
SPEEDING UP CONTINUOUS GRASP

M. J. HIRSCH, P. M. PARDALOS, AND M. G. C. RESENDE

ABSTRACT. Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic
for finding cost-efficient solutions to continuous global optimization problems subject to
box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search proce-
dure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local
improvement is constructed in a greedy randomized fashion. In this paper, we describe
several improvements that speed up the original C-GRASP and make it more robust. We
compare the new C-GRASP with the original version as well as with other algorithms from
the recent literature on a set of benchmark multimodal test functions whose global minima
are known. Hart’s sequential stopping rule (1998) is implemented and C-GRASP is shown
to converge on all test problems.

1. INTRODUCTION

Global optimization problems are abundant in the applied sciences [5, 16]. Global
optimization seeks a minimum or maximum of a multimodal function over a discrete or
continuous domain. In its minimization form, global optimization is stated mathematically
as finding a solution x∗ ∈ S ⊆ Rn such that f (x∗)≤ f (x), ∀ x ∈ S, where S is some region
of Rn and the multimodal objective function f is defined by f : S→ R. Such a solution x∗
is called a global minimum.

Recently, several derivative-free metaheuristics for continuous global optimization prob-
lems have been proposed [8, 9, 12]. Many of these metaheuristics were originally proposed
for discrete combinatorial optimization problems and have been adapted to deal with con-
tinuous optimization problems. GRASP, or greedy randomized adaptive search procedures
[2, 3], can be included in this group of metaheuristics. It has been applied to a wide range
of combinatorial optimization problems [3, 4, 17]. Recently, Hirsch et al. [10] proposed an
adaptation of GRASP for continuous global optimization. Continuous GRASP (or simply
C-GRASP) was shown to perform well on a set of 14 multimodal test functions, as well as
on two difficult real-world applications. In [11], C-GRASP was applied to the registration
of sensors in a sensor network.

In this paper, we describe several improvements to the C-GRASP metaheuristic de-
scribed in Hirsch et al. [10]. These improvements are aimed at speeding up implemen-
tations of the algorithm and increasing robustness, while at the same time keeping the
overall algorithm simple to implement. This paper is organized as follows. In Section 2,
several improvements to C-GRASP are described. Section 3 compares the new improved
C-GRASP with the C-GRASP of [10] and three other heuristics on a set of 40 multimodal
test functions. We also evaluate the performance of C-GRASP as a multi-start heuristic
using the sequential stopping rules of Hart [6]. Concluding remarks are made in Section 4.

Date: September 28, 2006.
Key words and phrases. GRASP, continuous GRASP, global optimization, multimodal functions, continuous

optimization, heuristic, stochastic algorithm, stochastic local search, nonlinear programming.
AT&T Labs Research Technical Report TD-6U2P2H..

1

2 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

procedure GRASP(Problem Instance)
1 InputInstance();
2 while stopping criteria not met do
3 ConstructGreedyRandomizedSolution(Solution);
4 LocalSearch(Solution);
5 if Solution is better than BestSolution then
6 UpdateBestSolution(Solution,BestSolution);
7 end if
8 end while
9 return(BestSolution);
end GRASP;

FIGURE 1. High-level pseudo-code for GRASP.

procedure ConstructGreedyRandomizedSolution(Problem Instance)
1 Solution ← /0;
2 while Solution construction not done do
3 MakeRCL(RCL);
4 S ← SelectRandomElement(RCL);
5 Solution ← Solution ∪ {S};
6 AdaptGreedyFunction(S);
7 end while
8 return(Solution);
end ConstructGreedyRandomizedSolution;

FIGURE 2. High-level pseudo-code for Construction procedure.

procedure LocalSearch(Solution, Neighborhood))
1 Solution∗ ← Solution;
2 while Solution∗ not locally optimal do
3 Solution ← SelectRandomElement(Neighborhood(Solution∗));
4 if Solution better than Solution∗ then
5 Solution∗ ← Solution;
6 end if
7 end while
8 return(Solution∗);
end LocalSearch;

FIGURE 3. High-level pseudo-code Local Search procedure.

2. IMPROVEMENTS TO CONTINUOUS GRASP

Feo and Resende [2, 3] describe the metaheuristic GRASP as a multi-start local search
procedure, where each GRASP iteration consists of two phases, a construction phase and a
local search phase. In the construction phase, interactions between greediness and random-
ization generate a diverse set of good-quality solutions. The local search phase attempts to
improve the solutions found by construction. The best solution over all of the multi-start
iterations is retained as the final solution. Figures 1–3 provide high-level pseudo-code of
the main GRASP algorithm, as well as of the construction and local search phases.

Hirsch et al. [10] describe C-GRASP, an adaptation of GRASP to handle continuous
optimization problems. C-GRASP works by discretizing the domain into a uniform grid.

SPEEDING UP CONTINUOUS GRASP 3

procedure C-GRASP(n, `,u, f (·),hs,he,ρlo)
1 f ∗← ∞;
2 while Stopping criteria not met do
3 x← UnifRand(`,u);
4 h← hs;
5 while h≥ he do
6 ImprC ← false;
7 ImprL ← false;
8 [x,ImprC]← ConstructGreedyRandomized(x, f (·),n,h, `,u,ImprC);
9 [x,ImprL]← LocalImprovement(x, f (·),n,h, `,u,ρlo,ImprL);
10 if f (x) < f ∗ then
11 x∗← x;
12 f ∗← f (x);
13 end if
14 if ImprC = false and ImprL = false then
15 h← h/2; /* make grid more dense */
16 end if
17 end while
18 end while
19 return(x∗);
end C-GRASP;

FIGURE 4. Pseudo-code for C-GRASP.

Both the construction and local improvement phases move along points on the grid. As
the algorithm progresses, the grid adaptively becomes more dense. C-GRASP resembles
GRASP in that it is a multi-start stochastic search metaheuristic that uses a randomized
greedy construction procedure to generate starting solutions for a local improvement al-
gorithm. The main difference is that an iteration of C-GRASP does not consist of a sin-
gle greedy randomized construction followed by local improvement, but rather a series
of construction-local improvement cycles with the output of construction serving as the
input of the local improvement, as in GRASP, but unlike GRASP, the output of the local
improvement serves as the input of the construction procedure.

In the remainder of this section, we propose some improvements to C-GRASP for
solving continuous global optimization problems subject to box constraints. We shall
refer to this algorithm as the new C-GRASP in contrast to the algorithm described in
[10] which we will call the original C-GRASP. In Section 2.1, we present the new C-
GRASP. Section 2.2 describes the construction procedure. Finally, in Section 2.3, we
describe the local improvement procedure. Without loss of generality, we take the domain
S to be the hyper-rectangle S = {x = (x1, . . . ,xn) ∈ Rn : ` ≤ x ≤ u}, where `,u ∈ Rn such
that ` ≤ u. The minimization problem considered in this paper therefore becomes: Find
x∗ = argmin{ f (x) | `≤ x≤ u}, where f : Rn → R, and `,x,u ∈ Rn.

2.1. Continuous GRASP. Pseudo-code for the new C-GRASP is shown in Figure 4. The
procedure takes as input the problem dimension n, lower and upper bound vectors ` and
u, the objective function f (·), as well as the parameters hs, he, and ρlo. Parameters hs and
he define the starting and ending grid discretization densities while parameter ρlo defines
the portion of the neighborhood of the current solution that is searched during the local
improvement phase.

Line 1 of the pseudo-code initializes the objective function value f ∗ of the best solution
found to infinity. Since C-GRASP is a multi-start procedure, it is continued indefinitely,

4 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

until one or more stopping criteria are satisfied. These stopping criteria could be based, for
example, on the total number of function evaluations performed or the time elapsed since
the start of the algorithm. Since different implementations of C-GRASP will have different
stopping criteria, we list line 2 in general form.

Each time the stopping criteria of line 2 are not satisfied, another iteration takes place, as
seen in lines 3–17. At each iteration, in line 3 the initial solution x is set to a random point
distributed uniformly over the box in Rn defined by ` and u. The parameter h, that controls
the discretization density of the search space, is re-initialized to hs. The construction and
local improvement phases are then called sequentially in lines 8 and 9, respectively. The
solution returned from the local improvement procedure is compared against the current
best solution in line 10. If the returned solution has a smaller objective value than the
current best solution, then, in lines 11–12, the current best solution is updated with the
returned solution. In line 14, if the variables ImprC and ImprL are still set to false , then
the grid density is increased by halving h, in line 15. As will be seen in Section 2.2, the
variable ImprC is false upon return from the construction procedure if and only if no
improvement is made in the construction phase. Section 2.3 shows that the ImprL variable
is false on return from the local improvement procedure if and only if the input solution to
local improvement is determined to be an h-local minimum. We increase the grid density at
this stage because, as we will see in Section 2.2, repeating the construction procedure with
the same grid density will not improve the solution. This allows C-GRASP to start with
a coarse discretization and adaptively increase the density as needed, thereby intensifying
the search in a more dense discretization when a good solution has been found. The best
solution found, at the time the stopping criteria are satisfied, is returned.

The main differences between this new version of C-GRASP and the one in [10] are
limited to the input parameters and when the grid density is increased. In [10], the in-
put parameters were MaxIters, the number of iterative cycles in each of the multi-start
runs, and MaxNumIterNoImprov, the number of iterations without improvement until the
grid density was increased. The strategy proposed in [10], i.e. based on fixed number
of iterative cycles in each of the multi-start iterations and number of iterations without
improvement until the grid density was increased, sometimes led to excessively slow con-
vergence. Parameters hs and he in the algorithm proposed in this paper allow one to specify
how coarse to start the grid and how fine the grid should be before stopping. As we shall
see later in this section, increasing the grid density when the variables ImprC and ImprL
are still set to false in line 14 allows the algorithm to avoid unnecessary iterations with
no chance of producing an improved solution.

2.2. Construction procedure. In this section, we describe in detail the construction pro-
cedure. As stated above, the construction algorithm combines greediness and random-
ization to produce a diverse set of good-quality solutions from which to start the local
improvement phase. The construction algorithm is shown in Figure 5. The input is a so-
lution vector x. To start, the algorithm allows all coordinates of x to change (i.e. they
are unfixed). In turn, in line 10 of the pseudo-code, if ReUse is false , a line search is
performed in each unfixed coordinate direction i of x with the other n− 1 coordinates of
x held at their current values. In lines 10 and 11 of the pseudo-code, the value zi for the
i-th coordinate that minimizes the objective function, together with the objective function
value gi, are saved. In line 11, x̌i denotes x with the i-th coordinate set to zi.

After looping through all unfixed coordinates (lines 7–16), in lines 17–23 a restricted
candidate list (RCL) is formed containing the unfixed coordinates i whose gi values are
less than or equal to g

¯
+ α · (ḡ− g

¯
), where ḡ and g

¯
are, respectively, the maximum and

SPEEDING UP CONTINUOUS GRASP 5

procedure ConstructGreedyRandomized(x, f (·),n,h, `,u,ImprC)
1 UnFixed←{1,2, . . . ,n};
2 α← UnifRand(0,1);
3 ReUse← false;
4 while UnFixed 6= /0 do
5 g

¯
←+∞;

6 ḡ←−∞;
7 for i = 1, . . . ,n do
8 if i ∈ UnFixed then
9 if ReUse = false then
10 zi ← LineSearch(x,h, i,n, f (·), `,u);
11 gi ← f (x̌i);
12 end if
13 if g

¯
> gi then g

¯
← gi;

14 if ḡ < gi then ḡ← gi;
15 end if
16 end for
17 RCL← /0;
18 Threshold← g

¯
+α · (ḡ−g

¯
);

19 for i = 1, . . . ,n do
20 if i ∈ UnFixed and gi ≤ Threshold then
21 RCL← RCL∪{i};
22 end if
23 end for
24 j ← RandomlySelectElement(RCL);
25 if x j = z j then
26 ReUse← true;
27 else
28 x j ← z j;
29 ReUse← false;
30 ImprC ← true;
31 end if
32 UnFixed← UnFixed\{ j}; /* Fix coordinate j. */
33 end while
34 return(x,ImprC);
end ConstructGreedyRandomized;

FIGURE 5. Pseudo-code for C-GRASP construction phase.

minimum gi values over all unfixed coordinates of x, and α∈ [0,1] is randomly determined
in line 2. In line 24, a coordinate is chosen at random from the RCL, say coordinate j ∈ RCL.
Line 25 checks whether x j and z j are equal. If so, line 26 sets ReUse to the value true.
Otherwise, in lines 28–30, ReUse is set to false, ImprC is set to true, and x j is set to
equal z j. Finally, in line 30, we fix coordinate j of x, by removing j from the set UnFixed.
Choosing a coordinate by selecting at random from the RCL ensures both greediness and
randomness in the construction phase. The above procedure is continued until all of the
n coordinates of x have been fixed. At that stage, x and ImprC are returned from the
construction procedure.

At this point, it is worthwhile to examine two aspects of the construction procedure.
The first concerns the need for the ReUse parameter. Suppose that at some stage in the
construction procedure, we reach line 25 and determine that x j = z j. Then, when we had
computed lines 7–16 just before this stage, and for each i ∈ UnFixed\{ j} we performed
a line search along the i-th coordinate, keeping all other coordinates of x fixed at their

6 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

present values. Therefore, ∀ i ∈ UnFixed \ { j}, the value of xi is changed during the line
search, while the value of x j remains unchanged. If line 25 is true, then the next time
around through lines 7–16 with j no longer in UnFixed, the j-th coordinate of x will not
have changed. Hence, performing a line search in the remaining unfixed coordinates of x
will produce the same results as previously. Setting ReUse to true allows the construction
procedure to use the zi and gi values computed previously. This has the effect of speeding
up the procedure since fewer calls are made to LineSearch, leading to fewer function
evaluations. Thus, we have the following:

Proposition 2.1. If, at any stage of the construction procedure (Fig. 5), line 25 is true (i.e.
z j = x j), then the values of zi and gi, ∀ i ∈ UnFixed \ { j} will remain valid for the next
stage of the procedure.

The second point worthwhile noting was initially brought up in Section 2.1, when ref-
erence was made to halving h. Suppose x̂ was input to the construction procedure and the
same x̂ was output unchanged from the construction procedure. If, using the same dis-
cretization value, x̂ is again input to the construction procedure, then for the i-th coordinate
direction, keeping the other n−1 coordinates of x̂ fixed, the i-th coordinate that minimizes
the objective function is x̂i. Therefore, the first time through lines 7–16 of the construc-
tion procedure, zi will be set equal to x̂i and gi will be set equal to f (x̂), ∀ i = 1, . . . ,n.
Therefore, we have the following:

Proposition 2.2. Let h be the current grid discretization parameter and x̂ be the input
solution to the construction procedure. If no improvement to x̂ is made in the construction
procedure, then f (x̂)≤ f (x′), ∀ x′ ∈ {x | `≤ x≤ u, x = x̂+ γ ·h ·ei, γ ∈ Z, i ∈ {1, . . . ,n}},
where ei is the unit vector with 1 in the i-th coordinate and zeroes elsewhere.

The main improvement proposed for the construction phase is related to the use of the
variable ReUse to speed up computations by avoiding unnecessary line searches. We also
propose the use of a randomly determined α parameter rather than a fixed parameter. The
parameter α controls the size of the RCL and therefore determines the mix of greediness
and randomness in the construction procedure. Different values of α throughout the run
allow some construction phases to be more greedy while others are more random.

2.3. Local improvement procedure. C-GRASP makes no use of derivatives. Though
derivatives can be easily computed for many functions, they are not always available or
efficiently computable for all functions. The local improvement phase (with pseudo-code
shown in Figure 6) can be seen as approximating the role of the gradient of the objective
function f (·). From a given input point x ∈Rn, the local improvement algorithm generates
a neighborhood, and determines at which points in the neighborhood, if any, the objective
function improves. If an improving point is found, it is made the current point and the local
search continues from the new solution.

Let x̄ ∈ Rn be the current solution and h be the current grid discretization parameter.
Define

Sh(x̄) = {x ∈ S | `≤ x≤ u, x = x̄+ τ ·h, τ ∈ Zn}
to be the set of points in S that are integer steps (of size h) away from x̄. Let

Bh(x̄) = {x ∈ S | x = x̄+h · (x′− x̄)/‖x′− x̄‖, x′ ∈ Sh(x̄)\{x̄}}
be the projection of the points in Sh(x̄)\{x̄} onto the hyper-sphere centered at x̄ of radius
h. The h-neighborhood of the point x̄ is defined as the set of points in Bh(x̄).

SPEEDING UP CONTINUOUS GRASP 7

procedure LocalImprovement(x, f (·),n,h, `,u,ρlo,ImprL)
1 x∗← x;
2 f ∗← f (x);
3 NumGridPoints←∏n

i=1d(ui− `i)/he;
4 MaxPointsToExamine← dρlo ·NumGridPointse;
5 NumPointsExamined← 0;
6 while NumPointsExamined≤ MaxPointsToExamine do
7 NumPointsExamined← NumPointsExamined+1;
8 x← RandomlySelectElement(Bh(x∗));
9 if `≤ x≤ u and f (x) < f ∗ then
10 x∗← x;
11 f ∗← f (x);
12 ImprL ← true;
13 NumPointsExamined← 0;
14 end if
15 end while
16 return(x∗, ImprL);
end LocalImprovement;

FIGURE 6. Pseudo-code for C-GRASP local improvement phase.

The local improvement procedure is given a starting solution x ∈ S ⊆ Rn. The current
best local improvement solution x∗ is initialized to x in line 1. Lines 3 and 4 determine the
number of grid points, based on the current value of the discretization parameter h, and the
maximum number of points in Bh(x∗) that are to be examined. This number of grid points
is defined by the parameter ρlo which is the portion of the neighborhood which is to be
examined. If all of these points are examined and no improving point is found, the current
solution x∗ is considered an h-local minimum.

Starting at the point x∗, in the loop in lines 6–15, the algorithm randomly selects
MaxPointsToExamine points in Bh(x∗), one at a time. In line 9, if the current point x
selected from Bh(x∗) is feasible and is better than x∗, then x∗ is set to x, ImprL is set to
true, and the process restarts with x∗ as the starting solution. ImprL is used to determine
whether the local improvement procedure improved the best solution. Local improvement
is terminated if an h-local minimum solution x∗ is found. At that point, x∗ and ImprL are
returned from the local improvement procedure.

The differences between the local improvement procedure in [10] and the one presented
here are limited to the neighborhood of the current solution and the number of points in
the neighborhood that are examined. Suppose that the current solution is x̄. The local
improvement procedure in [10] would examine up to MaxDirToTry points of the form
x̄ + h · {−1,0,1}n, where MaxDirToTry is a user-supplied parameter. Hence, only points
on the current grid could be examined. However, there is no reason to assume that a local
minimum will occur on the current grid. With the local improvement procedure described
here, the possible points to be examined are the current grid points projected onto a hyper-
sphere of radius h about x̄. These points may not be on the current grid. The number of
points to examine is a function of the user-defined parameter ρlo and increases with the
dimension of the problem.

3. EXPERIMENTAL RESULTS

We study the performance of the new C-GRASP through three experiments. First, we
compare the original C-GRASP described in [10] with the new C-GRASP described in this

8 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

TABLE 1. Test problems. Function names in boldface indicates function
was used in the comparison of the new and original C-GRASPs.

Function name Dimension Function name Dimension

Beale (BE) 2 Bohachevsky (B2) 2
Booth (BO) 2 Branin (BR) 2
Easom (EA) 2 Goldstein and Price (GP) 2

Matyas (M) 2 Rosenbrock (R2) 2
Schwefel (SC2) 2 Shubert (SH) 2
Six-Hump Camelback (CA) 2 Zakharov (Z2) 2

De Joung (SP3) 3 Hartmann (H3,4) 3
Colville (CV) 4 Perm (P4, 1

2
) 4

Perm0 (P0
4,10) 4 Power Sum (PS4,{8,18,44,114}) 4

Shekel (S4,5) 4 Shekel (S4,7) 4
Shekel (S4,10) 4 Rosenbrock (R5) 5
Zakharov (Z5) 5 Hartmann (H6,4) 6
Schwefel (SC6) 6 Trid (T6) 6

Griewank (GR10) 10 Rastrigin (RA10) 10
Rosenbrock (R10) 10 Sum Squares (SS10) 10
Trid (T10) 10 Zakharov (Z10) 10

Griewank (GR20) 20 Rastrigin (RA20) 20
Rosenbrock (R20) 20 Sum Squares (SS20) 20
Zakharov (Z20) 20 Powell (PW24) 24

Dixon and Price (DP25) 25 Ackley (A30) 30
Levy (L30) 30 Sphere (SP30) 30

paper. Then, we compare the performance of the new C-GRASP with a genetic algorithm
[14, 15], a scatter search algorithm [12], and a tabu search algorithm [9]. Lastly, we observe
the performance of the new C-GRASP when implemented with sequential stopping rules
of Hart [6].

3.1. Test environment. All experiments with C-GRASP were run on a Dell PowerEdge
2600 computer with dual 3.2 GHz 1 Mb cache XEON III processors and 6 Gb of mem-
ory running Red Hat Linux 3.2.3-53. C-GRASP was implemented in C++ and compiled
with GNU g++ version 3.2.3. The compiler options used were -O6 -funroll-all-loops
-fomit-frame-pointer -march=pentium4 . The algorithm used for random-number
generation is an implementation of the Mersenne Twister algorithm described in [13]. For
the experiments to follow, we made use of the test functions listed in Table 1. Note that the
function definitions are given in the Appendix.

3.2. C-GRASP comparison. We first compare new C-GRASP with the one described in
[10]. The two variants are compared on a set of 14 test functions taken from [10] and
indicated in Table 1 in boldface. Since these test functions have known global minima,
the two C-GRASP variants were run until the current objective function value f (x) was
significantly close to the global optimum f (x∗). As in [7, 8, 9, 10, 18], we consider x and

SPEEDING UP CONTINUOUS GRASP 9

TABLE 2. Original C-GRASP parameter values (from [10])

Parameter Value Parameter Value

α 0.4 h (Starting value) 1
MaxDirToTry 30 MaxIters 200
MaxNumIterNoImprov 20 NumTimesToRun 20

TABLE 3. New C-GRASP parameter values (for results in Section 3.2
and Table 4)

Function hs he Function hs he

BR 1 0.02 EA 1 0.1
GP 1 1 SH 1 0.01

H3,4 0.5 0.05 H6,4 0.5 0.005

R2 1 0.01 R5 1 0.01
R10 1 0.01

S4,5 1 0.5 S4,7 1 0.5
S4,10 1 0.5

Z5 1 0.5 Z10 1 0.005

x∗ to be significantly close if

(1) | f (x∗)− f (x)| ≤ ε1| f (x∗)|+ ε2,

where ε1 = 10−4 and ε2 = 10−6.
For each of the 14 test functions, we ran each C-GRASP variant 100 times. Each run

was independent of the others since different starting seeds were used for the pseudo ran-
dom number generator. For both variants, the stopping criteria were finding a solution
significantly close to the global optimum or completing 20 multi-start iterations. The pa-
rameters used in [10] are listed in Table 2. For the new C-GRASP, parameter ρlo was set
to 0.7 for all of the test functions. The hs and he values for each test function are listed
in Table 3. The values were chosen to allow C-GRASP to make at least one call to the
construction and local improvement procedures before 1,000 function evaluations were
made.

We recorded the number of function evaluations and the elapsed time for the current
solution to satisfy stopping criterion (1). The averages of these results are shown in Table
4 along with the percentage of times the algorithms found a significantly close solution.
As is clear from Table 4, in almost all cases, there is a significant decrease in the number
of function evaluations and running times needed to get significantly close to a global
optimum, with no negative impact on the percentage of successful runs.

3.3. Comparing C-GRASP with other heuristics. We compare the new C-GRASP with
three heuristics from the literature:

(1) Genetic Algorithm for Numerical Optimization of COnstrained Problems (Geno-
cop III) [14, 15],

10 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

TABLE 4. Comparison between the new C-GRASP variant and the orig-
inal C-GRASP from [10].

Original C-GRASP New C-GRASP
Fn. Fn. Evals Time (s) % Sig. Cl. Fn. Evals Time (s) % Sig. Cl.

BR 59,857 0.0016 100 10,090 0.0011 100
EA 89,630 0.0042 100 5,093 0.0008 100
GP 29 0.0000 100 53 0.0000 100

SH 82,363 0.0078 100 18,608 0.0032 100
H3,4 20,743 0.0026 100 1,719 0.0006 100
H6,4 79,685 0.0140 100 29,894 0.0122 100

R2 1,158,350 0.0132 100 23,544 0.0021 100
R5 6,205,503 1.7520 100 182,520 0.0148 100
R10 20,282,529 11.4388 99 725,281 0.2739 100

S4,5 5,545,982 2.3316 100 9,274 0.0021 100
S4,7 4,052,800 2.3768 100 11,766 0.0027 100
S4,10 4,701,358 3.5172 100 17,612 0.0044 100

Z5 959 0.0000 100 12,467 0.0025 100
Z10 3,607,653 1.0346 100 2,297,937 1.1090 100

(2) Scatter Search (SS) [12], and
(3) Directed Tabu Search (DT SAPS) [9].

We make this comparison using all but two of the 42 multimodal test functions listed
in Table 1, all with known global minima. We exclude functions R5 and Z5 since these
function were not considered in the studies describing the three heuristics with which we
compare C-GRASP.

In the C-GRASP local improvement procedure, we impose the restriction that the max-
imum number of points that can be evaluated in any neighborhood be limited to 1000, i.e.
MaxPointsToExamine≤ 1000.

At any time during a run, we define the optimality gap by GAP = | f (x)− f (x∗)|, where
x is the current best solution found by the heuristic and x∗ is the known global minimum
solution. As in [9, 12], we then say that the heuristic has solved the problem if

(2) GAP≤
{

ε if f (x∗) = 0
ε · | f (x∗)| if f (x∗) 6= 0,

where ε = 0.001.
At several points during each run, GAP values were computed. The average final GAP

values over all 40 test functions are listed for each heuristic in Table 5. The results for
C-GRASP are averages taken over all test functions and obtained by running the heuristic
100 times for each test function. DTSAPS was run 7 times for each test function. The data
for the DTSAPS were taken from [9] while the data for Genocop III and SS are from [12].
Since Genocop III performed extremely poor for SC6, two rows in Table 5 are devoted
to this heuristic. Also listed in this table are results for C-GRASP if the function Z20 is
not considered. Because C-GRASP encountered difficulties with function Z20, its GAP

SPEEDING UP CONTINUOUS GRASP 11

TABLE 5. Average GAP values (over all functions in Table 6).

Function evaluations 100 500 1,000 5,000 10,000 20,000 50,000

Genocop1 5.37E +25 2.39E +17 1.13E +14 636.37 399.52 320.84 313.34
Genocop2 1,335.45 611.30 379.03 335.81 328.66 324.72 321.20

Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46
DTSAPS 50,400 43.06 24.26 4.22 1.80 1.70 1.29

C-GRASP3 23,610.61 10,185.84 1,341.70 6.20 4.73 3.92 3.02
C-GRASP4 24,208.75 10,442.53 1,371.62 1.87 0.37 0.07 0.03

1 Average values over all test problems. 2 Average values over all test problems except problem SC6.
3 Average values over all test problems. 4 Average values over all test problems except problem Z20.

values are higher than those of DTSAPS. However, when Z20 is not considered, C-GRASP
does better than all the other heuristics from 5,000 function evaluations onward. To really
compare the heuristics, one needs to look at the performance on a function by function
basis. For C-GRASP, this performance is given in Table 6. At 50,000 function evaluations,
all of the C-GRASP GAP values are less than 1 with the exception of Z20 which has a GAP
value of 119.7624. Laguna and Marti [12] report that the final GAP values for SS are less
than 1 for all but four functions: SC6, RA10, R20, and A30 with GAP values of 118.4341,
9.9496, 2.2441, and 5.5033, respectively. However, [9, 12, 14, 15] do not report GAP
results for individual test functions.

As an alternative to comparing actual GAP values, Figure 7 counts the number of test
functions solved (according to Inequality (2)) by each algorithm as a function of the num-
ber of function evaluations. This figure shows C-GRASP performing competitively with
the other algorithms, solving at least as many test functions from 10,000 function eval-
uations onward, and solving 33 of the 40 test problems when reaching 50,000 function
evaluations.

3.4. C-GRASP with Hart’s sequential stopping rule. Hart [6] considers a local search
algorithm L : S → S that takes a sample on S and finds a sample that is a local minimum
of f and defines the general multistart random search (MSRS) algorithm as follows:

Algorithm MSRS: Let ξ1,ξ2, . . . be independent and identically distributed random vectors
with common distribution G on S. Let (X1,Y1),(X2,Y2), . . . be defined by

Step 1: X1 = L(ξ1) and Y1 = f (X1).
Step k +1: If f (L(ξk+1))≤ Yk, then Xk+1 = L(ξk+1) and Yk+1 = f (Xk+1).

Else Xk+1 = Xk and Yk+1 = Yk.

For j = 2, . . . ,r, where r is the number of steps taken in the MSRS algorithm, let

τ j(r)=

{
0 if |{k | 1≤ k < τ j−1(r), Yk 6= Yτ j−1(r)}|= 0
sup{k | 1≤ k < τ j−1(r), Yk 6= Yτ j−1(r)} otherwise,

12 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

TABLE 6. Average GAP value for each test function for the new C-
GRASP. Boldface entries denote GAP values satisfying Inequality (2).
Results are grouped by function dimensions.

Fn. hs he 100 500 1,000 5,000 10,000 20,000 50,000

BE 0.1 0.05 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B2 1 0.1 0.4807 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BO 0.1 0.05 2.5982 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000
BR 0.1 0.05 0.0084 0.0035 0.0001 0.0000 0.0000 0.0000 0.0000
EA 1 0.1 0.0089 0.0089 0.0089 0.0004 0.0004 0.0004 0.0004
GP 0.1 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M 0.1 0.05 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R2 1 0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SC2 5 0.25 119.4013 0.3048 0.2368 0.1612 0.0103 0.0065 0.0001
SH 0.1 0.05 0.2498 0.1617 0.1617 0.1511 0.1511 0.1511 0.0208
CA 0.1 0.05 0.0405 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001
Z2 1 0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SP3 0.1 0.05 0.5376 0.0010 0.0010 0.0001 0.0001 0.0001 0.0001
H3,4 0.1 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CV 1 0.05 11.3623 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P4, 1

2
0.1 0.0125 7.2999 0.8879 0.1328 0.0359 0.0118 0.0031 0.0031

P0
4,10 0.1 0.05 2463.2448 0.6782 0.0109 0.0012 0.0004 0.0003 0.0000

PS4,b
1 0.1 0.05 0.8433 0.0069 0.0033 0.0007 0.0005 0.0002 0.0000

S4,5 0.1 0.05 9.2904 6.9209 0.0000 0.0000 0.0000 0.0000 0.0000
S4,7 0.1 0.05 9.5018 5.9017 0.0001 0.0000 0.0000 0.0000 0.0000
S4,10 0.1 0.05 9.5240 7.2325 0.8944 0.0001 0.0001 0.0001 0.0001

H6,4 0.1 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SC6 50 0.25 835.8956 221.9143 144.6920 1.6621 1.2104 0.1214 0.0233
T6 1 0.1 335.0119 192.9117 15.3233 0.0000 0.0000 0.0000 0.0000

GR10 10 0.25 20.3141 20.3141 12.4181 0.0000 0.0000 0.0000 0.0000
RA10 2 0.1 77.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R10 2 0.05 8064.0275 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SS10 1 0.1 259.9448 36.7055 0.0000 0.0000 0.0000 0.0000 0.0000
T10 20 0.1 6402.6928 410.7253 64.8220 18.6801 6.6901 1.5025 0.2181
Z10 1 0.1 37.1243 37.1243 27.9358 0.2051 0.0646 0.0059 0.0011

GR20 10 0.25 61.0211 61.0211 61.0211 31.7019 4.4302 0.0000 0.0000
RA20 2 0.1 258.8922 188.1984 102.4020 0.0000 0.0000 0.0000 0.0000
R20 2 0.1 210591.5859 89313.8553 15140.9928 0.0000 0.0000 0.0000 0.0000
SS20 1 0.1 1934.5603 1211.4429 732.6502 0.0000 0.0000 0.0000 0.0000
Z20 2 0.05 283.0573 174.8449 174.8449 174.8449 174.8449 153.9820 119.7624

PW24 2 0.1 5296.1979 1056.8398 434.9449 1.4250 0.1948 0.1528 0.0806

DP25 5 0.2 707004.8655 314195.4226 36508.5904 0.6680 0.6680 0.6680 0.6680

A30 5 0.05 19.3023 18.6985 17.5581 0.6078 0.0000 0.0000 0.0000
L30 2 0.05 126.3283 111.4947 96.5772 4.1265 0.8559 0.0088 0.0000
SP30 1 0.05 181.8665 159.9949 131.7025 13.5988 0.0000 0.0000 0.0000

SPEEDING UP CONTINUOUS GRASP 13

100 500 1000 5000 10000 20000 50000
0

5

10

15

20

25

30

35

Number of Function Evaluations

N
um

be
r

of
 S

ol
ve

d
T

es
t P

ro
bl

em
s

Genocop III
Scatter Search
DTS

APS

C−GRASP

FIGURE 7. Number of problems solved as a function of number of func-
tion evaluations.

with τ1(r) = r, and let

ρr(ε) = sup{k | τk(r) > 0,Yτk(r) ≤ Yr + ε},
and

Γr(ε) =

{
|{Yi | Yi ≤ Yr + ε, i = τ2(r)+1, . . . ,r−1}| if τ2(r)+1 < r
0 otherwise.

Let ρ̂r(ε) = ρr(ε)+Γr(ε). The term ρ̂r(ε)/r is used to estimate ρε = Pr(f (x)≤ f (x∗)+ε).
Hart [6] shows that ρ̂r(ε)/r is a better estimate to ρε than ρr(ε)/r, the estimate defined
by Dorea [1]. It can be easily seen from the above definitions that Γr(ε) = r− τ2(r)− 1,
i.e. Γr(ε) counts the number of steps whose Y value equals the value Yr of the r-th step of
MSRS.

Hart’s stopping rule can be stated as follows: For a given ε > 0, δ > 0, and β ∈ (0,1),
terminate Algorithm MSRS if r ≥ 2 and

Φ(2δ
√

r)−Φ(−2δ
√

r)− (1− ρ̂r(ε)/r)r ≥ 1−β,

where Φ is the cumulative distribution function of the standard normal, i.e

Φ(x) =
1√
2π

Z x

−∞
e−y2/2dy.

14 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

TABLE 7. Average number of multi-starts and average GAP value for
each test function for the new C-GRASP implemented with Hart’s stop-
ping rule [6]. Boldface items denote those GAP values satisfying In-
equality (2).

Function Avg, # MS GAP Function Avg. # MS GAP

BE 8.4 0.0000 B2 8 0.0000
BO 8 0.0000 BR 8 0.0000
EA 8.4 0.0000 GP 8.2 0.0000

M 8 0.0000 R2 8 0.0000
SC2 8.4 0.0000 SH 8 0.0003
CA 8.3 0.0000 Z2 8 0.0000

SP3 8.2 0.0000 H3,4 8.4 0.0000
CV 8.4 0.0000 P4, 1

2
9.3 0.0023

P0
4,10 8.3 0.0000 PS4,b

2 8.4 0.0000

S4,5 8.5 0.0000 S4,7 8.3 0.0000
S4,10 8.8 0.0001 H6,4 8.5 0.0000
SC6 8.1 0.0000 T6 8 0.0000

GR10 9.5 0.0000 RA10 8 0.0000
R10 8.6 0.0000 SS10 8 0.0000
T10 8 0.0029 Z10 8.2 0.0000

GR20 10.1 0.0000 RA20 8 0.0000
R20 8 0.0000 SS20 8 0.0000
Z20 9 0.0049 PW24 8.3 0.0010

DP25 8.2 0.0000 A30 8 0.0000
L30 8 0.0000 SP30 8 0.0000

In this stopping rule, ε is the desired accuracy of the best solution found, δ is a limit
on the difference between ρ̂r(ε)/r and ρε (ensures that r is sufficiently large for ρε to be
reliably estimated), and 1−β is the required probability of success.

We implemented Hart’s stopping rules in C-GRASP and ran each test function 10 times.
The three stopping-rule parameters were defined to be ε = 0.001, δ = 0.4, and β = 0.025,
and each function used the same hs and he values as listed in Table 6. For each test function,
we took the average GAP value when the algorithm finished. Table 7 presents these results
for each function. Each function has associated with it two numbers: the first is the average
number of multi-starts required for each run, and the second is the average final GAP value
over the runs. From this table, one can see that when C-GRASP is run as a true multi-start
algorithm using Hart’s sequential stopping rule, almost all of the functions have a final
GAP value satisfying Inequality (2). Only the runs on T10, P4, 1

2
, and Z20 did not satisfy the

inequality, with final GAP values of 0.0029, 0.0023, and 0.0049 respectively. These GAP
values are quite small and, all in all, C-GRASP did well on these test functions.

SPEEDING UP CONTINUOUS GRASP 15

4. CONCLUDING REMARKS

In this paper, we described several improvements to the original Continuous GRASP
(C-GRASP) metaheuristic of Hirsch et al. [10]. As seen in Section 2, the metaheuristic is
still easy to describe and implement. Furthermore, the improvements do not detract from
C-GRASP being generally applicable to global optimization problems. Section 3 begins
by validating the improvements. In addition, the new C-GRASP was compared with three
other metaheuristics from the recent literature, with encouraging results. The approach
was shown to converge when Hart’s sequential stopping rule [6] was implemented. These
results demonstrate the potential of C-GRASP. Since C-GRASP makes no use of derivative
nor a priori information, it is a well-suited approach for solving general global optimiza-
tion problems.

ACKNOWLEDGMENT

The research of the second author was partially supported by NSF, NIH, and CRDF
grants. The authors thank Abdel-Rahman Hedar and Masao Fukushima for the data of
DTSAPS, SS, and Genocop III used in Figure 7.

REFERENCES

[1] C. C. Y. Dorea. Stopping rules for a random optimization method. SIAM Journal on
Control and Optimization, 28(4):841–850, 1990.

[2] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

[3] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

[4] P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro
and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 325–367. Kluwer
Academic Publishers, 2002.

[5] C. A. Floudas and P. M. Pardalos. A collection of test problems for constrained
global optimization algorithms. In G. Goods and J. Hartmanis, editors, Lecture Notes
in Computer Science, volume 455. Springer Verlag, Berlin, 1990.

[6] W. E. Hart. Sequential stopping rules for random optimization methods with appli-
cation to multistart local search. SIAM Journal of Optimization, 9(1):270–290, 1998.

[7] A. R. Hedar and M. Fukushima. Hybrid simulated annealing and direct search method
for nonlinear unconstrained global optimization. Optimization Methods and Soft-
ware, 17:891–912, 2002.

[8] A. R. Hedar and M. Fukushima. Minimizing multimodal functions by simplex coding
genetic algorithms. Optimization Methods and Software, 18:265–282, 2003.

[9] A. R. Hedar and M. Fukushima. Tabu search directed by direct search methods for
nonlinear global optimization. European Journal of Operational Research, 170:329–
349, 2006.

[10] M. J. Hirsch, C. N. Meneses, P. M. Pardalos, and M. G. C. Resende. Global opti-
mization by continuous GRASP. Optimization Letters (to appear), 2006.

[11] M. J. Hirsch, P. M. Pardalos, and M. G. C. Resende. Sensor registration in a sen-
sor network by continuous GRASP. Proceedings of the Military Communications
Conference (to appear), 2006.

16 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

[12] M. Laguna and R. Martı́. Experimental testing of advanced Scatter Search designs
for global optimization of multimodal functions. Journal of Global Optimization,
33:235–255, 2005.

[13] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

[14] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer
Verlag, Berlin, 2nd edition, 2004.

[15] Z. Michalewicz and G. Nazhiyath. Genocop III: A Co-evolutionary Algorithm for
Numerical Optimization Problems with Nonlinear Constraints. In Proceedings of the
2nd IEEE ICEC, Perth, Australia, 1995.

[16] P. M. Pardalos and M. G. C. Resende, editors. Handbook of Applied Optimization.
Oxford University Press, New York, 2002.

[17] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–
249. Kluwer Academic Publishers, 2003.

[18] P. Siarry, G. Berthiau, F. Durbin, and J. Haussy. Enhanced simulated annealing for
globally minimizing functions of many continuous variables. ACM Transactions on
Mathematical Software, 23(2):209–228, 1997.

APPENDIX A. FUNCTION DEFINITIONS

This appendix lists all the functions used in the experiments described in this paper.

(An) Ackley Function

Definition: An(x) =−20e−0.2
√

1
n ∑n

i=1 x2
i − e

1
n ∑n

i=1 cos(2πxi) +20+ e
Domain: [−15,30]n

Global Minimum: x∗ = (0, . . . ,0); An(x∗) = 0

(BE) Beale Function
Definition: BE(x) = (1.5− x1− x1x2)2 +(2.25− x1− x1x2

2)
2 +(2.625− x1− x1x3

2)
2

Domain: [−4.5,4.5]2

Global Minimum: x∗ = (3, 1
2); BE(x∗) = 0

(B2) Bohachevsky Function
Definition: B2(x) = x2

1 +2x2
2−0.3cos(3πx1)−0.4cos(4πx2)+0.7

Domain: [−50,100]2

Global Minimum: x∗ = (0,0); B2(x∗) = 0

(BO) Booth Function
Definition: BO(x) = (x1 +2x2−7)2 +(2x1 + x2−5)2

Domain: [−10,10]2

Global Minimum: x∗ = (1,3); BO(x∗) = 0

SPEEDING UP CONTINUOUS GRASP 17

(BR) Branin Function
Definition: BR(x) = (x2− 5

4π2 x2
1 + 1

π 5x1−6)2 +10(1− 1
8π)cos(x1)+10

Domain: [−5,15]2

Global Minimum (one of several): x∗ = (π,2.275); BR(x∗) = 0.397887

(CV) Colville Function (also called Wood Function)
Definition: CV (x) = 100(x2− x2

1)
2 +(1− x1)2 +90(x4− x2

3)
2 +(1− x3)2

+10.1
[
(x2−1)2 +(x4−1)2

]
+19.8(x2−1)(x4−1)

Domain: [−10,10]4

Global Minimum: x∗ = (1,1,1,1); CV (x∗) = 0

(DPn) Dixon and Price Function
Definition: DPn(x) = (x1−1)2 +∑n

i=2 i(2x2
i − xi−1)2

Domain: [−10,10]n

Global Minimum: x∗i = 2−
2i−2

2i , ∀i = 1, . . . ,n; DPn(x∗) = 0

(EA) Easom Function
Definition: EA(x) =−cos(x1)cos(x2)e−(x1−π)2−(x2−π)2

Domain: [−100,100]2

Global Minimum: x∗ = (π,π); EA(x∗) =−1

(GP) Goldstein and Price Function
Definition: GP(x) = [1+(x1 + x2 +1)2(19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2)]

[30+(2x1−3x2)2(18−32x1 +12x2
1 +48x2−36x1x2 +27x2

2)]
Domain: [−2,2]2

Global Minimum: x∗ = (0,−1); GP(x∗) = 3

(GRn) Griewank Function
Definition: GRn(x) = ∑n

i=1
x2

i
4000 −∏n

i=1 cos(xi√
i
)+1

Domain: [−300,600]n

Global Minimum: x∗ = (0, . . . ,0); GRn(x∗) = 0

(Hn,m) Hartmann Function

Definition: Hn,m(x) =−∑m
i=1 αie

−∑n
j=1 A(n)

i j (x j−P(n)
i j)2

Domain: [0,1]n

Global Minimum: (n = 3, m = 4) x∗ =(0.114614,0.555649,0.852547); H3,4(x∗)=−3.86278
Global Minimum: (n = 6, m = 4) x∗ =(0.201690,0.150011,0.476874,0.275332,0.311652,0.657300);
H6,4(x∗) =−3.32237
Parameters:

A(3) =




3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35




P(3) = 10−4




6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8838




18 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

A(6) =




10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14




P(6) = 10−4




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381




α = [1,1.2,3,3.2]

(Ln) Levy Function
Definition: Ln(x)= sin2(πy1)+∑n−1

i=1

[
(yi−1)2(1+10sin2(πyi +1))

]
+(yn−1)2(1+10sin2(2πyn))

Domain: [−10,10]n

Global Minimum: x∗ = (1, . . . ,1); Ln(x∗) = 0
Parameters: yi = 1+ xi−1

4 . ∀ i = 1, . . . ,n

(M) Matyas Function
Definition: M(x) = 0.26(x2

1 + x2
2)−0.48x1x2

Domain: [−5,10]2

Global Minimum: x∗ = (0,0); M(x∗) = 0

(Pn,β) Perm Function
Definition: Pn,β(x) = ∑n

k=1
[
∑n

i=1(i
k +β)((xi

i)k−1)
]2

Domain: [−n,n]n

Global Minimum: x∗ = (1,2, . . . ,n); Pn,β(x∗) = 0

(P0
n,β) Perm0 Function

Definition: P0
n,β(x) = ∑n

k=1[∑
n
i=1(i+β)((xk

i − (1
i)

k))]2

Domain: [−n,n]n

Global Minimum: x∗ = (1, 1
2 , . . . , 1

n); P0
n,β(x

∗) = 0

(PWn) Powell Function
Definition: PWn(x) = ∑

n
4
i=1

[
(x4i−3 +10x4i−2)2 +5(x4i−1− x4i)2

+(x4i−2−2x4i−1)4 +10(x4i−3− x4i)4
]

Domain: [−4,5]n

Global Minimum: x∗ = (3,−1,0,1,3, . . . ,3,−1,0,1); PWn(x∗) = 0

(PSn,b) Power Sum Function
Definition: PSn,b(x) = ∑n

k=1((∑
n
i=1 xk

i)−bk)2

Domain: [0,n]n

Global Minimum (n = 4,b = {8,18,44,114}): x∗ = (1,2,2,3); PS4,{8,18,44,114}(x∗) = 0

(RAn) Rastrigin Function
Definition: RAn(x) = 10n+∑n

i=1(x
2
i −10cos(2πxi))

Domain: [−2.56,5.12]n

SPEEDING UP CONTINUOUS GRASP 19

Global Minimum: x∗ = (0, . . . ,0); RAn(x∗) = 0

(Rn) Rosenbrock Function
Definition: Rn(x) = ∑n−1

j=1

[
100(x2

j − x j+1)2 +(x j−1)2
]

Domain: [−10,10]n

Global Minimum: x∗ = (1, . . . ,1); Rn(x∗) = 0

(SCn) Schwefel Function
Definition: SCn(x) = 418.9829n−∑n

i=1 xi sin(
√
|xi|)

Domain: [−500,500]n

Global Minimum: x∗ = (420.9687, . . . ,420.9687); SCn(x∗) = 0

(S4,m) Shekel Function
Function Definition: S4,m(x) =−∑m

i=1[(x−ai)T (x−ai)+ ci]−1

Domain: [0,10]4

Global Minimum: x∗ = (4,4,4,4); S4,5(x∗) = −10.15319538, S4,7(x∗) = −10.40281868,
and S4,10(x∗) =−10.53628349
Parameters:

a =




4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
7.0 3.0 7.0 3.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 2.6 7.0 3.6




c = [0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]

(SH) Shubert Function
Definition: SH(x) =

[
∑5

i=1 icos[(i+1)x1 + i]
][

∑5
i=1 icos[(i+1)x2 + i]

]
Domain: [−10,10]2

Global Minimum (one of several): x∗ = (5.48242188,4.85742188); SH(x∗) =−186.7309

(CA) Six-Hump CamelBack Function
Definition: CA(x) = 4x2

1−2.1x4
1 + 1

3 x6
1 + x1x2−4x2

2 +4x4
2

Domain: [−5,5]2

Global Minimum (one of several): x∗ =(0.08984375,−0.71289062); CA(x∗)=−1.03162801

(SPn) Sphere Function
Definition: SPn(x) = ∑n

i=1 x2
i

Domain: [−2.56,5.12]n

Global Minimum: x∗ = (0, . . . ,0); SPn(x∗) = 0
N.B.: The De Joung Function (DJ) is just a special case of the Sphere Function, i.e
DJ(x) = SP3(x)

20 MICHAEL J. HIRSCH, PANOS M. PARDALOS, AND MAURICIO G. C. RESENDE

(SSn) Sum of Squares Function
Definition: SSn(x) = ∑n

i=1 ix2
i

Domain: [−5,10]n

Global Minimum: x∗ = (0, . . . ,0); f (x∗) = 0

(Tn) Trid Function
Definition: Tn(x) = ∑n

i=1(xi−1)2−∑n
i=2 xixi−1

Domain: [−n2,n2]n

Global Minimum: x∗i = i(n+1− i), ∀ i = 1, . . . ,n; T6(x∗) =−50 and T10(x∗) =−210

(Zn) Zakharov Function
Definition: Zn(x) = ∑n

i=1 x2
i +(∑n

i=1 0.5ixi)2 +(∑n
i=1 0.5ixi)4

Domain: [−5,10]n

Global Minimum: x∗ = (0, . . . ,0); Zn(x∗) = 0

(Michael J. Hirsch) RAYTHEON, INC., NETWORK CENTRIC SYSTEMS, P.O. BOX 12248, ST. PETERS-
BURG, FL, 33733-2248, AND DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING, UNIVERSITY

OF FLORIDA, 303 WEIL HALL, GAINESVILLE, FL, 32611, USA.
E-mail address: mjh8787@ufl.edu

(Panos M. Pardalos) DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING, UNIVERSITY OF FLORIDA,
303 WEIL HALL, GAINESVILLE, FL, 32611, USA.

E-mail address: pardalos@ufl.edu

(Mauricio G. C. Resende) ALGORITHMS AND OPTIMIZATION RESEARCH DEPARTMENT, AT&T LABS

RESEARCH, 180 PARK AVENUE, ROOM C241, FLORHAM PARK, NJ 07932 USA.
E-mail address: mgcr@research.att.com

