, we ran C-GRASP ten times (a different starting random
number seed for each run) with ρ = 1, β = 1010, andMaxItersNoImprov = 5.
In each case, the heuristic was able to find all 16 known roots. The average CPU
time needed to find the 16 roots was 3,048 s. We note that the aim of this exam-
ple is not to compare our approach with the one in [17], which makes use of
the gradient. Rather, we aim to show that for a challenging problem, where
derivative information can either be unavailable or too expensive to compute,
C-GRASP is robust enough to find the solution.

3.4 Chemical equilibrium systems

We now consider interactions and equilibrium of chemical systems. More spe-
cifically, we examine the combustion of propane (C3H8) in air (O2 and N2).
Meintjes and Morgan [23] provide the derivation of this chemical reaction. This
problem produces a system of ten nonlinear equations in ten unknowns. There
is one physical solution to this system in which all the variables are positive. Due
to the difficulty in finding this solution,Meintjes and Morgan [21–23] derive a
transformation to place the system in canonical form. The canonical form is a
system of five nonlinear equations in five unknowns.

For both systems, we formed an objective function as the sum of the squares
of the nonlinear equations. We ran the C-GRASP heuristic ten times (each run
with a different starting random number seed), with the parameter
MaxNumIterNoImprov set to 10. For the system in canonical form, C-GRASP
was successful on each run, i.e., the solution found had an objective value satisfy-
ing Eq.1, while for the more difficult original system, C-GRASP was successful
on eight of the ten runs. The average time for the canonical runs was 37.53 s,
while for the original system, C-GRASP took 201.58 s, on average. Meintjes
and Morgan [23] solve the canonical problem by using a variant of Newton’s
method (absolute Newton’s method), which requires the gradient of each equa-
tion in the system. They did not report their success on solving the original, more
difficult system.

Global optimization by continuous grasp

4 Concluding remarks

In this paper, we introduced a new metaheuristic called continuous GRASP, or
C-GRASP, for continuous global optimization. This is the first time the GRASP
metaheuristic for discrete combinatorial optimization has been modified for
the continuous setting. As seen in Sect. 2, the algorithm is easy to describe
and implement, whether on a single machine, or in a parallel architecture, and
is generally applicable to global optimization problems. In addition, it makes
use of neither derivative nor a priori information, making it an ideal solution
method for black-box problems.

While sometimes requiring many function evaluations, Sect. 3 shows that
for a set of standard test functions, the C-GRASP heuristic almost always con-
verges to the global optimum in a very short amount of time. This section also
shows the ability of C-GRASP to solve more challenging problems with real-
world applications, thus making it a well-suited approach for solving global
optimization problems from many fields of the physical sciences.

Acknowledgements AT&T Labs Research Technical Report: TD-6MPUV9. This work has been
partially supported by NSF, NIH, and CRDF grants. C.N. Meneses was supported in part by the
Brazilian Federal Agency for Higher Education (CAPES) – Grant No. 1797-99-9.

References

1. Anderssen, R.S.: Global optimization. In: Anderssen, R.S., Jennings, L.S., Ryan, D.M. (eds.)
Optimization, pp. 26–48. Queensland University Press, (1972)

2. Barhen, J., Protopopescu, V., Reister, D.: Trust: a deterministic algorithm for global optimiza-
tion. Science, 276, 1094–1097 (1997)

3. Butler, R.A.R., Slaminka, E.E.: An evaluation of the sniffer global optimization algorithm
using standard test functions. J. Comput. Phys. 99(1), 28–32 (1992)

4. Chen, L., Zhou, T., Tang, Y.: Protein structure alignment by deterministic annealing. Bioinfor-
matics 21(1), 51–62 (2005)

5. Cvijović D., Klinowski J.: Taboo search: an approach to the multiple minima problem. Science
267, 664–666 (1995)

6. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering
problem. Oper. Res. Lett. 8, 67–71 (1989)

7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global. Optim.
6, 109–133 (1995)

8. Festa, P., Resende, M.G.C.: GRASP: an annotated bibliography. In: Ribeiro, C.C., Hansen, P.,
(eds.) Essays and Surveys in Metaheuristics, pp. 325–367. Kluwer, Dordrecht (2002)

9. Floudas, C.A., Pardalos P.M.: A collection of test problems for constrained global optimization
algorithms. In: Goods, G., Hartmanis, J., (eds.) Lecture Notes in Computer Science, vol. 455.
Springer Berlin Heidelberg New York (1990)

10. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis,
J., Meyer, C., Schweiger C.: Handbook of Test Problems in Local and Global Optimization.
Kluwer, Dordrecht (1999)

11. Granvilliers, L., Benhamou, F.: Progress in the solving of a circuit design problem. J. Global
Optim. 20(2), 155–168 (2001)

12. Hedar, A.R., Fukushima, M.: Hybrid simulated annealing and direct search method for non-
linear unconstrained global optimization. Optim. Methods Softw. 17, 891–912 (2002)

13. Hedar, A.R., Fukushima M.: Minimizing multimodal functions by simplex coding genetic algo-
rithms. Optim. Methods Softw. 18, 265–282, (2003)

14. Hedar, A.R., Fukushima, M.: Tabu search directed by direct search methods for nonlinear
global optimization. Eur. J. Oper. Res. 170, 329–349 (2006)

M. J. Hirsch et al.

15. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd Revised Edition.
Springer Berlin Heidelberg New York (1993)

16. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Dordrecht
2nd edn. (2000)

17. Kearfott, R.B.: Some tests of generalized bisection. ACM Trans. Math. Softw. 13(3), 197–220
(1987)

18. Koon, G.H., Sebald, A.V.: Some interesting test functions for evaluating evolutionary program-
ming strategies. In Proceedings of the Fourth Annual Conference on Evolutionary Program-
ming, pp. 479–499 (1995)

19. Krokhmal, P., Murphey, R., Pardalos, P.M., Uryasev, S., Zrazhevsky, G.: Robust decision mak-
ing: addressing uncertainties in distributions. In: Butenko, S., Murphey, R., Pardalos, P.M.: (eds.)
Cooperative Control: Models, Applications, and Algorithms, pp. 165–185. Kluwer Dordrecht
(2003)

20. Krokhmal, P., Murphey, R., Pardalos, P.M., Uryasev, S.: Use of conditional value-at-risk in sto-
chastic programs with poorly defined distributions. In: Butenko, S., Murphey, R., Pardalos, P.M.,
(eds.) Recent Developments in Cooperative Control and Optimization, pp. 225–243. Kluwer
Dordrecht (2004)

21. Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl.
Math. Comput. 22, 333–361 (1987)

22. Meintjes, K., Morgan, A.P.: Element variables and the solution of complex chemical equilibrium
problems. Combust. Sci. Technol. 68, 35–48 (1989)

23. Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM
Trans. Math. Softw. 16(2), 143–151 (1990)

24. Pardalos, P.M., Resende, M.G.C.: (eds.) Handbook of Applied Optimization. Oxford University
Press, New York (2002)

25. Park, S., Miller, K.: Random number generators: good ones are hard to find. Commun ACM
31, 1192–1201 (1988)

26. Pham, D.T., Karaboga, D.: Intelligent Optimization Techniques: Genetic Algorithms, Tabu
Search, Simulated Annealing, and Neural Networks. Springer Berlin Heidelberg New York
(2000)

27. Ratschek, H., Rokne, J.: Experiments using interval analysis for solving a circuit design problem.
J. Global Optim. 3(3), 501–518 (1993)

28. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer Dordrecht (2003)

29. Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced simulated annealing for globally mini-
mizing functions of many continuous variables. ACM Trans. Math. Softw. 23(2), 209–228 (1997)

30. Trafalis, T.B., Kasap, S.: A novel metaheuristics approach for continuous global optimization.
J. Global Optim. 23, 171–190 (2002)

31. Tsai, L.W., Morgan, A.P.: Solving the kinematics of the most general six- and five-degree-of-
freedom manipulators by continuation methods. J. Mech. Transm. Autom. Des. 107, 189–200
(1985)

32. Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over
continuous variables. J. Comput. Phys. 56, 259–271 (1984)

33. Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science,
285, 1368–1372 (1999)

34. Yang, J.-M., Kao, C.Y.: A combined evolutionary algorithm for real parameters optimiza-
tion. In: Proceedings of the IEEE International Conference on Evolutionary Computation,
pp. 732–737, (1996)

35. Zabarankin, M., Uryasev, S., Murphey, R.: Aircraft routing under the risk of detection. Naval
Res. Logist. (2006), accepted for publication

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

