CORRESPONDENCE OF PROJECTED 3-D POINTS AND LINES USING A
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ABSTRACT. The field of computer vision has experienced rapid grow#r tive past fifty
years. Many computer vision problems have been solved ubegry and ideas from
algebraic projective geometry. In this paper, we look atevipusly unsolved problem
from object recognition, namely object recognition whes ¢orrespondences between the
object and image data are not knowarpriori. We formulate this problem as a mixed-
integer nonlinear optimization problem in terms of the umkn projection relating the
object and image, as well as the unknown assignments oftgtjéts and lines to those
in the image. The global optimum of this problem recoversrtdationship between the
object points and lines with those in the image. When cerasumptions are enforced
on the allowable projections mapping the object into thegeaa proof is provided which
permits one to solve the optimization problem via a simpleodgposition. We illustrate
this decomposition approach on some example scenarios.

1. INTRODUCTION

In the foreword of Hartley and Zisserman (2000, p. xi), Faagavrites “making a com-
puter see was something that leading experts in the fieldtiited intelligence thought
to be at the level of difficulty of a summer student’s projeatk in the sixties. Forty
years later the task is still unsolved and seems formidaBlee of the main reasons for
this is that the biological vision and recognition processtill largely unknown and there-
fore hard to emulate on computers. The field of computer wisias grown out of the
research directed towards “making a computer see.” Thelfiagears has seen a number
of published books and articles presenting a mathematialdwork for computer vision,
considering problems from the perspective of algebraigegtive geometry and invariant
theory (Faugeras, 1993; Faugeras and Luong, 2001; Gras<2@0b; Hartley and Zisser-
man, 2000; Ma et al., 2004). In this paper, we consider onbestill unsolved problems
in computer vision, namely that of object recognition wittknown correspondence.

The general object recognition problem can be stated amnsllSuppose an object is
represented by a set ofimoints and n lines. Given a picture with ppoints and n lines,
does the picture contain an image of the object, under a ptivje transformation (i.e.,
pinhole camera)?Solutions to this problem have been derived when the cooresgnce
between the object points and lines with those in the picoee&known and the scenario is
noise-free (Gleeson et al., 2003; Grosshans, 2005; Hamtleyisserman, 2000). However,
when the correspondence is not known, and when noise isrtriesthe image data, this
problem becomes quite difficult to solve.
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There have been some attempts to solve this object recogmitoblem when certain
simplifying assumptions are enforced (e.g., intensitynodge points are known and in-
variant across images (Chai and Ma, 1998; Hartley and Zisser2000; Ma et al., 2004),
errors are not dealt with directly in the problem formulat{€heng et al., 1996; Scott and
Longuet-Higgins, 1991; Shapiro and Brady, 1992), the apoadence is already known,
and an inlier set is sought to determine the “best” resultiagsformation (Chai and Ma,
1998; Hartley and Zisserman, 2000; Ma et al., 2004)). Onecgub in particular is the
Random Sample Consensus (RANSAC) method (Fischler an@®8dlPb81). RANSAC
begins by finding a minimal set of points which adequatelyofia torescribed model (i.e.,
an inlier set), and then enlarging the set of points accgrtinthose that also fit the re-
sultant model. One of the main drawbacks to this approadieipotential combinatorial
explosion in choosing minimal subsets of points. The awtlamply the RANSAC algo-
rithm to the location determination problem, but assumepatiknown correspondences
between the 3-D and 2-D points.

Cass (1998) presents an approach for matching geometicésaf known 3-D objects
in 2-D images of a scene containing them. The geometric fesittonsist of points, and
uncertainty is represented by linear inequalities. The@ggh Cass took was to determine
the maximal matching of point correspondences across fBeBjects and 2-D images.
In addition, a linear combination method is developed innél &/ang (2000) and Liu and
Wang (1996) for the recognition of 3-D objects from 2-D imggend the objects can be
articulated, which means that the object can morph in sheyge, @ box with the top that
opens — the image could have the top closed, partially opecompletely open). This
approach stores a sample set of 2-D images of the object, diffenent perspectives. A
linear combination of the stored 2-D images is formed andpamed against the input
image. If the comparison does not exceed a threshold, tlee2himage is said to be that
of the object. Of note is that the correspondence probleratitaken into account.

In this paper, we formulate the object recognition problemgoints and lines as a
mixed-integer nonlinear optimization problem. In partaouwe derive equations for point
and line correspondence directly accounting for possibieanin the image data. Using
a specific type of pinhole camera, we provide a proof by whiehdptimization problem
can be solved via a decomposition technique. This decomimosipproach first solves
a continuous non-convex global optimization problem towee the camera parameters
(i.e., projection matrix), and then solves a linear assigniproblem to determine the
correspondence between the 3-D points and lines with timoseiimage.

This paper is set up as follows. In Section 2, we derive eqoatior the point and line
correspondences, explicitly accounting for noise in thagemdata, and provide a mixed-
integer nonlinear optimization formulation for the objeetognition problem. Section 3
details the decomposition approach to solve the optintngiroblem derived in Section 2.
In Section 4, we discuss a new heuristic for continuous dloptmization. This heuristic
is utilized in the first step of the decomposition technigoethe scenarios considered in
the computational study (Section 5). Concluding remarkgaovided in Section 6.

2. OBJECT RECOGNITION PROBLEM FORMULATION

In this section we begin by deriving equations that will bés$ied for 3-D to 2-D
point and line correspondences when error is not presentthéfealter these equations
to explicitly account for possible uncertainty in the imagents and lines, and provide a
mixed-integer nonlinear optimization formulation. We regith some notation that will
be used throughout this paper.
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Leta = {ul,...,umi,u’l,...,ugl} represent a three-dimensional object, i.e., an un-
ordered collection afn; points andh; lines (without loss of generality, let the unprime's
represent the points and the primégrepresent the lines). L8t={Ba,. .., Bm,, BY; .-, Bp, }
represent a two-dimensional picture, i.e., an unorderfeatimn of mp points anch; lines
(without loss of generality, let the unprim@ds represent the points and the prim@d
represent the lines). For convenience, we represent th@Bjdat and 2-D image in ho-
mogeneous coordinates (Gleeson et al., 2003; Grosshabs; Bartley and Zisserman,
2000; Semple and Kneebone, 1952). Therefore, the 3-D Baigtz} is represented as
the column vectofx,y,z, 1}T and the 2-D poinfu, v} is represented as the column vector
{u,v,1}T. An image formed by a pinhole camera (i.e., projective timmsation) can then
be represented as a projection from four-dimensional staderee-dimensional space,
i.e., as a Xk 4 matrix having 9 degrees of freedom (Hartley and Zissera0Q). Assume
thatQ = [Qjj] is such a matrix.

2.1. Point equation derivation. For an object pointi; = {x@,yi,zi,ri}T to correspond
with the point in the pictur@; = {uj,vj,w;}T, usingQ as the camera, it must be true that
Qa; = ¢jBj, for somec; # 0, wherec;j is needed to compensate for the invariance of
homogeneous coordinates across scale. If we assumejtead andQa; does not have
its third coordinate equal to O (i.€Q31% + Qaz2yi + Q337 + Qaari # 0), thenQa; = ¢ij Bj

is equivalent to the system of equations

) Quaxi + Quayi + Q132 + Quari Uj 0

Qa1% + Qaoyi + Q337 + Qaali W

Q21X + QooYi + Q23z + Qoali

~d o
Q31X + Qaoyi + Q337 + Qaali W

(2)

Note that these assumptions wi and the third coordinate d®a; can be enforced in a
straightforward manner (Gleeson et al., 2003; Grossh&t5)2 A

If Qa; denotes the non-homogeneous representatiddopfand 3; denotes the non-
homogeneous representationfgf then the system of equations (1) - (2) is equivalent to
the vector equatioty = Qa; — 3j = 0, which is equivalent tdt;; |2 = 0. Hence, whem;
andp; correspond through the projecti@y the Euclidean distance betweSu; andf&,—
will be 0. R

Suppose now that the non-homogeneous image fpimas some noise, or uncertainty,
associated with it. This uncertainty can be represented2as 2 covariance matrixc;i,
which we assume is positive semi-definite. Then, even velh@mdf3; correspond through
the projectionQ, the Euclidean distance betwe@u; andf&,— might not be 0. This is due
precisely to the uncertainty involved. To account for theanainty in the image point,
we generalize the Euclidean distarjitg|» to the Mahalanobis diStanQ?C;ltij (Hartley
and Zisserman, 2000). When this uncertainty is Gaussiaatura (it is generally assumed
to be), then we can consider the Gaussian probability defusittion as representing the
likelihood

Fi(Q) = e HICi

2m,/|Cj

of a; andp;j corresponding through the projectitn

2.2. Lineequation derivation. Leta, be the object line through the two points

Pla = {Xi1, Vi1, Za, M } T andPe = {Xe, Yie, Ze, ke } ' -
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Itis clear thaty; is defined uniquely by any two distinct points incidentip Let 3, be the
image line represented 5= {ay, by,c/} T, where a two-dimensional homogeneous point
q= {u,v,w}" is incident to} if and only if 9", = ua, + vy +wc, = 0. Thenaj and
B, correspond through the projectiéhprecisely when botl®PR; andQP, are incident
to B, i.e., when(QPq)TB, = 0 and(QP)"B, = 0. Unfortunately, this approach does
not generalize to the case where there is error associatadivé linef), as these two
equations are not metric oriented. Therefore, we will lobtha line case from a different
perspective. .

Forse {1,2}, let QPys = {Uks, Vks, 1}T denote the non-homogeneous representation of
QPs, where

~ Q11Xks+ Qu2Yks+ Q13%s+ Qu4alks
 Qa1Xs+ Qaoyks+ Qa3Zs+ Qaarks’
_ Qo1Xks+ Q22Yks + Q23%s + Qoalks
- Qa1Xs+ Qaoyks+ Qa3Zs+ Qaalks

Uks

Vks

It can be shown (Boyce and DiPrima, 1988) that the non-homeges point incident to
B; that is closest t@Pxs is given by

b2uys — aybyVks — arCr  a2Viks — arbylis — bycy
> 2 , > 2
as+ by ag+ by

Bes = { 3

Definingtyy = dks — OPys, then we again have, in the error-free caggandp), correspond
through the projectio precisely when botltyi, = 0 andtyyy = 0O, i.e., precisely when
lltcael|2 = |ltee]|l2 = 0. Hence, whemy, andf3), correspond through the projectiéh the
Euclidean distances frotﬁPkl to Sku and from(kaz to Skzg will both be 0.

Suppose now that each non-homogeneous point on the imagfg), llmas some noise,
or uncertainty, associated with it. Again, represent timsautainty by a 2 2 covariance
matrixC,. Therefore, botld,, anddyy, have an associated covariance mafixWith this
uncertainty being Gaussian in nature we can form the likeléh

=5 — ; — 3 (41, C7 Mar -+, C Mior)
Fie (Q €

~ 2n/[C]

of a} andp), corresponding through the projectién

2.3. Problem formulation. In addition to the unknown projection matri€, we also
need to determine the correspondence between the 3-D anga2a3 and lines. Hence,
for each possible 3-D poimt; and 2-D poinf3;j, we define a binary variablg;; to denote
whethera; andf; should be in correspondence. We similarly define binaryaidesg.

to denote whether the 3-D lirg and 2-D linef3;, should be in correspondence. The object
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recognition problem formulation is then given by

m nmp np _
3 f(Q i — Q
) quJn W, 0) = Z\Z'ﬂj j(Q) kzlglqkﬂ:ké( )
S.t.

rni .
(4) lZ‘QJijSlVJE{l,...,mz}
5 ;b 1vie{l

i < yeees

) lewj ieq my }
(6) %(MﬁlVﬁE{l,...,nz}

k=1
7 C g <1vke (L.
7) glw_ S nu}
(8) Wij € {0,1}Vie{1,....m},Vjec{l,. .. ,m}
9) e €{0,1}Vke{l,....m},VLe{l,....,n}
(10) QeWw,

whereW is the space of projective transformations. Note that caimds (4), (5), and (8)
ensure that each 3-D (2-D) point will have at most one comrdmg 2-D (3-D) point, and
similarly constraints (6), (7), and (9) ensure that each D) line will have at most one
corresponding 2-D (3-D) line.

3. PROBLEM DECOMPOSITION

A general pinhole camer&, can be represented 6= K[RJt], whereK is an internal
camera calibration matrix (of sizex33, with 3 degrees of freedond¢f(K) = 3)), Ris
a 3-D rotation matrix (of size & 3, with dof(R) = 3), andt is a translation vector (of
size 3x 1, with dof(t) = 3) (Hartley and Zisserman, 2000). Wh#nis set to the identity
matrix, then the resulting projection matxpreserves distances between points. In what
follows, we make use of the following theorem.

Theorem 3.1. Let f(Q) = — 3™ 52, Fj(Q) — 33, 5721 Fe(Q) and N (NG) represent
the truthful number of point (line) correspondences betvtbe object and image. Suppose
the foIIowing i) Q preserves distances between points, jl&5 Y|z = [|Q(X) — Q(Y)]|2;
i) No = N® + N& > dof(Q); andiii) The object point and line geometry is sufficiently
random.

Then, in the case where there is no noise in the image (i.egriance matrices are
0), the Q that minimizesf(Q) is precisely the mapping the points and lines of the 3-D
object onto their truthful correspondences in the image.
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Proof. Let f/(Q) equalf(Q) when no random noise is present in the image. Then
f(Q) = lim f(Q)

Cj—0V
Cy—0V ¢
n np _
= lim [ F.J -5 sz(Q)}
CJHOV] & A
-0V ¢ ’
n N

zz 0-5 3 im A
S S-S Y (el
i;jzl ! kZl/Zl “

whered(x) is the Dirac-delta, or unit-impulse, function, i.&(xx —a) =0 if x # a and
[2,8(x)dx = 1 (Dirac, 1926; Greenberg, 1988).

Now, Ne = N& + N3 < min[my, my] + min[ng, np]. Without loss of generality, assume
that the firstN® object points correspond with the fifs image points and the fir$t¢
object lines correspond with the firsf image lines. A

Foreachi e {1,....m}, je{1,...,mp}, letQ;; ={QeW|Bj= (fui}. Similarly, for
eachk € {1,...,ni}, £ € {1,...,m}, letQu = {Q €W | (QP)TB, =0, (QP) "B, =0
Ra andPy, distinct points incident ta }. Since there is no random noise axd> dof(Q),

Q:{ N Qii}ﬂ[ N f)kk} is well-defined and unique.
ie{1,..,.N?} ke{1,....Nd

Choose any sets of paif§i1, j1}, ..., {ir, ir}} and{{ka, 01}, ..., {ks, s} } with the fol-
lowing properties:
a)ire{l,....m}VvVte{l,... r}andi,...,i, are distinct;
b)jie{1,....m}Vte{l,...,r}andjs,..., ], aredistinct;
Ok e{l,...,m}Vte{l,...,s} andky,..., ks are distinct;
d) 4 e{l,...,n}Vte{1,...,s} and/y,...,{s are distinct;
e)r+s>dof(Q);

f) (Ete{l,...,r}ait;éjt)v(ﬂte{l,...,s}akt;éﬂt);

Since the 3-D point and line geometry is sufficiently random,

Ao a]n0 o] 91

te{lrj..,r} te{l,...,s}

Therefore, for any sets of paif§i1, j1},..., {ir, jr } } and{{ka, ¢1},...,{ks, ¢s} } satisfying
the above conditions a) through f), the probability thatré¢hexists amQ projecting each
of the 3-D pointsa;, onto the 2-D point$;j, (t =1,...,r) and each of the~3-D Iinecxl’(t
onto the 2-D Iines% (t=1,...,9 is zero. Hence, the global minimum &f(Q) occurs
atQ = Q, i.e., at theQ mapping theN® 3-D points and\g 3-D lines onto their truthful
correspondences. O

Theorem 3.1 provides the basis of our decomposition appra&ben there is no noise
present in the image we can solve the optimization Problgm (B0) by first finding the
Q that minimizesf(Q). Projecting all the 3-D points and lines onto the image via th
recovered?, the second step is to apply a linear assignment algorithdetermine the
3-D to 2-D point and line correspondences. This is diffefesth the RANSAC approach
(Fischler and Bolles, 1981) in that we do not make use of knfwrassumed) 3-D to
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2-D point/line correspondences in order to determine arpiateprojection matrix. The
global minimum of the objective function (3), as shown in ®rem 3.1, in the absence
of noise and degenerate point/line configurations, ocdutssamode of the potential pro-
jection matrices, which is precisely the truthful projectimatrix. We make note of the
following. First, f(Q) is non-convex i, and while there exist algorithms for finding a
local minimurin a finite number of iterations, it is well known that findintetglobal min-
imum is inherently unsolvable in a finite number of steps (Bter and Romeijn, 1995;
Zhan, 2005). Second, in practice, there is normally somsenioi the image data, thus
making the global minimum of(Q), only an approximation to the true projection ma-
trix. To solve the first step in the decomposition approach make use of a new global
optimization heuristic, Continuous GRASP, or simply C-GHA as detailed in Section
4. The linear assignment algorithm used for the second dtépealecomposition is an
implementation of the JVC algorithm (Jonker and Volgena@87).

In summary, the decomposition approach we propose to sabgldm (3) - (10) is
given by:

(1) Use the C-GRASP heuristic to find tiethat minimizesf (Q).
(2) Apply the JVC linear assignment algorithm to determimeassociation between
the 3-D points and lines with those in the image.

4. CONTINUOUS GRASP

Feo and Resende (1989; 1995) describe the metaheuristicSBR4reedy random
adaptive search procedures) as a multi-start local seaodegure, where each GRASP
iteration consists of two phases, a construction phase &owhbsearch phase. In the con-
struction phase, interactions between greediness andmaration generate a diverse set
of good-quality solutions. The local search phase attetogtaprove the solutions found
by construction. The best solution over all of the multissiterations is retained as the
final solution.

Hirsch et al. (2007b) describe C-GRASP, an adaptation of SR solve continuous
global optimization problems (see also Hirsch (2006)). RASP works by discretizing
the domain into a uniform grid. Both the construction analdamprovement phases move
along points on the grid. As the algorithm progresses, ticeagtaptively becomes more
dense. C-GRASP resembles GRASP in that it is a multi-s@ehststic search metaheuris-
tic that uses a randomized greedy construction procedwerterate starting solutions for
a local improvement algorithm. The main difference is thaiteration of C-GRASP does
not consist of a single greedy randomized constructionfad by local improvement, but
rather a series of construction-local improvement cycléh the output of construction
serving as the input of the local improvement, as in GRASHKEIGRASP, however, the
output of the C-GRASP local improvement procedure servéiseasmput of the C-GRASP
construction procedure.

Hirsch et al. (2010) proposed modifications to the origindRASP algorithm, result-
ing in a significant decrease in the number of objective fioncévaluations required to
converge to the global optimum. The modified C-GRASP hduarighs applied to a sensor
registration problem in Hirsch et al. (2006), which is senilo the object recognition prob-
lem considered presently. It was also used to solve systénmnelinear equations (Hirsch
et al., 2009) and to determine the relationship betweensind adverse reactions (Hirsch
et al., 2007a). In the remainder of this section, we detdsl Wersion of the C-GRASP
heuristic.
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procedure C-GRASP(N, 4, u, f(-),MaxRS, hs, he, pio)

1 f* <« oo;

2 for j=1,...,MaxRS do

3 X < UnifRand(/,u);

4 h « hg;

5 whileh > he do

6 Impre < false;

7 Impr; < false;

8 [X, Imprc| «— ConstructGreedyRandomized(X, f(-),n,h, ¢, u, Imprc);
9 [X, Impry| «— LocalImprovement(X, f(-),nh, ¢, u,pjo, Impry);
10 if f(x) < f*then

11 X — X;

12 f* — f(x);

13 end if

14 if Impr¢ = false and Impr; = false then

15 h«h/2;  /* make grid more dense */
16 end if

17 end while

18 endfor

19 return(x®);

end C-GRASP;

FIGURE 1. Pseudo-code for C-GRASP.

4.1. The heuristic. Pseudo-code for the C-GRASP heuristic is shown in Figurelle T
procedure takes as input the problem dimensiolower and upper bound vectofsand

u, the objective functiorf (-), as well as the parameteMsxRS, hs, he, andpjo. MaxRS
defines the number of multi-starts to perform in the C-GRARB®rithm, hs andhe define
the starting and ending discretization levels for eachirstéirt, andp;, defines the portion
of the neighborhood of the current solution that is searchethg the local improvement
phase of the algorithm.

Line 1 of the pseudo-code initializes the objective furctialuef* of the best solution
found to infinity. We performtlaxRS independent multi-starts. For each multi-start, Line 3
initializes the solutiorx to a random point distributed uniformly over the boxXif defined
by ¢ andu. The parametdn, that controls the discretization density of the searcltspa
initialized tohg in line 4. The code sequentially executes lines 6 to 16 as &sig> he.
The construction and local improvement phases are theadcadllines 8 and 9, respec-
tively. The solution returned from the local improvememgedure is compared against
the current best solution in line 10. If the returned solutitas a smaller objective value
than the current best solution, then, in lines 11— 12, theeotibest solution is updated with
the returned solution. In line 14, if the variablespr. andImpr; are still set tof al se,
then the grid density is increased by halvimgn line 15. The variabl@mpr¢ is f al se
upon return from the construction procedure if and only iimprovement is made in the
construction phase. Section 4.3 shows thatther; variable isf al se on return from
the local improvement procedure if and only if the input $ioloi to local improvement is
determined to be ah-local minimum We increase the grid density at this stage because
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repeating the construction procedure with the same griditlewill not improve the solu-
tion. This approach allows C-GRASP to start with a coarserdiization and adaptively
increase the density as needed, thereby intensifying #irelsé a more dense discretiza-
tion when a good solution has been found. The best solutiomdfpat the end of thigaxRS
multi-starts, is returned in line 19.

4.2. Construction procedure. In this section, we describe in detail the construction pro-
cedure. The construction algorithm combines greedinedsardomization to produce a
diverse set of good-quality solutions from which to staet fifcal improvement phase. The
construction algorithm is shown in Figure 2. The input is luson vectorx. To start,
line 1 of the algorithm allows all coordinates »wfto change in the current construction
call (i.e. these coordinates are unfixed). In turn, in lineithe pseudo-code, KeUse is
fal se, aline search is performed in each unfixed coordinate dinecof x with the other
n— 1 coordinates ok held at their current values. In lines 10 and 11 of the psexaite,
the valuez; for thei-th coordinate that minimizes the objective function, tihge with the
objective function valugj, are saved. In line 1% denotesc with thei-th coordinate set
to z.

After looping through all unfixed coordinates (lines 7-1if)|ines 17-23 a restricted
candidate list (RCL) is formed containing the unfixed copatiési whoseg; values are
less than or equal toga - (g—g), whereg and gare, respectively, the maximum and
minimumg; values over all currently unfixed coordinatesxofinda € [0, 1] is randomly
determined in line 2. In line 24, a coordinate is chosen atloam from theRCL, say
coordinatej € RCL. Line 25 checks whetheq; andz; are equal. If so, line 26 sekeUse
to the valuetrue. Otherwise, in lines 28—3BeUse is set tofalse, Imprc iS Set totrue,
andx; is set to equat;. Finally, in line 30, we fix coordinatg of x, by removingj from
the selUnFixed. Choosing a coordinate by selecting at random fronRttieensures both
greediness and randomness in the construction phase. ke plocedure is continued
until all of then coordinates ok have been fixed. At that stageandImpr. are returned
from the construction procedure.

Note that theReUse variable is utilized to speed up computations by avoidingam
essary line searches. More details can be found in Hirsch €Q10). The parameter
controls the size of theCL and therefore determines the mix of greediness and random-
ness in the construction procedure. Different valuea dfiroughout the run allow some
construction phases to be more greedy while others to be random.

4.3. Local improvement procedure. C-GRASP makes no use of derivatives. Though
derivatives can be easily computed for many functions, tireynot always available or
efficiently computable for all functions. The local improrent phase (with pseudo-code
shown in Figure 3) can be seenagsproximatingthe role of the gradient of the objective
functionf(-). From a given input point € R", the local improvement algorithm generates
a neighborhood, and determines at which points in the neigidwnd, if any, the objective
function improves. If an improving pointis found, it is matthe current point and the local
search continues from the new solution.

Let x € R" be the current solution arntibe the current grid discretization parameter.
Define

Si(X) ={xeS|{<x<u x=x+T1-h 1€Z"}
to be the set of points iBthat are integer steps (of sipaway fromx. Let

Ba(X) = {x€ S| x=X+h- (X~ D/|X ], X € H(X)\ {%}}
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procedure ConstructGreedyRandomized(X, f(-),n,h,¢,u, Imprc)
1 UnFixed « {1,...,n};

2 O < UnifRand(0,1);

3 ReUse «+ false;

4 while UnFixed # 0 do

5 g« +oo;

6 g« —;

7 fori=1,...,ndo

8 if i € UnFixedthen

9 if ReUse = false then

10 Z « LineSearch(x h,i,n, f(-),¢,u);
11 g — f(X);

12 end if

13 if g> gi then g — gi;

14 if g< g then g« g;;

15 end if

16 end for

17 RCL « O;

18 Threshold < g+0-(g—Q);

19 fori=1,...,ndo

20 if i € UnFixed and g; < Threshold then
21 RCL « RCLU{i};

22 end if

23 end for

24 j < RandomlySelectElement(RCL);

25 if X; = zj then

26 ReUse < true;

27 else

28 Xj < Zj;

29 ReUse « false;

30 Impre < true;

31 end if

32 UnFixed < UnFixed\{j}; /* Fix coordinatej. */
33 endwhile

34 return(x,Imprc);

end ConstructGreedyRandomized,

FIGURE 2. Pseudo-code for C-GRASP construction phase.

be the projection of the points i&,(x) \ {X} onto the hyper-sphere centeredatf radius
h. Theh-neighborhooaf the pointXis defined as the set of pointsBa(x).

The local improvement procedure is given a starting satutie SC R". The current
best local improvement solutiodi is initialized tox in line 1. Lines 3 and 4 determine the
number of grid points, based on the current value of the eliation parametédr, and the
maximum number of points iBy(x*) that are to be examined. This number of grid points
is defined by the parametgy, which is the portion of the neighborhood which is to be
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procedure LocalImprovement(X, f(-),n,h,¢,u,pjo, Impry)

1 X X;

2 f* — f(x);

3 NumGridPoints « []{L[(ui — 4)/h];

4 MaxPointsToExamine < [pjo - NumGridPoints];

5 NumPointsExamined « O;

6 while NumPointsExamined < MaxPointsToExamine do
7 NumPointsExamined <— NumPointsExamined+ 1;
8 X < RandomlySelectElement(Bp(X"));

9 if ¢ <x<uand f(x) < f* then

10 X —X;

11 f* — f(x);

12 Impry, < true;

13 NumPointsExamined « O;

14 end if

15 end while

16 return(x*, Impry);

end LocalImprovement;

FIGURE 3. Pseudo-code for C-GRASP local improvement phase.

examined. If all of these points are examined and no imppwint is found, the current
solutionx* is considered ah-local minimum

Starting at the poink*, in the loop in lines 6-15, the algorithm randomly selects
MaxPointsToExamine points inBp(X*), one at a time. In line 9, if the current poirt
selected fronBy(x*) is feasible and is better thati, thenx* is set tox, Impry, is set to
true, and the process restarts withas the starting solutiorimpr;, is used to determine
whether the local improvement procedure improved the lmésgtisn. Local improvement
is terminated when ah-local minimunsolutionx* is found. At that pointx* and Impry
are returned from the local improvement procedure.

5. COMPUTATIONAL STUDY

To illustrate our approach for solving the object recogmitbptimization problem (3) -
(10), we consider three classes of scenarios. Each classignated by the number of
3-D and 2-D points and lines, as well as the number of trutBfDl to 2-D point and line
correspondences. The details for each scenario classvarigi Table 1. This table lists
the number of 3-D points and lines, the number of 2-D pointlares, and the number
of true 3-D and 2-D point and line correspondences. For elads,cwe created 10 test
instances, in the following way. Each instance started aithndomly determined set of
3-D points and lines. A projection matr;,:n was also randomly chosen. Based on the
number of truthful correspondences between 3-D and 2-Dipaimd lines, a subset of the
3-D points and lines were projected usifg,, onto the 2-D image plane. Additional
2-D points and lines were added randomly to the image plaii2-B points and lines
were then subjected to Gaussian noise, with zero mean ambsthdeviation values from
the vector{0,0.1,0.2,...,0.9,1.0}.

Each randomly generated scenario instance was input to-tARRASP algorithm and
run for a fixed number of multi-starts. The C-GRASP paranseéee listed in Table 2.
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TABLE 1. Object recognition scenario classes.

Scenario Points Lines
Class | 3-D 2-D Num True Corr. 3-D 2-D Num True Corr.
1 15 12 10 - - -
2 - - - 16 13 10
3 6 9 5 5 10 4

TABLE 2. Object recognition C-GRASP parameters.

Number Multi-Starts| 100
hs 0.10
he 0.01
Plo 0.70

When the C-GRASP algorithm finished executing for a scenasgtance, using the best
projection matrix foundQcomputead the 3-D points and lines from the scenario instance
were projected onto the 2-D image plane, and the JVC lineggmasient algorithm (Jonker
and Volgenant, 1987) was applied to determine the optingdjament of 3-D points and
lines to those on the 2-D image plane.

We begin our discussion of the results by showing an examgpie Class 1. Tables 3
and 4 list the set of 15 3-D and 12 2-D points, respectivelyafparticular instance from
the Class 1 data, when the noise level is set®o The first two columns of Table 5 present
the truthful correspondences between the 3-D object paimdshe 2-D image points. The
truthful projection matrix to project the 3-D object poirgato their corresponding 2-D
image points is given by

0.391 0583 —-0.713 1000
Qtruen = | —0.882 Q015 —-0.471 —-3.558|.
—0.263 Q0813 0520 -0.767

After running our algorithm (C-GRASP, along with JVC), wetelenined a projection
matrix of

0.3975 05755 —0.7147 25375
Qcomputed— | —0.8689 —0.0144 —0.4949 —1.0250
~0.2951 08177 04943 —2.3750

and a 3-D to 2-D point correspondence as given in the first laindl tolumns of Table 5.
In addition, Figure 4 displays the 3-D points, projecteahg€2computedonto the 2-D image
plane, the 2-D points, and the computed correspondencea frieen dashed line). As can
be seen from the table and figure, for this test instance qunoaph determines the correct
correspondence of 9 of the 10 truthful.

Figures 5 — 7 display the average number of correspondencectly determined for
the three classes. As can be seen from these figures, thél tregréis for our decomposi-
tion algorithm to perform better when there is not a lot ofsedin the image, and degrade
gracefully as the noise increases. Further evidence ferctaim is shown in Figures 8 —
10. These figures display the average distance betweenbhga®ats and lines, projected
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TaBLE 3. Class 1 Example, 3-D object points.

Point X y z
1 -20 -49 9
2 -35 5 28
3 -20 43 47
4 -50 39 35
5 -7 11 18
6 17 19 30
7 32 43 41
8 25 -5 -12
9 -34 -33 -3
10 5 11 -42
11 2 1 42
12 41 14 17
13 -6 27 14
14 —46 32 49
15 46 -19 -1

TABLE 4. Class 1 Example, 2-D image points.

Point X y
A 1.36391260 —0.29771817
B —1.09763397 2575762
C 3.44958041 25901026
D —0.33330668 (B9606649
E —0.42118354 —0.29559591
F —0.10371727 —1.25394914
G 0.19888931 —1.07164390
H —0.92978162 113549158
| 1.45428633 —1.35456172
J —2.62180995 —0.79750469
K —0.01296734 211371005
L —1.91425568 101449136

TAaBLE 5. Class 1 Example - truthful and computed correspondences
between 3-D object points and 2-D image points. This canladsseen
in Figure 4.

Projected 2- D Correspondences
3—D Points  Truthful Computed

1 - A
2 B B
3 — —
4 C Cc
5 E D
6 F F
7 - E
8 — —
9 H H
10 G G
11 | |

12 J J
13 - -
14 K K
15 L L
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FIGURE 4. Example Class 1 scenario. The squares represent the 3-D
points, projected onto the 2-D image plane usih@mputed The circles
represent the 2-D image points. The solid lines representrttthful
correspondences, and the dashed lines represent the aahyurte-
spondences.

usingQcomputedonto the 2-D image plane, and their truthful 2-D point ane kiorrespon-
dences. Again we note that aside from some slight devigtieassee the trend of our
decomposition approach working quite well when the noiselles small, and degrading
as the noise level increases. As is clear from the figureslftinree scenario classes, the
decomposition approach performs quite well. Of note is #ulting lines to the scenario
seems to add significant complexity to the surface of theatibge function, thus taking
longer for the C-GRASP algorithm to run to completion andglenon average to locate
approximate the correct solution, from a time and multrigiarspective.

6. CONCLUSIONS

In this paper, we have examined a problem from computerwidioe recognition of a
3-D object, represented by points and lines in an image, weoorrespondence of points
and lines is not knowa priori. We have formulated this problem as a mixed-integer non-
linear optimization problem, explicitly accounting forgmible noise in the 2-D data. For a
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FIGURE 5. Class 1 average number of correct correspondences com-
puted, as a function of noise level. Maximum possible cqwesiences
for this class is 10.

pinhole camera (with specific internal calibration parar&t we decomposed the mixed-
integer nonlinear optimization problem into a two step pscof first determining the best
projection matrix transforming the 3-D points and linesmtite 2-D picture and then us-
ing a linear assignment algorithm to determine the cormegpoces between the points
and lines of the object and those of the image. Computatistoalies have shown that
this approach does a very good job of determining the comegéction matrix and cor-
respondences. Future research will be geared towardsingdhe time of the C-GRASP
heuristic, in an effort to make this approach suitable fogal-time system.
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FIGURE 6. Class 2 average number of correct correspondences com-
puted, as a function of noise level. Maximum possible cqweslences
for this class is 10.

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 7. Class 3 average number of correct correspondences com-
puted, as a function of noise level. The plot on the left igli@rpoint cor-
respondences, and the plot on the right is for the line cpoedences.
Maximum possible point and line correspondences for this<is 5 and

4, respectively.
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FIGURE 8. Class 1 average distance between 3-D points and lines, pro
jected usingcomputed and their truthful corresponding 2-D points and
lines.
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