
BIASED RANDOM-KEY GENETIC PROGRAMMING

J.F. GONÇALVES AND M.G.C. RESENDE

Abstract. This paper introduces Biased Random-Key Genetic Programming,

a new metaheuristic for evolving programs. Each solution program is encoded

as a vector of random-keys, where a random-key is a real number randomly
generated in the continuous interval [0, 1). A decoder maps each vector of

random-keys to a solution program and assigns it a measure of quality. A

Program-Expression is encoded in the chromosome using a head-tail represen-
tation which is later transformed into a syntax-tree using a prefix notation

rule. The artificial simulated evolution of the programs is accomplished with

a biased random-key genetic algorithm. Examples of the application of this
approach to symbolic regression are presented.

1. Introduction

Genetic Programming (GP) is an evolutionary metaheuristic inspired by biolog-
ical evolution to find computer programs that perform a pre-defined user compu-
tational task. GP has its origins around 1954 with the evolutionary algorithms
applied by Nils Aall Barricelli to evolutionary simulations (Barricelli, 1954). One
of the earliest practitioners of the GP methodology was Lawrence J. Fogel who,
in 1964, applied evolutionary algorithms to the problem of discovering finite-state
automata (Fogel, 1964). The first paper on tree-based genetic programming was
presented in Cramer (1985) and was later expanded by John R. Koza, who pi-
oneered the application of genetic programming in various complex optimization
and search problems (Koza, 1992; 1994; Koza et al., 1999; 2003).

Traditionally, GP has favored the use of programming languages that naturally
embody tree structures (Banzhaf et al., 1998) but several new non-tree representa-
tions were suggested and successfully implemented, such as linear genetic program-
ming (LGP) (Brameier and Banzhaf, 2007), gene expression programming (GEP)
Ferreira (2001), and Parallel Distributed Graphical Programming (PDGP) (Poli,
1997).

Genetic Programming (GP) is still a young field of research. It attracts a growing
research community, and there are many avenues of research yet to be explored. In
this paper, we introduce Biased Random-Key Genetic Programming (BRKGP), a
novel metaheuristic for computer program evolution.

Date: 2018. Cite as J.F. Gonçalves and M.G.C. Resende, “Biased random-key genetic pro-

gramming,” in Handbook of Heuristics, R. Mart́ı, P.M. Pardalos, and M.G.C. Resende (Eds.),

vol. 1, pp. 23–37, Springer, 2018.
Key words and phrases. Evolutionary algorithm, genetic programming, biased random keys,

program evolution.

1

2 J.F. GONÇALVES AND M.G.C. RESENDE

max

2.2

-

÷

×

7 cos

YX 11

Functions

Terminals

Figure 1. Syntax tree of program max
(

2.2− X
11 , 7× cos (Y)

)
.

2. Program Representation

In genetic programming (GP) programs are usually expressed by syntax trees
(ST). Figure 1 shows the tree representation of the program

max
(

2.2− X
11 , 7× cos (Y)

)
.

The variables and constants in the program (X, Y, 2.2, 11 and 7) are leaves of
the tree. In GP the nodes that correspond to the leaves are called terminals and
the internal nodes represent the operations (−, ÷, ×, cos and max) and are called
functions. The sets of allowed functions (F) and terminals (T) together form what
is called the primitive set (P) of a GP system .

In this paper a linear representation of syntax trees is used. This indirect rep-
resentation, called Program-Expression (PE), encodes a syntax tree as a sequence
of elements of the primitive set which will be later translated, according to some
predefined rules, into a syntax tree.

The set of rules used to translate a PE into a ST follows a prefix notation
convention (P-rule). The P-rule translates a PE into a ST by reading sequen-
tially, from left to right, each element in the PE and placing it in the bottom-most
(first-criteria) and left-most (second-criteria) available node in the partial ST be-
ing constructed. Note that if there are no nodes available, in the partially built
syntax tree, in which to place an element in the PE, then the process stops and the
remaining primitive elements in the PE are discarded and are called non-coding
elements. Figure 2 demonstrates how the PE

∧ + 1 ÷ r n n cos Y 17.5

can be translated into a ST following the P-rule. The first primitive element in the
PE is —∧— and is placed in node 1 (the root of the tree). The second element in
the PE is —+— and is placed in node 2. The third primitive element in the PE
is —1— and is placed in node 4. The fourth primitive element in the PE is —÷—
and is placed in node 5. This process will be repeated until all elements in the PE
are placed or there are no nodes available in the tree in which to place an element.

BIASED RANDOM-KEY GENETIC PROGRAMMING 3

^

1

+

÷

n

r n

Node 1

Node 2 Node 3

Node 4 Node 5

Node 6 Node 7

PE

ST

Program

Figure 2. Translation of a PE into a program using the P-rule.

Note that the last three elements of the PE, —cos—, —Y— and —17.5—, are not
included in the ST. The program that corresponds to the final ST is(

1 +
r

n

)n
.

3. Biased Random-Key Genetic Programming

This section begins with an overview of the proposed Biased Random-Key Ge-
netic Programming (BRKGP) methodology. This is followed by a discussion of the
biased random-key genetic programming algorithm, including detailed descriptions
of the program encoding and decoding and the fitness measure.

3.1. Overview. The BRKGP metaheuristic presented in this paper is based on
four main components: a biased random-key genetic algorithm (BRKGA) (Gonçalves
and Resende, 2011), chromosomes, a decoding procedure to translate a chromosome
into a syntax tree, and a fitness measure to assess the quality of the resulting pro-
grams.

The role of the BRKGA is to supply and evolve the chromosomes. A chromosome
(genotype) indirectly represents a syntax tree (phenotype) that corresponds to a
program. The decoding procedure receives as input a chromosome and in a first
phase translates it into a Program-Expression (PE). Then, in a second phase the
PE, obtained in the first phase, is translated into a syntax tree using the P-rule
described in Section 2.

Figure 3 illustrates the sequence of steps applied by the BRKGP to each chro-
mosome.

4 J.F. GONÇALVES AND M.G.C. RESENDE

Decoding PE

B
R

K
G

A
Ev

ol
ut

io
na

ry
 P

ro
ce

ss

Feedback Quality of Chromosome

Compute Fitness

Decoding ST

Translate a Chromosome
into a

Program-Expression (PE)

Compute Quality of Program

Translate a Program-Expression (PE)
into a

Syntax Tree (ST)

Chromosome

Figure 3. Architecture of the BRKGP.

The remainder of this section describes in detail the biased random-key genetic
algorithm, the chromosome structure, the decoding procedure that maps a chro-
mosome into a syntax tree, and the fitness measures.

3.2. Biased Random-Key Genetic Algorithms. Genetic algorithms with ran-
dom keys, or random-key genetic algorithms (RKGA), were introduced by Bean
(1994) for solving sequencing problems. In an RKGA, chromosomes are represented
as vectors of randomly-generated real numbers in the interval [0, 1]. A decoder is a
deterministic algorithm that takes as input a chromosome and associates it with a
solution of the combinatorial optimization problem for which an objective value or
fitness can be computed.

An RKGA evolves a population of random-key vectors over a number of gen-
erations (iterations). The initial population is made up of p vectors each with r
random keys. Each component of the solution vector, or random key, is randomly
generated, independently, in the real interval [0, 1]. After the fitness of each indi-
vidual is computed by the decoder in generation g, the population is partitioned
into two groups of individuals: a small group of pe elite individuals, i.e. those with
the best fitness values, and the remaining set of p − pe non-elite individuals. To
evolve the population of generation g, a new generation (g + 1) of individuals is
produced. All elite individuals of the population of generation g are copied without
modification to the population of generation g + 1. RKGAs implement mutation
by introducing mutants into the population. A mutant is a vector of random keys
generated in the same way that an element of the initial population is generated.
Its role is similar to that of mutation in other genetic algorithms (Goldberg, 1989),
i.e. to introduce noise into the population and avoid convergence of the entire pop-
ulation to a local optimum. At each generation, a small number pm of mutants is
introduced into the population. With pe + pm individuals accounted for in popula-
tion g+ 1, p− pe− pm additional individuals need to be generated to complete the
p individuals that make up population g+1. This is done by producing p−pe−pm
offspring solutions through the process of mating or crossover.

BIASED RANDOM-KEY GENETIC PROGRAMMING 5

One Chromosome
from TOP

Current
Population

Next
Population

Best

Worst

elite

One Chromosome
from entire population

Elitist Selection

Mutation
(Immigration)

mutants

Crossover

Figure 4. Transitional process between consecutive generations.

A biased random-key genetic algorithm (Gonçalves and Resende, 2011), or simply
BRKGA, differs from an RKGA in the way parents are selected for mating. While
in the RKGA of Bean (1994) both parents are selected at random from the entire
current population, in a BRKGA each element is generated combining a parent
selected at random from the elite partition in the current population and one from
the rest of the population. Repetition in the selection of a mate is allowed and
therefore an individual can produce more than one offspring in the same generation.
As in a RKGA, parametrized uniform crossover (Spears and DeJong, 1991) is used
to implement mating in a BRKGA. Let ρe be the probability that an offspring
inherits the vector component of its elite parent. Recall that r denotes the number
of components in the solution vector of an individual. For i = 1, . . . , r, the i-th
component c [i] of the offspring vector c takes on the value of the i-th component
e [i] of the elite parent e with probability ρe and the value of the i-th component
ē [i] of the non-elite parent ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.
Figure 4 depicts the transitional process between two consecutive generations.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous r-dimensional unit hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

BRKGAs have been applied with success to solve many types of combinato-
rial problems (see, Gonçalves and Almeida (2002), Fontes and Gonçalves (2013),
Gonçalves and Resende (2013), Gonçalves and Resende (2015), Gonçalves and Re-
sende (2014), Gonçalves et al. (2014), Gonçalves et al. (2016), and Gonçalves et al.
(2015).

A biased random-key genetic algorithm is specified by the parameters, the encod-
ing and decoding of the solutions and by the fitness measure. In the next section
the algorithm is specified by first showing how programs are encoded and then
decoded and how their fitness evaluation is computed.

6 J.F. GONÇALVES AND M.G.C. RESENDE

head

Chromosome = (gene1 , … , geneh , geneh+1 , … , geneh+t , geneh+t+1 , … , geneh+t+k)Chromosome = (gene1 , … , geneh , geneh+1 , … , geneh+t , geneh+t+1 , … , geneh+t+k)

constantstail

First part of the chromosome

encoding a Program-Expression

Second part of the chromosome

encoding the values of k constants

Figure 5. Chromosome structure used to encode a PE with a
vector of h+ t+ k random keys.

3.3. Encoding and Chromosome Structure. A chromosome represents a pro-
gram and is made of two parts. The first part encodes a PE and the second part
encodes the values of the constants that can be used in the PE. To encode a PE
a head-tail representation is proposed as in Ferreira (2001; 2006a;b).The head, h,
represents the maximum number of internal nodes that can be in the syntax tree
(ST) and can contain both functions (elements from set F) and terminals (elements
from the set T), whereas the tail, t, represents the number of leaves of the ST and
can only contain terminals (elements from the set T). For each problem, the length
of the head, h, is chosen, whereas the length of the tail, t, depends on h and on
the arity, a, of the function with the most arguments, and is determined by the
expression

(1) t = h (a− 1) + 1.

This way of determining the length of the tail guarantees that there will always be
enough terminals to create syntactically valid PE s (assuming closure amongst the
set of primitives).

Assuming that the terminal set includes k constants, then every chromosome
supplied by the BRKGA encodes a Program-Expression (PE) as a vector of (h +
t+ k) random keys and Figure 5 depicts the corresponding chromosome structure.

3.4. Decoding a Chromosome into a PE . The decoding of a chromosome into
a Program-Expression (PE) has the following three steps:

• Decoding the head of the PE ;
• Decoding the tail of the PE ;
• Decoding the values of the constants.

Let the terminal set T be divided into the two mutually exclusive sets V and K
which represent the set of variables and the set of constants, respectively, and let
vF , vV , and vK represent vectors containing all the elements in the sets F , V,
and K, respectively. Additionally, let nF , nV , and nK represent the number of
elements in the vectors vF , vV and vK, respectively.

To better illustrate the various steps in the decoding process, an example based
on the information presented in Table 1 is used.

BIASED RANDOM-KEY GENETIC PROGRAMMING 7

Table 1. Information relative to the example.

F =
{

+, −, ×, ÷, √
}

=⇒ vF = (+, −, ×, ÷, √) nF = 5

T = {X, Y , Z, K1, K2} =⇒ vV = {X, Y , Z} , nV = 3 vK = {K1; K2} , nK = 2

h = 5, a = 2 =⇒ t = 5× (2− 1) + 1 = 6

procedure DecodeHead (vF, vV, vK, c, PE)
1 for r = 1, . . . , h do
2 idx = dc [r]× (nF + nV + nK)e

// where dxe is the smallest integer greater or equal to x.
// ** Decoding c [r] → PE [r] **

3 if (idx ≤ nF) then
// it going to be a function

4 PE [r] = vF [idx];
5 else if (nF < idx ≤ nF + nV) then

// it going to be a variable
6 PE [r] = vV [idx− nF];
7 else if (nF + nV < idx ≤ nF + nV + nK ≤then

// it going to be a constant
8 PE [r] = vK[idx− nF − nV];
9 endif
10 end for
end DecodeHead;

Figure 6. Pseudo-code for the DecodeHead procedure.

According to Table 1 and the chromosome structure defined in the previous
section, the chromosome will have 13 (5+6+2) random-keys. Furthermore, assume
that the chromosome being decoded is

(2) c = (.25, .35, .93, .75, .05, .32, .67, .58, .15, .26, .86, .64, .43) .

The decoding of the head of the PE is based on the fact that the head can be
made of elements in any of the sets F , V, and K. The mapping of the random-key
in position r = 1, ..., h of the chromosome c, c [r], into the primitive element in
position r of the PE , PE [r], is accomplished by the procedure DecodeHead whose
pseudo-code is shown in Figure 6.

Table 2 presents the results of the decoding of the head of the PE corresponding
to the first five components of the chromosome given in expression (2).

At this point the first five components of the PE will be

× ÷ K2 Z + .

The decoding of the tail of the PE is based on the fact that the tail can only
consist of elements in sets V and K. The mapping of the random-key in position
r = h+ 1, ..., h+ t of the chromosome c, c [r], into the primitive element in position

8 J.F. GONÇALVES AND M.G.C. RESENDE

Table 2. Decoding the Head of the PE.

r c[r] idx Head of the PE

1 0.25 d0.25 × (5 + 3 + 2)e = 3 vF [3] = ×

2 0.35 d0.35 × (5 + 3 + 2)e = 4 vF [5] = ÷

3 0.93 d0.93 × (5 + 3 + 2)e = 10 vK [10− 5− 3] = K2

4 0.75 d0.75 × (5 + 3 + 2)e = 8 vV [8− 5] = Z

5 0.05 d0.05 × (5 + 3 + 2)e = 1 vF [1] = +

procedure DecodeTail (vV, vK, c, PE)
1 for r = h+ 1, . . . , h+ t do
2 idx = dc [r]× (nV + nK)e

// where dxe is the smallest integer greater or equal to x.
// ** Decoding c [r] → PE [r] **

3 if (idx ≤ nV) then
// it going to be a variable

4 PE [r] = vV [idx];
5 else if (nV < idx ≤ nV + nK) then

// it going to be a constant
6 PE [r] = vK[idx− nV];
7 endif
8 end for
end DecodeTail;

Figure 7. Pseudo-code for the DecodeTail procedure.

r of the PE, PE [r], is accomplished by the procedure DecodeTail which has the
pseudo-code presented in Figure7.

Table 7 presents the results of the decoding of the head of the PE corresponding
to the chromosome given in expression (2).

At this point the components of the PE will be

× ÷ K2 Z + Y K1 Z X Y K2 .

This PE is translated with the P-Rule into

(3)
K2

Z
× (Y +K1) .

Note that the last four components in the PE are non-coding elements.
The final step in the decoding process consists in decoding the values of the con-

stants in the terminal set. That is accomplished by using the decoding expression

Ki = fk(c [h+ t+ i] , p1, p2, ..., pp) i = 1, ..., nK,

BIASED RANDOM-KEY GENETIC PROGRAMMING 9

Table 3. Decoding the tail of the PE.

r c[r] idx Tail of the PE

6 0.32 d0.32 × (3 + 2)e = 2 vV [2] = Y

7 0.67 d0.67 × (3 + 2)e = 4 vK [4− 3] = K1

8 0.58 d0.58 × (3 + 2)e = 3 vV [3] = Z

9 0.15 d0.15 × (3 + 2)e = 1 vV [2] = X

10 0.26 d0.26 × (3 + 2)e = 2 vV [4− 3] = Y

11 0.86 d0.86 × (3 + 2)e = 5 vK [5− 3] = K2

where fk() is a function that accepts as input a random-key, c [r], and a set of
parameters p1, p2, ..., pp, and outputs a real or integer value. The simplest case can
be obtained when fk(c [r]) = c [r], i.e., the value of the constant is equal to the
value of the random-key input. Many functions can be used for fk(). However, the
following functions were used:

(1) randReal(c [r] , l, u) = l + c [r] × (u− l) - which generates a real value
between l and u;

(2) randInt(c [r] , l, u) = b l + c [r]× (u− l) c - which generates an integer
value between the integers l and u.

For the example, assuming fk(c [r]) = c [r], the values of the constants K1 and K2

are, respectively, c[5 + 6 + 1] = 0.64 and c[5 + 6 + 2] = 0.43. The final program can
be obtained by replacing the constants K1 and K2 in expression (3) by 0.64 and
0.43, respectively, i.e.,

(4)
0.43

Z
× (Y + 0.64) .

3.5. Fitness Function. The objective of the fitness measure is to assign a qual-
ity value to each chromosome so that the evolutionary process differentiates the
different chromosomes and directs the search to better solutions (chromosomes).
Depending on the problem being solved different fitness measures can be used.

Suppose that a symbolic regression problem is to be solved where the best fitting
function to a set of points is to be found. In this case the usual measures used in
the linear or nonlinear regression can be used, least squares, mean squared error,
etc. However, if, for example, a rule to decide when to buy or sell a certain stock
in the NYSE is to be discovered, then the quality of rule could be evaluated by
using historical data, and the profit obtained with the rule, over a certain number
of historical days, could be considered the measure of fitness.

4. Examples

This section presents two examples in the area of symbolic regression (SR) to
illustrate the application of BRKGP. The Mean Absolute Error (MAE)

10 J.F. GONÇALVES AND M.G.C. RESENDE

Table 4. Dataset for SR-example 1.

x y x y x y

1 10 11 62810 21 806610

2 98 12 88428 22 969958

3 426 13 121186 23 1156946

4 1252 14 162302 24 1369752

5 2930 15 213090 25 1610650

6 5910 16 274960 26 1882010

7 10738 17 349418 27 2186298

8 18056 18 438066 28 2526076

9 28602 19 542602 29 2904002

10 43210 20 664820 30 3322830

Table 5. BRKGP configuration for the SR-example 1.

F = {+, −, ×, ÷}

T = {x}

h = 5, 10, 15

a = 2

t = h× (a− 1) + 1

p = 500

pe = 100

pm= 100

ρe=0.85

Fitness = Mean Absolute Error (MAE)

Stopping Criterion = 100 generations

MAE =
1

ND

d=ND∑
d=1

|fd − yd|

is used as fitness measure, where ND is the number of data points, yd is the value
of data point d and fd is the value obtained by the expression generated by the
BRKGP for data point d.

4.1. SR-Example 1. Table 4 presents thirty data points that are sampled from
the function y = x + 2x2 + 3x3 + 4x4. BRKGP is used to try to discover the
polynomial that best fits the data.

The BRKGP configuration used for this example is given in Table 5.
Note that, since the best value of h to use is not known, three possibilities for h

(h = 5, h = 10, h = 15) are tried. For h = 5 and h = 10 the BRKGP was not
able to find the correct polynomial (i.e., MAE > 0). However, with h = 15 it was
able to find the correct polynomial (i.e., MAE = 0) after 12 generations. The final

BIASED RANDOM-KEY GENETIC PROGRAMMING 11

Table 6. Dataset for SR-example 2.

R Area R Area

10 314.1592654 21 1385.44236

11 380.1327111 22 1520.530844

12 452.3893421 23 1661.902514

13 530.9291585 24 1809.557368

14 615.7521601 25 1963.495408

15 706.8583471 26 2123.716634

16 804.2477193 27 2290.221044

17 907.9202769 28 2463.00864

18 1017.87602 29 2642.079422

19 20 1256.637061 30 2827.433388

Table 7. BRKGP configuration for the SR-example 2.

F = {+, −, ×, ÷}

T = {R, K1, K2, K3}

fk() = randInt(1, 10000)

h = 10, 15

a = 2

t = h× (a− 1) + 1

p = 500

pe = 100

pm= 100

ρe=0.85

Fitness = Mean Absolute Error (MAE)

Stopping Criterion = 100 generations

expression was

(((((X +X)× (X ×X)) +X)× ((X +X) + (X ÷X))) + ((X ×X)×X))

which after being simplified gives the correct polynomial.

4.2. SR-Example 2. In this example BRKGP is used to try to discover the re-
lation between the Area of the circle and its radius R that best fits the twenty
data points presented in Table 6. The twenty data points were sampled from the
function Area = πR2.

The BRKGP configuration used for this example is given in Table 7. Note that,
in this case, three constants K1, K2, K3 are included that will be decoded using
fk() = randInt(1, 10000).
For h = 10 BRKGP found, after 67 generations, the expression

((R+ ((R÷ 689)÷ 689))× (((9151÷ 4273)×R) +R))

which after being simplified is equivalent to Area = 3.1415933R2 and has MAE =
0.00027997.

12 J.F. GONÇALVES AND M.G.C. RESENDE

For h = 15 BRKGP found, after 82 generations, the expression

((R× (((R+R) +R)× ((476 + 9787)− (6699÷ 476))))÷ 9787)

which after being simplified is equivalent to Area = 3.1415939R2 and has MAE =
0.00051594.

Note that, in both cases, the value of π was approximated to five decimals.

5. Conclusions

This paper introduced Biased Random-key Genetic Programming, a novel meta-
heuristic for genetic programming. After introducing how programs are represented
using a linear Program-Expression representation, the paper presents the head-tail
encoding and explains how the decoding of the chromosome can be accomplished.
The paper concludes by illustrating how BRKGP can be applied to solve problems
using two symbolic regression examples.

Acknowledgement

The first author was supported by project PTDC/EGE-GES/117692/2010 funded
by the ERDF through the Programme COMPETE and by the Portuguese Govern-
ment through FCT - Foundation for Science and Technology.

References

W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic programming: An
Introduction. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

N.A. Barricelli. Esempi numerici di processi di evoluzione. Methodos, 6:45–68, 1954.
J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.

ORSA J. on Computing, 6:154–160, 1994.
M.F. Brameier and W. Banzhaf. Linear genetic programming. Springer Science &

Business Media, New York, NY, 2007.
N.L. Cramer. A representation for the adaptive generation of simple sequential

programs. In Proceedings of the First International Conference on Genetic Al-
gorithms, pages 183–187, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc.

C. Ferreira. Gene expression programming: A new adaptive algorithm for solving
problems. Complex Systems, 13:87–129, 2001.

C. Ferreira. Designing neural networks using gene expression programming. In
Applied Soft Computing Technologies: The Challenge of Complexity, pages 517–
535. Springer, 2006a.

C. Ferreira. Gene Expression Programming: Mathematical Modeling by an Artificial
Intelligence (Studies in Computational Intelligence). Springer-Verlag New York,
Inc., 2006b.

L.J. Fogel. On the organization of intellect. PhD thesis, UCLA, 1964.
D.B.M.M. Fontes and J.F. Gonçalves. A multi-population hybrid biased random

key genetic algorithm for hop-constrained trees in nonlinear cost flow networks.
Optimization Letters, 7:1303–1324, 2013.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

J.F. Gonçalves and M.G.C. Resende. An extended Akers graphical method with
a biased random-key genetic algorithm for job-shop scheduling. International
Transactions in Operational Research, 21:215–246, 2014.

BIASED RANDOM-KEY GENETIC PROGRAMMING 13

J.F. Gonçalves and M.G.C. Resende. A biased random-key genetic algorithm for
the unequal area facility layout problem. European J. of Operational Research,
246:86–107, 2015.

J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. The basic multi-project
scheduling problem. In Handbook on Project Management and Scheduling, vol-
ume 2, pages 667–683. Springer, 2015.

J.F. Gonçalves and J. Almeida. A hybrid genetic algorithm for assembly line bal-
ancing. J. of Heuristics, 8:629–642, 2002.

J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for
combinatorial optimization. J. of Heuristics, 17:487–525, 2011.

J.F. Gonçalves and M.G.C. Resende. A biased random-key genetic algorithm for a
2D and 3D bin packing problem. International J. of Production Economics, 145:
500–510, 2013.

J.F. Gonçalves, M.G.C. Resende, and R.F. Toso. An experimental comparison of
biased and unbiased random-key genetic algorithms. Pesquisa Operacional, 34:
143–164, 2014.

J.F. Gonçalves, M.G.C. Resende, and M.D. Costa. A biased random-key genetic al-
gorithm for the minimization of open stacks problem. International Transactions
in Operational Research, 23:25–46, 2016.

J.R. Koza. Genetic programming: On the programming of computers by means of
natural selection, volume 1. MIT press, 1992.

J.R. Koza. Genetic programming II: Automatic discovery of reusable subprograms.
MIT press, Cambridge, MA, USA, 1994.

J.R. Koza, F.H. Bennett III, D. Andre, and M.A. Keane. Genetic Programming
III:, Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers,
1999.

J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publisher, 2003.

R. Poli. Evolution of graph-like programs with parallel distributed genetic program-
ming. In Proceedings of the 7th International Conference on Genetic Algorithms
(ICGA), pages 346–353, 1997.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

(José F. Gonçalves) INESC TEC and Faculdade de Economia, Universidade do Porto,
Porto, Portugal

E-mail address: jfgoncal@fep.up.pt

(Mauricio G.C. Resende) Amazon.com and University of Washington, Seattle, WA USA
E-mail address: mgcr@uw.edu

