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ABSTRACT. The field of computer vision has experienced rapid growth over the past fifty
years. Many computer vision problems have been solved usingtheory and ideas from
algebraic projective geometry. In this paper, we look at a previously unsolved problem
from object recognition, namely object recognition when the correspondences between the
object and image data are not knowna priori. We formulate this problem as a mixed-
integer nonlinear optimization problem in terms of the unknown projection relating the
object and image, as well as the unknown assignments of object points and lines to those
in the image. The global optimum of this problem recovers therelationship between the
object points and lines with those in the image. When certainassumptions are enforced
on the allowable projections mapping the object into the image, a proof is provided which
permits one to solve the optimization problem via a simple decomposition. We illustrate
this decomposition approach on some example scenarios.

1. INTRODUCTION

In the foreword of Hartley and Zisserman (2000, p. xi), Faugeras writes “making a com-
puter see was something that leading experts in the field of artificial intelligence thought
to be at the level of difficulty of a summer student’s project back in the sixties. Forty
years later the task is still unsolved and seems formidable.” One of the main reasons for
this is that the biological vision and recognition process is still largely unknown and there-
fore hard to emulate on computers. The field of computer vision has grown out of the
research directed towards “making a computer see.” The past15 years has seen a number
of published books and articles presenting a mathematical framework for computer vision,
considering problems from the perspective of algebraic projective geometry and invariant
theory (Faugeras, 1993; Faugeras and Luong, 2001; Grosshans, 2005; Hartley and Zisser-
man, 2000; Ma et al., 2004). In this paper, we consider one of the still unsolved problems
in computer vision, namely that of object recognition with unknown correspondence.

The general object recognition problem can be stated as follows: Suppose an object is
represented by a set of m1 points and n1 lines. Given a picture with m2 points and n2 lines,
does the picture contain an image of the object, under a projective transformation (i.e.,
pinhole camera)?Solutions to this problem have been derived when the correspondence
between the object points and lines with those in the pictureare known and the scenario is
noise-free (Gleeson et al., 2003; Grosshans, 2005; Hartleyand Zisserman, 2000). However,
when the correspondence is not known, and when noise is present in the image data, this
problem becomes quite difficult to solve.
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There have been some attempts to solve this object recognition problem when certain
simplifying assumptions are enforced (e.g., intensity of image points are known and in-
variant across images (Chai and Ma, 1998; Hartley and Zisserman, 2000; Ma et al., 2004),
errors are not dealt with directly in the problem formulation (Cheng et al., 1996; Scott and
Longuet-Higgins, 1991; Shapiro and Brady, 1992), the correspondence is already known,
and an inlier set is sought to determine the “best” resultingtransformation (Chai and Ma,
1998; Hartley and Zisserman, 2000; Ma et al., 2004)). One approach in particular is the
Random Sample Consensus (RANSAC) method (Fischler and Bolles, 1981). RANSAC
begins by finding a minimal set of points which adequately fit to a prescribed model (i.e.,
an inlier set), and then enlarging the set of points according to those that also fit the re-
sultant model. One of the main drawbacks to this approach is the potential combinatorial
explosion in choosing minimal subsets of points. The authors apply the RANSAC algo-
rithm to the location determination problem, but assume as input known correspondences
between the 3-D and 2-D points.

Cass (1998) presents an approach for matching geometric features of known 3-D objects
in 2-D images of a scene containing them. The geometric features consist of points, and
uncertainty is represented by linear inequalities. The approach Cass took was to determine
the maximal matching of point correspondences across the 3-D objects and 2-D images.
In addition, a linear combination method is developed in Yi and Wang (2000) and Liu and
Wang (1996) for the recognition of 3-D objects from 2-D images, and the objects can be
articulated, which means that the object can morph in shape (e.g., a box with the top that
opens – the image could have the top closed, partially open, or completely open). This
approach stores a sample set of 2-D images of the object, fromdifferent perspectives. A
linear combination of the stored 2-D images is formed and compared against the input
image. If the comparison does not exceed a threshold, then the 2-D image is said to be that
of the object. Of note is that the correspondence problem is not taken into account.

In this paper, we formulate the object recognition problem for points and lines as a
mixed-integer nonlinear optimization problem. In particular, we derive equations for point
and line correspondence directly accounting for possible noise in the image data. Using
a specific type of pinhole camera, we provide a proof by which the optimization problem
can be solved via a decomposition technique. This decomposition approach first solves
a continuous non-convex global optimization problem to recover the camera parameters
(i.e., projection matrix), and then solves a linear assignment problem to determine the
correspondence between the 3-D points and lines with those in the image.

This paper is set up as follows. In Section 2, we derive equations for the point and line
correspondences, explicitly accounting for noise in the image data, and provide a mixed-
integer nonlinear optimization formulation for the objectrecognition problem. Section 3
details the decomposition approach to solve the optimization problem derived in Section 2.
In Section 4, we discuss a new heuristic for continuous global optimization. This heuristic
is utilized in the first step of the decomposition technique for the scenarios considered in
the computational study (Section 5). Concluding remarks are provided in Section 6.

2. OBJECT RECOGNITION PROBLEM FORMULATION

In this section we begin by deriving equations that will be satisfied for 3-D to 2-D
point and line correspondences when error is not present. Wethen alter these equations
to explicitly account for possible uncertainty in the imagepoints and lines, and provide a
mixed-integer nonlinear optimization formulation. We begin with some notation that will
be used throughout this paper.
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Let α = {α1, . . . ,αm1,α′1, . . . ,α′n1
} represent a three-dimensional object, i.e., an un-

ordered collection ofm1 points andn1 lines (without loss of generality, let the unprimedα’s
represent the points and the primedα’s represent the lines). Letβ = {β1, . . . ,βm2,β′1, . . . ,β

′
n2
}

represent a two-dimensional picture, i.e., an unordered collection ofm2 points andn2 lines
(without loss of generality, let the unprimedβ’s represent the points and the primedβ’s
represent the lines). For convenience, we represent the 3-Dobject and 2-D image in ho-
mogeneous coordinates (Gleeson et al., 2003; Grosshans, 2005; Hartley and Zisserman,
2000; Semple and Kneebone, 1952). Therefore, the 3-D point{x,y,z} is represented as
the column vector{x,y,z,1}T and the 2-D point{u,v} is represented as the column vector
{u,v,1}T. An image formed by a pinhole camera (i.e., projective transformation) can then
be represented as a projection from four-dimensional spaceto three-dimensional space,
i.e., as a 3×4 matrix having 9 degrees of freedom (Hartley and Zisserman,2000). Assume
thatΩ = [Ωi j ] is such a matrix.

2.1. Point equation derivation. For an object pointαi = {xi ,yi ,zi , r i}
T to correspond

with the point in the pictureβ j = {u j ,v j ,wj}
T , usingΩ as the camera, it must be true that

Ωαi = ci j β j , for someci j 6= 0, whereci j is needed to compensate for the invariance of
homogeneous coordinates across scale. If we assume thatwj 6= 0 andΩαi does not have
its third coordinate equal to 0 (i.e.,Ω31xi + Ω32yi + Ω33zi + Ω34r i 6= 0), thenΩαi = ci j β j

is equivalent to the system of equations

Ω11xi + Ω12yi + Ω13zi + Ω14r i

Ω31xi + Ω32yi + Ω33zi + Ω34r i
−

u j

wj
= 0(1)

Ω21xi + Ω22yi + Ω23zi + Ω24r i

Ω31xi + Ω32yi + Ω33zi + Ω34r i
−

v j

wj
= 0.(2)

Note that these assumptions onwj and the third coordinate ofΩαi can be enforced in a
straightforward manner (Gleeson et al., 2003; Grosshans, 2005).

If Ω̂αi denotes the non-homogeneous representation ofΩαi and β̂ j denotes the non-
homogeneous representation ofβ j , then the system of equations (1) - (2) is equivalent to
the vector equationti j ≡ Ω̂αi− β̂ j = 0, which is equivalent to‖ti j ‖2 = 0. Hence, whenαi

andβ j correspond through the projectionΩ, the Euclidean distance between̂Ωαi andβ̂ j

will be 0.
Suppose now that the non-homogeneous image pointβ̂ j has some noise, or uncertainty,

associated with it. This uncertainty can be represented as a2× 2 covariance matrixCj ,
which we assume is positive semi-definite. Then, even whenαi andβ j correspond through
the projectionΩ, the Euclidean distance between̂Ωαi andβ̂ j might not be 0. This is due
precisely to the uncertainty involved. To account for the uncertainty in the image point,
we generalize the Euclidean distance‖ti j‖2 to the Mahalanobis distancetT

i j C
−1
j ti j (Hartley

and Zisserman, 2000). When this uncertainty is Gaussian in nature (it is generally assumed
to be), then we can consider the Gaussian probability density function as representing the
likelihood

Fi j (Ω) =
1

2π
√

|Cj |
e−

1
2 tTi j C

−1
j ti j

of αi andβ j corresponding through the projectionΩ.

2.2. Line equation derivation. Let α′k be the object line through the two points

Pk1 = {xk1,yk1,zk1, rk1}
T andPk2 = {xk2,yk2,zk2, rk2}

T .
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It is clear thatα′k is defined uniquely by any two distinct points incident toα′k. Letβ′ℓ be the
image line represented asβ′ℓ = {aℓ,bℓ,cℓ}

T , where a two-dimensional homogeneous point
q = {u,v,w}T is incident toβ′ℓ if and only if qTβ′ℓ = uaℓ + vbℓ + wcℓ = 0. Thenα′k and
β′ℓ correspond through the projectionΩ precisely when bothΩPk1 andΩPk2 are incident
to β′ℓ, i.e., when(ΩPk1)

Tβ′ℓ = 0 and(ΩPk2)
Tβ′ℓ = 0. Unfortunately, this approach does

not generalize to the case where there is error associated with the lineβ′ℓ, as these two
equations are not metric oriented. Therefore, we will look at the line case from a different
perspective.

For s∈ {1,2}, let Ω̂Pks = {uks,vks,1}T denote the non-homogeneous representation of
ΩPks, where

uks =
Ω11xks+ Ω12yks+ Ω13zks+ Ω14rks

Ω31xks+ Ω32yks+ Ω33zks+ Ω34rks
,

vks =
Ω21xks+ Ω22yks+ Ω23zks+ Ω24rks

Ω31xks+ Ω32yks+ Ω33zks+ Ω34rks
.

It can be shown (Boyce and DiPrima, 1988) that the non-homogeneous point incident to
β′ℓ that is closest toΩ̂Pks is given by

δ̂ksℓ = {
b2

ℓuks−aℓbℓvks−aℓcℓ

a2
ℓ +b2

ℓ

,
a2

ℓvks−aℓbℓuks−bℓcℓ

a2
ℓ +b2

ℓ

}T .

Definingtksℓ = δ̂ksℓ−Ω̂Pks, then we again have, in the error-free case,α′k andβ′ℓ correspond
through the projectionΩ precisely when bothtk1ℓ = 0 andtk2ℓ = 0, i.e., precisely when
‖tk1ℓ‖2 = ‖tk2ℓ‖2 = 0. Hence, whenα′k andβ′ℓ correspond through the projectionΩ, the
Euclidean distances from̂ΩPk1 to δ̂k1ℓ and fromΩ̂Pk2 to δ̂k2ℓ will both be 0.

Suppose now that each non-homogeneous point on the image line β′ℓ has some noise,
or uncertainty, associated with it. Again, represent this uncertainty by a 2×2 covariance
matrixCℓ. Therefore, botĥδk1ℓ andδ̂k2ℓ have an associated covariance matrixCℓ. With this
uncertainty being Gaussian in nature we can form the likelihood

F̄kℓ(Ω) =
1

2π
√

|Cℓ|
e−

1
2 (tTk1ℓC

−1
ℓ tk1ℓ+tTk2ℓC

−1
ℓ tk2ℓ)

of α′k andβ′ℓ corresponding through the projectionΩ.

2.3. Problem formulation. In addition to the unknown projection matrix,Ω, we also
need to determine the correspondence between the 3-D and 2-Dpoints and lines. Hence,
for each possible 3-D pointαi and 2-D pointβ j , we define a binary variableψi j to denote
whetherαi andβ j should be in correspondence. We similarly define binary variablesφkℓ

to denote whether the 3-D lineα′k and 2-D lineβ′ℓ should be in correspondence. The object
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recognition problem formulation is then given by

min
Ω,ψ,φ

f (Ω,ψ,φ) =−
m1

∑
i=1

m2

∑
j=1

ψi j Fi j (Ω)−
n1

∑
k=1

n2

∑
ℓ=1

φkℓF̄kℓ(Ω)(3)

s.t.
m1

∑
i=1

ψi j ≤ 1 ∀ j ∈ {1, . . . ,m2}(4)

m2

∑
j=1

ψi j ≤ 1 ∀ i ∈ {1, . . . ,m1}(5)

n1

∑
k=1

φkℓ ≤ 1 ∀ ℓ ∈ {1, . . . ,n2}(6)

n2

∑
ℓ=1

φkℓ ≤ 1 ∀ k∈ {1, . . . ,n1}(7)

ψi j ∈ {0,1} ∀ i ∈ {1, . . . ,m1},∀ j ∈ {1, . . . ,m2}(8)

φkℓ ∈ {0,1} ∀ k∈ {1, . . . ,n1},∀ ℓ ∈ {1, . . . ,n2}(9)

Ω ∈W,(10)

whereW is the space of projective transformations. Note that constraints (4), (5), and (8)
ensure that each 3-D (2-D) point will have at most one corresponding 2-D (3-D) point, and
similarly constraints (6), (7), and (9) ensure that each 3-D(2-D) line will have at most one
corresponding 2-D (3-D) line.

3. PROBLEM DECOMPOSITION

A general pinhole camera,Ω, can be represented byΩ = K[R|t], whereK is an internal
camera calibration matrix (of size 3× 3, with 3 degrees of freedom (dof(K) = 3)), R is
a 3-D rotation matrix (of size 3× 3, with dof(R) = 3), and t is a translation vector (of
size 3×1, with dof(t) = 3) (Hartley and Zisserman, 2000). WhenK is set to the identity
matrix, then the resulting projection matrixΩ preserves distances between points. In what
follows, we make use of the following theorem.

Theorem 3.1. Let f̃ (Ω) =−∑m1
i=1 ∑m2

j=1Fi j (Ω)−∑n1
k=1 ∑n2

ℓ=1 F̄kℓ(Ω) and Np
c (Nq

c ) represent
the truthful number of point (line) correspondences between the object and image. Suppose
the following: i) Ω preserves distances between points, i.e.,‖x− y‖2 = ‖Ω(x)−Ω(y)‖2;
ii) Nc = Np

c + Nq
c ≥ dof(Ω); and iii) The object point and line geometry is sufficiently

random.
Then, in the case where there is no noise in the image (i.e., covariance matrices are

0), theΩ that minimizesf̃ (Ω) is precisely theΩ mapping the points and lines of the 3-D
object onto their truthful correspondences in the image.



6 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

Proof. Let f̃ ′(Ω) equal f̃ (Ω) when no random noise is present in the image. Then

f̃ ′(Ω) = lim
Cj→0∀ j
Cℓ→0∀ ℓ

f̃ (Ω)

= lim
Cj→0∀ j
Cℓ→0∀ ℓ

[

−
m1

∑
i=1

m2

∑
j=1

Fi j (Ω)−
n1

∑
k=1

n2

∑
ℓ=1

F̄kℓ(Ω)
]

=−
m1

∑
i=1

m2

∑
j=1

lim
Cj→0 ∀ j

Fi j (Ω)−
n1

∑
k=1

n2

∑
ℓ=1

lim
Cℓ→0 ∀ ℓ

F̄kℓ(Ω)

=−
m1

∑
i=1

m2

∑
j=1

δ(‖ti j‖
2)−

n1

∑
k=1

n2

∑
ℓ=1

δ(‖tkℓ‖
2)

whereδ(x) is the Dirac-delta, or unit-impulse, function, i.e.,δ(x− a) = 0 if x 6= a and
R ∞
−∞ δ(x)dx = 1 (Dirac, 1926; Greenberg, 1988).

Now, Nc = Np
c + Nq

c ≤ min[m1,m2] + min[n1,n2]. Without loss of generality, assume
that the firstNp

c object points correspond with the firstNp
c image points and the firstNq

c

object lines correspond with the firstNq
c image lines.

For eachi ∈ {1, . . . ,m1}, j ∈ {1, . . . ,m2}, let Ωi j = {Ω ∈W | β̂ j = Ω̂αi}. Similarly, for
eachk∈ {1, . . . ,n1}, ℓ ∈ {1, . . . ,n2}, let Ω̌kℓ = {Ω ∈W | (ΩPk1)

Tβ′ℓ = 0, (ΩPk2)
Tβ′ℓ = 0,

Pk1 andPk2 distinct points incident toα′k}. Since there is no random noise andNc≥dof(Ω),

Ω̄ =
[

∩
i∈{1,...,Np

c }
Ωii

]

T

[

∩
k∈{1,...,Nq

c }
Ω̌kk

]

is well-defined and unique.

Choose any sets of pairs{{i1, j1}, . . . ,{ir , jr}} and{{k1, ℓ1}, . . . ,{ks, ℓs}} with the fol-
lowing properties:
a) it ∈ {1, . . . ,m1} ∀ t ∈ {1, . . . , r} andi1, . . . , ir are distinct;
b) jt ∈ {1, . . . ,m2} ∀ t ∈ {1, . . . , r} and j1, . . . , jr are distinct;
c) kt ∈ {1, . . . ,n1} ∀ t ∈ {1, . . . ,s} andk1, . . . ,ks are distinct;
d) ℓt ∈ {1, . . . ,n2} ∀ t ∈ {1, . . . ,s} andℓ1, . . . , ℓs are distinct;
e) r +s≥ do f(Ω);

f)
(

∃ t ∈ {1, . . . , r} ∋ it 6= jt
)

∨
(

∃ t ∈ {1, . . . ,s} ∋ kt 6= ℓt

)

;

Since the 3-D point and line geometry is sufficiently random,

P(
[

∩
t∈{1,...,r}

Ωit jt

]

\

[

∩
t∈{1,...,s}

Ω̌ktℓt

]

= /0) = 1.

Therefore, for any sets of pairs{{i1, j1}, . . . ,{ir , jr}} and{{k1, ℓ1}, . . . ,{ks, ℓs}} satisfying
the above conditions a) through f), the probability that there exists anΩ projecting each
of the 3-D pointsαit onto the 2-D pointsβ jt (t = 1, . . . , r) and each of the 3-D linesα′kt

onto the 2-D linesβ′ℓt
(t = 1, . . . ,s) is zero. Hence, the global minimum off̃ ′(Ω) occurs

at Ω = Ω̄, i.e., at theΩ mapping theNp
c 3-D points andNq

c 3-D lines onto their truthful
correspondences. �

Theorem 3.1 provides the basis of our decomposition approach. When there is no noise
present in the image we can solve the optimization Problem (3) - (10) by first finding the
Ω that minimizes f̃ (Ω). Projecting all the 3-D points and lines onto the image via the
recoveredΩ, the second step is to apply a linear assignment algorithm todetermine the
3-D to 2-D point and line correspondences. This is differentfrom the RANSAC approach
(Fischler and Bolles, 1981) in that we do not make use of known(or assumed) 3-D to
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2-D point/line correspondences in order to determine a potential projection matrix. The
global minimum of the objective function (3), as shown in Theorem 3.1, in the absence
of noise and degenerate point/line configurations, occurs at the mode of the potential pro-
jection matrices, which is precisely the truthful projection matrix. We make note of the
following. First, f̃ (Ω) is non-convex inΩ, and while there exist algorithms for finding a
local minimumin a finite number of iterations, it is well known that finding the global min-
imum is inherently unsolvable in a finite number of steps (Boender and Romeijn, 1995;
Zhan, 2005). Second, in practice, there is normally some noise in the image data, thus
making the global minimum of̃f (Ω), only an approximation to the true projection ma-
trix. To solve the first step in the decomposition approach, we make use of a new global
optimization heuristic, Continuous GRASP, or simply C-GRASP, as detailed in Section
4. The linear assignment algorithm used for the second step of the decomposition is an
implementation of the JVC algorithm (Jonker and Volgenant,1987).

In summary, the decomposition approach we propose to solve Problem (3) - (10) is
given by:

(1) Use the C-GRASP heuristic to find theΩ that minimizesf̃ (Ω).
(2) Apply the JVC linear assignment algorithm to determine the association between

the 3-D points and lines with those in the image.

4. CONTINUOUS GRASP

Feo and Resende (1989; 1995) describe the metaheuristic GRASP (greedy random
adaptive search procedures) as a multi-start local search procedure, where each GRASP
iteration consists of two phases, a construction phase and alocal search phase. In the con-
struction phase, interactions between greediness and randomization generate a diverse set
of good-quality solutions. The local search phase attemptsto improve the solutions found
by construction. The best solution over all of the multi-start iterations is retained as the
final solution.

Hirsch et al. (2007b) describe C-GRASP, an adaptation of GRASP to solve continuous
global optimization problems (see also Hirsch (2006)). C-GRASP works by discretizing
the domain into a uniform grid. Both the construction and local improvement phases move
along points on the grid. As the algorithm progresses, the grid adaptively becomes more
dense. C-GRASP resembles GRASP in that it is a multi-start stochastic search metaheuris-
tic that uses a randomized greedy construction procedure togenerate starting solutions for
a local improvement algorithm. The main difference is that an iteration of C-GRASP does
not consist of a single greedy randomized construction followed by local improvement, but
rather a series of construction-local improvement cycles with the output of construction
serving as the input of the local improvement, as in GRASP. Unlike GRASP, however, the
output of the C-GRASP local improvement procedure serves asthe input of the C-GRASP
construction procedure.

Hirsch et al. (2010) proposed modifications to the original C-GRASP algorithm, result-
ing in a significant decrease in the number of objective function evaluations required to
converge to the global optimum. The modified C-GRASP heuristic was applied to a sensor
registration problem in Hirsch et al. (2006), which is similar to the object recognition prob-
lem considered presently. It was also used to solve systems of non-linear equations (Hirsch
et al., 2009) and to determine the relationship between drugs and adverse reactions (Hirsch
et al., 2007a). In the remainder of this section, we detail this version of the C-GRASP
heuristic.



8 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

procedure C-GRASP(n, ℓ,u, f (·),MaxRS,hs,he,ρlo)
1 f ∗← ∞;
2 for j = 1, . . . ,MaxRS do
3 x← UnifRand(ℓ,u);
4 h← hs;
5 while h≥ he do
6 ImprC← false;
7 ImprL← false;
8 [x,ImprC]← ConstructGreedyRandomized(x, f (·),n,h, ℓ,u,ImprC);
9 [x,ImprL]← LocalImprovement(x, f (·),n,h, ℓ,u,ρlo,ImprL);
10 if f (x) < f ∗ then
11 x∗← x;
12 f ∗← f (x);
13 end if
14 if ImprC = false and ImprL = false then
15 h← h/2; /* make grid more dense */
16 end if
17 end while
18 end for
19 return(x∗);
end C-GRASP;

FIGURE 1. Pseudo-code for C-GRASP.

4.1. The heuristic. Pseudo-code for the C-GRASP heuristic is shown in Figure 1. The
procedure takes as input the problem dimensionn, lower and upper bound vectorsℓ and
u, the objective functionf (·), as well as the parametersMaxRS, hs, he, andρlo. MaxRS

defines the number of multi-starts to perform in the C-GRASP algorithm,hs andhe define
the starting and ending discretization levels for each multi-start, andρlo defines the portion
of the neighborhood of the current solution that is searchedduring the local improvement
phase of the algorithm.

Line 1 of the pseudo-code initializes the objective function value f ∗ of the best solution
found to infinity. We performMaxRS independent multi-starts. For each multi-start, Line 3
initializes the solutionx to a random point distributed uniformly over the box inR

n defined
by ℓ andu. The parameterh, that controls the discretization density of the search space, is
initialized tohs in line 4. The code sequentially executes lines 6 to 16 as longash≥ he.
The construction and local improvement phases are then called in lines 8 and 9, respec-
tively. The solution returned from the local improvement procedure is compared against
the current best solution in line 10. If the returned solution has a smaller objective value
than the current best solution, then, in lines 11– 12, the current best solution is updated with
the returned solution. In line 14, if the variablesImprC andImprL are still set tofalse,
then the grid density is increased by halvingh, in line 15. The variableImprC is false
upon return from the construction procedure if and only if noimprovement is made in the
construction phase. Section 4.3 shows that theImprL variable isfalse on return from
the local improvement procedure if and only if the input solution to local improvement is
determined to be anh-local minimum. We increase the grid density at this stage because
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repeating the construction procedure with the same grid density will not improve the solu-
tion. This approach allows C-GRASP to start with a coarse discretization and adaptively
increase the density as needed, thereby intensifying the search in a more dense discretiza-
tion when a good solution has been found. The best solution found, at the end of theMaxRS
multi-starts, is returned in line 19.

4.2. Construction procedure. In this section, we describe in detail the construction pro-
cedure. The construction algorithm combines greediness and randomization to produce a
diverse set of good-quality solutions from which to start the local improvement phase. The
construction algorithm is shown in Figure 2. The input is a solution vectorx. To start,
line 1 of the algorithm allows all coordinates ofx to change in the current construction
call (i.e. these coordinates are unfixed). In turn, in line 10of the pseudo-code, ifReUse is
false, a line search is performed in each unfixed coordinate direction i of x with the other
n−1 coordinates ofx held at their current values. In lines 10 and 11 of the pseudo-code,
the valuezi for the i-th coordinate that minimizes the objective function, together with the
objective function valuegi, are saved. In line 11, ˇxi denotesx with the i-th coordinate set
to zi .

After looping through all unfixed coordinates (lines 7–16),in lines 17–23 a restricted
candidate list (RCL) is formed containing the unfixed coordinatesi whosegi values are
less than or equal to g

¯
+ α · (ḡ− g

¯
), whereḡ and g

¯
are, respectively, the maximum and

minimumgi values over all currently unfixed coordinates ofx, andα ∈ [0,1] is randomly
determined in line 2. In line 24, a coordinate is chosen at random from theRCL, say
coordinatej ∈ RCL. Line 25 checks whetherx j andzj are equal. If so, line 26 setsReUse
to the valuetrue. Otherwise, in lines 28–30,ReUse is set tofalse, ImprC is set totrue,
andx j is set to equalzj . Finally, in line 30, we fix coordinatej of x, by removingj from
the setUnFixed. Choosing a coordinate by selecting at random from theRCL ensures both
greediness and randomness in the construction phase. The above procedure is continued
until all of then coordinates ofx have been fixed. At that stage,x andImprC are returned
from the construction procedure.

Note that theReUse variable is utilized to speed up computations by avoiding unnec-
essary line searches. More details can be found in Hirsch et al. (2010). The parameterα
controls the size of theRCL and therefore determines the mix of greediness and random-
ness in the construction procedure. Different values ofα throughout the run allow some
construction phases to be more greedy while others to be morerandom.

4.3. Local improvement procedure. C-GRASP makes no use of derivatives. Though
derivatives can be easily computed for many functions, theyare not always available or
efficiently computable for all functions. The local improvement phase (with pseudo-code
shown in Figure 3) can be seen asapproximatingthe role of the gradient of the objective
function f (·). From a given input pointx∈R

n, the local improvement algorithm generates
a neighborhood, and determines at which points in the neighborhood, if any, the objective
function improves. If an improving point is found, it is madethe current point and the local
search continues from the new solution.

Let x̄ ∈ R
n be the current solution andh be the current grid discretization parameter.

Define

Sh(x̄) = {x∈ S| ℓ≤ x≤ u, x = x̄+ τ ·h, τ ∈ Z
n}

to be the set of points inS that are integer steps (of sizeh) away fromx̄. Let

Bh(x̄) = {x∈ S| x = x̄+h · (x′− x̄)/‖x′− x̄‖, x′ ∈ Sh(x̄)\ {x̄}}
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procedure ConstructGreedyRandomized(x, f (·),n,h, ℓ,u,ImprC)
1 UnFixed←{1, . . . ,n};
2 α← UnifRand(0,1);
3 ReUse← false;
4 while UnFixed 6= /0 do
5 g

¯
←+∞;

6 ḡ←−∞;
7 for i = 1, . . . ,n do
8 if i ∈ UnFixed then
9 if ReUse= false then
10 zi ← LineSearch(x,h, i,n, f (·), ℓ,u);
11 gi ← f (x̌i);
12 end if
13 if g

¯
> gi then g

¯
← gi ;

14 if ḡ < gi then ḡ← gi ;
15 end if
16 end for
17 RCL← /0;
18 Threshold← g

¯
+ α · (ḡ−g

¯
);

19 for i = 1, . . . ,n do
20 if i ∈ UnFixed and gi ≤ Threshold then
21 RCL← RCL∪{i};
22 end if
23 end for
24 j ← RandomlySelectElement(RCL);
25 if x j = zj then
26 ReUse← true;
27 else
28 x j ← zj ;
29 ReUse← false;
30 ImprC← true;
31 end if
32 UnFixed← UnFixed\ { j}; /* Fix coordinate j. */
33 end while
34 return(x,ImprC);
end ConstructGreedyRandomized;

FIGURE 2. Pseudo-code for C-GRASP construction phase.

be the projection of the points inSh(x̄)\ {x̄} onto the hyper-sphere centered at ¯x of radius
h. Theh-neighborhoodof the pointx̄ is defined as the set of points inBh(x̄).

The local improvement procedure is given a starting solution x∈ S⊆ R
n. The current

best local improvement solutionx∗ is initialized tox in line 1. Lines 3 and 4 determine the
number of grid points, based on the current value of the discretization parameterh, and the
maximum number of points inBh(x∗) that are to be examined. This number of grid points
is defined by the parameterρlo which is the portion of the neighborhood which is to be
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procedure LocalImprovement(x, f (·),n,h, ℓ,u,ρlo,ImprL)
1 x∗← x;
2 f ∗← f (x);
3 NumGridPoints←∏n

i=1⌈(ui− ℓi)/h⌉;
4 MaxPointsToExamine←⌈ρlo ·NumGridPoints⌉;
5 NumPointsExamined← 0;
6 while NumPointsExamined≤ MaxPointsToExamine do
7 NumPointsExamined← NumPointsExamined+1;
8 x← RandomlySelectElement(Bh(x∗));
9 if ℓ≤ x≤ u and f (x) < f ∗ then
10 x∗← x;
11 f ∗← f (x);
12 ImprL← true;
13 NumPointsExamined← 0;
14 end if
15 end while
16 return(x∗, ImprL);
end LocalImprovement;

FIGURE 3. Pseudo-code for C-GRASP local improvement phase.

examined. If all of these points are examined and no improving point is found, the current
solutionx∗ is considered anh-local minimum.

Starting at the pointx∗, in the loop in lines 6–15, the algorithm randomly selects
MaxPointsToExamine points inBh(x∗), one at a time. In line 9, if the current pointx
selected fromBh(x∗) is feasible and is better thanx∗, thenx∗ is set tox, ImprL is set to
true, and the process restarts withx∗ as the starting solution.ImprL is used to determine
whether the local improvement procedure improved the best solution. Local improvement
is terminated when anh-local minimumsolutionx∗ is found. At that point,x∗ andImprL
are returned from the local improvement procedure.

5. COMPUTATIONAL STUDY

To illustrate our approach for solving the object recognition optimization problem (3) -
(10), we consider three classes of scenarios. Each class is designated by the number of
3-D and 2-D points and lines, as well as the number of truthful3-D to 2-D point and line
correspondences. The details for each scenario class are given in Table 1. This table lists
the number of 3-D points and lines, the number of 2-D points and lines, and the number
of true 3-D and 2-D point and line correspondences. For each class, we created 10 test
instances, in the following way. Each instance started witha randomly determined set of
3-D points and lines. A projection matrixΩtruth was also randomly chosen. Based on the
number of truthful correspondences between 3-D and 2-D points and lines, a subset of the
3-D points and lines were projected usingΩtruth, onto the 2-D image plane. Additional
2-D points and lines were added randomly to the image plane. All 2-D points and lines
were then subjected to Gaussian noise, with zero mean and standard deviation values from
the vector{0,0.1,0.2, . . . ,0.9,1.0}.

Each randomly generated scenario instance was input to the C-GRASP algorithm and
run for a fixed number of multi-starts. The C-GRASP parameters are listed in Table 2.
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TABLE 1. Object recognition scenario classes.

Scenario Points Lines
Class 3-D 2-D Num True Corr. 3-D 2-D Num True Corr.

1 15 12 10 - - -
2 - - - 16 13 10
3 6 9 5 5 10 4

TABLE 2. Object recognition C-GRASP parameters.

Number Multi-Starts 100
hs 0.10
he 0.01
ρlo 0.70

When the C-GRASP algorithm finished executing for a scenarioinstance, using the best
projection matrix found,Ωcomputed, the 3-D points and lines from the scenario instance
were projected onto the 2-D image plane, and the JVC linear assignment algorithm (Jonker
and Volgenant, 1987) was applied to determine the optimal assignment of 3-D points and
lines to those on the 2-D image plane.

We begin our discussion of the results by showing an example from Class 1. Tables 3
and 4 list the set of 15 3-D and 12 2-D points, respectively, for a particular instance from
the Class 1 data, when the noise level is set to 0.6. The first two columns of Table 5 present
the truthful correspondences between the 3-D object pointsand the 2-D image points. The
truthful projection matrix to project the 3-D object pointsonto their corresponding 2-D
image points is given by

Ωtruth =





0.391 0.583 −0.713 1.000
−0.882 0.015 −0.471 −3.558
−0.263 0.813 0.520 −0.767



 .

After running our algorithm (C-GRASP, along with JVC), we determined a projection
matrix of

Ωcomputed=





0.3975 0.5755 −0.7147 2.5375
−0.8689 −0.0144 −0.4949 −1.0250
−0.2951 0.8177 0.4943 −2.3750





and a 3-D to 2-D point correspondence as given in the first and third columns of Table 5.
In addition, Figure 4 displays the 3-D points, projected usingΩcomputedonto the 2-D image
plane, the 2-D points, and the computed correspondences (via a green dashed line). As can
be seen from the table and figure, for this test instance our approach determines the correct
correspondence of 9 of the 10 truthful.

Figures 5 – 7 display the average number of correspondences correctly determined for
the three classes. As can be seen from these figures, the overall trend is for our decomposi-
tion algorithm to perform better when there is not a lot of noise in the image, and degrade
gracefully as the noise increases. Further evidence for this claim is shown in Figures 8 –
10. These figures display the average distance between the 3-D points and lines, projected
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TABLE 3. Class 1 Example, 3-D object points.

Point x y z
1 −20 −49 9
2 −35 5 28
3 −20 43 −47
4 −50 39 35
5 −7 11 18
6 17 19 30
7 32 43 41
8 25 −5 −12
9 −34 −33 −3
10 5 11 −42
11 2 1 42
12 41 −14 17
13 −6 27 14
14 −46 32 49
15 46 −19 −1

TABLE 4. Class 1 Example, 2-D image points.

Point x y
A 1.36391260 −0.29771817
B −1.09763397 0.52575762
C 3.44958041 2.45901026
D −0.33330668 0.39606649
E −0.42118354 −0.29559591
F −0.10371727 −1.25394914
G 0.19888931 −1.07164390
H −0.92978162 1.13549158
I 1.45428633 −1.35456172
J −2.62180995 −0.79750469
K −0.01296734 2.41371005
L −1.91425568 1.01449136

TABLE 5. Class 1 Example - truthful and computed correspondences
between 3-D object points and 2-D image points. This can alsobe seen
in Figure 4.

Projected 2−D Correspondences
3−D Points Truthful Computed

1 − A
2 B B
3 − −
4 C C
5 E D
6 F F
7 − E
8 − −
9 H H
10 G G
11 I I
12 J J
13 − −
14 K K
15 L L
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FIGURE 4. Example Class 1 scenario. The squares represent the 3-D
points, projected onto the 2-D image plane usingΩcomputed. The circles
represent the 2-D image points. The solid lines represent the truthful
correspondences, and the dashed lines represent the computed corre-
spondences.

usingΩcomputedonto the 2-D image plane, and their truthful 2-D point and line correspon-
dences. Again we note that aside from some slight deviations, we see the trend of our
decomposition approach working quite well when the noise level is small, and degrading
as the noise level increases. As is clear from the figures, forall three scenario classes, the
decomposition approach performs quite well. Of note is thatadding lines to the scenario
seems to add significant complexity to the surface of the objective function, thus taking
longer for the C-GRASP algorithm to run to completion and longer on average to locate
approximate the correct solution, from a time and multi-start perspective.

6. CONCLUSIONS

In this paper, we have examined a problem from computer vision: the recognition of a
3-D object, represented by points and lines in an image, whenthe correspondence of points
and lines is not knowna priori. We have formulated this problem as a mixed-integer non-
linear optimization problem, explicitly accounting for possible noise in the 2-D data. For a
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FIGURE 5. Class 1 average number of correct correspondences com-
puted, as a function of noise level. Maximum possible correspondences
for this class is 10.

pinhole camera (with specific internal calibration parameters), we decomposed the mixed-
integer nonlinear optimization problem into a two step process of first determining the best
projection matrix transforming the 3-D points and lines onto the 2-D picture and then us-
ing a linear assignment algorithm to determine the correspondences between the points
and lines of the object and those of the image. Computationalstudies have shown that
this approach does a very good job of determining the correctprojection matrix and cor-
respondences. Future research will be geared towards reducing the time of the C-GRASP
heuristic, in an effort to make this approach suitable for a real-time system.
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puted, as a function of noise level. Maximum possible correspondences
for this class is 10.
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respondences, and the plot on the right is for the line correspondences.
Maximum possible point and line correspondences for this class is 5 and
4, respectively.
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