
A C++ APPLICATION PROGRAMMING INTERFACE FOR

BIASED RANDOM-KEY GENETIC ALGORITHMS

RODRIGO F. TOSO AND MAURICIO G.C. RESENDE

Abstract. In this paper, we describe brkgaAPI, an efficient and easy-to-use

object oriented application programming interface for the algorithmic frame-
work of biased random-key genetic algorithms. Our cross-platform library

automatically handles the large portion of problem-independent modules that

are part of the framework, including population management and evolutionary
dynamics, leaving to the user the task of implementing a problem-dependent

procedure to convert a vector of random keys into a solution to the underly-

ing optimization problem. Our implementation is written in the C++ pro-
gramming language and may benefit from shared-memory parallelism when

available.

1. Introduction

A biased random-key genetic algorithm (BRKGA) is a general search metaheuris-
tic for finding optimal or near-optimal solutions to hard combinatorial optimization
problems (Gonçalves and Resende, 2011). It is derived from the random-key genetic
algorithm of Bean (1994), differing in the way solutions are combined to produce
offspring by adopting elitism (Musnjak and Golub, 2004). BRKGAs have three key
features that specialize genetic algorithms:

• A fixed chromosome encoding using a vector of n random keys or alleles
over the interval [0, 1), where the value of n depends on the instance of the
optimization problem (Bean, 1994);
• A well-defined evolutionary process adopting parameterized uniform cross-

over (Spears and DeJong, 1991) to generate offspring and thus evolve the
population;
• The introduction of new chromosomes called mutants in place of the muta-

tion operator usually found in evolutionary algorithms (Beyer and Schwefel,
2002; Hesser and Manner, 1991).

Such features simplify and standardize the metaheuristic with a set of self-
contained tasks from which only one is problem-dependent: that of decoding a
chromosome, i.e., using it to construct a solution to the underlying optimization
problem, from which the objective function value or fitness can be computed. Anal-
ogously, the decoder in a BRKGA is used to indirectly map the continuous chro-
mosome space [0, 1)n onto the space of valid solutions to the optimization problem.
Contrary to genetic algorithms in general (see e.g., Reeves (2010) for a survey),
feasibility can be easily maintained from one generation to another thanks to this
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Table 1. Parameters necessary to specify a BRKGA.

Parameter Description

n Number of alleles per chromosome
p Number of chromosomes in population
pe Size of the elite set in population
pm Number of mutants to be introduced in population at each generation
ρe Probability that an allele is inherited from the elite parent

standardized encoding, since all offspring and mutants introduced in the evolution-
ary process are also vectors of random keys and thus can be mapped by the decoder
to valid solutions.

At a glance, BRKGAs start with and then evolve a population containing exactly
p chromosomes, each having n random keys, for a number of generations until some
stopping criterion is met. In a given generation k, this evolutionary process is guided
by the following steps:

(1) Each chromosome is decoded to reveal its fitness (the objective value of the
underlying optimization problem). A chromosome when associated with its
fitness is called an individual.

(2) The population is partitioned into two groups: an elite set containing pe in-
dividuals with the best fitness values and a non-elite set with the remaining
individuals.

(3) The population at generation k + 1 will then consist of:
(a) pe individuals from elite set of the current generation;
(b) pm randomly generated chromosomes called mutants;
(c) po = p−pm−pe evolved chromosomes (offspring) that are produced by

mating two parents from the current generation, selected at random,
with replacement, one from the elite set and another from the non-elite
set. To define the j-th allele of offspring i, a uniform random number
rij ∈ [0, 1) is generated: if rij ≤ ρe, with ρe > 0.5, then offspring i
inherits the j-th allele of its elite parent; otherwise, it inherits the j-th
allele of the non-elite parent.

To summarize the discussion above, the BRKGA framework is illustrated in
Figure 1. We highlight the box that performs decoding and observe that the chro-
mosomes can be decoded in parallel, one independently of the other. In Table 1
we list the parameters that are necessary to specify a biased random-key genetic
algorithm. Advice regarding such parameter settings can be found in Gonçalves
and Resende (2011).

Two common ingredients found in many implementations of the BRKGA frame-
work are (1) the adoption of multiple populations that are evolved independently (Re-
sende et al., 2012; Gonçalves and Resende, 2012), and (2) the use of a restart strat-
egy for when a local minimum is detected (that is, when the population is stuck
and does not seem to evolve towards an improved individual). In the former, a
few elite individuals are periodically selected from each population and seeded into
the others, replacing their worst individuals. Such a feature was initially stud-
ied by Whitley et al. (1998). As for the latter, the random keys are re-generated
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Figure 1. The BRKGA framework.

usually when a pre-determined number of generations have passed but the best fit-
ness among all populations has not improved (Luby et al., 1993). Both techniques
are mainly used to accelerate the convergence of the algorithm (Luby et al., 1993;
Whitley et al., 1998).

With respect to implementations of genetic algorithms in general, there exists
a wide range of application programming interfaces (APIs) designed to reuse code
and simplify the life of the user, see e.g., Keijzer et al. (2002) and Meffert (2011).
We note that these are usually complex since the encoding must be selected by
the user, together with both the evolution and mutation operators, as well as the
decoding process. On the other hand, as aforementioned, designing a BRKGA only
entails the implementation of the decoder – everything else is problem-independent.

Despite the recent success of BRKGAs applied to problems such as covering (Re-
sende et al., 2012), network planning (Buriol et al., 2010), scheduling (Gonçalves
et al., 2009; 2011), and telecommunications (Resende, 2012; Noronha et al., 2011;
Reis et al., 2011), we have not found in the literature any attempt towards a
reusable implementation of the BRKGA framework. Therefore, in this paper we
propose brkgaAPI, an API for BRKGAs that implements all the key components of
the framework and includes support for evolving multiple independent populations
with periodic exchange of elite individuals. When implemented by the compiler
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and available in the computing environment, calls to decode the p − pe chromo-
somes at each generation are dispatched in parallel, in an attempt to speed up the
computational time. The implementation efforts of the user are mainly directed
toward the problem-dependent decoder.

The paper is organized as follows. In Section 2 we describe brkgaAPI and ar-
gue in support of the design choices made. Experiments are shown in Section 3.
Concluding remarks are made in Section 4.

2. An API for the BRKGA framework

We propose brkgaAPI, a simple but efficient application programming interface
that implements the BRKGA framework described in Section 1. This library is
written in the C++ programming language and relies on its standard template
library (STL) (see, e.g., Stroustrup (2000)). When implemented by the compiler,
it also makes use of OpenMP (OpenMP, 2011), a multi-platform API for shared-
memory parallel programming. Henceforth, we assume the reader is familiar with
C++, especially with the STL, templates, and const-correctness.

With simplicity as a goal, our design comprises two classes, Population and
BRKGA: the first simply defines, stores, and provides easy access to a population of
individuals, while the second corresponds to the algorithm itself, allowing the user
to manipulate a set of independent populations in accordance with the guidelines
of the framework detailed in Section 1.

2.1. Class Population. This class encapsulates a set of p individuals labeled
{0, 1, . . . , p−1}, each containing a chromosome with n alleles and its corresponding
fitness value. Here, a chromosome is defined as an STL vector of double-precision
floating points representing the random-keys, i.e., std::vector< double >.

To the user, this class is only useful when accessing information about a popula-
tion that is being evolved by the algorithm, that is, to obtain the chromosome that
encodes the best solution and its corresponding fitness. However, for operations like
crossover, it plays an essential role in organizing the individuals to be manipulated
by the algorithm (see Section 2.2 below). The following API is available to the
user:

• unsigned getN() const: returns the size of each chromosome;
• unsigned getP() const: returns the size of the population;
• double getBestFitness() const: returns the best fitness value;
• double getFitness(unsigned i) const: returns the fitness value of the
i-th best chromosome. Letting i = 0 results in getBestFitness;
• const std::vector< double >& getChromosome(unsigned i) const:

returns a read-only reference to the i-th best chromosome.

All methods above run in constant time. For efficiency, none of them is range-
checked and thus runtime errors may occur if the user tries to access information
of a chromosome outside the set of indices {0, 1, . . . , p− 1} unless the compile-time
variable RANGECHECK is defined.

2.2. Class BRKGA. In this class we encapsulate a multi-population biased random-
key genetic algorithm having K independent populations and provide methods
for initialization, evolution, exchange of elite individuals among the independent
populations, as well as re-initialization of the populations. The adopted architecture
instantiates two Population objects for each independent population: one to hold
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the current generation and another for the subsequent generation. This way, the
evolution step is done in place and no new memory is allocated throughout the
generations – a simple swap of pointers is performed when the population of the
current generation is evolved into the subsequent generation.

The framework as depicted in Figure 1 actually requires two external blocks,
one being the decoder – discussed extensively beforehand – and the other a ran-
dom number generator. In C++ there are basically two ways to bind the user-
implemented tools inside an API: dynamically (during execution), using object-
oriented polymorphism through virtual methods defined in a base class, or stat-
ically (at compile-time), using templates in the API. In short, the former uses a
virtual method table for runtime method-binding, while the latter relies on the
compiler for method binding. Efficiency wise, the latter runs faster while compiling
slower. Based on this discussion, we implemented the key class of the API as a
C++ template class with signature

template< class Decoder, class RNG > class BRKGA.

Therefore, to be able to use the API, the user must implement the interfaces
Decoder and RNG. We next discuss the requirements for each of these classes be-
fore we delve into the BRKGA class. Failures to comply with these requirements are
reported by the compiler.

2.2.1. Interface: Decoder. Exactly one of the following two methods must be im-
plemented in the class serving as the decoder:

• double decode(std::vector< double >& chromosome) const: enables
read-write access to a chromosome; or
• double decode(const std::vector< double >& chromosome) const:

enables read-only access to the chromosome.

When compiling and linking the class BRKGA with multi-threading support, the
decode method must be thread-safe, which is guaranteed by const-correctness in
both declarations above provided that the mutable modifier or cast operators such
as const cast are not used to override the signature of the method, allowing mod-
ifications of the data members of Decoder. The main difference between the above
signatures is that the first can be used to change the alleles of the chromosome
(see e.g. the discussion on chromosome correction when local search is applied in a
decoder for set covering in Resende et al. (2012)). There are no race conditions if
the first method is selected and the user changes the chromosome. When the chro-
mosome is not supposed to change within decode, we recommend that the user
implements the second signature from the list above. (Technically, the last const

in the above signatures are not required when multi-threading is disabled or access
to shared variables is controlled, but we let such advanced applications out of the
scope of this text. As a use case, the user may want to count the number of calls
to decode through a shared counter.)

2.2.2. Interface: RNG. The following methods must be implemented in the class
serving as the (pseudo) random number generator:

• double rand(): must return a random floating-point in range [0, 1);
• unsigned long randInt(unsigned N): must return a random integer in

range [0, N ].
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An implementation of the Mersenne Twister random number generator (Mat-
sumoto and Nishimura, 1998) is currently distributed with our library.

2.2.3. The BRKGA API. We next describe the API to initialize and manipulate a
biased random-key genetic algorithm. Below is a list of all the methods available
to the user, with pertinent details regarding their implementation.

• BRKGA(unsigned n, unsigned p, double pe, double pm, double

rho, const Decoder& refDecoder, RNG& refRNG, unsigned K = 1,

unsigned MAXT = 1): constructor to instantiate a BRKGA object. Below is
a brief description of each parameter:

– n: number of alleles in each chromosome;
– p: number of elements in each population;
– pe: fraction of population made up of elite items;
– pm: fraction of population made up of mutants introduced in the pop-

ulation at each generation;
– rho: probability that an offspring inherits the allele of its elite parent;
– refDecoder: const reference to the class implementing the Decoder

interface (discussed in Section 2.2.1);
– refRNG: reference to the class implementing the RNG interface (dis-

cussed in Section 2.2.2);
– K (optional; defaults to 1): number of independent populations;
– MAXT (optional; defaults to 1): maximum number of threads used to

perform parallel decoding.
Notice that const-correctness is used here to help guarantee that the

decode method implemented in the Decode interface is thread-safe. In
doing so, we make sure that calls from BRKGA to decode are not allowed
to change the internal state of the Decoder, thus avoiding race conditions
in a multi-threaded environment. (As we discussed in Section 2.2.1, there
are ways to bypass const-correctness, though such must be avoided when
implementing Decoder::decode.)

• void evolve(unsigned generations = 1): evolves the populations fol-
lowing the guidelines of the biased random-key genetic algorithm frame-
work Gonçalves and Resende (2011). The user may optionally provide the
number of generations.

• void reset(): resets all populations with randomly generated chromo-
somes. No internal state variables is saved, including the best individuals,
so the user must do so externally through calls to either getPopulation

followed by getChromosome or getBestChromosome. This is useful when
implementing a restart strategy.

• void exchangeElite(unsigned M): exchanges elite individuals among the
populations; for each population, selects the top M elite individuals and
copies them to the remaining populations, substituting their worst individ-
uals.

• const Population& getPopulation(unsigned k = 0) const: returns a
const reference to the k-th population. Refer to Section 2.1 for the API
available in the class Population. Through this function, the user can
access any individual of any population.

• double getBestFitness() const: returns the best overall fitness.
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Table 2. Running times and number of calls to interfaced meth-
ods. The running times do not include the time spent in decoding
and random number generation.

Method Running time decode rand randInt

BRKGA Θ(np+ p log p) p np 0
evolve Θ(np+ p log p) p− pe n(p− pe) p− pe − pm
reset Θ(np+ p log p) p np 0

• const std::vector< double >& getBestChromosome() const: returns
a const reference to the chromosome with best overall fitness.

Operation counts for the key methods discussed above are provided in Table 2.
Here, for simplicity, we assume that K = 1 for all methods and that evolve is
called with generations = 1 as default.

2.2.4. Sample decoder and biased random-key genetic algorithm. We conclude this
section with sample code for implementation of a simple decoder and a BRKGA
driver whose C++ source codes are listed in Figures 2 and 3, respectively. Two
tasks are done in the decoder. First, the fitness is computed as

myFitness =

n−1∑
i=0

(i+ 1) · chromosome[i].

Then, a permutation is generated by means of pairing each allele with its position
in the chromosome and sorting the pairs in increasing order of their allele values
– the sorted sequence of pairs stores a permutation of {0, 1, . . . , n − 1} as the
second member of each of the pairs. Such a permutation is stored in a std::list

object named permutation. The BRKGA runs for 1,000 generations, evolving three
populations, each with 1,000 random-key vectors of size 100. 200 elements of each
population are classified as elite, while 100 mutants are inserted in each population
at each generation. Random-key vectors are decoded with the SampleDecoder

shown in Figure 2. The probability that an offspring solution inherits the allele of
the elite parent is 70%. Every 100 generations the three populations exchange their
two top solutions. The cost of the best solution found is printed at the end.

3. Experiments

In this section, we evaluate our implementation under scenarios that include
running times and parallel efficiency, both taking into account different decoding
complexities. Since initializing the algorithm differs from evolving the population
only by an extra few calls to the decoder (pe, to be exact) plus memory allocation,
from this point on we only focus on the method evolve. For all the experiments,
we fixed the values of the following parameters: pe = d0.15pe, pm = d0.10pe, and
ρe = 0.7. The tradeoffs between the remaining parameters, i.e. n, p, and number
of threads for parallel decoding, as well as the complexity of the decoder, are the
main subject of our investigation.
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#ifndef SAMPLEDECODER H

#define SAMPLEDECODER H

#include <vector>

class SampleDecoder {
public:

SampleDecoder::SampleDecoder() : internal(123456789) { }

SampleDecoder::~SampleDecoder() { }

double SampleDecoder::decode(const std::vector< double >& chromosome) const {
// Here we store the fitness of ‘chromosome’

double myFitness = 0.0;

std::vector< std::pair< double, unsigned > > ranking(chromosome.size());

// Here we compute the fitness as the inner product of the random-key vector,

// i.e. the ‘chromosome’, and the vector of indices [0,1,2,...,n-1]

for (unsigned i = 0; i < chromosome.size(); ++i) {
ranking[i] = std::pair< double, unsigned >(chromosome[i], i);

myFitness += (double(i+1) * chromosome[i]);

}

// Here we sort ‘ranking’, which will then produce a permutation of [n]

// in pair::second:

std::sort(ranking.begin(), ranking.end());

// Here we obtain the permutation of [n]:

std::list< unsigned > permutation;

for(std::vector< std::pair< double, unsigned > >::const iterator i = ranking.begin();

i != ranking.end(); ++i) {
permutation.push back(i->second);

}

// Here we return the fitness of ‘chromosome’:

return myFitness;

}

};
#endif

Figure 2. Sample code for a simple decoder. Two tasks are done
in the decoder. The decode first computes the fitness of the solu-
tion and then generates a permutation by means of pairing each
allele with its position in the chromosome and sorting the pairs in
increasing order of their allele values. Such a permutation is stored
in a std::list object named permutation.
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#include <iostream>

#include "SampleDecoder.h"

#include "MTRand.h"

#include "BRKGA.h"

int main(int argc, char* argv[]) {
const unsigned n = 100; // Size of chromosomes

const unsigned p = 1000; // Size of population

const double pe = 0.20; // Fraction of population to be the elite-set

const double pm = 0.10; // Fraction of population to be replaced by mutants

const double rhoe = 0.70; // Probability offspring inherits elite parent allele

const unsigned K = 3; // Number of independent populations

const unsigned MAXT = 2; // Number of threads for parallel decoding

SampleDecoder decoder; // Initialize decoder

const long unsigned rngSeed = 0; // Seed random number generator

MTRand rng(rngSeed); // Initialize random number generator

// Initialize BRKGA-based heuristic

BRKGA< SampleDecoder, MTRand >

algorithm(n, p, pe, pm, rhoe, decoder, rng, K, MAXT);

unsigned generation = 1; // Current generation

const unsigned X INTVL = 100; // Exchange best individuals every 100 generations

const unsigned X NUMBER = 2; // Exchange top 2 best

const unsigned MAX GENS = 1000; // Run for 1000 generations

// Iterations of the algorithm ...

do {
algorithm.evolve(); // Evolve the population for one generation

if((++generation) % X INTVL == 0) {
algorithm.exchangeElite(X NUMBER); // Exchange top individuals

}
} while (generation < MAX GENS);

std::cout << "Best solution found has objective value = "

<< algorithm.getBestFitness() << std::endl;

return 0;

}

Figure 3. Sample code for a BRKGA with 1,000 random-key vec-
tors of size 100, 200 of which are elite, 100 mutants, with 70%
probability that offspring solution inherits allele of its elite parent.
Three populations are evolved, exchanging their two top solutions
every 100 generations. The algorithm is run for a total of 1,000
generations. The cost of the best solution found is printed at the
end. Random-key vectors are decoded with the SampleDecoder

shown in Figure 2.
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Figure 4. Effect of n and p in the runtime of evolve.

The API was validated on the following computational environments:

• Microsoft Windows 7 64-bit operating system using both MinGW and
MinGW-64 gcc distributions.
• Apple Mac OS X 10.6 and 10.7 operating systems using the supplied gcc

distribution.
• Ubuntu 12.10 Linux distribution with the default gcc distribution.

The experiments in this section were conducted on a machine running Linux
2.6.18 on 32 2.3 GHz AMD Opteron CPUs with access to 128 Gb of RAM. We
compiled the BRKGA API with the gcc C++ compiler g++ version 4.1.2.

3.1. Single-threaded decoding. Assuming that generating a random number
runs in O(1), the evolution of a population in one generation entails filling in np
memory cells with random keys in Θ(np)-time, followed by decoding p − pe chro-
mosomes, where each chromosome is decoded in Ω(n) time, followed by sorting p
fitness values in O(p log p) time. We next investigate a throughput measure – num-
ber of calls to the decoder per second – obtained when evolving a single population
for 100 generations. For this purpose, we implemented a simple decoder that copies
the length-n chromosome into a local vector object and returns its first allele as
the fitness value, thus running in Θ(n).

In the plot displayed in Figure 4, we varied the size of the population p for
four fixed values of n. Though for larger values of n such as 1,000 or 10,000 the
throughput does not change when p is increased, it does decrease for smaller values
of n, such as 10 or 100. For the case of larger values, filling in the genes for the
next population and decoding seem to dominate the running time, whereas for case
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Figure 5. Parallel decoding throughput as a function of the num-
ber of processors for p = 10, 000 and n = 100.
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Figure 7. Parallel decoding throughput as a function of the num-
ber of processors for p = 100 and n = 10, 000.

of smaller values, sorting the fitness values impacts most the performance of the
algorithm. Similar experiments with slower, heavy-duty decoders (such as those
with running time Θ(n log n), Θ(n2), and so on) exhibit the same trend found in
populations with larger chromosomes since decoding dominates the other tasks.

The lesson learned in this experiment is compatible with the theoretical bounds
for evolve that were given in Table 2: Θ(np) alleles are written to form the next
generation, plus p−pe calls are made to a decoder that runs in Θ(n), totaling Θ(np).
Sorting the individuals by their fitness runs in O(p log p) and no chromosome is
moved in the process, so it is predictable that the size of the population does not
interfere in the throughput of the algorithm for sufficiently large n. To summarize,
the size of the population should not interfere with the throughput of the algorithm
in the vast majority of situations; in other words, in practice the increase in the
running time incurred by the increase of p should have a close-to-linear relation.

3.2. Multi-threaded decoding. We next fix both n and p while varying the num-
ber of processors up to 24 to evolve a single population for 100 generations. We
have considered three types of decoders: lightweight, fine grained, decoders with
Θ(n) running time; sorting-based decoders (useful for generating permutations, for
example) running in Θ(n log n) time, and coarse-grained decoders with complexity
Θ(n2). The throughput for n = 100 and p = 10, 000 is plotted in Figure 5; for
n = 1, 000 and p = 1, 000 in Figure 6; and for n = 10, 000 and p = 100 in Figure 7.
In all three configurations of n and p, coarse-grained decoders benefited more from
parallelism than did fine-grained decoders. We believe that in the former case,
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Figure 8. Parallel efficiency as a function of the number of pro-
cessors for p = 10, 000 and n = 100.

decoding the chromosome has more weight over bookkeeping tasks such as syn-
chronization and scheduling. When the decoder is running too fast, it is better to
run fewer threads – incurring less bookkeeping – to do the job.

To conclude this section, we move away from throughput to report the parallel
efficiency

(1) efficiency(P ) =
t1

P · tP
,

of our implementation, where ti denotes the wall-clock execution time achieved with
i processors under the same configuration adopted in the previous experiment. The
plots in Figures 8, 9, and 10 show efficiencies for fine-grained, sorting-based, and
coarse-grained decoders, as a function of number of processors, for {p = 10, 000, n =
100}, {p = 1, 000, n = 1, 000}, and {p = 100, n = 10, 000}, respectively. These
figures show that for fine-grained and sorting-based decoders, parallel efficiency
is somewhat unaffected by n, while for coarse-grained decoders it grows with n.
Figure 10 shows that, for the coarse-grained decoder with n = 10, 000, efficiency
is maintained above 50% up to the 24-processor configuration. Again, the greater
the size of the chromosome and the slower the decoder, the better the efficiency
obtained by our parallel implementation.

4. Concluding remarks

In this paper, we introduced brkgaAPI, an API that implements all the problem-
independent components of the BRKGA framework, and provides the user with
tools to implement a decoder that translates chromosomes – represented as a vector
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Figure 9. Parallel efficiency as a function of the number of pro-
cessors for p = 1, 000 and n = 1, 000.
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of random keys uniformly distributed over [0, 1) – into corresponding solutions and
objective values of the optimization problem to be solved.

The API is implemented in C++ and uses the OpenMP API to parallelize the
calls to the decoding step into multiple threads. This library is easy to use and yet
efficient, and its source code is available for download at:

http://github.com/rfrancotoso/brkgaAPI
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J.F. Gonçalves and M.G.C. Resende. A parallel multi-population biased random-
key genetic algorithm for a container loading problem. Computers and Operations
Research, 29:179–190, 2012.
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