
A PYTHON/C LIBRARY FOR BOUND-CONSTRAINED GLOBAL

OPTIMIZATION WITH CONTINUOUS GRASP

R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

Abstract. This paper describes libcgrpp, a GNU-style dynamic shared Py-
thon/C library of the continuous greedy randomized adaptive search procedure
(C-GRASP) for bound constrained global optimization. C-GRASP is an ex-
tension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief
introduction to C-GRASP, we show how to download, install, configure, and
use the library through an illustrative example.

1. Introduction

The objective of global optimization is to find a minimum or maximum of a
multimodal function over a discrete or continuous domain. In its minimization form,
global optimization is stated mathematically as finding a solution x∗ ∈ S ⊆ R

n such
that f(x∗) ≤ f(x), ∀ x ∈ S, where S is some region of Rn and the multimodal
objective function f is defined by f : S → R. Such a solution x∗ is called a global
minimum. Without loss of generality, we take the domain S to be the hyper-
rectangle S = {x = (x1, . . . , xn) ∈ R

n : ℓ ≤ x ≤ u}, where ℓ, u ∈ R
n such that

ℓ ≤ u. Therefore, the minimization problem considered in this paper consists in
finding x∗ = argmin{f(x) | ℓ ≤ x ≤ u}, where f : Rn → R, and ℓ, x, u ∈ R

n.
C-GRASP is a stochastic local search method for finding cost-effective solutions

to continuous global optimization problems subject to box constraints (Hirsch, 2006;
Hirsch et al., 2007; 2010). Several improvements to C-GRASP were proposed in
Hirsch et al. (2010) with the objective of speeding up implementations of the original
algorithm (Hirsch et al., 2007) and increasing robustness, while at the same time
keeping the overall algorithm simple to implement.

In this paper, we describe the C-GRASP library libcgrpp, a GNU-style dynamic
shared Python/C library of the heuristic proposed in Hirsch et al. (2010) with some
extensions. The library was developed using the autoconf, automake, and libtool

packages (Calcote, 2010).
libcgrpp was implemented as an embedded Python-in-C code (van Rossum

and Drake Jr., 2010a;b) to take advantage of the simplicity offered by the Python
programming language in implementing complex multimodal functions. Besides
having access to the extensive standard library of Python (van Rossum and Drake
Jr., 2010c), any non-standard module or library, such as SymPy (SymPy, 2011),

Date: July 12, 2011.
Key words and phrases. GRASP, continuous GRASP, Global optimization, multimodal func-

tions, continuous optimization, heuristic, stochastic algorithm, stochastic local search, nonlinear
programming.

Cite as: R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and M.J. Hirsch, “A Python/C li-
brary for bound-constrained global optimization with continuous GRASP,” AT&T Labs Research
Technical Report, Florham Park, NJ 07932 USA, 2011.

1

2 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

can be used to implement a function. An important feature of our library is that
the functions implemented in Python are loaded automatically without the need to
recompile any code.

The paper is organized as follows. The C-GRASP heuristic is reviewed in Sec-
tion 2. Section 3 shows how to download, install, configure, and use libcgrpp.
An illustrative example is given in Section 4. Concluding remarks are made in
Section 5.

2. Continuous GRASP

Continuous GRASP, or simply C-GRASP, is a method for finding good quality
solutions to bound-constrained global optimization problems. A pseudo-code for C-
GRASP is shown in Figure 1. The procedure takes as input the problem dimension
n, lower and upper bound vectors ℓ and u, the objective function f(·), as well as
the parameters hs, he, and ρlo. As described in Hirsch et al. (2010), parameters hs

and he define, respectively, the initial and final grid discretization densities, while
parameter ρlo specifies the portion of the neighborhood of the current solution that
is searched during the local improvement phase.

Line 1 of the pseudo-code initializes the objective function value f∗ of the best
solution found to infinity. Since C-GRASP is a multi-start procedure, it is contin-
ued indefinitely, until one or more stopping criteria are satisfied in line 2. These
stopping criteria could be based, for example, on the total number of function eval-
uations, the number of major iterations, or a target solution quality. The current
implementation of our library can use one of two stopping criteria: (1) stop when
the number of outer iterations (loop from line 2 to line 18 in the pseudocode) reaches

procedure C-GRASP(n, ℓ, u, f(·), hs, he, ρlo)
1 f∗ ←∞;
2 while stopping criteria not met do

3 x← UnifRand(ℓ, u);
4 h← hs;
5 while h ≥ he do

6 ImprC ← false;
7 ImprL ← false;
8 [x, ImprC]← ConstructGreedyRandomized(x, f(·), n, h, ℓ, u, ImprC);
9 [x, ImprL]← LocalImprovement(x, f(·), n, h, ℓ, u, ρlo, ImprL);
10 if f(x) < f∗ then

11 x∗ ← x;
12 f∗ ← f(x);
13 end if

14 if ImprC = false and ImprL = false then

15 h← h/2; /* make grid more dense */
16 end if

17 end while

18 end while

19 return(x∗);
end C-GRASP;

Figure 1. Pseudo-code for C-GRASP.

THE LIBCGRPP C-GRASP LIBRARY 3

a specified value; (2) stop when the optimality gap

(1) GAP = |f(x)− f(x∗)| ≤
{

ǫ if f(x∗) = 0

ǫ · |f(x∗)| if f(x∗) 6= 0,

where x is the current best solution found by the heuristic and x∗ is a known global
minimum solution.

Each time the stopping criteria of line 2 are not satisfied, another iteration takes
place (lines 3–17). During each iteration, the initial solution x is set, in line 3, to
a random point distributed uniformly over the n-dimensional box defined by ℓ and
u. Parameter h, which controls the discretization density of the search space, is
re-initialized to hs in line 4. The construction and local improvement phases are
then called sequentially in lines 8 and 9, respectively. The solution returned from
the local improvement procedure is compared against the current best solution in
line 10. If the returned solution has a better objective value than the current best
solution, then in lines 11–12 the current best solution is updated with the returned
solution. In line 14, if variables ImprC and ImprL are false, then the grid density
is increased by halving h, in line 15. The variable ImprC (resp. ImprL) is false

upon return from the construction (resp. local improvement) procedure if and only
if no improvement is made in the construction (resp. local improvement) proce-
dure. The grid density is increased at this stage because repeating the construction
procedure with the same grid density will not improve the solution. This allows
C-GRASP to start with a coarse discretization and adaptively increase the density
as needed, thereby intensifying the search with a more dense discretization when a
good solution has been found. The best solution found, at the time the stopping
criteria are satisfied, is returned.

The construction procedure is shown in Figure 2. It takes as input a solution
vector x. Initially, the procedure allows all coordinates of x to change (i.e. they
are called unfixed). In turn, in line 10 of the pseudo-code, if ReUse is false, a line
search is performed in each unfixed coordinate direction i of x with the other n− 1
coordinates of x held at their current values. In lines 10 and 11 of the pseudo-code,
the value zi, for the i-th coordinate, that minimizes the objective function, together
with the objective function value gi, are saved. In line 11, x̌i denotes x with the
i-th coordinate set to zi.

After looping through all unfixed coordinates (lines 7 to 16), in lines 17 to 23 a
restricted candidate list (RCL) is formed containing the unfixed coordinates i whose
gi values are less than or equal to g

¯
+α · (ḡ−g

¯
), where ḡ and g

¯
are, respectively, the

maximum and minimum gi values over all unfixed coordinates of x, and α ∈ [0, 1] is
chosen uniformly at random in line 2. In line 24, a coordinate is chosen at random
from the RCL, say coordinate j ∈ RCL. Line 25 checks whether xj and zj are equal.
If so, line 26 sets ReUse to the value true. Otherwise, in lines 28 to 30, ReUse is
set to false, ImprC is set to true, and xj is set to equal zj. Finally, in line 32,
the coordinate j of x is fixed, by removing j from the set UnFixed. The above
procedure is continued until all of the n coordinates of x have been fixed. At that
stage, x and ImprC are returned from the construction procedure.

From a given input point x ∈ R
n, the local improvement procedure generates

a neighborhood and determines at which points in the neighborhood, if any, the
objective function improves. If an improving point is found, it is made the current
point and the local search continues from the new solution. Let x̄ ∈ R

n be the

4 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

procedure ConstructGreedyRandomized(x, f(·), n, h, ℓ, u, ImprC)
1 UnFixed ← {1, 2, . . . , n};
2 α← UnifRand(0, 1);
3 ReUse← false;
4 while UnFixed 6= ∅ do
5 g

¯
← +∞;

6 ḡ ← −∞;
7 for i = 1, . . . , n do

8 if i ∈ UnFixed then

9 if ReUse = false then

10 zi ← LineSearch(x, h, i, n, f(·), ℓ, u);
11 gi ← f(x̌i);
12 end if

13 if g
¯
> gi then g

¯
← gi;

14 if ḡ < gi then ḡ ← gi;
15 end if

16 end for

17 RCL← ∅;
18 Threshold ← g

¯
+ α · (ḡ − g

¯
);

19 for i = 1, . . . , n do

20 if i ∈ UnFixed and gi ≤ Threshold then

21 RCL← RCL ∪ {i};
22 end if

23 end for

24 j ← RandomlySelectElement(RCL);
25 if xj = zj then

26 ReUse← true;
27 else

28 xj ← zj ;
29 ReUse← false;
30 ImprC ← true;
31 end if

32 UnFixed ← UnFixed \ {j}; /* Fix coordinate j. */
33 end while

34 return(x,ImprC);
end ConstructGreedyRandomized;

Figure 2. Pseudo-code for C-GRASP construction phase.

current solution and h be the current grid discretization parameter. Define

Sh(x̄) = {x ∈ S | ℓ ≤ x ≤ u, x = x̄+ τ · h, τ ∈ Z
n}

to be the set of points in S that are integer steps (of size h) away from x̄. Let

Bh(x̄) = {x ∈ S | x = x̄+ h · (x′ − x̄)/‖x′ − x̄‖, x′ ∈ Sh(x̄) \ {x̄}}
be the projection of the points in Sh(x̄) \ {x̄} onto the hyper-sphere centered at x̄
of radius h. The h-neighborhood of the point x̄ is defined as the set of points in
Bh(x̄).

A pseudo-code for the local improvement procedure is given in Figure 3. The
procedure starts from a solution x ∈ S ⊆ R

n found in the construction procedure.
The current best local improvement solution x∗ is initialized to x in line 1 of the
pseudo-code and the current best solution f∗ of the local improvement phase is
initialized in line 2 as f(x∗). Based on the current value of the discretization
parameter h and the number of points in Bh(x

∗), the number of grid points is

THE LIBCGRPP C-GRASP LIBRARY 5

procedure LocalImprovement(x, f(·), n, h, ℓ, u, ρlo, ImprL, MaxPointsToExamine)
1 x∗ ← x;
2 f∗ ← f(x);
3 NumGridPoints ←

∏n
i=1
⌈(ui − ℓi)/h⌉;

4 PointsToExamine ← ⌈ρlo · NumGridPoints⌉;
5 if PointsToExamine > MaxPointsToExamine then

6 PointsToExamine ← MaxPointsToExamine;
7 end if

8 NumPointsExamined ← 0;
9 while NumPointsExamined ≤ PointsToExamine do

10 NumPointsExamined ← NumPointsExamined + 1;
11 x← RandomlySelectElement(Bh(x

∗));
12 if ℓ ≤ x ≤ u and f(x) < f∗ then

13 x∗ ← x;
14 f∗ ← f(x);
15 ImprL ← true;
16 NumPointsExamined ← 0;
17 end if

18 end while

19 return(x∗, ImprL);

end LocalImprovement;

Figure 3. Pseudo-code for C-GRASP local improvement phase.

computed in line 3. In line 4, the number of points PointsToExamine that can be
evaluated is computed by using parameter ρlo, the portion of the neighborhood to
be examined. However, different from what is described in Hirsch et al. (2010),
in lines 5 to 7 we impose the restriction that the maximum number of points that
can be evaluated in any neighborhood be limited to the value of the parameter
MaxPointsToExamine.

Starting at the point x∗, in the loop in lines 9–18 the algorithm randomly selects
PointsToExamine points in Bh(x

∗), one at a time. In line 12, if the current point
x selected from Bh(x

∗) is feasible and is better than x∗, then x∗ is set to x, f∗

is set to f(x), ImprL is set to true, NumPointsExamined is reset to zero, and the
process restarts with x∗ as the starting solution. ImprL is used to determine whether
the local improvement procedure improved the best solution. Local improvement
is terminated if an h-local minimum solution x∗ is found. At that point, x∗ and
ImprL are returned from the local improvement procedure.

3. The libcgrpp library

This section begins by showing how to download (Section 3.2), build (Sec-
tion 3.3), and install (Section 3.4) the libcgrpp library, as well as its package
dependencies (Section 3.1). Then, the format of components required to use the
library are presented as follows: function module (Section 3.5), parameter input
file (Section 3.6), and calling C program (Section 3.7). Finally, the format of the
output file is described in Section 3.8.

3.1. Dependencies. The libcgrpp library requires that the following packages
be installed:

• Python programming language package (version ≥ 2.7), available at http:
//www.python.org/download;

6 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

• GNU Libtool library, available at http://www.gnu.org/software/libtool/.

3.2. Downloads. Full distribution of the libcgrpp library is available at http:

//www2.research.att.com/~mgcr/src/cgrasp. The package is distributed as the
tar file cgraspp-0.0.1.tar.gz containing the following directory structure:

.:

AUTHORS configure INSTALL NEWS src

ChangeLog COPYING Makefile README THANKS

./src:

cgrasparser.py cgrasp.h mt19937ar.c simclist.c

cgrasp.c Makefile mt19937ar.h simclist.h

Each file of this directory is described in Table 1.

Table 1. Main source code files of the libcgrpp library

files description

cgrasp.c Embedded Python-in-C code of C-GRASP (Fig. 1)
cgrasp.h C header file of cgrasp.c
mt19937ar.c C source code of the Mersenne Twister random number

generator of Matsumoto and Nishimura (1998)
mt19937ar.h C header file of mt19937ar.c
simclist.c SimCList (SimCList, 2011) library for handling lists
simclist.h C header file of simclist.c
cgrasparser.py Parser for parameter input file
AUTHORS Names and e-mail addresses of the authors
ChangeLog Records the changes that are made to package
configure Script that configures the package automatically
COPYING GNU General Public License
INSTALL Instructions for installing a GNU package
Makefile File which make will read to build the library
NEWS A record of user-visible changes to the package
README Purpose of package and installation instructions
THANKS Thanks to contributors

3.3. Building. The libcgrpp library was designed to run on a Linux platform.
Building the library from a distribution source tarball does not require autoconf

and automake packages to be installed. To build the library, execute the following
steps:

(1) unzip and untar the distribution cgraspp-0.0.1.tar.gz source tarball:

$ tar -xvf cgraspp-0.0.1.tar.gz

(2) Run the configure script to create the Makefiles:

$ cd cgraspp-0.0.1

$./configure

(3) Run the top-level Makefile:

THE LIBCGRPP C-GRASP LIBRARY 7

$ make

The configure command invokes a shell script that is distributed with the
package that automatically configures the library. It first probes the target system
to determine parameters needed to generate a Makefile from a template stored in
the file Makefile.am. When invoked, make executes the Makefile which compiles
the source code of the package but does not install it.

3.4. Installation. To install the library, make is once again invoked, this time with
the target install:

$ make install

Note that to install the library in some system directories, such as /usr/local,
requires super-user privilege. During installation, the files are placed in specific
directories, as follows:

• /usr/local/lib directory receives the libraries:

libcgrpp.a libcgrpp.la libcgrpp.so

libcgrpp.so.0 libcgrpp.so.0.0.0

• /usr/local/include, the header files:

cgrasp.h mt19937ar.h simclist.h

• /usr/local/lib/python2.7/site-packages/cgraspp, the Python script:

cgrasparser.py

The /usr/local directory is called the prefix. The default prefix is always
/usr/local but this can be set to any other directory when configure is invoked
by adding a --prefix option. For example, suppose a user wants to install the
package in directory /home/username instead of /usr/local:

$./configure --prefix=/home/username

$ make

$ make install

The --prefix argument tells configure where you want to install your package,
and configure will take that into account and build the proper Makefile auto-
matically.

3.5. Function module implementation. Objective functions are implemented
using the Python language. Consider as an example the Ackley function (Ackley,
1987; Bäck, 1996),

(2) An(x) = −20e−0.2
√

1

n

∑
n

i=1
x2

i − e
1

n

∑
n

i=1
cos(2πxi) + 20 + e,

which can be implemented in Python as follows:

from math import *

def f(x):

sum1 = sum(x[i]**2 for i in range(len(x)))

sum2 = sum(cos(2*pi*x[i]) for i in range(len(x)))

r = 1.0/len(x)

return -20.0*exp(-0.2*sqrt(r*sum1))-exp(r*sum2)+20.0+e

In Python, the keyword def introduces a function definition. It must be fol-
lowed by the function name and the parenthesized list of formal parameters. The
statements that form the body of the function start at the next line, and must be

8 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

indented. At the end, a return statement returns a value. Therefore, in the above
example, f is the name of function, the array x its parameter, and its body has
four statements.

Python has a way to put definitions and statements in a file and use them in
a script or in an interactive instance of the interpreter. Such a file is called a
module and definitions from a module can be imported into other modules. For
example, the first line from math import * above imports all the definitions from
the standard Python module math to the user’s module ackley. The file name is
the module name with suffix .py appended (e.g. ackley.py).

3.6. Input file formats. The input file must contain the following entries:

• -md <module-name>: defines the name of the python module containing
the multimodal function(s) to be minimized;

• -ft <function-name>: defines the name of the Python function that im-
plements the multimodal function to be minimized;

• -ds <n>: sets the function dimension to the positive integer <n>;
• -dm <l> <u> [list-of-exceptions]: sets bounds of the hyper-rectangle
S = {x = (x1, . . . , xn) ∈ R

n : ℓ ≤ x ≤ u}, such that ℓi = <l> and ui =
<u> for all (i = 1, . . . , n) dimensions. For example, -dm -10 10 sets the
lower and upper bounds for all dimensions to −10 and 10, respectively;
Exceptions are used to specify bounds for dimensions for which bounds are
different from <l> or <u>. They are expressed as follows:
(1) <i> <lo> <up>, with 1 ≤ <i> ≤ n and <lo> ≤ <up>: sets the lower ℓi

and upper ui bounds of i-th dimension to <lo> and <up>, respectively.
For example, the exception 3 -12 20 sets the lower and upper bounds
of the third dimension to −12 and 20, respectively.

(2) <i>:<j> <lo> <up>, with 1 ≤ <i> ≤ <j> ≤ n and <lo> ≤ <up>: sets
the lower bounds ℓk to <lo>, and the upper bounds uk to <up>, for
all dimensions k = i, . . . , j. For example, exception 7:10 -13 17 sets
the lower and upper bounds of 7th to the 10th dimensions to −13 and
17, respectively;

(3) combinations between formats (1) and (2) above described. For ex-
ample, 2 1 15 4:6 -9 -3 7 -15 30 9:11 -5 5 sets ℓ2 = 1 and
u2 = 15; ℓ4 = ℓ5 = ℓ6 = −9 and u4 = u5 = u6 = −3; ℓ7 = −15
and u7 = 30; ℓ9 = ℓ10 = ℓ11 = −5, u9 = u10 = u11 = 5;

• -ov <d> or -it <n> or -fe <n>: sets the target optimal objective function
value to the real number <d> or sets the number of iterations to the positive
integer value <n> or sets the number of function evaluations to the positive
integer value <n>. Note that only one of the three entries can be used as
the stopping criterion, i.e. they cannot be used in pairs or all together;

• -ep <d>: sets parameter ǫ of Equation (1) of Section 2 to the positive real
number <d>; Note that this entry can only be used in conjunction with -ov

<d>.
• -sd <n>: sets the seed of the pseudo-random generator to the positive
integer <n>;

• -hs <d>: sets the starting grid discretization density hs to the positive real
number <d>;

• -he <d>: sets the ending grid discretization density he to the positive real
number <d>;

THE LIBCGRPP C-GRASP LIBRARY 9

• -ro <d>: sets the local improvement parameter ρlo to the positive real
number <d> such that 0 < <d> ≤ 1;

• -ls <n>: turns local improvement procedure on (off) if <n> is equal to 1
(0);

• -mp <n>: sets the parameter MaxPointsToExamine in the local improve-
ment procedure to the positive integer <n>;

• -of <file-name>: defines the name of the output file to which the solution
is written.

An example input file is:

-hs 0.5 -he 0.0001 -ro 0.01 -ls 1 -mp 100 -of output.file

-sd 270001 -md ackley -ft f -ds 5 -ov 0 -ep 0.001

-dm -10 10 1 -5 3 4:5 -13 7

This input file specifies that C-GRASP will try to find a solution x′ ∈ S = {x =
(x1, . . . , x5) ∈ R

5 : (−5,−10,−10,−13,−13) ≤ x ≤ (3, 10, 10, 7, 7)}, such that
function f of module ackley.py that implements A5 (Equation 2) will be such
that GAP = |A5(x

′) − 0| ≤ ǫ = 0.001, using the following parameters: hs = 0.5,
he = 0.0001, ρlo = 0.01, seed = 270001, and MaxPointsToExamine= 100.

The program that parses this input file format was developed with Pyparsing
(McGuire, 2007).

3.7. Using the library in C. To use the function double cgrasp(int, **char)

of the libcgrpp library in a C program (which we shall call here userprog.c):

(1) Put #include <cgrasp.h> in the source code of the C program userprog.c:

#include <cgrasp.h>

...

double x;

...

void main(int argc, char **argv){

...

x = cgrasp(argc,argv);

...

}

(2) Link userprog.c with the libcgrpp library at compilation time, recalling
to specify the <pathname> of the Python.h header file:

$ gcc -I<pathname> userprog.c -o userprog -lcgrpp

To support embedding, the Python Application Programming Interface (API)
defines a set of functions, macros, and variables that provide access to most aspects
of the Python run-time system. The Python API is incorporated in a C source file
by including the header Python.h.

Before running the program, the environment variables LD LIBRARY PATH and
PYTHONPATHmust be set appropriately. LD LIBRARY PATH contains a colon-separated
list of directories in which the dynamic linker should search for shared objects.
Therefore, to inform the dynamic linker where the Python API is installed (more
specifically where the Python.h header file is located), LD LIBRARY PATH must be
set with the Python libraries directory pathname:

10 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

$ export LD_LIBRARY_PATH=<python-libs-dir>

For example:

$ export LD_LIBRARY_PATH=/usr/local/lib

PYTHONPATH also contains a colon-separated list of directories, similar to PATH

in so far as it defines a search path. However, unlike PATH (which specifies to the
operating system in which directories to look for executable files), PYTHONPATH is
used by the Python interpreter to locate modules to import. Therefore, the location
of the Python modules that implement the multimodal functions to be minimized
must be specified in PYTHONPATH:

$ export PYTHONPATH=<python-modules-dirs>

For example, the command:

$ export PYTHONPATH=$PWD:/usr/local/lib/python2.7/site-packages/cgraspp

sets PYTHONPATH to the current directory $PWD, to specify the directory of the func-
tion module and /usr/local/lib/python2.7/site-packages/cgraspp to specify
the directory of the C-GRASP input parser cgrasparser.

Finally, to run the program, type:

$ <program_name> <input_file_name>

as for example:

$./userprog input

3.8. Output. The program produces three kinds of output:

• STDERR (terminal): occasional error messages;
• STDOUT (terminal, unless redirected to a file with >) and FILE (file name
specified by the “-of” option in the input file):
(1) Summary of the execution, including information about the instance

itself as well as the execution parameters;
(2) For each objective function improvement, a line is printed with the

following format:

<responsible>:

<keyword> <value>

The procedure responsible for the improvement can be one of the fol-
lowing:

– random: Procedure UnifRand in line 3 of Algorithm 1;
– construction: Algorithm 2;
– local search: Algorithm 3.

Keywords are self-descriptive:
– time: CPU time (in seconds) of improvement;
– best value: objective function value of improved solution;
– solution: improved solution x = (x1, . . . , xn) ∈ S ⊂ R

n.
(3) Total CPU time (in seconds) in the following format:

time: <value>

For example:
time: 165.650009

(4) Total function evaluations in the following format:
evaluations: <value>

THE LIBCGRPP C-GRASP LIBRARY 11

For example:
evaluations: 1566509

(5) Value of the overall best solution found in the following format:
optimum: <value>

For example:
optimum: 0.000000

Consider as an example the output generated by Algorithm 1 to find a solution
x ∈ [−10, 10]2, such that the Booth function:

(3) BO(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 ≤ ǫ = 0.001

using the following parameters: hs = 0.5, he = 0.0001, ρlo = 0.01, seed = 270001,
and MaxPointsToExamine= 100.

random:

time: 0.000000

evaluations: 1

best value: 127.067622

solution: 6.046783 -5.067851

construction:

time: 0.000000

evaluations: 80

best value: 77.292449

solution: 7.546783 -2.067851

local search:

time: 0.010000

evaluations: 1126

best value: 0.103908

solution: 1.042637 2.824020

construction:

time: 0.010000

evaluations: 2367

best value: 0.061733

solution: 1.042637 3.074020

local search:

time: 0.020000

evaluations: 3423

best value: 0.005461

solution: 0.954859 3.017175

construction:

time: 0.030000

evaluations: 6546

best value: 0.005367

solution: 1.017359 3.017175

local search:

time: 0.030000

evaluations: 7553

12 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

best value: 0.000675

solution: 1.005291 3.006945

construction:

time: 0.040000

evaluations: 14036

best value: 0.000201

solution: 0.989666 3.006945

local search:

time: 0.040000

evaluations: 15049

best value: 0.000095

solution: 1.000248 2.995449

time: 0.040000

dimension: 2

epsilon: 0.000100

seed: 270001

h_s: 0.500000

h_e: 0.000100

ro: 10.000000

LS option: 1

LS max points: 1000.000000

output file: output.file

The global minimum of Booth function in domain [−10, 10]2 is x∗ = (1, 3) with
BO(x∗) = 0. cgrasp reached an ǫ-optimal solution in 0.04 seconds.

4. An example

In this section, we illustrate the use of the library with an example. We give
step-by-step instructions on how to solve the example problem.

(1) Create the following program with your favorite editor:

#include <cgrasp.h>

double main(int argc, char **argv){

double res;

res = cgrasp(argc,argv);

return res;

}

and save the code in the file program.c.
(2) Implement the function to be minimized as a Python module. For example,

the Booth function described in Equation (3) can be implemented as:

def g(x):

return (x[0] + 2*x[1] - 7)**2 + (2*x[0] + x[1] - 5)**2

and save the module in the file booth.py.
(3) Create a file with the parameters to be used by program, as for example:

-hs 0.5 -he 0.0001 -ro 0.01 -ls 1 -mp 100 -of output.file -sd 270002

-md booth -ft g -ds 2 -dm -10 10 -ov 0 -ep 0.001

THE LIBCGRPP C-GRASP LIBRARY 13

and name it, for example, input. Do not forget to set the options -md and
-ft to the file name and function name, respectively. In this example, -md
and -ft assume the values booth and g, respectively.

(4) Compile the program program.c:

$ gcc -I/usr/local/include/python2.7 program.c -o program -lcgrpp

in order to create an executable file program.
(5) Update the environment variables LD LIBRARY PATH and PYTHONPATH:

$ export LD_LIBRARY_PATH=/usr/local/lib

$ export PYTHONPATH=\$PWD:/usr/local/lib/python2.7/site-packages/cgraspp

(6) Type the following command to run the program:

$./program input

which will generate the following output:

random:

time: 0.000000

evaluations: 1

best value: 346.236119

solution: 9.866860 2.305230

construction:

time: 0.000000

evaluations: 81

best value: 0.290981

solution: 1.366860 2.805230

local search:

time: 0.000000

evaluations: 184

best value: 0.143849

solution: 1.013306 3.158784

construction:

time: 0.000000

evaluations: 525

best value: 0.105516

solution: 0.763306 3.158784

local search:

time: 0.000000

evaluations: 644

best value: 0.005744

solution: 0.948869 3.026495

local search:

time: 0.010000

evaluations: 1396

14 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

best value: 0.004045

solution: 0.969845 3.046070

local search:

time: 0.010000

evaluations: 2570

best value: 0.000127

solution: 1.002841 2.992989

time: 0.010000

dimension: 2

epsilon: 0.001000

seed: 270002

h_s: 0.500000

h_e: 0.000100

ro: 0.010000

LS option: 1

LS max points: 100.000000

output file: output.file

Suppose that you decide to change the function to be optimized. For example,
instead of Booth function, consider the Ackley function described in Equation (2).
The necessary steps to incorporate this new function are as follows:

(1) Implement the Ackley function in Python as described in Section 3.5 and
save it in file ackley.py.

(2) Update at least the options related to the function in the file input: -md,
-ft, -ds, -ov, and -dm. For example:

-hs 0.5 -he 0.0001 -ro 0.01 -ls 1 -mp 100 -of output

-sd 270001 -md ackley -ft f -ds 30 -ov 0 -ep 0.001

-dm -15 30

(3) Run the program again:

$./program input

which will generate the following output:

h=0.500000, h_e=0.000100

iteration: 0

random:

time: 0.000000

evaluations: 1

best value: 20.933162

solution: 21.105262 -3.902664 3.711931 3.212137 20.324969

24.701692 21.233718 25.782630 27.744391 -14.956639 -6.553142

23.285696 -5.779033 18.354341 8.369533 15.338570 17.463161

19.988780 3.374752 -4.781582 12.275036 12.074889 -10.080807

22.278906 22.198215 4.374315 2.281934 25.520283 10.808203

2.876172

THE LIBCGRPP C-GRASP LIBRARY 15

h=0.500000, h_e=0.000100

iteration: 0

construction:

time: 0.080000

evaluations: 2672

best value: 1.695881

solution: 0.105262 0.097336 0.211931 0.212137 -0.175031

0.201692 0.233718 -0.217370 0.244391 0.043361 -0.053142

-0.214304 0.220967 -0.145659 -0.130467 -0.161430 -0.036839

-0.011220 -0.125248 0.218418 -0.224964 0.074889 -0.080807

-0.221094 0.198215 -0.125685 -0.218066 0.020283 -0.191797

-0.123828

h=0.500000, h_e=0.000100

iteration: 0

local search:

time: 0.080000

evaluations: 2861

best value: 1.441325

solution: 0.426598 0.136822 0.151578 0.050235 -0.204186

0.155583 0.085362 -0.089813 0.200006 0.165673 -0.068200

0.025389 0.278641 0.043196 0.124905 -0.008284 0.035707

0.189945 -0.004520 0.332007 0.073254 0.213014 0.124168

0.002367 -0.055073 0.084247 -0.090377 0.030453 0.113455

0.043277

...

h=0.000977, h_e=0.000100

iteration: 0

construction:

time: 154.340012

evaluations: 6992912

best value: 0.001055

solution: -0.000427 0.000313 -0.000397 0.000071 -0.000374

0.000042 0.000050 -0.000464 -0.000361 -0.000465 0.000010

0.000233 -0.000099 -0.000214 -0.000161 0.000323 0.000199

-0.000482 0.000022 0.000400 -0.000134 0.000119 -0.000005

-0.000110 0.000052 -0.000059 0.000316 -0.000127 0.000124

0.000262

h=0.000977, h_e=0.000100

iteration: 0

local search:

time: 154.340012

evaluations: 6993060

best value: 0.000971

solution: -0.000443 0.000323 0.000021 0.000286 -0.000003

0.000094 0.000271 -0.000211 0.000333 -0.000158 0.000357

0.000406 -0.000194 -0.000120 -0.000148 -0.000023 0.000243

-0.000415 -0.000305 0.000223 -0.000179 0.000060 0.000207

16 R. M. A. SILVA, M. G. C. RESENDE, P. M. PARDALOS, AND M. J. HIRSCH

-0.000031 -0.000045 -0.000202 0.000436 0.000166 0.000166

-0.000020

time: 154.340012

dimension: 30

epsilon: 0.001000

seed: 270001

h_s: 0.500000

h_e: 0.000100

ro: 0.010000

LS option: 1

LS max points: 100.000000

output file: output.file

5. Concluding remarks

In this paper, we describe how to download, install, configure, and use an im-
plementation of the C-GRASP heuristic for bound constrained global optimization
introduced by Hirsch et al. (2007; 2010). Since C-GRASP makes no use of deriva-
tive nor a priori information, it is a well-suited approach for solving general global
optimization problems.

The C-GRASP library libcgrpp was implemented in C, and on the runs done
for this paper it was compiled with the gcc version 4.4.3 compiler with flags -O6
-funroll-all-loops -fomit-frame-pointer. The pseudo-random number gen-
erator adopted is theMersenne Twister implemented by Matsumoto and Nishimura
(1998) and available at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

MT2002/emt19937ar.html. To handle lists, we used the SimCList library, available
at http://mij.oltrelinux.com/devel/simclist.

All runs reported in this paper were done on a computer with a quad core 2.8 GHz
6 MB cache Intel i7 I7-720QM processor and 6 Gb of 1333 MHz DDR3 SD RAM
memory, running Ubuntu 10.04 LTS (Lucid Lynx).

Acknowledgment

The research of R.M.A Silva was partially done while he was a post-doc scholar at
AT&T Labs Research in Florham Park, New Jersey, and was partially supported
by the Brazilian National Council for Scientific and Technological Development
(CNPq), the Foundation for Support of Research of the State of Minas Gerais,
Brazil (FAPEMIG), Coordination for the Improvement of Higher Education Per-
sonnel, Brazil (CAPES), and Foundation for the Support of Development of the
Federal University of Pernambuco, Brazil (FADE). The research of P.M. Parda-
los was partially supported by grants from the United States Air Force and The
Defense Threat Reduction Agency (DTRA) of the United States Department of
Defense.

References

D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, Boston, 1987.

T. Bäck. Evolutionary algorithms in theory and practice. Oxford University Press,
New York, 1996.

THE LIBCGRPP C-GRASP LIBRARY 17

J. Calcote. Autotools: A practitioner’s guide to GNU Autoconf, Automake, and
Libtool. No Starch Press, San Francisco, 2010.

M. J. Hirsch, C. N. Meneses, P. M. Pardalos, and M. G. C. Resende. Global
optimization by continuous grasp. Optimization Letters, 1:201–212, 2007.

M. J. Hirsch, P. M. Pardalos, and M. G. C. Resende. Speeding up continuous
GRASP. Journal of Operational Research, 205:507–521, 2010.

M.J. Hirsch. GRASP-based heuristics for continuous g lobal optimization problems.
PhD thesis, University of Florida, Gainesville, FL, 2006.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

P. McGuire. Getting Started with Pyparsing. O’Reilly Media, Sebastopol, CA, 2007.
SimCList, 2011. URL http://mij.oltrelinux.com/devel/simclist/. Last vis-
ited on July 12, 2011.

SymPy, 2011. URL http://sympy.org/. Last visited on July 11, 2011.
G. van Rossum and F.L. Drake Jr., editors. Python/C API Reference Manual,
Release 2.7. Python Software Foundation, Wolfeboro Falls, NH, 2010a.

G. van Rossum and F.L. Drake Jr., editors. Extending and embedding Python,
Release 2.7. Python Software Foundation, Wolfeboro Falls, NH, 2010b.

G. van Rossum and F.L. Drake Jr., editors. The Python Library Reference, Release
2.7. Python Software Foundation, Wolfeboro Falls, NH, 2010c.

(Ricardo M. A. Silva) Centro de Informática (CIn), Federal University of Pernambuco,
Av. Prof. Lúıs Freire s/n, Cidade Universitária, Recife, PE, Brazil.

E-mail address: rmas@cin.ufpe.br

(Mauricio G. C. Resende) Algorithms and Optimization Research Department, AT&T
Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

(Panos M. Pardalos) Department of Industrial and Systems Engineering, University
of Florida, 303 Weil Hall, Gainesville, FL, 32611, USA.

E-mail address: pardalos@ufl.edu

(Micahel J. Hirsch) Raytheon Company, Intelligence and Information Systems, 300
Sentinel Drive, Annapolis Junction, MD, 20701, USA.

E-mail address: mjh8787@ufl.edu

