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Ad hoc networks have been used in the last few years to provide communications
means among agents that need to accomplish common goals. Due to the impor-
tance of communication for the success of such missions, we study the problem
of maximizing communication among a set of agents. As a practical tool to solve
such problems, we introduce a one-pass randomized algorithm that maximizes the
total communication, as measured by the proposed objective function. Agents in
this problem are routed along the edges of a graph, connecting their individual
starting nodes to their respective destination nodes. This problem, known as the
Cooperative Communication Problem in Mobile Ad Hoc Networks, is known to be
NP-hard. We present a new heuristic and motivate the need for more advanced
methods for the solution of this problem. In particular, we describe 1) a construc-
tion algorithm and 2) a local improvement method for maximizing communication.
Computational results for the proposed approach are provided, showing that in-
stances of realistic size can be efficiently solved by the algorithm.
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1. Introduction

Advances in wireless communication and networking have lead to the de-

velopment of new network organizations based on autonomous systems.

Among the most important example of such networks systems are mobile

ad hoc networks (MANETs). MANETs are composed of a set of loosely

coupled mobile agents which communicate using a wireless medium via

a shared radio channel. Agents in the network act as both clients and as

servers and use various multi-hop protocols to route messages to other users

in the system17,18. Unlike traditional cellular systems, ad hoc networks have

no fixed topology. Moreover, in a MANET the topology changes each time

an agent changes its location. Thus, the communication between the agents

depends on their physical location and their particular radio devices.

Interest in MANETs has surged in the recent years, due to their nu-

merous civilian and military applications. MANETs can be successfully

implemented in situations where communication is necessary, but no fixed

telephony system exists. Real applications abound, especially when con-

sidering adversarial environments, such as the coordination of unmanned

aerial vehicles (UAVs) and combat search and rescue groups. Other exam-

ples include the coordination of agents in a hostile environment, sensing,

and monitoring. More generally, the study of protocols and algorithms for

MANETs is of high importance for the successful deployment of sensor net-

works – which are themselves composed of a large number of autonomous

processors that can coordinate to achieve some higher level task such as

sensing and monitoring.

The lack of a central authority in MANETs leads to several problems

in the areas of routing and quality assurance6. Many of these problems

can be viewed as combinatorial in nature, since they involve finding sets

of discrete objects satisfying some definite property, such as for example

connectedness or minimum cost. Among the challenging problems encoun-

tered in MANETs, we can cite routing as one of the most difficult to solve,

because of the temporary nature of communication links in such a system.

In fact, as nodes move around, they dynamically define topologies for the

entire network. In such an environment, it is difficult to determine if two

nodes are connected, since any of the intermediate nodes may leave the

network at any time.

This scenario makes clear the importance of close coordination among

groups of nodes if a definite goal needs to be attained. If at all possible, a

plan must be devised such that communication among nodes is maintained
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for as long as possible. With this objective in mind, we study in this paper

algorithms that would allow a set of agents to accomplish a mission, with

definite starting and ending positions, but at the same time maximizing

the communication time among the agents involved.

This chapter is organized as follows. We first present a graph formula-

tion and discuss the computational complexity of the problem in Section 2.

Next, in Section 3 we discuss some of the previous work on areas related

to cooperative communication in wireless systems. Potential solution tech-

niques are presented in the following sections. In Section 4, a simple con-

struction algorithm for the maximum communication problem is proposed.

In Section 5, a hill-climbing method for improving an initial solution for

the problem is presented. Then, in Section 6 a one-pass local search heuris-

tic is presented, combining the ideas discussed on the preceding sections.

The numerical results from computational experiments are analyzed on Sec-

tion 7. Finally, concluding remarks and future research ideas are presented

in Section 8.

2. Problem Statement

In MANETs, bandwidth and communication time are usually severely con-

strained resources. To allow for successful interaction among nodes, we

propose the solution of the cooperative communication problem on ad hoc

networks (ccpm). In this problem, the objective is to determine a set

of routes to be followed by mobile agents who must cooperate to accom-

plish some preassigned tasks. The function we try to maximize represents

the total communication time for all agents along the computed trajecto-

ries. As described in this section, the Cooperative Communication Problem

in MANETs can be modeled as a combinatorial optimization problem on

graphs.

Consider a graph G = (V, E), where V = {v1, v2, . . . , vn} represents the

set of candidate positions for the wireless agents. Suppose that a node in

G is connected only to those nodes that can be reached in one unit of time.

Let U represent the set of agents, S = {s1, s2, . . . , s|U|} ⊆ V represent the

set of initial positions, and D = {d1, d2, . . . , d|U|} ⊆ V the set of destination

nodes. Let N(v) ⊆ 2V , for v ∈ V , represent the set of neighbors of node v

in G. Given a time horizon T , the objective of the problem is to determine

a set of routes for the agents in U , such that each agent ui ∈ U starts at a

source node si and finishes at the destination node di ∈ D after at most T

units of time.
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For each agent u ∈ U , the function pt : U → V returns the position of

the agent at time t ∈ {1, 2, . . . , T}, where T is the time limit by which the

agents must reach their destinations. Then at each time instant t, an agent

u ∈ U can either remain in its current location, i.e., pt−1(u), or move to a

node in N(pt−1(u)).

We can represent a route for an agent u ∈ U as a path P =

{v1, v2, . . . , vk} in G where v1 = su, vk = du, and, for i ∈ {2, . . . , k},

vi ∈ N(vi−1) ∪ {vi}. Finally, if {Pi}
|U|
i=1

is the set of trajectories for the

agents, we are given a corresponding vector L such that Li is a threshold

on the size of path Pi. This value is typically determined by fuel or battery

life constraints on the wireless agents.

We assume that the agents have omnidirectional antennas and that two

agents in the network are connected if the distance between them is less

than some radius r. More specifically, let δ : V × V → R represent the

Euclidean distance between a pair of nodes in the graph. Then, we can

define a function c : V × V → {0, 1} such that

c(pt(ui), pt(uj)) =

{

1, if δ(pt(ui), pt(uj)) ≤ r

0, otherwise.
(1)

With this, we can define the CCPM as the following optimization problem:

max

T
∑

t=1

∑

u,v∈U

c(pt(u), pt(v)) (2)

s.t.

ni
∑

j=2

δ(vj−1, vj) ≤ Li ∀ Pi = {v1, v2, . . . , vni
}, (3)

p1(u) = su ∀ u ∈ U, (4)

pT (u) = du ∀ u ∈ U, (5)

where constraint (3) ensures that the length of each path Pi is less than or

equal to its maximum allowed length Li.

Oliveira and Pardalos17 have shown that ccpm is NP-hard via a re-

duction to 3sat1. Furthermore, to find an optimal solution at each time

t ∈ {1, 2, . . . , T} remains NP-hard. This can be shown by a reduction to

maximum clique1, another well-known NP-hard problem. The computa-

tional complexity of the problem does not allow for real-world instances to

be solved exactly. This motivates the need for efficient heuristics to solve

real-world instances within reasonable computing times. In the upcoming

sections, we describe one such algorithm and present the framework for a

different, non deterministic heuristic.
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3. Previous Work

Communication is an important measure of collaboration between entities

involved in a mission. It allows different agents to perform the set of tasks

that have been planned, and at the same time to implement changes in

the case that an unexpected event occurs. Moreover, high communication

levels are necessary in order to perform complicated tasks, where several

agents must be coordinated. We describe in this section the main concepts

found in the literature related to optimizing communication time in ad hoc

network systems.

One of the main difficulties concerning the maintenance of communica-

tion is an ad hoc network is determining the location of agents at a given

moment in time. Several methods have been proposed for improving lo-

calization in this situation. Moore et al.16, for example, presented a linear

time algorithm for determining the location of nodes in an ad hoc network

in the presence of noise. Other algorithms for the same problem have been

suggested by Capkun et al.7, Doherty et al.13, and Priyantha et al.19.

While such algorithms can be useful in determining the correct location

of nodes, they are only able to provide information about current positions,

and are not meant to optimize locations for a specific objective. Packet

routing, on the other hand, has been previously studied with the goal of

optimizing some common parameters, such as latency, cost of the resulting

route, and energy consumed. For example, Butenko et al.6 proposed a new

algorithm for computing a backbone for wireless networks with minimum

size, based on a number of related algorithms for this problem5,8,15.

Another problem involving the minimization of an objective function

over all feasible positions of agents in an ad hoc network is the so-called

location error minimization problem. In the location error minimization

problem, given a set of measurements of node positions (taken from different

sources), the goal is to determine a set of locations for wireless nodes such

that errors in the given measurements are minimized. This problem has

been formulated and solved using mathematical programming techniques,

by the use of a relaxation for the general problem into a semi-definite pro-

gramming model20,3,4.

In this paper we consider a different optimization problem (ccpm) over

the relative position of nodes in a wireless network. The ccpm has the

objective of maximizing the total communication time of a given set of

wireless agents. The problem has been proposed by considering military

situations where a set of agents needs to accomplish a mission. It has been
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proved17 that the problem is NP-hard, which makes clear the necessity of

fast algorithms for the practical solutions of instances with large size. We

present a method for constructing and optimizing solutions for the ccpm

in the next sections.

4. Construction Heuristic

In this section, we propose a construction heuristic to create high quality

solutions for the ccpm. Our objective is to provide a fast way of construct-

ing a set of paths, connecting wireless agents from their initial positions

S to the destinations D such that the resulting routes are feasible for the

problem. The union of such sequences of nodes will uniquely determine the

cost of the solution, which is calculated using equation (2). The algorithm

also tries to create solutions that have as large a value as possible for the

objective function.

The pseudo-code for the construction heuristic is showed in Figure 1.

The algorithm starts initializing the cost of the solution to zero. The in-

cumbent solution, represented by the variable solution, is initialized with

the empty set.

The next step consists of finding shortest paths connecting each source

si ∈ S to a destination di ∈ D. Standard minimum cost flow algorithms

can be used to calculate these shortest paths. For example, the Floyd-

Warshall algorithm14,22 can be used to compute the shortest path between

all pairs of nodes in a graph. The Dijkstra algorithm12 can also be used to

perform this step of the algorithm (with the only difference that, being a

single-source shortest path algorithm, it must be run for |U | iterations, one

for each of the |U | source-destination pairs).

In the loop from lines 4 to 10, the algorithm performs the assignment

of new paths to the solution, using the shortest path algorithm described

above. First, a source-destination path si-di is selected, and based on this

a shortest path Pi corresponding to this pair is generated. Notice that, if

the length (number of edges) of the shortest path Pi is more than T there

is not feasible solution for the problem, since the destinations cannot be

reached at the end of the requested time horizon. The algorithm checks for

this condition on line 6.

If all source-destination pairs are found to be feasible, then a solution

is generated by the union of all Pi. Notice that once agent i reaches node

di it can simply loiter at di during all remaining time (until instant T ), as

shown in line 7. The sequence of nodes found as a result of this process
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is then added to the solution in line 8 of the algorithm, and the optimum

objective value is updated (line 9). Finally, a complete solution is returned

on line 11, along with the value of that solution.

procedure ShortestPath(solution)

1 c ← 0;

2 solution← ∅;

3 Compute all shortest paths for each (si, di) pair;

4 for i = 1 to |U | do→

5 Pi ← SP(si, di);

6 if length of Pi > T then return ∅;

7 let agent i stay in di until time T is reached;

8 solution ← solution ∪ Pi;

9 c ← c + number of new connections generated by Pi;

10 rof

11 return (c, solution);

end ShortestPath

Figure 1.: Pseudocode for the Shortest Path Constructor.

Theorem 4.1. The construction algorithm presented above finds a feasible

solution for the ccpm in O(|V |3) time.

Proof. A feasible solution for this problem is given by a sequence of po-

sitions starting at si and ending at di, for each agent ui ∈ U . Clearly, the

union of the shortest paths provide the required connection between each

source-destination pair, according to the remarks in the preceding para-

graph; therefore the solution is feasible. Suppose that, in line 3, we use the

Floyd-Warshall algorithm for all-pairs shortest path14,22. This algorithm

runs in O(|V |3) time. Then, at each step of the for loop we need only to

refer to the solution calculated by the Floyd-Warshall algorithm and add

it to the variable solution. This can be done in time O(|V |), and there-

fore the for loop will run in at most O(|V ||U |) time. Thus, the step with

highest time complexity is the one appearing in line 3, which implies that

the total complexity of the algorithm is O(|V |3).
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5. Local Search Heuristic

A construction algorithm is a good starting point in the process of solving

a combinatorial optimization problem. However, due to the NP-hardness

of the ccpm, such an algorithm provides no guarantee that a good solution

will be found. In fact, it is possible that for some instances the solution

found by the construction heuristic is far from the optimum, and not even

a local optimal solution.

To guarantee that the solution found is at least locally optimal, we

propose a local search algorithm for the ccpm. A local search algorithm

receives as input a feasible solution and, given a neighborhood structure

for the problem, returns a solution that is guaranteed to be optimal with

respect to that neighborhood.

For the ccpm, the neighborhood structure is defined as follows. Given

an instance Π of the ccpm, let S be the set of feasible solutions for that

instance. Then, if s ∈ S is feasible for Π, the neighborhood N (s) of s

is the set of all solutions s′ ∈ S that differ from s in exactly one route.

Obviously, considering this neighborhood, there are |U | positions where a

new path could be inserted; moreover, the number of feasible paths between

any source-destination pair is exponential.

Thus, in our algorithm, instead of exhaustively searching the entire

neighborhood for each point, we probe only |U | neighbors at each iteration

(one for each source-destination pair). Also, because of the exponential size

of the neighborhood, we limit the maximum number of iterations performed

to a constant MaxIter.

We use randomization to select a new route, given a source destination

pair. This is done in our proposed implementation using a modified ver-

sion of the depth-first-search algorithm11. A randomized depth-first-search

is identical to a depth-first-search algorithm, but at each step the node se-

lected to explore is uniformly chosen among the available children of the

current node. Using the randomized depth-first-search we are able to find

a route that may improve the solution, while avoiding being trapped at a

local optimum after only a few iterations.

A description of the local search procedure in form of pseudo-code is

given in Figure 2. The algorithm used can be described as follows. Initially,

the algorithm receives as input the basic feasible solution generated on

phase 1 (the construction phase). A neighborhood for this solution is then

defined to be the set of feasible solutions that differ from the current solution

by one route, as previously described.
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procedure HillClimb(solution)

1 Compute cost c of solution;

2 while solution not locally optimal and iter < MaxIter do→

3 for all agent pairs (si, di) do→

4 Remove Pi from solution;

5 Find alternate feasible path P ′
i

using the randomized DFS algorithm;

6 compute cost c’ of new soluton

7 if new solution is feasible and c’ > c then

8 c ← c’;

9 iter ← 0;

11 else

12 Restore path Pi;

10 fi

11 rof

12 iter ← iter + 1;

13 elihw

end HillClimb

Figure 2.: Pseudocode for the Hill Climbing intensification procedure.

Given the basic feasible solution obtained from the construction sub-

routine, the neighborhood is explored in the following manner. For each

agent ui ∈ U , we reroute the agent on an alternate feasible path from si

to di (lines 3 to 13). Recall that a path Pi is feasible if the total length of

this path is less than Li and the agent reaches its target node by time T .

This alternate path is created on line 5 using a modified depth-first-search

algorithm2. The modification to the DFS is a randomization which selects

the child node uniformly during each iteration. This procedure is efficient

in that it can be implemented in polynomial time, as shown bellow.

Theorem 5.1. The time complexity of the algorithm above is O(kTu2m),

where k = MaxIter, T is the time horizon, u = |U | and m = |E|.

Proof. Notice the the most time consuming step of the algorithm is the

construction of a new path (line 5). However, using a randomized depth-

first-search procedure this can be done in O(m) time2. Each iteration of the

while loop (lines 2 to 13) will perform local improvements in the solution

using the re-routing procedure to improve the objective function. An upper

bound on the best solution for an instance of this problem is Tu(u− 1)/2
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(the time horizon multiplied by maximum number of connections). Each

improvement can require at most MaxIter iterations to be achieved. There-

fore, in the worst case this heuristic will end after O(kTu2m) time.

6. Combining Algorithms into a One-Pass Heuristic

The two algorithms described in Sections 4 and 5 can be combined into a

single one-pass heuristic for the ccpm. The pseudo-code for the complete

algorithm used can be seen in Figure 3. The new algorithm now behaves

as a single-start, diversification and intensification heuristic for the ccpm.

The total time complexity of this heuristic can be determined from

Theorems 1 and 2. Taking the maximum of the two time complexities

determined previously, we have a total time of O(max{n3, kTu2m}), where

T is the time horizon, u = |U |, n = |V |, m = |E|, and k = MaxIter is the

maximum number of iterations allowed on the local search phase.

procedure OnePass(Instance)

1 Input: Instance of the ccpm, with n nodes, m

edges, and a set U of agents;

2 solution← ConstructionHeuristic(Instance);

3 solution← HillClimbHeuristic(solution);

4 return solution ;

end OnePass

Figure 3.: Pseudocode for the One-Pass Heuristic

7. Computational Results

The algorithm proposed above was tested to verify the quality of the solu-

tions produced, as well as the efficiency of the resulting method. The test

instances employed in the experiments were composed of 60 random unit

graphs, distributed into groups of 20, each group having graphs with 50,

75, and 100 nodes. The communication radius of the wireless agents was

allowed to vary from 20 to 50 units. This has provided us with a greater

base for comparison, resulting in random graphs and wireless units that

more closely resemble real-world instances.

The graphs used in the experiment were created with the algorithm pro-

posed by Butenko et. al.10,9 in the context of the Broadcast Scheduling
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problem. The routines were coded in fortran. Random numbers were

generated using Schrage’s algorithm21. In all experiments, the random

number generator was started with the seed value 270001.

Instance Nodes Radius Agents OnePass SP Soln Agents OnePass SP Soln Agents OnePass SP Soln

1 50 20 10 63.6 52.4 15 152 120.8 25 414.66 353.6

2 50 30 10 83.8 58.4 15 182.2 124.4 25 516.2 415.6

3 50 40 10 95.4 67.4 15 228.6 171.8 25 695 474.8

4 50 50 10 115.4 64.4 15 275.8 167.4 25 797.4 485.4

5 75 20 10 76.8 59 20 270.2 228.6 30 575.2 464

6 75 30 10 85.8 56 20 299.6 241.2 30 725.4 554

7 75 40 10 96.4 64.4 20 386 261 30 862.6 595.4

8 75 50 10 125 67.8 20 403.2 246.8 30 1082.4 670.8

9 100 20 15 113.6 100.4 25 333.4 269.4 50 1523.2 1258.8

10 100 30 15 166.2 124.4 25 511.2 365 50 1901.4 1515.8

11 100 40 15 203.4 141 25 600.6 389.8 50 2539.2 1749.4

12 100 50 15 255.8 151.8 25 756.8 479.6 50 3271.2 2050.6

Table 1.: Comparative results between shortest path solutions and heuristic

solutions.

Results obtained in our preliminary experiments are reported in Table 1.

In this table, the results of the one-pass algorithm (OnePass column) are

compared to a simple routing scheme where only the construction phase is

explored (the SP Soln column). The solutions shown in the table represent

the average of the objective function values from the 5 instances in each

class.

The numerical results provided in the table demonstrate the effective-

ness of the proposed heuristic when the improvement phase is added to

the procedure. The proposed heuristic increased the objective value of the

shortest path solutions by an average of 38%. One reason for this is the

fact that, when agents are routed solely according to a shortest path, they

are not taking advantage of the remaining time they are allotted (i.e., the

time horizon T ) and the values from the distance limit given by L.

Our heuristic, on the other hand, allows wireless agents to take full ad-

vantage of these bounds. The algorithm can do this by adjusting the paths

to include those nodes within the range of other agents. In addition, at

any given time an agent is allowed to loiter in its current position, possibly

waiting for other agents to come into its range. This cannot occur in the

phase 1 algorithm because, according to the shortest path routing protocol,
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loitering is forbidden.

We notice that that, in fact, our method provides solutions that are

better than the shortest path protocol. The time spent on the algorithm

has always been less than a few seconds, therefore the computational time is

small enough for the problem sizes explored in our experiments. We believe,

however, that the quality of the solutions and computational time can be

further improved using a better implementation, and more sophisticated

data structures to handle the information stored during the algorithm.

8. Conclusions and Future Research

In this paper we presented a heuristic approach to solve the cooperative

communication problem on ad hoc networks. This problem, known to be

NP-hard, is of importance in the planning of operations involving high levels

of collaboration among team members. The proposed algorithm creates a

high quality solution for the problem using two phases: 1) a construction

heuristic, which uses shortest path algorithms to create a feasible solution,

and 2) a local search algorithm, which improves the solution previously

found in order to guarantee local optimality.

This paper reflects the current stage of our research in this problem.

We plan to extend the algorithmic methods presented in this paper using

more efficient optimization strategies. We will use the two phase algorithm

described as the starting point for a greedy randomized procedure (GRASP

metaheuristic). This will allow us to escape local minima inherent to the

approach used in this paper, and find solutions closer to the desired global

optimum.
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