
BIASED RANDOM-KEY GENETIC ALGORITHMS FOR THE

WINNER DETERMINATION PROBLEM IN COMBINATORIAL

AUCTIONS

C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Abstract. In this paper, we address the problem of picking a subset of bids
in a general combinatorial auction so as to maximize the overall profit us-

ing the first-price model. This winner determination problem assumes that a

single bidding round is held to determine both the winners and prices to be
paid. We introduce six variants of biased random-key genetic algorithms for

this problem. Three of them use a novel initialization technique that makes

use of solutions of intermediate linear programming relaxations of an exact
mixed integer-linear programming model as initial chromosomes of the popu-

lation. An experimental evaluation compares the effectiveness of the proposed

algorithms with the standard mixed linear integer programming formulation,
a specialized exact algorithm, and the best-performing heuristics proposed for

this problem. The proposed algorithms are competitive and offer strong re-
sults, mainly for large-scale auctions.

1. Introduction

An auction is a mechanism or negotiation protocol for exchanging goods and
services. In general, such goods are offered for bid, followed by a pre-determined
round of bids, after which the highest bidder is pronounced the winner and pays
for the negotiated item. Procurement auctions, on the other hand, are defined
as follows: the auctioneer requests a set of goods, and each bidder can submit
bids for this set. The lowest bidder is pronounced the winner and the auctioneer
is paid for the goods. Today, auctions are widespread and, more importantly,
distributed, thanks mainly to the Internet. Examples can be found in advertisement
and position auctions in search engines such as Google and Yahoo!, as well as
those coordinated by governments to negotiate radio spectrum, offshore oil and gas
exploration, general goods, and services, among others.

In this paper, we are interested in general combinatorial auctions where bidders
place bids (usually sealed) on subsets of goods, also known as bundles. Each bidder
has access to a finite set of goods and is asked to come up with a list of bids,
where each bid is an offer for a subset of goods. The objective of a bidder is
to win the bid at an acceptable price. The greatest advantage of this type of
auction is that it generates high economic efficiency since it allows the bidders
to express both complementarity and substitutability of their preferences within
bids. More formally, let M be a set of goods, g1, g2 ∈ M be two goods, and let

Date: August 2014.
Key words and phrases. Combinatorial auctions, winner determination problem, genetic

algorithms, biased random-key genetic algorithms.
AT&T Labs Report Technical Report. To appear in Evolutionary Computation.

1



2 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

f : 2M → R be a valuation function for sets of these goods. Goods g1 and g2 are
said to be complementary if and only if f({g1}) + f({g2}) ≤ f({g1, g2}), where
{g1, g2} denotes a bundle of goods g1 and g2. They are said to be substitutes if
and only if f({g1}) + f({g2}) ≥ f({g1, g2}). For other variations, see Parsons et al.
(2011). Since we allow bids for any subset of goods, there could be as many as
n(2m − 1) bids, where n is the number of bidders and m is the number of goods.
Hence, one of the key problems arise in auction mechanisms is to determine the
winners of the auction, i.e. selecting pairwise disjoint bids to maximize the sum of
the values of the selected bids. For other associated problems, see Cramton et al.
(2006).

We focus on the Winner Determination Problem or WDP. In general, the WDP
is equivalent to the weighted set packing problem, a well-known NP-hard prob-
lem (Garey and Johnson, 1979). Notice that solving the WDP in auctions with
no additional constraints and where only simple bids are allowed (i.e., bids for a
single good) can be easily done in O(nm)-time. The seminal work on the WDP is
credited to Rothkopf et al. (1998), who identified several special cases that can be
solved in polynomial time. Such cases involve special bid structures like bid trees,
geometrical regions, and cardinal restricted bids. However, these structures limit
the expressiveness of the bids, potentially leading to an inefficient economy (Bichler
et al., 2009).

Refined exact approaches to solve the WDP were proposed by Sandholm (2002;
2006) and Escudero et al. (2009), who also presented a polyhedral study apply-
ing cuts in an exact algorithm that scaled well in auctions with up to 300 bids.
With regard to approximation algorithms, the general case cannot be approxi-
mated by a factor of O(m1/2+ε) of the optimal total value of the selected bids (un-
less P = NP), a bound inherited from the set packing problem (see Halldórsson
(2000), who also describes an algorithm with O(`/(log `)2)-approximation that runs
in O(max(`c,m2`2))-time, where ` is the number of bids and c is a constant). An
approximation algorithm with factor O(

√
m) is described in Lehmann et al. (2002)

for the case in which each bidder has interest in only one particular bundle. For
more approximation algorithms for special formulations, see Dobzinski et al. (2005)
and Feige and Vondrák (2010). Several such algorithms and special cases of the
winner determination problem are revisited in Blumrosen and Nisan (2007).

The first heuristic addressing the WDP specifically is the Casanova algorithm (Hoos
and Boutilier, 2000), a multi-start stochastic local search algorithm that runs on
top of greedy randomized initial solutions. A hill-climbing procedure can be found
in Holte (2001). The first metaheuristic-based heuristics addressing the prob-
lem were a genetic algorithm and a simulated annealing heuristic (Schwind et al.,
2003). A hybrid simulated annealing with local search called SAGII was proposed
by Guo et al. (2006). To date, the strongest results come from a memetic algorithm
by Boughaci et al. (2009) and Boughaci (2013).



BRKGA FOR WINNER DETERMINATION 3

It is interesting to observe that the WDP can also be modeled as the Multidi-
mensional Knapsack Problem (MDKP), enabling the utilization of the algorithms
developed to tackle the latter. As with the weighted set packing, the MDKP is
a well-studied NP-hard problem frequently used to evaluate new algorithms due
to its intrinsic difficulty and its well-established benchmark test sets. One of the
best heuristics to deal with MDKP was developed by Raidl and Gottlieb (2005)
and consists in a genetic algorithm with weight-biased representation using sur-
rogate duality to modify item weights. Recently, Mansini and Speranza (2012)
presented an exact algorithm based on the idea of restricted core problems where
a recursive variable fixing step is done until a given threshold is reached. The
remaining subproblems are explored by a branch-and-bound approach. Several
other approaches can be found, among them genetic algorithms (Chu and Beasley,
1998), tabu search (Vasquez and Vimont, 2005), ant-based optimization (Alaya
et al., 2004), GRASP (Chardaire et al., 2001) and other hybridization techniques,
e.g. Puchinger et al. (2010) and Boyer et al. (2010).

In this paper, we address the winner determination problem of general combina-
torial auctions using the first-price model for single goods. We restrict ourselves to
sealed auctions that use a single round to determine winners and prices to be paid,
where the bids can be placed with no constraints other than their non-negativity.
We also consider that the bids are anonymous and that bidder identity is not used
to model or solve the underlying problem. Six variants of biased random-key ge-
netic algorithms (BRKGAs) are implemented to address this problem, three of
them adopting a novel scheme that employs linear programming (LP) relaxations
to initialize the population when the underlying problem can be modeled as a 0–
1 integer linear program. In such problems, an LP relaxation directly serves as
a chromosome of the BRKGA heuristic, since both are defined over the interval
[0, 1]. Experiments comparing the BRKGAs with a standard mixed integer-linear
programming formulation of the WDP solved with a commercial solver, as well
as the best performing heuristics proposed for the problem, the best performing
exact algorithm, and the best performing heuristic for the MDKP, are carried out
to identify the strengths and drawbacks of each approach.

The paper is organized as follows. In Section 2 we formalize the winner deter-
mination problem in combinatorial auctions. We then address biased random-key
genetic algorithms in Section 3 and follow up with a description of our heuristics
in Section 4. Experimental results are provided and discussed in Sections 6 and 7,
respectively. Concluding remarks are made in Section 8.

2. General combinatorial auctions and their formulations

Several models for combinatorial auctions have been proposed in the literature,
but most of them introduce additional constraints to limit the context of the auction
so as to expose special properties that make the problem computationally easier.
We next present a general description. Let N = {1, 2, . . . , n} be a set of bidders
and M = {1, 2, . . . ,m} be a set of goods. A collection of bids is represented by a
tuple B = (B1, . . . ,Bn) such that Bi is the bid set of bidder i. Each bid B ∈ Bi,
for i = 1, . . . , n, is a list of desired goods (bundle), i.e., B ⊆ M such that bidder i
provides the function bi : 2M → R+ that measures how much bidder i is willing to
pay for a bundle. An allocation of goods is represented by a tuple S = (S1, . . . ,Sn)



4 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

where Si is the set of winner bids of bidder i = 1, . . . , n. Note that( ⋃
S∈Si

S

)
∩
( ⋃
R∈Sj

R

)
= ∅, for all i, j ∈ N.

We consider the private information model in which the auctioneer only knows
the set of bids B and the functions bi, for all i = 1, 2, . . . , n. We restrict ourselves
to first-price sealed auctions where the bidders submit one bid per desired bundle.
This contrasts with iterative auctions, where the bidders may submit multiple bids
to the same bundle in different rounds. Only the auctioneer can handle the bids
and the winning bidders pay what they offered in their winning bids, i.e., bi(Si).
Sealed auctions are used mainly in government and industry procurements. For
more on the theory of auctions and its variants, see Krishna (2010).

The major work done in the literature has related the WDP with both the weight
set packing problem and the multidimensional knapsack problem (see Bikhchandani
and Ostroy (2010) for other models). In the set packing problem, we want to select
weighted pairwise disjoint sets from a collection of items while maximizing the sum
of the weights of the selected sets. A special case of this problem is the Weighted
Stable Set Problem where we have a graph whose nodes have weights and one must
choose a subset of nodes with no common incident edge and maximize the sum of
weights. The WDP can be reduced to the weighted stable set problem in the follow-
ing way: consider the intersection graph G = (V,E), where each s ∈ V represents
a bid. An edge (s, s′) ∈ E exists if and only if Bs ∩ Bs′ 6= ∅, such that Bs ∈ Bi,
Bs′ ∈ Bj , i, j ∈ N and i 6= j, i.e., the edge exists if and only if two bids from
different bidders request a common good. A stable set on this intersection graph
corresponds to a set of pairwise-disjoint bids from different bidders. Mathemati-
cally, the stable set problem can be written as the standard integer programming
model

max
∑
s∈V

bsxs

s.t. xs + xs′ ≤ 1 ∀(s, s′) ∈ E(1)

xs ∈ {0, 1} ∀s ∈ V,

where we use the abbreviation bs = b(Bs), i.e., bs is the value offered for bundle
s. Let the binary variable xs = 1 if and only if bid s is a winner. The above
formulation enables overlapping among bids of a same bidder. Its main advantage
is that the bidder in question need not present a bid for each subset of desired
goods although the bidder may possibly overpay for some of them. In fact, this
formulation is appropriate for super-additive valuations. The number of variables
and constraints of this formulation is, respectively, ` and O(`2), where ` is the total
number of bids.

Another very common way to deal with WDP is to model it as a multidimensional
knapsack problem. We consider that each bid is an item to be packed in the
dimensions induced by the goods. Let B̂ =

⋃n
i=1 Bi be the set of all bids. In case

two or more bids contain the same goods, we add a “dummy” good to each bid
such that the new good uniquely identifies the bundle (Nisan, 2000). Let wjk = 1



BRKGA FOR WINNER DETERMINATION 5

if good j ∈ M is considered in bid k ∈ B̂, wjk = 0, otherwise. The MDKP can be
model as

max
∑
k∈B̂

bkxk

s.t.
∑
k∈B̂

wjkxk ≤ cj ∀j ∈M(2)

xk ∈ {0, 1} ∀k ∈ B̂.

Again, we abuse the notation of bk as the value offered for bundle k and we consider
as winning bids, all k such that xk = 1. For combinatorial auctions with single
goods, we have that cj = 1 for all j ∈M . A first observation is that this formulation
can deal with multi-unit auctions where we can have multiple copies of good j (by
allowing cj ∈ N for all j ∈M) and a bid can request a certain number of copies of

the good (by allowing wjk ∈ N, for j ∈ M and k ∈ B̂). The number of variables
and constraints of this formulation are, respectively, ` and O(m), where ` is the
number of bids and m is the number of goods.

The choice between the stable set and MDKP models can be very tricky in
the case of single-unit combinatorial auctions. There are two important aspects to
analyze: the tightness of the formulations and their sizes. With respect to tightness,
it is well-known that the MDKP model (again, for the single-unit case) generates
tighter formulations than the stable set model, since the former contains more clique
inequalities than the latter and, therefore, results in better linear programming
relaxations (Padberg, 1973). In fact, it is known that the stable set model, even
with clique inequalities, leads to poor relaxations (Carr and Lancia, 2014).

With respect to size, although the MDKP formulation has the size O(`m), it
can be much larger than the stable set formulation. The problem does not lie in
the formulation itself, but in the input that can potentially be exponential for the
MDKP in the number of goods. To illustrate this, suppose that a bidder has the
following bids: B1 = ({1, 2}, $10), B2 = ({2, 3, 4}, $10), and B3 = ({4, 5}, $10). If
we consider only these bids, the stable set formulation will have three variables and
no constraint, since the overlapping bids belong to the same bidder. In the MDKP,
the bidder must generate, besides the given bids, the bids B′12 = ({1, 2, 3, 4}, $20),
B′13 = ({1, 2, 4, 5}, $20), B′23 = ({2, 3, 4, 5}, $20), and B′123 = ({1, 2, 3, 4, 5}, $30)
since the bidder cannot win overlapping bids in this model. Although we have only
one constraint, the number of variables (bids) is exponential with respect to the
those in the stable set model. Note that if bidder identities are unknown, we must
consider each bid individually and the MDKP becomes the best choice. In this
paper, we do not consider bidder identities and therefore adopt the MDKP model.

3. Biased random-key genetic algorithms

To search for good solutions for the winner determination problem, we imple-
mented a biased random-key genetic algorithm (BRKGA) (Gonçalves and Resende,
2011a). Our choice was mainly grounded on recent successes with classical hard
combinatorial optimization problems such as routing (Andrade et al., 2013), pack-
ing (Gonçalves and Resende, 2011b), clustering (Andrade et al., 2014), and others.
Although the BRKGA is relatively new, the random-key idea has been used for
several authors since the seminal work of Bean (1994). Norman and Bean (1999)



6 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

used a random-key genetic algorithm to solve complex scheduling problems; Raidl
(1999) applied this technique to solve Multiple Container Packing problem; and
Rothlauf et al. (2002) studied several representations of network trees using simple
and random key encoded solutions.

Two key features distinguish BRKGAs from traditional genetic algorithms (Gold-
berg, 1989):

(1) A standardized chromosome encoding that uses a vector with t uniformly
drawn random keys (alleles) over the interval [0, 1] (Bean, 1994);

(2) A well-defined evolutionary process which uses parameterized uniform cross-
over (Spears and DeJong, 1991) for exploitation and substitutes the appli-
cation of the mutation operator on existing chromosomes with newly in-
troduced mutants – defined as t-long vectors of (uniformly drawn) random
keys – for exploration.

Notice that no task depends on the optimization problem for which a solution is
being sought. In fact, the only connection between this metaheuristic and the
underlying problem occurs when a chromosome is decoded, that is, when a solution
to the problem is constructed from a chromosome from which the objective function
value or fitness can be extracted for the sake of comparing distinct chromosomes.
Analogously, decoders indirectly map the chromosome space [0, 1]t into the set of
feasible solutions to the optimization problem. The pair formed by a chromosome
and its fitness is called an individual.

Algorithm 1 summarizes a typical BRKGA framework. Basically, we generate
p chromosomes as initial individuals using vectors with t uniformly drawn random
keys over the interval [0, 1]. In each iteration, a problem-specific decoder extracts
the fitness of the chromosomes. To build a new population, we copy the pe best
individuals (called the elite set), add pµ random chromosomes (the mutants), and
generate p − pe − pµ offspring by applying the crossover operator. Crossover is
done between a random individual from the elite set and an individual from the
remainder of the population: an offspring is generated by mating, where we take
each allele from the elite parent with probability ρe or from the other parent with
probability 1 − ρe. With ρe = 0.5, the standard uniform crossover occurs. With
ρe > 0.5 by definition, exploitation happens at two levels: when parents are selected,
because one is drawn from the elite set, and when offspring are conceived, because
their alleles are inherited from the elite parent with greater probability. Exploration
happens with the introduction of mutants at each generation, since they are vectors
with t uniformly drawn random keys. The usual mutation operators on individual
genes are not employed by the BRKGA. Observe that the above scheme prevents
infeasibility since, by definition, the resulting chromosomes – both offspring and
mutants – are always vectors of random keys over [0, 1].

A common approach to genetic algorithms is the island model (Whitley et al.,
1998), where several populations are evolved independently and exchange their best
individuals every given number of generations. This improves the variability of in-
dividuals, usually speeding up convergence, and reduces the risk that the algorithm
will get stuck in local optima. Note that it is not necessary that this process be
done in parallel in the sense of using several parallel machines or CPUs. It is
straightforward to adapt the BRKGA framework: π separate populations are cre-
ated such that they are evolved simultaneously applying the evolutionary process
in lines 3–8 of Algorithm 1 to each population. In this case, we will have P1, . . . , Pπ



BRKGA FOR WINNER DETERMINATION 7

populations, E1, . . . , Eπ elite sets, and Q1, . . . , Qπ “next generation” pools. The
individual exchanges occur when a given threshold is reached, for instance, at every
δ generations. For each population Pi, the η best individuals are copied from other
populations Pj 6=i and replace the η(π − 1) worst individuals in Pi.

In conclusion, the parameters that must be specified beforehand are the size of
the chromosomes t, the size of the population p, the size of elite set pe, the number
of mutants pµ introduced at each generation, and the inheritance probability ρe.
If using parallel populations, we must set the number of populations π and the
generation threshold δ to exchange the η best individuals. Advice for the parameter
setup can be found in Gonçalves and Resende (2011a).

4. Decoding the winner determination problem

We now focus on BRKGA decoders for the winner determination problem. Recall
that an instance of the WDP consists of finite sets of bidders N = {1, . . . , n}, goods
M = {1, . . . ,m}, and a collection of bids B = (B1, . . . ,Bn), where Bi is the bid set
of bidder i ∈ N . As aforementioned, we have not addressed the bidder identities;
instead, we consider the bids B̂, as defined in Section 2, but in some fixed order
such that B̂ = (B1, B2, . . . , Bt), where t = |B̂|. Each bid Bj has value bj . The
decoders select a subset of bids that is maximal with respect to the sum of their
values while respecting the pairwise-disjoint constraints among selected bids.

We develop three approaches for decoding a solution. These approaches are
related in how they select and analyze the bids based on chromosome values and
structural information of the problem. Define the size of each chromosome to be t.
Our decoders associate each bid with an allele, i.e., the value of the j-th random key
is associated with the j-th bid. The first step is to sort the bids in some particular
order, generating a permutation of bids.

Chromosomal approach:: The keys are sorted in non-increasing order of
their values. Ties are broken by element indices;

Algorithm 1: BRKGA scheme.

1 Generate the initial population P ;

2 while a stopping criteria is not reached do
3 Decode each chromosome of P and extract their solutions and fitness;

4 Sort the population P in non-increasing order of fitness. Consider the top

pe individuals as the elite group E;

5 Copy E to the next generation Q, unaltered;

6 Add pµ randomly-generated new chromosomes (mutants) to Q;

7 Generate p− pe − pµ chromosomes (offspring) by parameterized crossover,
selecting a random parent from E and another from P \ E. Add them to
Q;

8 P ← Q;

9 return best individual found .



8 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Greedy approach:: We first choose the keys whose values are greater than
or equal to a threshold τ ; then, these keys are sorted in non-increasing or-
der of the cost/benefit of their respective bids, i.e., bj/|Bj |. Notice that, in
the greedy approach, the relative order of the bids is fixed for all possible
chromosomes and, in fact, a permutation of the bids is not generated. In-
stead, we generate an ordered list containing a subset of the original bids.
Ties are broken by element indices;

Surrogate Duality approach:: Similar to the greedy approach but the cost/benefit
is calculated differently. Let α be the dual solution vector of the relaxation
of Formulation (2) when x ∈ [0, 1]t. Note that each αi is tied to good i and
represents the “shadow price” of i. The cost/benefit of Bj is bj/

∑
i∈Bj

αi.

This surrogate duality approach was first proposed by Pirkul (1987). As in
the above greedy approach, the dual vector α may be computed only once,
and ordered lists can then be generated from it. Again, ties are broken by
element indices;

Note that in the greedy and surrogate approaches, the parameter τ induces an
implicit binary chromosome encoding and does not take advantage of the magnitude
of the keys as does the chromosomal approach. The rationale behind the greedy
approach is that the algorithm will take the most efficient bundles at first. This
means that it will prefer the bids that most value the goods individually. The
surrogate duality approach tries to capture the aggregate consumption levels of
goods, meaning that bid efficiency is a measure of how much the bid impacts the
entire system when it is chosen as the winner. In other words, if the marginal cost
of the goods for a given bid is high, then this bid considers goods with high demand
and it may not be worthwhile to choose it as winner if it were to offer a low value
for these goods.

As an example, consider the chromosome in the Figure 1. In chromosomal
approach, we simply sort the keys generating a permutation of bids, as shown by
the indices of the vector in Figure 1a. In the greedy and surrogate dual approaches,
we first filter the bids by their keys (using τ = 0.5 in this example) and then sort
the remaining bids in non-increasing order of their cost/benefit (as shown in the
grey vector in Figure 1b).

One can note that in the chromosomal approach, the chromosome is used to
generate a permutation of bids to be used in the subsequent processing. In the
greedy and surrogate dual cases, the chromosome is used to generate a subset of
bids whose size is controlled by parameter τ . Note that if τ = 0, then all bids
are considered at once and, as the relative order of bids is fixed a priori due the
cost/benefit relation, the decoder always returns the same solution. This way, τ > 0
can be viewed as a separation threshold. Lines 3–7 of Algorithm 2 summarize these
procedures.

The next phase (lines 8–14) uses the sorted list of bids detailed above to construct
a solution for the WDP. Initially, no bid is selected and all goods are unmarked.
The decoder iterates over the bids in the supplied list, selecting a bid whenever all
of its goods are not yet marked, thus maintaining the property that the winning
bids are mutually exclusive with respect to their goods. If the current bid Bj is
selected, its corresponding goods are then marked. Otherwise, if bid Bj has a
conflicting good with another bid already selected, it is ignored and the value of
the corresponding key, say κj , is reset to 1 − κj if κj > 0.5, discouraging this bid



BRKGA FOR WINNER DETERMINATION 9

from being considered in the following generations. Note that if κj ≤ 0.5, this bid
is already discouraged and its key value need not change.

After this primary construction phase, the algorithm has checked all bids in the
chromosomal approach. Therefore, in this case, it returns the solution value. In the
greedy and surrogate dual cases, some bids are not visited because of filtering by τ .
Therefore, the algorithm builds a secondary list containing those bids that include
only unmarked goods (disregarding those that were not selected in the previous
phase due to conflicts). The bids are then sorted according to one of the above
criteria, and the algorithm iterates over this list adding the bids that do not create
conflict with the bids already selected. Each added bid Bj has its corresponding
key κj reset to 1− κj if κj < 0.5, encouraging this bid to be considered in further
generations. This secondary phase is described in lines 17–24.

The running time for this procedure to obtain the sorted list of bids is bounded
by O(t log t), where t is the number of bids.1 In the worst case, the sum of the
number of iterations in the two foreach loops is at most t, given that all bids may
be analyzed. Checking and marking of goods can be implemented in O(1) using a
simple binary vector indexed by the goods. This implies that, for each iteration,
we have O(m) checks and markings in the worst case, where m is the number of
goods. Therefore, in the chromosomal case, we can bound the running time of the
decoder by O(t log t+ tm).

The running times for the greedy and surrogate duality cases are different from
the previous cases since we have an extra sorting procedure and a second traversal
over the bids. As argued in the start of this section, the relative order of bids is
fixed and need only be calculated once a priori. In this case, the sort procedures
of lines 7 and 18 can be done in linear time using an indicator vector, where each
position corresponds to the position of a bid in the pre-calculated order. Note that
each sort procedure is done over a partition of the bids and, therefore, both together
have running times that can be bounded by O(t). The first filtering traversal in

1

0.6

2

0.9

3

0.8

4

0.5

5

0.3

6

0.2Keys

Bids 2 3 1 4 5 6

0.9 0.8 0.6 0.5 0.3 0.2

Sort keys in

non-increasing order

(a) Chromosomal Approach.

1

0.6

2

0.9

3

0.2

4

0.5

5

0.3

6

0.8Keys

Bids

5.5

1

0.6

4.0

2

0.9

7.1

4

0.5

3.2

6

0.8

Cost/Benefit:
bj

|Bj |

Filter Keys

≥ τ = 0.5

5.5

1

0.6

4.0

2

0.9

7.1

4

0.5

3.2

6

0.8

Sort keys

by
bj

|Bj |

(b) Greedy Approach.

Figure 1. Example of sorting keys using the chromosomal and
greedy approach.

1Note that this term depends on the sort algorithm used, and, in fact, can be reduced to

Θ
(
t log t
log log t

)
using fusion trees (Fredman and Willard, 1993).



10 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Algorithm 2: Decoder for the Winner Determination Problem.

1 Let S be an empty list to hold the solution;

2 Let κj be the key associated with bid Bj ;

3 if the chromosomal approach is used then
4 Let L be a list of bid indexes ordered in non-increasing order of keys κ;

5 else
6 Let L be a list of bid indexes such that κj ≥ τ for all bid Bj ;

7 Sort L in non-increasing order of cost/benefit according greedy or

surrogate dual approach;

8 foreach j ∈ L in the given order do
9 if Bj has no marked goods then

10 S ← S ∪ {j};
11 Mark all goods of Bj ;

12 else if κj > 0.5 then
13 κj ← 1− κj ; // discourage bid Bj

14 L← L \ {j};
15 if the chromosomal approach is used then
16 Go to Line 25;

// Process the remaining bids

17 Let L′ be the list of indexes of remaining bids with unmarked goods;

18 Sort L′ in non-increasing order of cost/benefit according greedy or surrogate

dual approach;

19 foreach j ∈ L′ do
20 if Bj has no marked goods then
21 S ← S ∪ {j};
22 Mark all goods of Bj ;

23 if κj < 0.5 then
24 κj ← 1− κj ; // encourage bid Bj

25 return the fitness
∑
j∈S bj .

line 6 takes t steps. The second traversal in line 17 is a function of τ and takes less
than t steps. Both loops together take t iterations over m goods. Thus, we can
bound the total running time of these decoders by O(t) + 2t+ tm = O(tm).

5. Initializing the population of BRKGA

The most common approach to initialize the population of a BRKGA is to gener-
ate its chromosomes with uniformly drawn random keys over the interval [0, 1]. This
results in highly heterogeneous individuals that may slow down the convergence of
the algorithm.

In an attempt to speed up the search, we introduce a novel approach where
we use solutions to the linear programming (LP) relaxations of Equation (2) as
chromosomes, given that the decision variables of these relaxations are such that
0 ≤ xk ≤ 1 for all k ∈ B̂, where B̂ represents the set of all bids and t = |B̂|.



BRKGA FOR WINNER DETERMINATION 11

Therefore, a solution to the relaxed LP is a vector x ∈ [0, 1]t that is compatible
with the requirement of the keys of a BRKGA, and therefore we simply use the
values of the optimal relaxed variables xk as the corresponding alleles of an initial
chromosome. An advantage of using such an individual in the initial population
is that it is perhaps closer to a good solution than are most random individuals.
In addition to the pure relaxation, we use relaxations generated by the insertion
of cutting planes in the original formulation. A cutting plane is an inequality that
eliminates an infeasible solution for the original integer program. The insertion of
cutting planes leads to tighter formulations with respect to the integer solutions
(see e.g. Wolsey (1998) for more details). We expect that chromosomes generated
from these tighter relaxations will be decoded into solutions that are even closer to
good integer solutions.

This process consists in two nested phases as shown in Algorithm 3. In the first
phase (lines 5–7), cutting planes are generated and added to the formulation and
its linear relaxation solved. This results in vector x̃ such that 0 ≤ x̃k ≤ 1, for
all k = 1, . . . , t except the fixed variables which have their values defined in next
phase. Cut-generation procedures have been widely studied in the mathematical
programming literature and can be implemented in different ways. In this paper,
we do not make use of any particular cut-generation procedure but, rather, delegate
their generation to the mixed integer programming (MIP) solver. To date, most
modern MIP solvers, such as IBM ILOG Cplex, Gurobi Optimizer, and Fico Xpress
are able to generate general strong cuts, such as clique cuts (Nemhauser and Wolsey,
1988) and Gomory fractional cuts (Gomory, 1958) known for the tight relaxations
they produce. The task of finding cutting planes and reoptimization can be time
consuming and therefore we limit this procedure to at most a predetermined number
of steps or stop after a maximum time limit is reached. The relaxed solution x̃ is
added to the initial population.

To generate several chromosomes, we fix variables iteratively, generating other
relaxations (lines 10–16). In alternating iterations, we fix some variable xs to
0, meaning that the corresponding bid will not belong to any solution, or to 1,
implying that the corresponding bid will belong to all solutions. This way, two
consecutively generated chromosomes enforce the decision to select or not select
the bid in question. One can note that we fix the variables in the order that
they appear in set of bids. Another possible strategy is to choose a variable to fix
uniformly at random saving the last fixed variable to restore its bounds. Both types
of variable fixing procedures do not guarantee any solution quality, but diversify
the search. Note that in the first iteration of Algorithm 3, no variable is fixed and
a full relaxation of the model is solved. It is also possible, although unlikely, that
two or more distinct variable fixings result in the same relaxation. In this case, we
discard the duplicates.

Although the initialization with LP relaxations can speed up the convergence of
the BRKGA, the time to generate these initial chromosomes is not negligible. It is
worthwhile mentioning that solving an LP relaxation is a polynomial-time process,
but finding cutting planes can be slow in certain situations, and several practical
issues can contribute to this slowdown (Wolsey, 1998). In this regard, we set the
stopping criterion for this type of initialization to a specific running time or number
of chromosomes, whichever comes first (line 4). The remaining chromosomes are
generated at random as is usual in the standard BRKGA.



12 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Algorithm 3: Initialization by LP relaxations.

1 Let x1, . . . , xt be a vector such that xk is the variable associated to bid

Bk ∈ B̂;

2 Let P be the empty initial population;

3 k ← 1; bound← 0;

4 while k < t and a stopping criterion is not reached do

5 while maximum cutting iterations or the time limit are not reached do
6 Insert cutting planes in the formulation if possible;

7 Solve the LP relaxation;

8 Let x̃ ∈ [0, 1]t be the relaxed optimal solution;

9 P ← P ∪ {x̃};

// Do variable fixing

10 Fix xk to bound;

11 if bound = 0 then
12 bound← 1;

13 if k ≥ 2 then
14 Unfix xk−1;

15 else
16 bound← 0; k++;

17 if P is not complete then
18 Generate random chromosomes to complete P ;

6. Experimental Setup

We conducted several experiments with three objectives. The first objective
was to investigate the effectiveness of biased random-key genetic algorithms to
find optimal solutions for instances where exact algorithms succeeded in finding
one. The second was to evaluate the solution quality for those instances where an
optimal solution could not be found. Finally, the third objective was to investigate
the effectiveness of the initialization of BRKGA with LP relaxations. Throughout
the experiments, we compare our results with state-of-the-art algorithms for the
WDP and the MKDP.

6.1. Instances. For the following experiments, we use two sets of instances. We
first generated several instances using the Combinatorial Auction Test Suite, or
CATS (Leyton-Brown et al., 2011), a standard generator of instances for combina-
torial auction, largely adopted in the literature. The advantage of this suite lies
in its ability to generate instances for several scenarios, such as time-scheduling
auctions, matching auctions, region-border auctions, and even legacy distributions
used in earlier papers. We generated two blocks of instances: one of smaller in-
stances containing from 40 to 400 bids whose number of goods vary between 10
and 100; and another comprised of larger instances with 1000 to 4000 bids and
256 to 1500 goods. Preliminary experiments showed that the number of goods
does not considerably affect the running time of the algorithms. This fact was also



BRKGA FOR WINNER DETERMINATION 13

observed by Buer and Pankratz (2010). Henceforth, we set the number of goods
to be smaller than the number of bids in the test problems, seeking auctions with
relevant conflicts among the bids, i.e. with several bids competing for the same sets
of goods.

From CATS, we used legacy distributions L2, L3, L4, L6, L7, and the “arbi-
trary,” “matching,” “paths,” “regions,” and “scheduling” distributions (a total of
10 classes). We did not use the L1 and L5 distributions due to problems gener-
ating non-dominated bids. These instances broadly cover general combinatorial
auctions. For further details, see Chapters 18 and 19 of Cramton et al. (2006). For
each distribution, we generated three instances of each type according to Table 1
using the default parameters supplied by CATS. We also used the CATS hard mode
(-default hard flag), that generates three instances with approximately 1024 bids
and 256 goods for each distribution with the objective of being hard to solve. The
suite does not generate hard instances for “path” distributions. In summary, we
used CATS to generate 120 small and 117 large instances.

A drawback of CATS is that instances appear to be easy in the sense that
they can generally be solved by exact algorithms in reasonable time (see Boughaci
et al. (2009); Guo et al. (2006)). In fact, such studies adopted a set of instances
provided by Lau and Goh (2002), which are indeed harder than instances generated
by CATS. These instances were generated using several factors observed in real
brokering systems as pricing of a bundle, preference of each bidder, and fairness of
good distributions. We selected three classes of such instances and called them LG.
Each class contains 100 instances, all having more than 1000 bids.

In short, we experimentally analyzed the proposed algorithms on 537 instances
where 417 of them are large with respect to number of bids, i.e., they have more than
1000 bids. Table 1 summarizes the instances adopted in the subsequent analysis.
The last line of this table shows the number of instances in each class.2

6.2. Algorithms. In our evaluation, we considered specialized algorithms for both
the winner determination problem and the multi-dimensional knapsack problem.
We test two exact algorithms and two heuristics, both considered to be state-of-
the-art for both problems.

To tune the parameters of the heuristics, we use the iterated racing procedure
(Birattari et al., 2010). This method consists in sampling configurations from a
particular distribution, evaluating them using either the Friedman test or the t-test,
and refining the sampling distribution with repeated applications of F-Race. We use
the irace package (López-Ibáñez et al., 2011), implemented in R, for parameter
tuning. For each heuristic, we use a budget of 2,000 experiments in the tuning
procedure, where each experiment was limited to one hour. For this propose, we

Table 1. Instance classes and their sizes.

CATS LG

Bids 40 80 200 400 1000 1024† 2000 4000 1000 1000 1500
Goods 10 10 50 50 256 256 512 1024 500 1000 1500

# of insts. 30 30 30 30 30 27 30 30 100 100 100
† Generated using default hard flag.

2These instances can be found in http://www.loco.ic.unicamp.br/instances/wdp.html



14 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

chose one instance of each size from each CATS class, and ten instances from each
LG class, totalling 109 instances.

Boughaci et al. Memetic Algorithm — BOMA. Boughaci et al. (2009) present a spe-
cialized memetic algorithm for WDP. It is a genetic algorithm that uses random-key
encoding tied to a local search procedure for exploitation. Their representation and
decoding phase is similar to our chromosomal approach. But in the reproduction
phase, the individuals are chosen to crossover only if their “differ” sufficiently based
on a similarity metric. In this case, the similarity is the size of the intersection of
the winning bid sets induced by these individuals.

For crossover, the algorithm chooses an individual X from the set C1 of best
individuals and another individual Y from a set C2 that contains individuals with
small similarity with respect to individuals in C1. The crossover is done traversing
the concatenation XY and choosing no-conflict bids in this order. The local search
that characterizes the memetic flavor is the following: With probability wp choose
the best bid (one that maximizes the auctioneer’s revenue) or, with probability
1 − wp, a random bid. This bid is added to the solution and all other conflicting
bids are removed. This process is repeated for a given number of iterations and
returns the best individual found.

This algorithm outperformed other algorithms for the WDP that were previously
proposed in the literature (Casanova of Hoos and Boutilier (2000) and SAGII of
Guo et al. (2006)) and, indeed, presents competitive results, as we show in next
sections.

We use the original C implementation provided to us by the author of Boughaci
(2013). A slight modification was done to their implementation to support timing
limits. In parameter tuning, we use the following ranges: population size pop size ∈
[300, 2000]; |C1| ∈ [5, 20]; |C2| ∈ [7, 30]; wp ∈ [0.1, 0.5]; and maximum local search
iterations max lsi ∈ [100, 500]. The best setup indicated by irace was: pop size =
1400; |C1| = 12; |C2| = 24; wp = 0.3; and max lsi = 150.

Raidl and Gottlieb Weight-Biased Genetic Algorithm — RGRK. Raidl and Gottlieb
(2005) proposed a genetic algorithm for the MDKP where a solution is represented
by a weight-biased real vector using surrogate dual information in the decoding
phase. The authors used several probability distributions to generate the biased
vectors. Their experiments show that following a log-normal distribution often
works best. The weighted vector w is generated such that wj = (1 +γ)N (0,1) where
N denotes a normally distributed random number with mean 0 and unit standard
deviation and γ > 0 is a parameter that controls the intensity of biasing. Thus, the
item j is biased by a new price p′j = pjwj .

The decoding phase uses the approach of Pirkul (1987) and is similar to our surro-
gate dual ordering. In this case, the pseudo utility of a item j is uj = p′j/

∑m
i=i αirij ,

where m is the number of dimensions, αi is the dual value associated with dimension
i and rij is the demand of item j in dimension i.

The offspring generation is done by selecting two parents via binary tournaments,
performing uniform crossover in their characteristic vectors, flipping each bit with
probability 1/n (mutation probability), performing repair if a capacity constraint is
violated, and always applying local improvement. If such a new candidate solution
is different from all solutions in the current population, it replaces the worst of them



BRKGA FOR WINNER DETERMINATION 15

only if the new candidate has a better fitness than the worst solution (Puchinger
et al., 2010). This algorithm, to date, is one of the best heuristics for the MDKP.

We use the Java code provided to us by the authors of Pfeiffer and Rothlauf
(2007). In parameter tuning with irace, we use the following ranges: popula-
tion size pop size ∈ [300, 2000]; tournament size tourn size ∈ [10, 30]; and γ ∈
[0.01, 0.20]. The best results were obtained with: pop size = 500; tourn size = 20;
and γ = 0.15.

Mansini and Speranza Exact Algorithm — CORAL. Mansini and Speranza (2012)
presented an exact algorithm for MDKP using the idea of core items. This algorithm
divides the problem into subproblems with a limited number of variables. For each
subproblem, a recursive variable fixing procedure is applied trying to fix as many
variables as possible. The remaining unfixed variables represent the core items
for which it is difficult to decide whether they belong to an optimal solution. For
these items, a restricted core problem is built and solved with a branch-and-bound
procedure. To speed up the branch-and-bound, several pruning conditions are
introduced. This algorithm has a non-trivial implementation and we omit several
details here which can be found in the original publication.

CORAL is considered to be a state-of-the-art exact algorithm for the MDKP. It
works particularly well on instances with a large number of items. Its key feature
is the ability to continually improve lower bounds using the optimal solutions from
their restricted subproblems. However, in instances with a large number of con-
straints, CORAL has difficulty in finding good solutions, as observed in Mansini and
Speranza (2012).

We use the original Java implementation provided to us by the authors. Slight
modifications were done to their implementation to support timing limits. All
parameters were set as in the original paper.

Standard Mixed Integer Programming Solver — CPLEX. We also used the IBM
ILOG CPLEX Optimizer as a standard mixed integer programming solver to deal
with Formulation (2) directly. CPLEX uses a branch-and-cut algorithm which is a
deterministic enumerative procedure that explores a solution space using a bound-
ing process in the solution values of the tree built during the search. Further detail
can be found in Wolsey (1998). This type of algorithm has exponential running
time in the worst case. The implementation of the IBM ILOG CPLEX Optimizer
uses linear programming relaxations to bound the solution values in addition to us-
ing primal heuristics to produce integer solutions. According to its documentation,
the IBM ILOG CPLEX Optimizer is fully deterministic with default parameters
that are used in our experiments.

Note that we use the cut generation procedure in our LP initialization ap-
proaches. In that situation, however, we only use solutions from the root node
and the first level of the branching tree. In fact, we do not use CPLEX branching
mechanism there but only solve the LP and apply cut generation procedures. All
variable fixing is controlled by our procedure as shown in Algorithm 3.

We use the IBM ILOG CPLEX Optimizer version 12.5.0.0. All default control
parameters were used, except time limit, which was set to 3,600 wall-clock seconds,
and number of threads, set to four. Using the default settings, CPLEX performs a
preprocessing step to try to eliminate variables and constraints and calculate initial



16 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

bounds. Unfortunately, we cannot know what methods are used to perform this
preprocessing since CPLEX is a closed-source commercial package.

It is important to note that these settings are used only in the case where CPLEX
is run stand-alone. To create the initial chromosomes for our algorithms based on
LP relaxations, we set up CPLEX differently as described next.

Our approaches. Our algorithms are described as follow:

CARA:: The proposed algorithm, defined in Section 4, using the chromosomal
approach and random initialization;

CALP:: The proposed algorithm using the chromosomal approach but initial-
ized with the optimal variables from the LP relaxations;

GARA:: The proposed algorithm using the greedy approach and random initial-
ization;

GALP:: The proposed algorithm using the greedy approach and initialized with
the optimal variables from the LP relaxations;

SDRA:: The proposed algorithm using the surrogate duality approach and ran-
dom initialization;

SDLP:: The proposed algorithm using the surrogate duality approach and ini-
tialized with the optimal variables from the LP relaxations.

The proposed algorithms were written in C++ on top of the BRKGA API of Toso
and Resende (2012), which implements all of the problem-independent components
described in Section 3. Random numbers were generated by an implementation
of the Mersenne-Twister (Matsumoto and Nishimura, 1998) and we used the stan-
dard sort algorithm of the C++ Standard Template Library. In particular, the
used version implements the introsort algorithm whose worst case running time is
O(n log n) (Musser, 1997). Our algorithms used four cores for simultaneous decod-
ing (see Section 3).

To tune the BRKGA parameters with irace, we used the following ranges: elite
percentage ∈ [0.10, 0.30]; percentage of mutants introduced at each generation ∈
[0.05, 0.20]; probability of inheriting each allele from elite parent ρe ∈ [0.5, 0.8];
number of independent populations π ∈ [1, 3]; exchange interval δ ∈ [50, 200]; and
number of elite individuals in an exchange η ∈ [1, 2]. The population size was
set to p = min(10t, 2000), where t is the number of bids. The main reason for
this upper bound is to bound the running time of each generation and allow the
BRKGA to evolve for several generations. We noted that populations with over
2,000 individuals had slow convergence because of the time needed to evaluate each
generation. This is true mainly on large instances. The tuning results obtained with
irace were very close to the values suggested by Gonçalves and Resende (2011a).
The elite size was set to pe = d0.20pe, the number of mutants to pµ = b0.15pc, and
inheritance probability to ρe = 0.70. We evolved π = 3 populations simultaneously
and once every δ = 100 generations, each population exchanged its η = 2 best
solutions with the other populations.

For the greedy and surrogate duality approaches, we set the filter threshold
τ = 0.5. In these cases, we expect that half of the bids are assigned to the first
phase allocation and the other half to the second phase. As the algorithm evolves,
good bids will have random key values greater than or equal to τ and the impact
of the second phase will diminish since bad bids will have their goods marked in



BRKGA FOR WINNER DETERMINATION 17

the first phase. Note that τ has more impact on initial and mutants chromosomes
than on others since on the latter the random keys evolved to a better solution.

For the approaches with LP-based initialization, we relaxed the integrality con-
straints of Formulation (2) to 0 ≤ xk ≤ 1. Since this procedure is time consuming,
they were restricted as follows. The number of initial chromosomes was set to
lpinit = b0.1pc. Note that in Algorithm 3, this number may be small, since it
is limited by the number of bids and duplications. If we obtain no duplicates,
lpinit ≤ 2t+ 1, where t is the number of bids (the additive factor 1 is due the initial
unrestricted relaxation). We allow two iterations of cut generation or five seconds
to generate each chromosome. Both cut generation and the solution of the LP
relaxation were done with the IBM ILOG CPLEX Optimizer version 12.5.0.0. We
do not use other CPLEX features, such as variable fixing and branch-and-bound.

6.3. Computational environment and algorithm settings. The experiments
were conducted on identical machines with quad-core Intel Xeon E5530 2.4 GHz
CPUs and 32 GBytes of RAM running GNU/Linux. Running times reported are
UNIX real wall-clock times in seconds, excluding the effort to read the instance.
Each run was limited to 3,600 seconds for all algorithms. There are two reasons
behind our choice of time limit. On the application side, procurement auctions are
often managed in a short period of time to limit the response time of the bidders
in order to achieve economic efficiency (for further details, see Chapters 2 and 23
in Cramton et al. (2006)). On the algorithmic side, the exact approaches produced a
pattern of slow convergence characterized by minimal decrease in the optimality gap
throughout the execution on all instances where an optimal solution was not found.
This pattern can be clearly identified in the first hour of computation according
to preliminary experiments. Notice in the results that follow that some running
times are slightly over 3,600 seconds. This is because we wait for each algorithm
to complete its current iteration before actually stopping it.

For the heuristics, we use an additional stopping criterion: 1,000 generations
without improvement of the best solution found so far. In preliminary experi-
ments, no instance presented an offset greater than 1,000 between two subsequent
improvements. In fact, the average offset was about 126.20±138.00, and the largest
offset was 791 iterations. This way, we reduced the total computation time though
we may have also reduced the long term effect of mutation in BOMA and RGRK, and
perhaps more seriously, the effect of the introduction of mutants in the BRKGAs.

To compile the C/C++ code, we use the GNU g++ compiler version 4.8.1 and
libstdc++ version 6.0.18. To compile the Java code, we use the Oracle Java 64-Bit
JDK runtime environment version 1.7.0 45. To allow for full memory utilization,
we run the Java bytecodes with JVM parameter -Xmx32g.

7. Experimental Results and Discussion

This section presents our experimental results. For CPLEX and CORAL, we per-
formed one run per instance since both are exact and deterministic algorithms.
For the remaining algorithms, we performed 30 independent runs for each instance.
One can note that this experimental setup is huge, and in fact it took more than
100 CPU days running over 32 identical machines. Each experiment was conducted
individually on one machine to ensure the algorithm had exclusive use of all of the
machine’s resources. This way, we minimized external effects. All reported times



18 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

are wall-clock times where we reported only the optimization time excluding the
effort to load the instance and log the run.

7.1. Comparing revenue. To compare the algorithms with respect to revenue, it
is necessary to scale the results since each instance can have very different revenue
values and even different orders of magnitude. For each instance I, let χI be the
set of values of the solutions found for I, and DI = max(χI) − min(χI). The
scaling is done by the simple transformation

χ′I =

{
(x−min(χI))/DI ∀x ∈ χI and DI > 0,

1 otherwise.

where χ′I is the set of scaled values. Note that all values are scaled to the range
[0, 1].

Using this scaling process, Figure 2 shows the distribution of revenues for each
algorithm. The box plots show the location of the first quartile, the revenue median
and the third quartile. The whiskers extend to the most extreme revenue no more
than 1.5 times the length of the box. The dots are the outliers.

Figure 2a shows the revenue distribution over all instances. One can note that
CORAL presented poor results when compared to the other algorithms. Indeed, this
behavior was expected since Mansini and Speranza (2012) reported large solution
times for instances with 500 bids (items, in their case). This can be clearly observed
if we compare the distribution for small instances (≤ 400 bids) in Figure 2b with
the distribution for large instances (≥ 1000 bids) in Figure 2c. CORAL is able to
achieve a large range of values on small instances with a median of 0.99, close to the
other results. For the large instances, CORAL rarely found a good solution, as shown
by its outliers: it obtained only 20 optimal solutions on the large instances. One
could argue that these instances are hard to solve by exact algorithms, however we
observe that CPLEX does very well on them. CPLEX’s distributions are consistently
good, with 113 optimal solutions found on large instances. The heuristics presented
overall good results. Among them, RGRK experienced the worst results, followed by
BOMA. Our approaches did better than the other algorithms, although among our
approaches, it is tricky to determine their relative performance simply examining
the box plots. Note that the utilization of the pseudo utility derived from surrogate
dual vectors did not, as expected, have a favorable impact on the results since SDRA
and SDLP presented greater variances and lower medians than our other approaches
that did not use surrogate duality.

The box plots help shape our intuition that our approaches obtained better
results than those of previous methods. To confirm our conclusions, we tested the
normality of these distributions using the Shapiro-Wilk test and applied the Mann-
Whitney-Wilcoxon U test, considered more effective than the t-test for distributions
sufficiently far from normal and for sufficiently large sample sizes (Conover, 1980;
Fay and Proschan, 2010). For all tests, we assume a confidence interval of 99%. For
small, large, and full distributions, the Shapiro-Wilk tests revealed that no revenue
distribution fits a normal distribution since the p-values for all tests are less than
2.2×10−16. Therefore, we applied the U test which assumes as null hypothesis that
the location statistics are equal in both distributions. As several statistical tests
were performed, we used a p-value correction procedure based on false discovery
rate (FDR) to minimize the number of false positives (Type I error) as indicated
by Benjamini and Hochberg (1995).



BRKGA FOR WINNER DETERMINATION 19

We tested the results of each pair of algorithms for small instances, large in-
stances, and the full instance dataset.3 For a confidence level of 99%, almost all
comparisons were statistically significant, indicating differences among the results
of the different algorithms (almost all p-values are less than 0.01). CORAL presented
significantly poor performance and we believe there are two major reasons for this:
first, CORAL cannot handle instances with a large number of bids and goods as pre-
viously shown by Mansini and Speranza (2012) and confirmed in Figure 2c. Second,
CORAL takes advantage of the cardinality of each dimension constraint. In MDKP,
each constraint j is limited to be at most equal to cj (Formulation (2)), where, in
general cj ≥ 1. In single-good WDPs, all constraints have cardinality cj = 1, which
does not allow CORAL to take advantage of them, limiting its major feature. Only
on small instances does CORAL present good results, although worse than the other
approaches.

CPLEX produced solid results that were, in general, better than those of RGRK
and BOMA. With respect to the algorithms proposed in this paper, CPLEX was worse
except when compared to SDRA. The comparison between CPLEX and SDLP was
inconclusive (p-value > 0.07). For all small instances, CPLEX obtained an optimal
solution. Although the U test returned a value of 0.00 for the differences among
the algorithms and CPLEX, we believe that this difference is very small in favor of
CPLEX since the other algorithms display more variance than does CPLEX, as shown
in Figure 2b. Note that for the approaches using LP-based initialization applied to
small instances, the tests against CPLEX were inconclusive (p-values > 0.08). We
discuss this effect in Section 7.5. For large instances, its behavior was similar to
that of the general case, where all instances are considered.

The performance of RGRK was worse than that of all heuristics and even CPLEX.
This is surprising since this algorithm has been considered to be one of the best
heuristics for the MDKP (Pfeiffer and Rothlauf, 2007). We argue that, like CORAL,
RGRK uses in its favor the cardinality of each constraint since cardinality is correlated
with the dual variables which are used to build the pseudo utilities. In the MDKP,
this information is very rich since the multiplicity of the demand of each dimension
is weighted by its corresponding dual cost. The WDP has unit cardinalities and
therefore the pseudo utilities are less effective. Note that even in our BRKGAs, both

Revenue Distribution − All instances

S
c
a

le
d

 R
e
ve

n
u

e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
C
O
R
AL

C
PLE

X

R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(a)

Revenue Distribution − Less than or equal to 400 bids

S
c
a

le
d

 R
e
ve

n
u

e

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

Algorithm
C
O
R
AL

C
PLE

X

R
G R

K

BO M
A

C
A R

A

C
A LP

G
A R

A

G
A LP

SD R
A

SD LP

(b)

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●●
●

●●
●
●●
●●
●●●●●●
●●●●
●●
●●
●●●

●●
●●
●●●
●
●●●●●
●●●●
●

●

●●
●●●
●●●
●●●
●●●
●●
●
●●
●●
●

●
●●
●●

●
●●
●

●●●
●●
●●●

●●●

●●

●

●

●

●

●●●
●●●●●●●●●●
●

●
●●
●●

●●

●

●

●●

●●
●●
●
●●●
●

●
●
●

●

●
●●
●●
●

●●●●

●
●●●●

●●●●
●●●●●●●●

●
●●●●●●●●●●●
●

●
●●●●

●●●●●●●●

●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●

●●
●●●●●●●●

●

●

●●

●●

●
●●●●
●●

●●●

●●●●●●●●
●●

●●●●●●

●

●
●●●●●●●●●●●●●

●●●

●
●●
●●●●●●●●

●

●●●●●●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●

●●●

●●●●●●●●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●

●●●
●●●●●●
●

●
●

●
●●●●

●

●●●●

●

●●●●●●

●●●●●

●●●●

●

●●●
●

●●●●●
●●

●●●

●●●

●●●●●

●
●●

●

●

●●●●
●●
●●●

●

●
●●
●

●

●
●
●●●
●
●●
●●●●

●
●●
●

●

●

●

●

●

●
●●
●●

●●
●●
●
●

●●

●

●●
●

●

●●●●
●
●
●

●●●●●●●●●●●●

●●●●●●
●●●●●

●●●

●
●
●
●●●●●
●

●

●●●●●●●●●●●●●

●
●

●
●
●

●

●

●

●

●●
●

●●●

●●
●●●
●●●
●●
●
●

●
●
●

●

●●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●

●●
●●
●●●
●●
●●

●●●●●●●
●●●
●
●●

●

●
●●●●●
●●

●

●●●
●
●●

●●●
●
●●

●

●

●

●●

●●
●●

●
●

●
●
●

●
●

●

●●●

●
●

●●●
●●

●●
●
●

●

●●

●
●●●
●
●●●
●●●
●●●

●

●

●●
●
●
●●

●●
●
●●●
●●●
●●

●●
●
●●●
●●●
●●●
●●
●●●●
●●
●

●●

●

●

●

●●●●●
●●
●●●●
●●
●●
●●

●●
●

●

●

●
●
●●●
●

●
●●

●●●●
●●●
●●

●

●

●
●●

●
●
●●●●●
●●●
●●
●●
●

●●

●

●

●●
●
●●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●
●●●●
●

●●●●

●

●

●●●●●●●●●●●●●●●●●

●●

●●

●

●●

●●●●●●●●●●●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●

●●

●●

●●●

●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●
●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●●●

●●
●●

●●
●●

●
●
●●

●

●

●
●

●

●

●
●●●●
●
●●●
●●●●●
●●
●

●●
●

●

●

●

●●●●
●●
●●●●●●●●
●
●●●

●

●●

●●●

●
●●●

●●

●

●●
●●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●
●●●●●
●●
●
●

●

●

●●

●

●

●

●●●●●
●●●
●
●●

●

●●●●●●●
●
●●●

●

●●

●

●

●●●●

●
●

●

●
●
●●

●●

●

●
●●

●

●

●

●
●●
●

●

●●

●

●

●
●
●●
●●●●
●
●●
●
●
●

●

●●
●

●

●●
●

●

●
●
●●
●●
●
●●●●

●

●
●

●

●
●
●
●●●
●
●
●
●●●

●●
●

●

●●
●

●

●

●●

●

●
●
●●

●●●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●

●●●●●●●
●●●●

●

●
●
●●●●●●●●●
●●●●●●●●

●
●
●●

●
●●

●
●

●

●

●

●●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●●●●●
●

●
●●

●
●

●

●
●

●

●

●
●
●
●●

●

●●

●

●●

●

●

●

●●●
●
●

●

●●

●

●●●
●

●●●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●
●●●
●●●
●●
●●●●●●
●
●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●

●
●

●

●

●●●●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●

●●
●
●●●●●●●

●●●●●

●
●
●
●
●
●●●●●
●
●
●

●

●●

●

●●●●●●●
●●●●●
●●
●
●●
●
●
●

●
●●●
●

●
●●●●●●●●●

●

●

●
●●
●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●

●●

●●●
●●●
●●●
●●●●

●●●

●●●●●●●●●●
●
●●●●●
●●●●●●●●●

●●

●●●

●
●●●●●●●●●●

●

●

●

●●●●

●
●

●

●

●●●●●●
●
●●

●

●●●●●●●●●●
●
●●●●●●
●
●●
●●●●
●●●
●●●

●

●

●●●

●
●

●●●●●●

●

●

●

●●●●

●●

●

●

●

●●●
●

●●●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●
●

●

●

●

●●
●●●

●

●●

●

●●●●●

●●

●●

●

●●●●●●●●

●●

●●●●●●●●●●

●●●●●
●
●●
●●

●

●

●●

●
●

●

●

●●●●
●
●
●
●●●
●
●

●●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●●●
●
●

●

●●●
●●

●
●

●

●●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●
●
●●
●

●

●●●
●
●●

●

●

●

●

●●
●
●●

●●

●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●

●●●
●●

●●
●
●●

●

●
●
●

●●●●●●●●●●
●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●
●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●●●
●
●
●

●
●●●●●
●●●
●

●●●

●

●●●

●●●
●●●●●●●●●●●

●●●

●
●●●
●

●

●●

●

●

●●

●●

●●
●●
●

●●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●●●

●●●

●

●●

●●●●
●●●●
●●

●●●

●●
●●

●●
●●●●●●●●●●●●

●

●●●
●●●
●
●●
●●●
●
●●
●●

●●●●
●●

●
●
●
●

●

●
●●
●●●●●●●●●
●●
●●●
●●●●●●

●

●●
●●●
●●●
●●

●●

●

●

●

●
●
●●

●●●●
●●●●●
●●

●

●

●

●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●

●
●●●●●●●●●●●●

●●●●●
●●●●●●●
●●●

●
●

●
●
●
●●●●●●
●●●●
●●
●
●●●
●
●●●●●●●

●●●
●●●●●●●

●●●

●●●●
●●●

●

●

●●

●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●
●
●●●●
●●●
●●●●●●●●
●●●●●
●●
●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●
●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●
●●●●

●●

●●●●●●●●●
●
●●●
●
●●

●
●
●●●●

●
●●

●●●

●●●●

●●●●●●●

●

●

●

●●
●●
●●●●●●
●
●
●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●
●
●●●●●●●
●

●●

●

●

●

●
●

●

●

●●●

●●●

●

●

●

●●

●

●

●●

●

●●
●●●

●

●●●●●

●

●

●

●●

●

●●●
●

●

●

●

●●●●●
●●

●

●●●●
●●
●
●●
●

●

●●
●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●
●●●●
●●

●

●●
●
●

●●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●
●
●●

●●
●●●

●
●

●

●●●●●●
●
●●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●

●●●●●●●
●●
●●●●●●●●●●●●●
●

●
●
●
●●
●●
●
●
●

●

●

●
●●●
●●

●●
●

●●●

●●
●●●

●
●

●
●

●

●

●

●

●

●●
●●

●●●●

●

●●

●

●●
●●

●
●●●
●●●
●●
●
●

●
●

●●

●

●
●
●
●
●●
●

●
●

●●●

●●

●
●
●●
●●●●●

●
●

●●

●

●
●●

●

●●●
●●●

●

●●●●●

●●●

●●●

●●●
●

●

●

●●

●

●●

●●

●●

●●

●●●

●●

●
●●
●
●●
●
●
●●●

●

●●●●●●

●●●
●

●●

●

●●
●

●
●●
●●
●
●●

●

●
●●

●
●●
●
●●●
●●

●

●●●●●
●●

●
●
●
●●●●

●●

●
●●

●
●

●
●●
●●●●
●
●●
●
●●
●
●●●●●●

●

●
●●●●

●

●
●

●

●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●
●
●●●●
●
●●●●●●●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●●
●

●

●●●

●●

●●

●●●

●●

●

●
●

●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●

●●

●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●●●

●●

●●
●●

●●●●

●

●●●●

●

●●●●●●●

●

●●●

●●●●●●●

●

●●●●●●●●

●●●●●●●●●●●●●●

●

●●

●

●●●

●●

●●

●

●

●●

●●

●

●

●●●●●●●●●●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●
●●●

●

●●●

●
●

●
●●

●

●
●
●●
●
●
●
●●

●●●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●●●●●●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●

●●●●●
●●●●
●●
●
●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●

●

●
●

●

●

●
●●
●●●●
●●●●●●●●●●●●●●●●●
●●

●●
●
●●●●●●●●●

●

●●

●

●●●●●

●

●●●
●●●●●

●●●
●●●●●●●●●

●
●●
●
●●

●●
●●●
●

●

●
●
●●
●
●
●

●●
●
●

●●●●

●

●

●●●

●●

●●●●

●

●

●●●●●
●●●●●
●●

●●

●●●

●
●●

●
●●●
●●●
●
●

●
●●●
●●
●●
●
●●●

●●
●
●●●
●●
●
●
●●
●
●
●●

●
●

●●●

●
●
●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●
●●●●●●●
●

●●●●

●
●
●
●
●●●●●●●●●●●●
●●●●●
●●●●●●
●●●
●●●

●

●●●
●●●●

●●

●●●●
●●●●●●
●
●
●●●●●●
●
●●
●
●●●
●●●●

●
●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●

●●
●●●●

●●●
●●●
●●

●

●●●●●●
●

●●●●
●
●
●●●●●●

●

●
●

●

●●●●

●

●●●

●●●
●
●

●●●●

●●●●●

●
●●
●●●

●●

●●●●●

●

●

●●●●●●●●●
●
●
●●●●●●●
●●●●
●
●
●●●
●
●
●●

●

●

●

●●●●
●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●
●

●
●●●●
●
●
●●●
●

●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●
●
●
●●●●●●

●

●

●

●
●●
●
●●

●

●

●

●

●●
●

●

●●
●

●
●

●

●●●
●

●●
●●●
●●
●●●

●

●

●
●

●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●

●

●●●

●●●

●●●●●●●●

●

●●●●●

●●

●●●●●

●●●

●

●●●●●●●

●●●●

●●●

●●●●●●●●●

●●●●

●●●●●●

●●

●●●●●

●●●

●

●●●●●●●

●●●●●●

●●

●

●●

●●●

●●●

●

●●●●●●

●●●●

●

●●●

●

●

●
●

●
●

●

●
●

●●●●

●

●

●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●

●
●
●●
●
●
●●●●●●

●

●●●●
●
●

●

●

●●

●●●

●●●●

●●●●●●

●●●●

●

●●

●
●

●●●●

●

●●

●●●●●●

●

●

●●●

●●●●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●●●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●
●●

●
●

●

●●●

●●●

●●●

●●
●●

●

●

●

●
●

●
●
●

●
●

●●●

●●
●●●

●

●

●

●

●●●●●●●

●●●●●●

●●

●●●

●

●

●●●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

Revenue Distribution − More than 400 bids

S
ca

le
d 

R
ev

en
ue

0.
00

0.
25

0.
50

0.
75

1.
00

AlgorithmCORAL

CPLE
X

RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

(c)

Figure 2. Dispersion of revenue for each algorithm.

3The full results are available in the supplementary material at http://www.loco.ic.unicamp.
br/results/wdp/supplementary_material.pdf.



20 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

SDRA and SDLP, which make use of surrogate duality, performed worse than other
other variants which did not use this. BOMA performed quite well on the entire set
of instances, producing results that are slightly worse than those of our approaches
but better than previous algorithms.

Most variants of BRKGA outperformed all other algorithms in the general case.
Among these variants, one can only point to small differences. The exception to
this observation is SDRA, whose location statistics are slightly lower those of CPLEX.
It is surprising that the chromosomal approach (of CARA and CALP), our most basic
approach, showed better results than our other variants. We believe that this
is so because the greedy and surrogate dual strategies can lead the algorithms
to premature convergence to poor local maxima from which they are unable to
escape. Note that for small instances, the tests comparing the LP-based initialized
algorithms with CPLEX displayed p-values > 0.08 and, therefore, we cannot reject
the hypothesis that these algorithms have similar performance. If we consider only
the large instances, the behavior was similar to the general case. In general, the
results for CARA and GALP are inconclusive since in their test the p-value > 0.29.

Table 2 reports the performance of the algorithms considering the instances par-
titioned into two sets. The first column is the name of the algorithm. The first
group of columns (2–6) shows the performance considering 202 instances for which
an optimal solution was found by CPLEX. There, column “# OPT” represents the
number of instances for which the algorithm found an optimal solution; column
“% Opt” shows a percentage of the number of optimal solutions found; and col-
umn “% Run” shows a percentage of the number of runs on which the algorithm
found an optimal solution. The two columns under label “Prod. diff.” show, re-
spectively, the average of the proportional difference between the optimal solution
value and the achieved value (%), and its corresponding standard deviation (σ).
As we used the optimum solutions obtained by CPLEX, its entries are presented at
the maximum levels (minimum levels, in columns 5–6). CORAL found few optimal
solutions (25.74% of the 202 instances for which optimal solutions are known) while
the other solutions it produced varied widely with respect to quality. Note that
both “% Opt” and “% Run” have the same value since a single run was performed
per instance (see Section 7, first paragraph). The heuristics performed well, finding

Table 2. Algorithm performance on instances with known and
unknown optimum solutions.

Alg.
Known Optima (202 instances) Unknown Optima (335 instances)

Optima Prop. diff. Best Prop. diff.

# Opt % Opt % Run % σ # Best % Best % Run % σ

CPLEX 202 100.00 100.00 0.00 0.00 31 9.25 9.25 4.26 2.70
CORAL 52 25.74 25.74 24.49 35.41 3 0.90 0.90 58.36 16.44

RGRK 123 60.89 19.93 3.02 3.22 3 0.90 0.56 8.64 3.57

BOMA 128 63.37 18.90 2.96 4.00 93 27.76 4.05 4.92 2.76
CARA 171 84.65 24.48 0.95 0.95 200 59.70 26.36 1.00 1.29

CALP 187 92.57 30.33 0.79 0.80 201 60.00 24.51 1.02 1.28
GARA 184 91.09 23.66 2.33 3.68 142 42.39 18.89 1.54 1.55
GALP 186 92.08 28.87 0.89 0.84 200 59.70 23.67 1.14 1.36

SDRA 144 71.29 24.24 7.99 14.74 42 12.54 4.02 4.24 2.45
SDLP 186 92.08 37.17 1.29 1.09 64 19.10 5.90 3.52 2.23



BRKGA FOR WINNER DETERMINATION 21

more than 60% of the optimal solutions. With the exception of SDRA, they were
never off by more than 4% of the optimal. As expected, the approaches using LP-
based initialization often found optimal solutions. However, in some cases they did
not reach an optimal solution, suggesting that the relaxation and variable-fixing
process not always produced chromosomes that when evolved are decoded into an
optimal solution (see Section 7.5).

The second group of columns (7–11) of Table 2 reports the performance of the
algorithms on the 335 instances where no optimal solution is known. It follows the
same structure of columns 2–6 but instead of comparing the algorithms with the
optimum solution values, we compared them using the best known solutions. CPLEX
was able to find a best known solution on 9.25% of the 335 instances, while on the
remaining instances it was about 4.26% off of the best values. CORAL and RGRK
only found three best known solutions while the average gaps of the solutions it
found with respect to the best known solution values were about 58.36% and 8.64%,
respectively. Again, we emphasize that the pseudo utility approach did not work
well since RGRK, SDRA, and SDLP presented the worst results among all heuristics. The
LP-based initialization approaches again found the best results (with the exception
of SDLP), but not as good as the quality of the solutions it found on instances with
known optima.

7.2. Iterations and runtime analyses. Table 3 shows the average number of
iterations taken by the heuristics to find a best solution. The last iterations without
improvement performed in the value of the best solution found are disregarded.
The first two columns of this table list, respectively, the instance classes and their
corresponding sizes. Each following pair of columns shows the average number
of iterations to find a best solution and standard deviation for each algorithm,
respectively. For instances with 40 and 80 bids, all algorithms converged very early
to an optimal solution. An analysis of CARA, the “most random” of all algorithms,
show that all instances having 40 and 80 bids are easy. This is so because all but six
runs shows only a single iteration to reach an optimal solution on 40 bids instances
(one took three iterations and another five took two). Note that for the LP-based
approaches on instances with 40 and 80 bids, the BRKGA framework did not play
any role in the optimization since all runs took a single iteration (see Section 7.5).

Figure 3 shows performance profiles (Dolan and Moré, 2002) for all algorithms.
In performance profiles, the abscissa shows the time needed to reach a target so-
lution value (in log scale), while the ordinate shows the cumulative probability to
reach a target solution value for the given time in the abscissa. Each algorithm is
characterized by a different performance profile curve made up of (time, cumulative
probability) pairs, one for each execution of the algorithm on a particular instance.
Runs that took over 3,600 seconds are not shown in the figure. Therefore, the per-
centage of runs that concluded within the time limit can be seen as the intersection
of the profile with the right hand side of the figure.

Figure 3a shows performance profiles considering only target values of instances
for which an optimum solution was found. Figure 3b has as target the values of the
best solution found on instances with unknown optimal solution. Finally, Figure 3c
takes, as target, the values of best solutions found for all instances. The solid black
line with white squares shows the performance profile for CPLEX. As previously
reported, CPLEX is quite fast to find these optimal solutions: in 82% of runs it
required less than one second and in 99% less than 1,000 seconds. Only one run



22 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 3. Average of iterations in finding the best solution. The
last iterations without improvement in the best solution found are
disregarded.

Class Size
RGRK BOMA CARA CALP

Iter. σ Iter. σ Iter. σ Iter. σ

40 2 0.07 2 14.25 1 0.14 1 0.00
80 2 0.47 21 95.38 1 0.45 1 0.00

200 17 64.24 287 516.44 29 114.36 1 0.00

400 64 167.19 348 675.30 109 227.47 30 137.06
CATS

1000 243 360.07 523 629.76 322 456.50 118 271.27

1024 257 345.40 480 561.63 284 448.99 121 282.51

2000 232 204.81 435 572.54 651 767.01 220 422.79
4000 121 86.07 155 147.78 579 521.75 319 459.41

1000 95 195.78 509 515.63 197 311.99 197 317.58
LG

1500 46 91.45 469 531.82 178 258.24 166 240.78

GARA GALP SDRA SDLP

Iter. σ Iter. σ Iter. σ Iter. σ

40 1 0.55 1 0.00 1 2.65 1 0.00
80 4 38.27 1 0.00 2 8.25 1 0.00

200 44 142.41 1 0.00 76 182.31 1 0.00
400 71 189.38 20 115.19 93 215.54 22 104.42

CATS
1000 322 511.15 143 361.45 352 447.98 106 256.41

1024 308 450.09 127 277.23 287 449.97 100 270.16
2000 585 689.49 209 399.79 700 765.56 153 330.10
4000 748 745.53 393 567.50 777 643.72 413 637.15

1000 173 286.25 194 303.76 262 371.30 186 303.13
LG

1500 140 231.15 150 224.75 212 280.29 171 248.40

took 1,230 seconds. Since CPLEX spent about one hour on instances with unknown
optima, it does not appear on Figure 3b. In general, CPLEX has the empirical
probability of approximately 37% to find a best solution in less than 1,000 seconds.
CORAL is represented by the solid black line with filled squares. It found 20% of
optimal solutions in less than ten seconds but only 26% in less than 3,600 seconds.
For the same reason as CPLEX, CORAL does not appear in Figure 3b and has around
a 10% probability of finding a best solution in less than 1,000 seconds. BOMA (solid
green line with asterisks) and RGRK (solid purple line with crosses) are slower than the
other algorithms (except CORAL) in most cases. Note that BOMA has a small advantage
over SDRA (dense dashed black line with triangles) when we consider Figure 3b. RGRK
and BOMA found about 55% of the optimal solutions in less than 3,600 seconds. But,
in general, BOMA presents a slightly better probability than that of RGRK, as shown
in Figure 3c. In general, BRKGA variants using LP-based initialization (lines with
solid dots) are slower in the first ten seconds, due to the initialization process, but
outperformed their corresponding counterparts after this. This fact is due to the
time needed to create the first LP-based individuals. In fact, the average time of this
procedure is 50.71± 78.13 seconds and the maximum time was 1377 seconds. The
377 additional seconds are due to instance setup as a CPLEX model. Considering
optimal solutions, CPLEX presents the best time/probability tradeoff. Among the
heuristics, SDLP (dense dashed line with solid dots) presents the highest probability
(approximately 92%). Considering instances with unknown optima, CARA (solid blue



BRKGA FOR WINNER DETERMINATION 23

Seconds to reach the optimum solution

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
●

●

●

CARA
CALP
GARA
GALP
SDRA
SDLP
BOMA
RGRK

CPLEX
CORAL

0.001 0.01 0.1 1 10 100 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

(a)

Seconds to reach the best non−opt. solution

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

●

●

●

CARA
CALP
GARA
GALP
SDRA
SDLP
BOMA
RGRK

CPLEX
CORAL

0.1 1 10 100 1000

0.
1

0.
2

0.
3

0.
4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

(b)

Seconds to reach the best solution

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

●

●

●

CARA
CALP
GARA
GALP
SDRA
SDLP
BOMA
RGRK

CPLEX
CORAL

0.01 0.1 1 10 100 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

(c)

Figure 3. Running time distributions to optimal assignment of
winner bids. The identification marks correspond to 0.2% of the
points plotted for each algorithm.

line with triangles) presents the highest probability (approximately 38%). Overall,
the best empirical probability was approximately 55% for CALP (solid blue line with
solid dots).

7.3. Comparing the heuristics on hard instances. Since the exact methods
can only solve to optimality the small or easy instances, the heuristics play a ma-
jor role in solving the large instances. The following analysis uses the set of LG
1500/1500 instances which proved themselves to be the hardest instances consid-
ered in this paper. All algorithms, except BOMA, reached the time limit on most runs
and presented a relatively small number of iterations.

Figure 4 shows the distributions of revenues considering only the heuristics on
the LG 1500/1500 instances. The values were scaled in the same fashion as was
done in Section 7.1. We also performed the U test for each pair of algorithms
at confidence level of 99%.4 For the pairs of algorithms (CARA, CALP), (CALP, GALP),
and (SDRA, SDLP), we cannot reject the hypothesis that the results of each pair are
similar, since the p-values obtained from the U tests are greater than 0.01. For the
other pairs, the differences presented in Figure 4 are statistically significant. Note
that the revenues of BOMA are inferior to those of the BRKGAs, which confirms
our previous suspicion that BOMA converges prematurely, as shown by its number of
iterations in Table 3. As in the previous analyses, the algorithms using surrogate
duality presented results below those of the other approaches, while CARA, CALP, and
GALP found the best values.

4The full results are available in the supplementary material at http://www.loco.ic.unicamp.
br/results/wdp/supplementary_material.pdf.



24 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

●

●
●
●

●●

●●
●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●
●

●

●●

●

●
●●●
●●

●

●

●

●

●

●

●●
●●
●●●
●●
●
●●

●●

●

●●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●
●●●●●●

●

●●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●●●●●●●●●●

●

●
●

●●●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●●

●

●
●
●●

●

●●

●●●●●●●●

●●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●
●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●●

●

●
●

●

●

●●

●

●●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●

●●
●●

●

●

●

●●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●●●

●
●

●

●

●
●

●

●

●●

●
●●

●

●●

●
●

●

●

●

●

●●

●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●●

●

●●●●

●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●

●●

●

●●

●●●●

●

●
●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●
●

●●
●

●

●●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●●●
●

●

●●

●

●●

●●

●

●●●●●●●●

●●

●

●

●

●

●

●●●●●●●

●●●

●

●●

●

●●●

●

●●

●

●
●●

●

●

●

●●
●
●
●●
●●

●

●●
●●

●

●

●●
●
●●●

●
●

●●●●●●●●●●●

●
●

●
●

●●●●●

●

●

●●

●●

●

●

●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●
●●●●
●
●
●
●●
●●●●●●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●●

●

●

●●

●●●●●●

●

●●

●●

●

●

●●●●●

●●●●●

●

●

●●●●●●●●●●●●●●

●●●●

●●●●

●●●

●●●●

●

●●●●

●●

●

●●●●●●●●●●●
●●

●●●●●●

●

●

●●●●●●●

●●●

●

●

●

●

●

●

●●●●●●

●●

●●●●●●●●
●●

●

●●

●●

●

●

●

●

●

●●

●●

●
●●●

●

●

●

●●●

●●●

●

●
●
●

●●
●
●●●●●

●

●●●●●●
●
●
●●

●●

●●●●●●●●

●●●●

●●●

●●

●

●

●

●

●

●

●●
●●

●●●●●●●●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●●●●●●●●
●●●●●●●

●
●
●●●●●●●●●

●●

●●●●

●●●

●●●

●●
●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●

●

●

●●

●●

●●
●

●

●

●

●

●●
●
●

●

●

●

●●●

●

●

●

●
●●●●
●
●●●●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●

●●●

●

●●

●
●●
●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●●●
●

●●●
●
●●

●●●●●
●●●●

●●●

●

●

●

●

●

●

●●●●●

●●

●

●●●

●

●

●

●●●
●
●
●
●●

●

●

●

●

●
●●
●
●
●

●
●
●

●

●

●●●

●

●●●

●●●●●●
●
●●

●

●

●

●

●●●●

●●

●

●

●●
●

●●

●
●●●●●●

●
●
●

●

●●●

●

●

●
●

●

●

●
●

●●
●●
●●●
●

●

●●

●
●

●

●

●

●

●

●●●

●

●●

●●●●

●●●●
●●

●●●

●●

●●

●

●

●
●
●●●●●●
●
●●
●
●

●

●

●●

●●●●●●●●●●●●

●●

●●●

●

●
●

●

●●
●●
●●●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●●●
●

●●
●

●●

●

●

●
●
●

●

●

●

●

●

●●
●
●●
●
●
●

●●

●

●

●

●

●

●

●

●
●

●
●●
●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●
●●●
●●
●●●●
●
●●
●●
●●

●

●
●
●●
●●
●●●●
●●

●
●●●
●

●

●

●●
●●●
●●●
●●

●●

●

●

●

●
●
●●

●

●●

●

●

●●●

●
●

●●●
●●
●●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●
●
●●
●●●
●

●

●●●●●●

●●

●●●

●

●

●●●

●●

●

●

●●●

●

●●

●

●

●

●●●●●●●●

●

●●

●
●●●●

●●●●●●●

●●●

●

●●●●●●●●●●●●●●

●
●●

●

●●●●●●●●●●●●

●●●

●●

●●●●

●
●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●●

●

●●●●

●

●

●●

●●
●●

●●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●
●

●

●

●

●

●●●

●

●●●●●●●●●●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●

●●●●●●

●

●●●●●●●

●

●●●

●●●

●

●

●

●●

●●●●●●●

●

●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●●●

●●●

●●●
●

●●●

●

●

●
●

●

●●

●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●
●
●●

●
●
●

●●●●
●●●●●●
●●●
●●

●
●

●
●●●

●

●

●●●
●
●●
●●
●●●●
●

●

●●

●●●●●●●●

●

●

●

●
●

●

●

●

●

●●●●

●

●●●●

●●●

●●●●●●

●

●

●●●●●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●
●●
●
●●●

●

●

●●

●

●

●●

●●●●●●●●●

●

●●●

●●
●●●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●●
●●●●●
●●
●

●

●●●●

●●●

●

●

●●●●

●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●●

●
●●●●●●

●●●●

●

●

●●●●●●●●●●●

●●●●●●●●

●

●

●
●●
●
●

●●●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●●

●●●●●

●●

●

●

●

●●●●

●

●●

●●●

●

●●●

●

●

●

●

●●

●●

●●

●●●●
●●●●●●●●●●●
●

●

●●●●●●●●●

●●

●

●●●●●●●●●●●
●

●

●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●●

●●

●

●●●

●●●●●
●

●

●

●
●

●●●●●●●
●
●●●●●●

●

●●

●

●

●●

●

●

●
●
●●
●

●●

●

●

●

●

●●●

●●

●●●●

●

●●●●●●
●
●

●

●●●●●
●

●

●

●●

●●●

●●●

●

●

●

●

●

●●●●

●
●

●

●●●●●●

●

●
●

●

●

●●●

●

●

●●●●●●●●●

●

●

●●●

●●

●●●●●●●●

●●●

●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●
●

●●

●
●

●●

●●●●●

●●●●●●●
●●●●

●●

●●

●●●

●

●

●●●●●●●
●●●●
●

●

●●
●
●●●

●

●

●

●●

●

●●●

●

●●●

●●●

●

●●●●●●●

●

●●

●

●

●

●●●●

●

●
●

●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●●●●

●●

●

●●●●

●
●

●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●
●
●
●

●

●●

●

●

●

●●

●●
●

●

●●

●

●●
●
●

●●
●●

●
●

●●

●

●

●

●

●

●●

●

●●

●
●
●●

●
●

●
●

●●
●
●
●
●

●●

●
●
●●

●
●
●

●

●

●
●

●●
●

●

●
●

●
●●

●

●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●

●
●
●●

●
●
●●
●

●

●

●

●●●●●●●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●
●

●
●

●
●●
●

●

●

●●●●●●●●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●
●●●●●●●●●●●●●●●●
●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●

●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●
●
●

●

●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●
●●
●●
●
●●
●●●●●

●

●

●●●●●●●●●●

●●●

●●●
●●●●●●●●●●
●●
●

●●

●

●●●●●
●●●●●●●●

●●

●●●●

●●●●●●●●

●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●

●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●●

●
●●●●●●●●
●
●
●●●●●

●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●

●●

●●

●●●

●

●●●●●

●●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●
●●

●

●

●

●●

●●●

●

●

●
●●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●●

●

●●●

●●

●

●

●●
●
●●●●
●
●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●

●●

●

●●●●●●●●●
●

●●●●●●●

●
●
●

●

●
●●●●

●

●●●
●●
●●●

●●

●
●

●●

●

●

●●
●
●

●●

●

●
●

●●

●
●●
●●●●●

●

●

●
●●

●●

●

●

●●●●●

●●●●●
●●

●●

●●●

●

●
●
●●●●●
●
●●
●
●

●

●

●

●

●

●

●●●●

●●●●

●●●●●●

●
●

●●

●●

●●

●
●
●●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●

●
●
●

●
●●●

●

●

●●
●●
●●
●
●●
●
●●

●●
●●

●●

●
●●

●
●●

●
●
●

●

●●

●

●

●
●●●●●
●●●●●●

●●

●●

●

●●
●
●●
●●
●●
●

●
●

●

●●
●●●●

●
●●
●●
●●

●●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●
●●

●
●

●

●●●●●
●●
●
●●
●

●
●

●

●

●

●

●●

●●●

●

●●●

●

●

●●●●●

●

●●●●●●●●

●●●●

●
●●

●
●●●●●●

●

●
●●●

●
●●

●

●●

●●●
●●●●●●●●●

●

●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●●

●
●

●●●

●●●

●●

●

●

●

●

●

●●●●●

●●●●
●

●●

●

●

●●●●●
●●●●●●●●●

●

●

●●●●

●●

●●

●●●

●

●●●

●
●

●●●●●●●●●

●

●

●

●●●●

●
●

●●●●

●

●●

●

●●●

●●●●

●●

●●●●

●●●

●
●

●

●

●

●

●

●●

●●
●
●
●
●

●●
●

●●
●●●●
●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●●●

●●●●

●●●●●●●●

●●

●●●●●
●●
●
●●●

●

●

●

●

●
●

●●●

●●●

●●●

●

●●●

●

●●

●●●●●●●
●●

●

●

●●●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●●●●●

●●●●

●

●●

●●●

●●●●●

●●●

●●●●●●●●●●●

●●●●

●●●

●

●

●●●●●●●●●
●●●●●●

●●●

●

●●●●●

●

●

●
●●●●●●●

●●●●
●●●●●●●●●●

●●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●

●●●

●●●●●●●●●

●

●

●

●●●

●●

●●

●●●●

●

●●●●●

●●●
●

●

●●

●

●

●

●

●●●

●●

●●

●

●

●

●●●
●

●

●

●●●●

●●

●●●●●

●●●●
●●●●●
●●
●
●
●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●●●

●●●

●

●●●●●

●●●

●

●●●

●

●

●

●

●

●●●●

●●●●

●●●

●●●●●●●

●

●

●●

●●●

●
●●●●●●●●

●

●●●●●

●

●

●●●

●●●

●●●●

●●
●

●

●●●●●●
●●

●●

●

●

●
●●●

●
●●●

●
●●●●●●●●●

●

●

●●●

●

●

●●

●

●

●

●●●●
●

●

●

●●●●

●●

●

●

●

●●
●
●●●●●●●●

●

●●

●

●

●

●●
●

●

●●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●●
●
●●

●

●

●

●

●●
●

●

●●
●

●

●
●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●●

●●
●
●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●
●●●

●

●

●●

●

●

●

●

●
●

●●●●●

●●●●●●

●

●

●●

●

●

●●●

●●●●●●●●

●

●●●●

●●

●

●●●

●●

●●●

●●

●●

●
●●●
●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Revenue Distribution − LG 1500/1500 instances

S
ca

le
d 

R
ev

en
ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Algorithm
RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

Figure 4. Dispersion of revenue for each algorithm on LG
1500/1500 instances.

7.4. Comparing heuristics on small number of generations. Standard ge-
netic algorithms, such as RGRK and BOMA, often converge quickly, i.e., in a small
number of generations, to locally optimal, globally sub-optimal, solutions. Most of
the diversification in their population is due to the initial population, since during
evolution, new individuals are created only by crossover or mutation. Besides cre-
ating new individuals by crossover, BRKGAs insert new genetic material into the
population at each generation in the form of mutants. This diversification can lead
to long runs, i.e., having a large number of generations. Tables 2 and 3 show us
that the BRKGAs and BOMA are able to find better solutions using, systematically,
more iterations than RGRK, suggesting that the adopted stopping criterion of 1,000
generations without improvement of the best solution may favor BRKGAs and BOMA
over RGRK.

To address this possible bias, we limit ourselves in this section to consider only
the best solutions found by the algorithms in their first 100 generations. We chose
100 generations because this value is close to 95.49, the average number of gener-
ations taken by RGRK to first find the best solution in a given run. This way, we
expect to reduce the impact of inserting new genetic material into the population
of a BRKGA. We used the experimental results of previous sections but extracted
the values after 100 generations. Note that for large instances, the algorithms were
not able to reach the 100th generation due the time limit. This is particularly true
on large instances with 4,000 bids (and also on some instances with 2,000 bids).
Therefore, these large instances are omitted from the following discussion.

Figure 5 shows the boxplots for these results. Their description is similar to
Figure 2. We also performed U tests for each pair of algorithms using a confidence
level of 99%.4 In general, BOMA outperformed RGRK but not the BRKGAs, as observed
in previous sections. The exception here is that BOMA is significantly better than all
other algorithms on small instances (Figure 5b). In general, CALP and GALP presented
the best results, although the test between them was inconclusive (p-value > 0.84).
For large instances, CALP and GALP reached the best results. As before, we cannot
affirm which of the two is best (p-value > 0.77). For hard LG 1500/1500 instances,
the tests for CARA, CALP, and GALP were inconclusive due p-values > 0.66.



BRKGA FOR WINNER DETERMINATION 25

●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●

●●●●●●

●●

●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●

●●●●●●

●●

●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●●

●●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●

●

●
●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●
●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●
●

●

●

●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●
●

●

●
●●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●
●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●● ●●●●●●

●

●
●

●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●
●

●●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●
●
●

●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●●●●●●

●●
●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●
●

●

●

●
●

●

●

●
●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●
●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●

●
●

●

●●●●●●

●

●

●
●

●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●

●

●

●●●

●●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●●

●

Revenue Distribution − All instances

S
ca

le
d 

R
ev

en
ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Algorithm
RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

(a) All instances.

Revenue Distribution − Less than or equal to 400 bids

S
ca

le
d 

R
ev

en
ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Algorithm
RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

(b) Small instances.

●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●●●●●

●

●●

●●

●

●

●

●

●●●●●●

●

●

●

●

●
●

●●●●●●

●

●
●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●
●

●

●

●

●

●
●

●●●●●●

●●
●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●●●●●

●

●

●

●

●●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●●●●

●
●●

●
●●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●●●●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●●

●●●●●●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●●●

●●
●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●
●

●

●

●●●●●●

●

●

●●
●

●

●●●

●

●

●

●●●●●●

●

●

●●●

●●

●

●

●

●●●●●●

●
●

●

●●●●●●

●
●
●

●●●●●●

●

●

●●●●●●

●

●●●

●
●
●

●

●
●

●●●●●●

●

●

●●●

●

●
●

●

●●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●●●

●●

●

●

●●

●●●●●●

●●
●

●

●

●●●

●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●●●●●●

●
●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●
●

●
●●

●
●

●●

●

●●●●●●

●

●
●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●

●●●●●●

●

●●

●

●
●●●
●
●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●●
●

●

●
●

●
●

●

●

●
●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●●●●●●

●

●

●●

●
●●
●
●

●

Revenue Distribution − More than 400 bids

S
ca

le
d 

R
ev

en
ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Algorithm
RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

(c) Large instances.

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

Revenue Distribution − LG 1500/1500 instances

S
ca

le
d 

R
ev

en
ue

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Algorithm
RG RK

BO M
A

CA RA

CA LP

GA RA

GA LP

SD RA

SD LP

(d) LG

1500/1500

instances.

Figure 5. Dispersion of revenue for each heuristic using 100 gen-
erations at most.

We conclude this section by observing that even with a small number of gener-
ations, the BRKGAs outperformed the other algorithms (except for BOMA on small
instances). Another interesting observation was the performance of the algorithms
with LP-initialization, which are able to produce better results than those with
random initialization. We discuss this further in the next section.

7.5. Effect of LP-based initialization. One can notice in the tables of Sec-
tion 7.1 and, with some difficulty in Figure 2, that the approaches using LP-based
initialization performed better than the approaches that use only random vectors
as the initial population. This could suggest that some chromosomes generated
by the LP relaxation are often decoded into an optimum solution. In fact, this is
not the case, as shown in Table 4. This table shows the average ratio RLP of the
revenues of the best chromosome generated by LP relaxations and the best chro-
mosome in the final population, i.e., RLP = best lp/best final , for each algorithm
and all the instances (hard and easy). The best LP-based chromosome values were
obtained with Algorithm 3 and do not include any random individuals. Among
all LP-based chromosomes, we select the one with the highest revenue. Note that
we also consider random initialized algorithms. In this case, we consider the best
randomly chromosome from the first generation.



26 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 4. Ratio between the revenue of LP-based chromosomes
and the best chromosome.

Alg.
Size ≤ 400 Size ≥ 1000 All

Ratio σ Ratio σ Ratio σ

CARA 0.9848 0.02 0.9035 0.06 0.9183 0.06
CALP 0.9999 0.00 0.9471 0.03 0.9574 0.03
GARA 0.9963 0.00 0.9669 0.02 0.9724 0.02
GALP 0.9999 0.00 0.9529 0.03 0.9617 0.03
SDRA 0.9931 0.01 0.9295 0.05 0.9427 0.05
SDLP 0.9998 0.00 0.9640 0.03 0.9721 0.03

Table 4 contains three blocks with respect to the size of the instances and each
block has a column labeled “Ratio” that shows the average ratio RLP and a column
labeled σ with the corresponding standard deviation. One can note that on small
instances, the LP-based chromosomes generate revenues very close to those in the
final population, indicating a possible dominance of LP initial solutions. But note
also that the ratio of random initialization and LP-based initialization revenues
is very small. This ratio is about 4% larger when we consider large instances
exclusively. It is interesting to note that GARA displays a better ratio than that
of GALP, implying that the results between the first and last generations of GARA
are closer together than the corresponding ones for GALP. However, GALP presented
better results than GARA as shown in Section 7.1.

Table 5 presents the RLP ratios for the perspective instance class. Each column
lists the average ratio of each instance class for each algorithm, with the exception of
the last two, which are the overall average r and standard deviation σ. The results
are very close to those of Table 4. There are, however, some important points
to consider. Note that on the instance class L2, Matching, and Scheduling, the
LP-based initialization algorithms achieved a ratio of RLP = 1.00 with a standard
deviation of 0.00. This implies that for all instances of these classes, the best
solution was found in the first generation. This, in turn, implies that the LP
relaxations are able to produce the best solution. This is expected since such
instance classes are known to be easy to solve. In fact, CPLEX was able to find the
optimal solutions for these instances in the root node of the branch-and-bound tree,
i.e. its heuristics were able to find these solutions without enumeration. In these
cases, the evolutionary mechanism of BRKGA plays no role in the optimization.
However, for other instance classes, BRKGA improves the solution value.

Note that for the CATS instances, the algorithms with LP-based initialization
have very tight RLP ratios, i.e. around 0.99, especially when compared with the
random initialization approach (for which they are around 0.95). For LG instances,
the RLP ratios are larger than those for CATS: For both initialization approaches,
the ratios are around 0.94. These results were expected since the CATS instances
are easier than the LG instances. Again, it is interesting to note that GARA presented
tighter ratios than GALP but only on the LG instances. This is not in contradiction
with the results of Table 4 since the number of LG instances total more than half
of all instances.



BRKGA FOR WINNER DETERMINATION 27

8. Concluding Remarks

In this paper, we introduced six variants of biased random-key genetic algorithms
applied to the winner determination problem in combinatorial auctions. We also
proposed a novel initialization scheme for BRKGAs based on intermediate solutions
to the LP relaxation of the integer programming model for the that problem. Such
scheme can be easily applied in BRKGAs for other 0–1 integer linear programs, since
solutions for the LP relaxation of such problems are natural vectors of random-keys,
and thus BRKGA chromosomes. The proposed algorithms have outperformed the
standard LP model using a commercial mixed integer programming solver and
other recent heuristic approaches on large CATS instances (Leyton-Brown et al.,
2011), as well as on the LG instances (Lau and Goh, 2002). On small CATS
instances, where optimal solutions were found with the commercial mixed integer
programming solver but not the BRKGAs, the maximum gap between the two was
less than 3%, showing that the BRKGAs can still obtain high-quality solutions.
Another advantage of BRKGAs is their ability to find good solutions in a very
short time, enabling their application in iterative auctions with thousands of goods
and bids.

Acknowledgments

The authors thank Dalila Boughaci for kindly providing the instances used in Lau
and Goh (2002) and the source code of BOMA. We also are grateful to Renata Mansini
and Grazia Speranza for providing the source code of CORAL, and Jella Pfeiffer
for provide her implementation of RGRK. We thank the anonymous reviewers for
providing comments that improved this paper significantly. Carlos E. Andrade is
supported by São Paulo Research Foundation (FAPESP) grants 2010/05233-5 and
2012/08222-0. Flávio K. Miyazawa is supported by National Council for Scientific
and Technological Development (CNPq) grants 306860/2010-4 and 477692/2012-5.

Table 5. Ratio between the revenue of LP-based chromosomes
and the best chromosome by instance class.

Alg CARA CALP GARA GALP SDRA SDLP
General

r σ

L2 0.99 1.00 0.99 1.00 0.92 1.00 0.99 0.05
L3 0.83 0.99 0.95 0.99 0.94 0.99 0.95 0.08
L4 0.92 0.99 0.98 0.99 0.97 0.99 0.97 0.04
L6 0.88 0.99 0.96 0.99 0.95 0.99 0.96 0.06
L7 0.98 0.99 0.99 0.99 0.97 0.99 0.99 0.02
Arbitrary 0.89 0.96 0.95 0.96 0.93 0.97 0.94 0.05
Matching 0.89 1.00 0.97 1.00 0.96 1.00 0.97 0.06
Paths 0.90 0.99 0.96 0.99 0.95 0.99 0.96 0.05
Regions 0.89 0.97 0.95 0.97 0.93 0.97 0.94 0.06
Scheduling 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.01
LG 0.91 0.93 0.97 0.94 0.93 0.94 0.94 0.03



28 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

References

Alaya, I., Solnon, C., and Ghédira, K. (2004). Ant algorithm for the multi-
dimensional knapsack problem. In International Conference on Bioinspired Op-
timization Methods and their Applications (BIOMA 2004), pages 63–72.

Andrade, C. E., Miyazawa, F. K., and Resende, M. G. C. (2013). Evolutionary
algorithm for the k-Interconnected Multi-Depot Multi-Traveling Salesmen Prob-
lem. In Proceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, GECCO ’13, pages 463–470, New York, NY, USA. ACM.

Andrade, C. E., Resende, M. G. C., Karloff, H. J., and Miyazawa, F. K. (2014).
Evolutionary algorithms for overlapping correlation clustering. In Proceeding of
the sixteenth annual conference on Genetic and evolutionary computation con-
ference. To appear.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and opti-
mization. ORSA Journal On Computing, 2(6):154–160.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. Journal of the Royal Statis-
tical Society. Series B (Methodological), 57(1):289–300.

Bichler, M., Pikovsky, A., and Setzer, T. (2009). An Analysis of Design Prob-
lems in Combinatorial Procurement Auctions. Business & Information Systems
Engineering, 1:111–117.

Bikhchandani, S. and Ostroy, J. M. (2010). Combinatorial Auctions, chapter From
the Assigment Model to Combinatorial Auctions, pages 189–214. MIT Press.

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-race and iterated
f-race: An overview. In Experimental methods for the analysis of optimization
algorithms, pages 311–336. Springer Berlin Heidelberg.

Blumrosen, L. and Nisan, N. (2007). Algorithmic Game Theory, chapter Combina-
torial auctions, pages 267–299. Cambridge University Press.

Boughaci, D. (2013). Metaheuristic approaches for the winner determination prob-
lem in combinatorial auction. In Yang, X.-S., editor, Artificial Intelligence, Evo-
lutionary Computing and Metaheuristics, volume 427 of Studies in Computational
Intelligence, pages 775–791. Springer Berlin Heidelberg.

Boughaci, D., Benhamou, B., and Drias, H. (2009). A memetic algorithm for the
optimal winner determination problem. Soft Computing - A Fusion of Founda-
tions, Methodologies and Applications, 13:905–917.

Boyer, V., Baz, D. E., and Elkihel, M. (2010). Solution of multidimensional knap-
sack problems via cooperation of dynamic programming and branch and bound.
European Journal of Industrial Engineering, 4:434–449.

Buer, T. and Pankratz, G. (2010). Solving a bi-objective winner determination
problem in a transportation procurement auction. Logistics Research, 2:65–78.

Carr, R. D. and Lancia, G. (2014). Ramsey theory and integrality gap for the
independent set problem. Operations Research Letters, 42(2):137–139.

Chardaire, P., McKeown, G. P., and Maki, J. A. (2001). Application of grasp to
the multiconstraint knapsack problem. In Boers, E. J. W., editor, Applications
of Evolutionary Computing, volume 2037 of Lecture Notes in Computer Science,
pages 30–39. Springer Berlin Heidelberg.

Chu, P. C. and Beasley, J. E. (1998). A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4:63–86.



BRKGA FOR WINNER DETERMINATION 29

Conover, W. J. (1980). Practical Nonparametric Statistics. John Wiley & Sons,
2nd edition.

Cramton, P., Shoham, Y., and Steinberg, R. (2006). Combinatorial Auctions. MIT
Press.

Dobzinski, S., Nisan, N., and Schapira, M. (2005). Approximation algorithms
for combinatorial auctions with complement-free bidders. In Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, STOC’05, pages
610–618, New York, NY, USA. ACM.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213.

Escudero, L. F., Landete, M., and Maŕın, A. (2009). A branch-and-cut algorithm
for the winner determination problem. Decision Support Systems, 46(3):649–659.

Fay, M. P. and Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On
assumptions for hypothesis tests and multiple interpretations of decision rules.
Statistics Surveys, 4:1–39.

Feige, U. and Vondrák, J. (2010). The Submodular Welfare Problem with Demand
Queries. Theory of Computing, 6(1):247–290.

Fredman, M. L. and Willard, D. E. (1993). Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences, 47:424–436.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Professional, Boston, MA, USA, 1st edition.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Mathematical Society, 64:275–278.

Gonçalves, J. F. and Resende, M. G. C. (2011a). Biased random-key genetic algo-
rithms for combinatorial optimization. Journal of Heuristics, 17:487–525.

Gonçalves, J. F. and Resende, M. G. C. (2011b). A parallel multi-population genetic
algorithm for a constrained two-dimensional orthogonal packing problem. Journal
of Combinatorial Optimization, 22:180–201.

Guo, Y., Lim, A., Rodrigues, B., and Zhu, Y. (2006). Heuristics for a bidding
problem. Computers & Operations Research, 33(8):2179–2188.

Halldórsson, M. M. (2000). Approximations of weighted independent set and hered-
itary subset problems. Journal of Graph Algorithms and Applications, 4(1):1–16.

Holte, R. (2001). Combinatorial Auctions, Knapsack Problems, and Hill-Climbing
Search. In Stroulia, E. and Matwin, S., editors, Advances in Artificial Intelligence,
volume 2056 of Lecture Notes in Computer Science, pages 57–66. Springer Berlin
/ Heidelberg.

Hoos, H. H. and Boutilier, C. (2000). Solving combinatorial auctions using sto-
chastic local search. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of Ar-
tificial Intelligence, pages 22–29. AAAI Press.

Krishna, V. (2010). Auction Theory. Academic Press, 2nd edition.
Lau, H. C. and Goh, Y. G. (2002). An intelligent brokering system to support

multi-agent web-based 4th-party logistics. In Proceedings of the 14th IEEE In-
ternational Conference on Tools with Artificial Intelligence, ICTAI ’02, pages
154–, Washington, DC, USA. IEEE Computer Society.



30 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Lehmann, D., O´callaghan, L. I., and Shoham, Y. (2002). Truth revelation in
approximately efficient combinatorial auctions. Journal of ACM, 49:577–602.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., and Shoham, Y.
(2011). CATS: The Combinatorial Auction Test Suite.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The
irace package, Iterated Race for Automatic Algorithm Configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.

Mansini, R. and Speranza, M. G. (2012). CORAL: An exact algorithm for the mul-
tidimensional knapsack problem. INFORMS Journal on Computing, 24(3):399–
415.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8:3–30.

Musser, D. R. (1997). Introspective sorting and selection algorithms. Software:
Practice and Experience, 27(8):983–993.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and combinatorial optimization.
Wiley-Interscience, New York, NY, USA.

Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In Proceedings
of the 2nd ACM Conference on Electronic Commerce, pages 1–12, New York,
NY, USA. ACM.

Norman, B. A. and Bean, J. C. (1999). A genetic algorithm methodology for
complex scheduling problems. Naval Research Logistics (NRL), 46(2):199–211.

Padberg, M. W. (1973). On the Facial Structure of Set Packing Polyhedra. Math-
ematical Programming, 5:199–215.

Parsons, S., Rodriguez-Aguilar, J. A., and Klein, M. (2011). Auctions and bidding:
A guide for computer scientists. ACM Computing Surveys, 43:10:1–10:59.

Pfeiffer, J. and Rothlauf, F. (2007). Analysis of greedy heuristics and weight-
coded eas for multidimensional knapsack problems and multi-unit combinatorial
auctions. In Proceedings of the 9th annual conference on Genetic and evolutionary
computation, GECCO ’07, pages 1529–1529, New York, NY, USA. ACM.

Pirkul, H. (1987). A heuristic solution procedure for the multiconstraint zero-one
knapsack problem. Naval Research Logistics (NRL), 34(2):161–172.

Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The multidimensional knap-
sack problem: Structure and algorithms. INFORMS J. on Computing, 22(2):250–
265.

Raidl, G. R. (1999). The multiple container packing problem: A genetic algorithm
approach with weighted codings. SIGAPP Appl. Comput. Rev., 7(2):22–31.

Raidl, G. R. and Gottlieb, J. (2005). Empirical analysis of locality, heritability and
heuristic bias in evolutionary algorithms: A case study for the multidimensional
knapsack problem. Evolutionary Computation, 13(4):441–475.

Rothkopf, M. H., Pekec, A., and Harstad, R. M. (1998). Computationally manage-
able combinational auctions. Management Science, 44(8):1131–1147.

Rothlauf, F., Goldberg, D. E., and Heinzl, A. (2002). Network random keys-a
tree representation scheme for genetic and evolutionary algorithms. Evolutionary
Computation, 10:75–97.

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135(1–2):1–54.



BRKGA FOR WINNER DETERMINATION 31

Sandholm, T. (2006). Combinatorial Auctions, chapter Optimal Winner Determi-
nation Algorithms, pages 331–361. MIT Press.

Schwind, M., Stockheim, T., and Rothlauf, F. (2003). Optimization heuristics for
the combinatorial auction problem. In Evolutionary Computation, 2003. CEC
’03. The 2003 Congress on, volume 3, pages 1588–1595.

Spears, W. M. and DeJong, K. A. (1991). On the virtues of parameterized uniform
crossover. In Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 230–236.

Toso, R. F. and Resende, M. G. C. (2012). A C++ application programming
interface for biased random-key genetic algorithms. Technical report, AT&T
Labs Research, 180 Park Avenue, Florham Park, NJ 07932 USA.

Vasquez, M. and Vimont, Y. (2005). Improved results on the 0-1 multidimensional
knapsack problem. European Journal of Operational Research, 165(1):70–81.

Whitley, D., Rana, S., and Heckendorn, R. B. (1998). The island model genetic
algorithm: On separability, population size and convergence. J. of Computing
and Information Technology, 7:33–47.

Wolsey, L. A. (1998). Integer programming. Wiley-Interscience, New York, NY,
USA.

Supplementary material

Appendix A. Instance tightness

An important aspect of instances for the winner determination problem (WDP)
is their tightness. This metric is used by Chu and Beasley (1998) to craft instances
of the Multidimensional Knapsack Problem (MDKP), largely used in the literature
as the main benchmark for this problem. The tightness of a constraint j is defined
as

(3) tj =
cj∑

k∈B̂ wjk
,

where cj is the availability of resource j and wjk is the amount of resource j re-
quested by k, as defined in Formulation (2) of the main text. Note that for the
WDP, the tightness is

(4) tj =
1

|{B : j ∈ B,B ∈ B̂}|
, ∀j ∈M,

by definition, i.e., the tightness is defined as the inverse of the number of bids that
request a certain good. Note that a low tj indicates that good j is required by
several bids, probably increasing the problem difficulty.

In the Chu and Beasley MDKP instances, every constraint of a given problem
has the same tightness, which is either 0.25, 0.5, or 0.75. For the WDP instances,
tightness varies for each constraint and depends heavily on the type and size of the
problems. For the most classes, as the size increases, tightness decreases, notably
for the L2, L7, and LG classes. By definition, for some classes tightness is almost
constant as, e.g. L3 and matching. Table 6 shows the average tightness of each
constraint for each class and problem size. Note that the hard “path” instances
are not shown since the CATS suite does not generate hard instances for “path”
distributions.



32 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 6. Average of instances tightness.

Class
Size

40 80 200 400 1000 1024 2000 4000

L2 0.347 0.341 0.094 0.098 0.019 0.026 0.012 0.008
L3 0.333 0.333 0.333 0.333 0.333 0.208 0.333 0.333
L4 0.506 0.436 0.507 0.420 0.555 0.605 0.514 0.511

L6 0.433 0.381 0.355 0.314 0.351 0.578 0.351 0.344

L7 0.543 0.471 0.111 0.109 0.015 0.068 0.009 0.004
Arbitrary 0.192 0.207 0.132 0.140 0.134 0.138 0.130 0.131

Matching 0.347 0.333 0.333 0.333 0.333 0.333 0.333 0.333
Paths 0.562 0.567 0.350 0.375 0.192 — 0.171 0.143
Regions 0.196 0.220 0.133 0.135 0.133 0.135 0.134 0.131

Scheduling 0.317 0.249 0.190 0.252 0.202 0.114 0.195 0.216

Size 1000/500 1000/1000 1500/1500
LG 0.317 0.249 0.190

2. Statistical tests

Tables 7–14, show U test results for each pair of algorithms and different instance
sizes, at 99% of confidence level. The structure of these tables is as follows: Each
row and column is indexed by one algorithm. Each element in the diagonal (bold) is
the median of the corresponding algorithm. The upper-right diagonal elements are
the differences in location statistics for each pair of algorithms. A positive difference
indicates that the “row algorithm” has its location statistics higher (better) than
the “column algorithm”, and the negative difference is the opposite. The bottom-
left diagonal elements are the p-values of each test. We omitted all p < 0.01 values,
that indicate that the difference is statistically significant for those pairs. We also
omitted confidence intervals since for all tests the values lie in these intervals and
they are very narrow. For instance, in Table 7 we can see that the location statistics
for CPLEX (2nd line) are higher (better) than for RGRK (4th column) since the value
0.0806 is positive. Since the p-value for this pair was omitted (3rd line, 3rd column),
the table indicates that CPLEX performed significantly better than RGRK in these
tests. We chose to display a large number of significant digits since for some pairs
of algorithms the differences are very small they are still statistically significant.
This is the case, for example, of algorithms GARA and SDLP in Table 7 where the
difference is only 0.000009 but is still significant (in terms of the U test) in favor of
GARA.

Since several tests were performed, we applied a p-value correction procedure
based on false discovery rate (Benjamini and Hochberg, 1995) aiming to minimize
the number of false positives (Type I error).



B
R
K
G
A

F
O
R

W
IN

N
E
R

D
E
T
E
R
M

IN
A
T
IO

N
3
3

Table 7. Difference in median location for cost distributions for all instances, using a confidence interval of 99%.
The omitted p-values are less than 0.0009.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.000000 −0.950720 −0.840038 −0.916819 −0.999908 −0.999944 −0.988866 −0.999941 −0.930584 −0.961331
CPLEX 0.982822 0.080600 0.018096 −0.001477 −0.003086 −0.000017 −0.002008 0.004974 −0.000078
RGRK 0.875503 −0.051401 −0.114096 −0.115350 −0.104717 −0.114523 −0.062547 −0.088295
BOMA 0.939643 −0.051826 −0.053154 −0.042700 −0.051845 −0.000850 −0.025455
CARA 1.000000 −0.000036 0.000002 0.000014 0.034406 0.000695
CALP 1.000000 0.000005 0.000037 0.035707 0.003093
GARA 1.000000 −0.000067 0.026002 0.000012
GALP p > 0.29 1.000000 0.034429 0.001266
SDRA 0.955629 −0.010476
SDLP p > 0.07 0.951900

Table 8. Difference in median location for cost distributions for instances with 400 bids or less, using a confidence
interval of 99%. The omitted p-values are less than 0.004.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.999984 −0.000062 −0.000052 −0.000033 −0.000012 −0.000042 −0.000031 −0.000037 −0.000017 −0.000039
CPLEX 1.000000 0.000083 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RGRK 1.000000 −0.000049 −0.000057 −0.000029 −0.000070 −0.000077 −0.000007 −0.000026
BOMA 1.000000 −0.000039 −0.000011 −0.000041 −0.000016 −0.000046 −0.000025
CARA 1.000000 −0.000047 0.000012 −0.000077 0.000063 −0.000068
CALP p > 0.09 1.000000 0.000071 0.000022 0.000060 −0.000089
GARA p > 0.25 1.000000 −0.000037 0.000041 −0.000007
GALP p > 0.08 p > 0.86 1.000000 0.000083 −0.000032
SDRA p > 0.01 1.000000 −0.000076
SDLP p > 0.30 0.999300



3
4

C
.E

.
A
N
D
R
A
D
E
,
R
.F

.
T
O
S
O
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

F
.K

.
M

IY
A
Z
A
W

A

Table 9. Difference in median location for cost distributions for instances with 1000 bids or more, using a confidence
interval of 99%. The omitted p-values are less than 0.001.

CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

CORAL 0.000000 −0.946779 −0.856397 −0.922194 −0.999946 −0.999927 −0.990230 −0.999915 −0.931543 −0.957204
CPLEX 0.953821 0.079737 0.022089 −0.035372 −0.035907 −0.023595 −0.034921 0.014744 −0.000004
RGRK 0.863907 −0.056439 −0.124063 −0.124426 −0.112816 −0.123114 −0.062318 −0.088282
BOMA 0.926657 −0.062474 −0.062700 −0.053631 −0.061591 −0.005172 −0.029241
CARA 1.000000 −0.000065 0.000065 0.000018 0.051891 0.027844
CALP 1.000000 0.000086 0.000071 0.052948 0.028406
GARA 0.993222 −0.000044 0.043039 0.017885
GALP p > 0.27 1.000000 0.051161 0.027183
SDRA 0.938537 −0.021078
SDLP p > 0.03 0.951700

Table 10. Difference in median location for cost distributions for LG 1500/1500 instances, using a confidence interval
of 99%. The omitted p-values are less than 0.00001.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.827570 −0.081040 −0.163875 −0.162074 −0.154572 −0.160352 −0.102957 −0.109679
BOMA 0.910548 −0.083920 −0.083313 −0.076227 −0.079144 −0.022304 −0.028658
CARA 1.000000 0.000027 0.000036 0.000045 0.057928 0.053322
CALP p > 0.05 1.000000 0.000036 0.000057 0.057150 0.052600
GARA 0.998888 −0.000042 0.050617 0.042824
GALP p > 0.01 1.000000 0.054981 0.047942
SDRA 0.935822 −0.005051
SDLP p > 0.01 0.942900



B
R
K
G
A

F
O
R

W
IN

N
E
R

D
E
T
E
R
M

IN
A
T
IO

N
3
5

Table 11. Difference in median location of cost distributions for all instances, considering the best solutions until
100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.000009.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.365256 −0.027354 −0.484062 −0.495047 −0.439106 −0.495536 −0.082448 −0.251942
BOMA 0.410741 −0.433579 −0.443894 −0.389594 −0.444571 −0.028155 −0.208201
CARA 0.971370 −0.000033 0.000045 −0.000016 0.313978 0.115553
CALP 0.995975 0.000040 0.000046 0.321063 0.124509
GARA 0.894743 −0.000053 0.274147 0.069280
GALP p > 0.84 0.993376 0.321429 0.126418
SDRA 0.541106 −0.126061
SDLP 0.721500

Table 12. Difference in median location of cost distributions for instances with 400 bids or less, considering the best
solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.009.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.713545 −0.000017 −0.000011 −0.000029 −0.000019 −0.000020 −0.000009 −0.000034
BOMA 1.000000 0.000005 0.000051 0.000030 0.000067 0.000038 0.000059
CARA p > 0.01 0.990978 −0.000027 0.000008 −0.000006 −0.000000 −0.000015
CALP p > 0.01 0.999988 0.000003 0.000033 0.000021 −0.000044
GARA p > 0.37 p > 0.11 0.999943 −0.000037 0.000018 −0.000040
GALP p > 0.04 p > 0.70 p > 0.27 0.999986 0.000039 −0.000049
SDRA p > 0.41 p > 0.37 p > 0.09 p > 0.01 0.793841 −0.000020
SDLP p > 0.52 p > 0.03 p > 0.37 1.000000



3
6

C
.E

.
A
N
D
R
A
D
E
,
R
.F

.
T
O
S
O
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

F
.K

.
M

IY
A
Z
A
W

A

Table 13. Difference in median location of cost distributions for instances with more than 400 bids, considering the
best solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.0001.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.342195 −0.020136 −0.548485 −0.557676 −0.502515 −0.556347 −0.132994 −0.300077
BOMA 0.370348 −0.521230 −0.531241 −0.477689 −0.530029 −0.115826 −0.284344
CARA 0.968853 −0.000039 0.009928 −0.000032 0.365621 0.198026
CALP 0.987577 0.021097 0.000033 0.375408 0.208959
GARA 0.889071 −0.020640 0.324260 0.154933
GALP p > 0.70 0.988826 0.375060 0.208850
SDRA 0.530006 −0.153962
SDLP 0.694700

Table 14. Difference in median location of cost distributions for for LG 1500/1500 instances, considering the best
solutions until 100 generations. A confidence interval of 99% was used. The omitted p-values are less than 0.00004.

RGRK BOMA CARA CALP GARA GALP SDRA SDLP

RGRK 0.228827 −0.064896 −0.661234 −0.661403 −0.608903 −0.665038 −0.242486 −0.306383
BOMA 0.312164 −0.599983 −0.601567 −0.544650 −0.604113 −0.172053 −0.239376
CARA 0.991615 −0.000039 0.009253 −0.000065 0.418796 0.334902
CALP p > 0.97 0.991615 0.012762 −0.000056 0.419685 0.334964
GARA 0.890265 −0.018571 0.351878 0.290690
GALP p > 0.68 p > 0.68 0.993368 0.421907 0.336256
SDRA 0.479321 −0.057048
SDLP 0.548400



BRKGA FOR WINNER DETERMINATION 37

3. Additional running time results

Table 15 shows the average time in seconds taken by each algorithm to find
the best solution (recall that we limited runs to at most 3,600 seconds). The
additional time in the last iterations without improvement in the best solution found
is disregard. We also exclude the time used loading instances and logging. To be
fair with the Java implementations, each run began with a warm-up phase so that
Java virtual machine could load and optimize all necessary bytecode. The first two
columns of this table list, respectively, the instance classes and their corresponding
sizes. Each following pair of columns shows the average time and standard deviation
for each algorithm, respectively.



3
8

C
.E

.
A
N
D
R
A
D
E
,
R
.F

.
T
O
S
O
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

F
.K

.
M

IY
A
Z
A
W

A

Table 15. Running time comparison among the algorithms. For each algorithm, it is shown the average time to find
the best solutions. The over time used in the last iterations without improvement is disregard. Time in seconds.

Class Size
CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ Time σ

40 1 1 1 1 10 6 1 1 1 0 1 0 2 1 1 0 2 3 1 0
80 2 2 1 1 12 7 1 1 2 1 1 0 5 38 1 0 2 4 1 0

200 792 1438 1 1 18 15 17 32 14 74 1 0 31 123 1 0 46 132 1 0
400 923 1418 1 1 40 56 51 121 58 161 28 124 47 139 18 96 65 172 20 89

CATS
1000 2883 1436 382 1075 473 651 736 936 53 136 30 96 60 134 36 104 75 167 32 112

1024 2803 1494 960 1568 460 591 778 1130 54 142 33 114 72 165 30 106 79 181 28 96
2000 2903 1411 1377 1708 1463 1151 1909 1324 72 181 35 106 66 135 39 114 78 166 29 99
4000 3012 1344 1802 1799 2527 1540 2611 1361 52 115 28 75 68 133 42 119 54 123 30 87

1000 3606 12 3601 1 289 529 75 68 94 196 93 192 94 196 95 197 78 181 71 168
LG

1500 3624 23 3601 1 425 702 66 58 118 211 113 200 94 187 100 187 92 188 83 179



BRKGA FOR WINNER DETERMINATION 39

4. Results for parameter tuning

RGRK.

# Best candidates

popsize tournamentsize pertubation

434 18 0.1493

472 16 0.1488

437 16 0.1459

BOMA.

# Best candidates

popsize highqualityindividuas diversifiedindividuals maxlocalsearchiters

1377 12 24 142

516 16 26 238

1178 11 24 115

BRKGAs.

# Best candidates

pe pm rhoe indpop intervalexchange elitexchange

0.2116 0.1639 0.7609 3 136 2

0.2527 0.0679 0.7698 3 127 1

0.2297 0.0741 0.7976 3 141 1



40 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

5. Best results for each instance

This section presents the results obtained for LG instances. The tables format is
the following: the first column and second columns are the instance name and the
best revenue obtained for this instance, respectively. The following columns show
the percentage of the revenue from the best solution obtained by the algorithm that
names the column. A high percentage indicates that the obtained solution is closer
to the best. A star (?) indicates that the algorithm found the best solution.

Table 16. Best results for CATS instances with less than 400
bids. The names of the instances are composed by the class, num-
ber of bids, number of goods, and serial number of the instance.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L2 40 10 1 8774.7200 ? ? ? ? ? ? ? ? ? ?
L2 40 10 2 9229.3400 ? ? ? ? ? ? ? ? ? ?
L2 40 10 3 8967.4300 ? ? ? ? ? ? ? ? ? ?
L2 80 10 1 9828.2500 77.64 ? ? ? ? ? ? ? ? ?
L2 80 10 2 9786.7100 ? ? ? ? ? ? ? ? ? ?
L2 80 10 3 9441.1700 ? ? ? ? ? ? ? ? ? ?
L2 200 50 2 45785.7000 ? ? ? ? ? ? ? ? 92.15 ?
L2 200 50 3 49031.9000 87.41 ? ? ? ? ? ? ? ? ?
L2 400 50 1 46588.7410 ? ? ? ? ? ? ? ? 98.34 ?
L2 400 50 2 47706.0000 ? ? ? ? ? ? ? ? ? ?
L2 400 50 3 47819.7160 ? ? ? ? ? ? ? ? ? ?
L3 40 10 1 2474.2480 ? ? ? ? ? ? ? ? ? ?
L3 40 10 2 2682.7890 ? ? ? ? ? ? ? ? ? ?
L3 40 10 3 2929.2870 ? ? ? ? ? ? ? ? ? ?
L3 80 10 1 2862.1650 ? ? ? ? ? ? ? ? ? ?
L3 80 10 2 2779.9100 ? ? ? ? ? ? ? ? ? ?
L3 80 10 3 2938.3120 ? ? ? ? ? ? ? ? ? ?
L3 200 50 1 12178.8010 ? ? ? ? ? ? ? ? ? ?
L3 200 50 3 12612.9650 ? ? ? ? ? ? ? ? ? ?
L3 400 50 1 14338.1150 ? ? ? ? ? ? ? ? ? ?
L3 400 50 2 14747.9490 ? ? 99.07 ? ? ? ? ? ? ?
L3 400 50 3 14495.9880 ? ? 99.54 ? ? ? ? ? ? ?
L4 40 10 1 9543.8540 ? ? ? ? ? ? ? ? ? ?
L4 40 10 2 8870.7760 ? ? ? ? ? ? ? ? ? ?
L4 40 10 3 9249.9330 ? ? ? ? ? ? ? ? ? ?
L4 80 10 1 9770.0770 ? ? 99.69 ? ? ? ? ? ? ?
L4 80 10 2 9817.6040 ? ? 99.50 ? ? ? ? ? ? ?
L4 80 10 3 9759.7910 ? ? ? ? ? ? ? ? ? ?
L4 200 50 1 45191.2690 86.61 ? 99.65 ? ? ? ? ? ? ?
L4 200 50 2 44275.5990 92.24 ? 99.56 ? ? ? ? ? ? ?
L4 200 50 3 46496.4650 93.73 ? ? ? ? ? ? ? ? ?
L4 400 50 1 47748.4440 89.23 ? 99.42 ? ? ? ? ? ? ?
L4 400 50 2 47988.4200 ? ? 99.56 99.62 ? ? ? ? ? ?
L4 400 50 3 48410.5140 ? ? 99.40 99.55 ? ? ? ? ? ?
L6 40 10 1 8791.5910 ? ? ? ? ? ? ? ? ? ?
L6 40 10 2 9297.1700 ? ? ? ? ? ? ? ? ? ?
L6 40 10 3 9217.2400 ? ? ? ? ? ? ? ? ? ?
L6 80 10 1 9290.9270 ? ? ? ? ? ? ? ? ? ?
L6 80 10 2 9836.4500 ? ? ? ? ? ? ? ? ? ?
L6 80 10 3 9593.9010 ? ? 97.69 ? ? ? ? ? ? ?
L6 200 50 1 41639.9910 96.86 ? 95.31 ? ? ? ? ? ? ?
L6 200 50 2 38873.5410 98.44 ? 99.62 ? ? ? ? ? 99.53 ?
L6 200 50 3 40561.3300 ? ? ? ? ? ? ? ? ? ?
L6 400 50 1 44990.9010 99.12 ? ? ? ? ? ? ? ? ?
L6 400 50 2 46366.8710 99.45 ? 97.48 ? ? ? ? ? ? ?
L6 400 50 3 45216.8660 96.18 ? 96.83 95.86 99.92 ? ? ? ? ?
L7 40 10 1 8309.1230 ? ? ? ? ? ? ? ? ? ?
L7 40 10 2 9090.6580 ? ? ? ? ? ? ? ? ? ?
L7 40 10 3 8553.2690 ? ? ? ? ? ? ? ? ? ?
L7 80 10 1 9818.5880 ? ? 99.32 ? ? ? ? ? ? ?
L7 80 10 2 9435.4580 ? ? ? ? ? ? ? ? ? ?
L7 80 10 3 9775.6220 ? ? 99.81 ? ? ? ? ? ? ?

Continue in next page. . .



BRKGA FOR WINNER DETERMINATION 41

Table 16: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L7 200 50 1 28286.0100 ? ? ? ? ? ? ? ? ? ?
L7 200 50 2 30478.8250 69.46 ? ? ? ? ? ? ? ? ?
L7 200 50 3 29014.3000 ? ? ? ? ? ? ? ? ? ?
L7 400 50 1 32505.1200 ? ? ? ? ? ? ? ? 98.15 ?
L7 400 50 2 33512.5500 ? ? 96.52 ? ? ? ? ? ? ?
L7 400 50 3 29829.2200 ? ? 98.74 ? ? ? ? ? ? ?
arbitrary 40 10 1 1019.7600 ? ? ? ? ? ? ? ? ? ?
arbitrary 40 10 2 749.5520 99.98 ? ? ? ? ? ? ? ? ?
arbitrary 40 10 3 679.8568 ? ? ? ? ? ? ? ? ? ?
arbitrary 80 10 1 1038.7469 ? ? ? ? ? ? ? ? ? ?
arbitrary 80 10 2 775.6040 ? ? ? ? ? ? ? ? ? ?
arbitrary 80 10 3 581.9593 ? ? ? ? ? ? ? ? ? ?
arbitrary 200 50 1 3007.5090 ? ? 96.00 ? ? ? ? ? 99.13 ?
arbitrary 200 50 2 3260.1100 ? ? 97.54 ? ? ? ? ? ? ?
arbitrary 200 50 3 3271.8422 ? ? 96.60 ? ? ? ? ? ? ?
arbitrary 400 50 1 4038.0004 ? ? 93.09 90.48 ? ? ? ? ? ?
arbitrary 400 50 2 3791.8860 ? ? 93.80 85.02 ? ? ? ? ? ?
arbitrary 400 50 3 4289.3898 ? ? 88.70 ? ? ? ? ? ? ?
matching 40 10 1 10.7792 ? ? ? ? ? ? ? ? ? ?
matching 40 10 2 7.1517 ? ? ? ? ? ? ? ? ? ?
matching 40 10 3 15.6388 ? ? ? ? ? ? ? ? ? ?
matching 80 10 1 13.7825 ? ? ? ? ? ? ? ? ? ?
matching 80 10 2 1.5328 ? ? ? ? ? ? ? ? ? ?
matching 80 10 3 8.1853 ? ? ? ? ? ? ? ? ? ?
matching 200 50 1 32.2974 ? ? ? ? ? ? ? ? ? ?
matching 200 50 2 32.0509 ? ? ? ? ? ? ? ? ? ?
matching 200 50 3 23.8792 ? ? ? ? ? ? ? ? ? ?
matching 400 50 1 41.8873 ? ? ? ? ? ? ? ? ? ?
matching 400 50 2 55.8732 ? ? ? ? ? ? ? ? ? ?
matching 400 50 3 27.1398 ? ? ? ? ? ? ? ? ? ?
paths 40 10 1 4.5826 ? ? ? ? ? ? ? ? ? ?
paths 40 10 2 6.1875 ? ? ? ? ? ? ? ? ? ?
paths 40 10 3 5.3516 ? ? ? ? ? ? ? ? ? ?
paths 80 10 1 7.0575 ? ? ? ? ? ? ? ? ? ?
paths 80 10 2 5.0659 ? ? ? ? ? ? ? ? ? ?
paths 80 10 3 6.0272 ? ? ? ? ? ? ? ? ? ?
paths 200 50 1 20.2063 97.32 ? ? ? ? ? ? ? ? ?
paths 200 50 2 20.0969 ? ? ? ? ? ? ? ? ? ?
paths 200 50 3 22.1016 ? ? ? ? ? ? ? ? ? ?
paths 400 50 1 26.8886 ? ? ? 99.54 ? ? ? ? ? ?
paths 400 50 2 22.9762 ? ? ? ? ? ? ? ? ? ?
paths 400 50 3 23.7947 ? ? ? 99.72 ? ? ? ? ? ?
regions 40 10 1 942.2510 ? ? ? ? ? ? ? ? ? ?
regions 40 10 2 750.5340 ? ? ? ? ? ? ? ? ? ?
regions 40 10 3 659.7730 ? ? ? ? ? ? ? ? ? ?
regions 80 10 1 808.6960 ? ? 96.58 ? ? ? ? ? ? ?
regions 80 10 2 957.2460 ? ? ? ? ? ? ? ? ? ?
regions 80 10 3 1159.6219 ? ? 98.13 98.13 ? ? ? ? ? ?
regions 200 50 1 3616.3098 ? ? 97.69 ? ? ? ? ? ? ?
regions 200 50 2 3292.0154 ? ? 87.48 ? ? ? ? ? ? ?
regions 200 50 3 3401.2610 ? ? 92.77 ? ? ? ? ? ? ?
regions 400 50 1 4177.5069 ? ? 89.33 ? ? ? ? ? ? ?
regions 400 50 2 3606.1991 ? ? 91.53 ? ? ? ? ? ? ?
regions 400 50 3 3482.6069 ? ? 93.81 ? ? ? ? ? ? ?
scheduling 40 10 1 14.7840 ? ? ? ? ? ? ? ? ? ?
scheduling 40 10 2 15.1235 ? ? ? ? ? ? ? ? ? ?
scheduling 40 10 3 21.7354 ? ? ? ? ? ? ? ? ? ?
scheduling 80 10 1 22.6557 ? ? ? ? ? ? ? ? ? ?
scheduling 80 10 2 15.7918 ? ? ? ? ? ? ? ? ? ?
scheduling 80 10 3 22.8672 ? ? ? ? ? ? ? ? ? ?
scheduling 200 50 1 22.6139 ? ? ? ? ? ? ? ? ? ?
scheduling 200 50 2 53.8402 ? ? ? ? ? ? ? ? ? ?
scheduling 200 50 3 48.8045 ? ? 95.26 ? ? ? ? ? ? ?
scheduling 400 50 1 58.2749 ? ? 97.38 ? ? ? ? ? ? ?
scheduling 400 50 2 70.3185 ? ? ? ? ? ? ? ? ? ?
scheduling 400 50 3 43.8167 1.50 ? ? ? ? ? ? ? ? ?



42 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 17. Best results for CATS instances more than 400 bids.
The names of the instances are composed by the class, number of
bids, number of goods, and serial number of the instance. Instances
with hard in the name have 1024 bids and 256 goods.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

L2 1000 256 1 244098.0000 ? ? ? ? ? ? ? ? 88.40 ?
L2 1000 256 2 241158.0000 ? ? ? ? ? ? ? ? 90.88 ?
L2 1000 256 3 254988.0000 ? ? ? ? ? ? ? ? 81.73 ?
L2 2000 512 1 495448.0000 ? ? ? ? ? ? ? ? 72.84 ?
L2 2000 512 2 501810.0000 4.27 ? ? ? ? ? ? ? 80.74 ?
L2 2000 512 3 505625.0000 ? ? ? ? ? ? ? ? 87.47 ?
L2 4000 1024 1 1000590.0000 ? ? ? ? ? ? ? ? 37.53 ?
L2 4000 1024 2 1010991.6920 10.66 ? ? 100.00 ? ? ? ? 59.42 ?
L2 4000 1024 3 996744.0000 ? ? ? ? ? ? ? ? 34.50 ?
L2 hard 1 262.5110 ? ? ? ? ? ? ? ? 63.91 ?
L2 hard 2 456.5370 ? ? ? ? ? ? ? ? ? ?
L2 hard 3 317.4120 ? ? ? ? ? ? ? ? 66.52 ?
L3 1000 256 1 64626.2530 75.64 ? 99.26 99.60 99.60 99.60 99.60 99.56 96.60 99.50
L3 1000 256 2 66106.1710 79.20 ? 99.08 99.31 99.75 99.78 99.78 99.66 98.58 99.78
L3 1000 256 3 64987.7430 75.45 ? 99.68 ? 99.84 ? 99.81 ? 99.79 ?
L3 2000 512 1 128004.7893 81.84 ? 98.80 97.74 99.47 99.92 99.92 99.72 98.43 99.95
L3 2000 512 2 132229.2010 93.59 ? 99.18 98.78 99.49 99.71 99.35 99.78 97.62 99.69
L3 2000 512 3 133133.1410 82.48 ? 98.95 98.83 99.07 99.64 99.43 99.62 97.09 99.62
L3 4000 1024 1 263970.8210 78.25 ? 90.99 97.45 99.88 99.74 98.87 99.50 96.46 99.25
L3 4000 1024 2 263936.8590 75.72 ? 91.47 97.29 99.48 99.62 99.60 99.55 96.62 99.53
L3 4000 1024 3 263404.1096 80.03 ? 91.46 96.98 99.09 99.30 99.17 98.94 96.70 98.93
L3 hard 1 75.4074 75.32 ? 99.35 97.11 99.28 99.39 99.18 99.35 98.89 99.18
L3 hard 2 34.1897 80.59 99.33 96.96 95.45 99.27 ? 99.09 97.74 97.17 97.74
L3 hard 3 20.8636 82.47 96.79 97.63 96.19 98.44 98.63 98.44 ? 95.31 ?
L4 1000 256 1 228752.1550 4.41 ? 99.52 99.17 99.85 ? ? ? 99.67 ?
L4 1000 256 2 229601.7270 92.34 ? 99.27 98.48 99.71 ? ? ? 99.43 ?
L4 1000 256 3 229349.1950 2.85 ? 99.58 99.70 99.90 ? ? ? 99.43 ?
L4 2000 512 1 461218.2640 3.56 ? 99.48 99.04 99.71 ? ? ? 99.07 ?
L4 2000 512 2 459425.3230 2.75 ? 99.83 98.97 99.73 ? ? ? 99.32 ?
L4 2000 512 3 458536.7260 2.64 ? 99.50 99.07 99.65 ? ? ? 99.50 ?
L4 4000 1024 1 914322.9910 2.30 ? 98.33 96.11 99.32 ? ? ? 99.15 ?
L4 4000 1024 2 920786.4330 2.22 ? 98.39 95.88 99.09 ? ? ? 98.93 ?
L4 4000 1024 3 920294.1540 3.27 ? 98.37 96.36 99.16 99.99 99.99 99.99 99.00 99.99
L4 hard 1 290.2399 16.81 ? 99.53 98.80 ? ? ? ? ? ?
L4 hard 2 383.8526 13.76 ? 99.36 99.14 ? ? ? ? ? ?
L4 hard 3 282.6879 7.06 ? 99.55 98.90 ? ? ? ? ? ?
L6 1000 256 1 199757.0790 45.81 ? 97.22 99.41 98.23 98.75 98.32 98.72 98.22 98.22
L6 1000 256 2 200559.8373 69.95 ? 97.41 96.57 98.80 99.39 97.61 99.39 97.38 99.11
L6 1000 256 3 201208.1706 3.72 ? 99.56 99.15 98.72 99.96 98.36 98.92 97.16 98.36
L6 2000 512 1 405788.3937 72.95 ? 98.00 95.24 97.76 99.00 97.85 99.00 94.39 99.00
L6 2000 512 2 411091.1370 5.22 ? 97.83 94.81 97.77 98.16 97.22 98.16 96.02 97.77
L6 2000 512 3 402472.3077 71.43 ? 98.29 95.41 97.04 97.93 97.73 97.93 94.55 97.93
L6 4000 1024 1 785686.0929 0.88 ? 98.15 93.36 97.30 97.62 97.54 97.73 97.60 97.75
L6 4000 1024 2 801026.0135 75.21 ? 98.90 92.95 97.91 97.66 97.33 97.84 95.53 95.95
L6 4000 1024 3 791849.8150 73.60 ? 98.19 93.02 97.06 97.03 96.92 97.38 95.83 96.82
L6 hard 1 377.5873 13.69 ? 99.57 99.51 ? ? ? ? ? ?
L6 hard 2 330.2240 18.25 ? 99.58 99.65 ? ? ? ? ? ?
L6 hard 3 446.4472 6.50 ? 99.62 99.68 ? ? ? ? ? ?
L7 1000 256 1 68830.4000 95.17 ? ? ? ? ? ? ? 86.30 ?
L7 1000 256 2 79025.8000 96.74 ? ? 100.00 ? ? ? ? 96.74 ?
L7 1000 256 3 81981.6000 100.00 ? ? 100.00 ? ? ? ? ? ?
L7 2000 512 1 121043.0000 ? ? ? ? ? ? ? ? 97.56 ?
L7 2000 512 2 119058.0000 ? ? ? ? ? ? ? ? 93.95 ?
L7 2000 512 3 122346.0000 99.99 ? ? ? ? ? ? ? 92.35 ?
L7 4000 1024 1 244374.0000 ? ? ? ? ? ? ? ? 90.59 ?
L7 4000 1024 2 229826.0000 ? ? ? ? ? ? ? ? 99.68 ?
L7 4000 1024 3 228342.0000 ? ? ? ? ? ? ? ? 88.19 ?
L7 hard 1 233.0348 73.22 ? ? ? ? ? 98.25 ? ? ?
L7 hard 2 127.4510 100.00 ? ? ? ? ? ? ? ? ?
L7 hard 3 261.2782 83.15 97.72 97.70 ? 99.18 ? 99.18 ? 95.56 95.56
arbitrary 1000 256 1 17186.3016 70.40 96.39 93.12 95.91 ? ? 96.87 ? 94.46 95.53
arbitrary 1000 256 2 15782.8217 6.06 98.02 96.27 95.63 98.41 ? 98.56 99.40 96.39 98.03

Continue in next page. . .



BRKGA FOR WINNER DETERMINATION 43

Table 17: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

arbitrary 1000 256 3 17280.1375 9.31 98.04 92.55 97.45 98.69 ? 99.28 99.28 97.28 97.28
arbitrary 2000 512 1 32267.8600 0.17 96.98 96.15 93.59 99.74 98.89 ? 99.56 95.35 96.13
arbitrary 2000 512 2 32159.7621 1.56 95.83 96.42 94.28 99.97 ? 99.39 99.19 98.02 97.21
arbitrary 2000 512 3 32181.8011 2.52 95.86 96.79 97.81 99.54 99.27 ? 99.04 97.77 98.95
arbitrary 4000 1024 1 62694.3745 1.43 95.70 93.86 91.57 99.64 98.48 98.56 ? 96.90 96.76
arbitrary 4000 1024 2 61809.4598 0.35 97.64 93.42 90.90 97.84 98.90 ? 97.92 96.32 95.92
arbitrary 4000 1024 3 62366.9031 79.65 96.20 93.46 90.80 98.82 99.01 97.84 ? 96.39 95.77
arbitrary hard 1 16412.4678 1.32 99.78 94.33 95.55 ? 99.78 98.07 99.78 95.12 96.07
arbitrary hard 2 15699.7262 71.07 98.47 96.52 98.13 ? 98.47 98.02 98.47 98.26 99.65
arbitrary hard 3 14954.8919 1.29 99.40 95.34 98.76 99.91 99.43 99.69 99.43 ? ?
matching 1000 256 1 724.3030 26.06 ? 99.88 99.88 ? ? ? ? ? ?
matching 1000 256 2 731.8279 94.91 ? 99.92 99.99 ? ? ? ? 99.99 ?
matching 1000 256 3 912.8670 92.44 ? ? 99.97 ? ? ? ? 99.82 ?
matching 2000 512 1 669.1193 30.47 ? 99.91 99.51 ? ? ? ? 99.84 ?
matching 2000 512 2 1379.1604 92.92 ? 99.72 99.48 ? ? ? ? 99.96 ?
matching 2000 512 3 881.3102 24.14 ? 99.93 99.35 ? ? ? ? 99.76 ?
matching 4000 1024 1 3047.5592 64.56 ? 94.35 98.41 99.98 ? ? ? 99.82 ?
matching 4000 1024 2 2302.0147 38.07 ? 94.29 98.19 100.00 ? ? ? 99.78 ?
matching 4000 1024 3 2508.6253 31.33 ? 95.11 98.39 99.94 ? ? ? 99.87 ?
matching hard 1 155.0591 ? ? ? ? ? ? ? ? ? ?
matching hard 2 421.5402 23.49 ? 99.96 99.96 ? ? ? ? ? ?
matching hard 3 323.9873 94.06 ? ? 99.99 ? ? ? ? ? ?
paths 1000 256 1 57.7328 89.93 ? ? ? ? ? ? ? ? ?
paths 1000 256 2 65.7292 28.17 ? ? 98.37 ? ? ? ? ? ?
paths 1000 256 3 57.4862 30.51 ? ? ? ? ? ? ? 99.17 ?
paths 2000 512 1 90.3558 62.85 ? 100.00 95.94 ? ? ? ? ? ?
paths 2000 512 2 101.4873 52.98 ? 99.83 97.01 ? ? 100.00 99.98 99.21 99.98
paths 2000 512 3 106.9681 57.30 ? 99.80 97.50 99.92 99.87 99.87 99.87 99.41 99.87
paths 4000 1024 1 161.5959 99.87 ? 98.26 91.88 99.70 ? ? ? 98.50 ?
paths 4000 1024 2 165.5882 80.80 ? 98.52 93.20 99.47 ? ? ? 98.79 ?
paths 4000 1024 3 150.9125 97.21 ? 98.70 91.61 99.82 ? ? ? 98.99 ?
regions 1000 256 1 16214.3571 74.32 ? 95.20 98.99 98.94 99.36 98.12 99.36 98.09 98.89
regions 1000 256 2 17922.5058 75.94 ? 95.60 99.63 99.23 98.67 99.10 98.79 98.87 98.67
regions 1000 256 3 17391.3627 3.78 ? 97.09 ? 99.54 99.54 98.18 99.34 97.85 99.34
regions 2000 512 1 38262.6408 74.08 ? 97.36 97.88 98.30 99.55 98.68 98.99 97.65 98.86
regions 2000 512 2 32274.1576 62.09 ? 95.82 95.49 99.77 98.64 97.89 98.60 96.23 97.45
regions 2000 512 3 37199.7468 1.20 ? 96.77 98.55 99.21 99.59 98.49 99.50 97.50 98.95
regions 4000 1024 1 65807.6502 0.33 99.97 94.38 96.23 99.56 99.28 97.14 ? 96.09 96.67
regions 4000 1024 2 65628.9304 2.72 99.70 95.57 97.09 99.91 ? 98.25 99.30 98.75 98.97
regions 4000 1024 3 64800.3099 5.43 ? 95.15 95.79 99.06 99.04 96.26 99.42 94.39 95.07
regions hard 1 15336.4868 72.73 ? 94.01 98.24 99.82 99.82 99.22 99.82 98.55 99.82
regions hard 2 17988.3370 70.19 ? 94.17 99.48 99.48 99.74 98.55 99.74 99.74 99.48
regions hard 3 16777.2344 72.67 ? 93.30 98.03 99.17 99.66 98.75 99.66 97.94 98.35
scheduling 1000 256 1 44.9038 22.99 ? ? ? ? ? ? ? ? ?
scheduling 1000 256 2 42.5548 20.98 ? ? ? ? ? ? ? ? ?
scheduling 1000 256 3 87.6889 11.41 ? ? ? ? ? ? ? ? ?
scheduling 2000 512 1 40.9792 25.74 ? ? ? ? ? ? ? ? ?
scheduling 2000 512 2 58.2106 3.63 ? ? ? ? ? ? ? ? ?
scheduling 2000 512 3 48.2352 1.32 ? ? ? ? ? ? ? ? ?
scheduling 4000 1024 1 28.3994 ? ? ? ? ? ? ? ? ? ?
scheduling 4000 1024 2 45.9743 ? ? ? ? ? ? ? ? ? ?
scheduling 4000 1024 3 36.6752 ? ? ? ? ? ? ? ? ? ?
scheduling hard 1 168.4070 98.37 ? ? ? ? ? ? ? ? ?
scheduling hard 2 1219.4075 100.00 ? ? ? ? ? ? ? ? ?
scheduling hard 3 4812.6430 56.44 ? ? ? ? ? ? ? ? ?

Table 18. Best results for LG 1000/500 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in101 72724.6180 37.66 92.27 92.27 96.03 ? ? ? ? 95.02 98.63
in102 72518.2220 45.17 98.03 96.72 98.22 ? ? ? ? 97.44 99.82
in103 72129.5000 40.67 96.64 95.13 96.76 ? ? 97.41 ? ? 98.43
in104 72709.6470 65.30 98.04 94.46 97.42 ? ? ? ? 92.45 ?
in105 75646.1406 39.96 89.05 90.91 ? ? ? ? ? 94.99 ?

Continue in next page. . .



44 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 18: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in106 71258.6130 51.23 89.77 93.23 94.31 ? ? ? ? 94.49 ?
in107 69713.4030 38.64 98.38 98.38 99.24 ? ? 99.55 ? ? ?
in108 75813.2109 11.33 98.39 99.12 ? 99.95 ? 99.12 99.95 99.31 99.30
in109 69475.8950 38.47 91.99 95.09 95.34 ? ? ? ? ? ?
in110 68295.2890 16.29 ? 92.75 99.79 ? ? ? ? ? ?
in111 75133.2900 42.87 96.74 95.16 97.12 ? ? ? ? 95.53 97.12
in112 71342.4830 60.02 99.25 94.80 99.81 ? ? ? ? ? ?
in113 73365.8906 53.84 92.73 96.02 ? ? ? ? ? 98.43 ?
in114 69224.7656 13.31 94.35 94.58 ? ? 98.58 99.56 99.56 96.04 96.04
in115 70221.5610 48.33 94.85 93.15 96.06 ? ? 99.55 ? 95.95 96.95
in116 70032.4609 48.56 98.32 93.80 ? ? ? ? ? 98.32 98.32
in117 69982.8330 59.34 94.96 99.92 99.92 ? ? ? ? 95.33 98.99
in118 72160.9870 57.56 95.02 93.06 97.21 ? ? ? ? 95.36 95.36
in119 67038.4297 58.44 96.86 ? ? ? ? 98.36 ? 98.27 98.27
in120 75514.9300 58.27 98.85 93.41 99.95 ? ? 99.13 99.13 97.67 98.87
in121 67639.1250 34.44 96.47 94.24 ? ? ? ? ? 96.34 96.34
in122 69546.2730 40.98 96.73 98.24 98.24 ? ? 99.97 ? 95.69 ?
in123 70618.3130 49.50 92.25 94.96 99.97 ? ? ? 99.97 98.78 99.93
in124 71686.0469 39.54 97.28 99.72 ? ? ? ? ? 96.63 99.72
in125 69233.1220 51.98 95.79 95.79 97.41 ? ? ? ? 98.14 ?
in126 70671.7700 9.53 98.45 93.05 98.61 ? ? 98.61 ? 95.98 96.62
in127 69273.3203 42.94 98.39 92.27 ? ? ? ? ? 98.74 ?
in128 72179.4310 17.30 94.35 90.70 98.32 ? ? ? ? 95.27 96.20
in129 65751.6490 37.24 97.51 97.51 97.59 ? ? ? ? 97.51 97.51
in130 71075.3000 48.78 97.39 97.90 97.90 ? ? 99.14 ? 96.04 97.90
in131 71177.9062 2.62 95.49 99.62 ? ? ? ? ? 96.39 ?
in132 75510.0469 43.34 96.88 99.90 ? ? ? ? ? ? ?
in133 71253.5610 54.48 97.85 94.16 99.35 ? ? 99.35 ? 94.95 97.67
in134 75781.7490 46.70 96.61 91.22 98.73 ? ? ? ? 97.39 ?
in135 72138.1172 2.42 95.49 90.72 ? ? ? ? ? ? ?
in136 68903.0938 43.37 94.79 96.29 ? ? ? 99.86 99.86 96.61 99.04
in137 70072.0469 48.96 ? 90.56 ? ? ? 99.99 ? ? ?
in138 71989.6330 28.25 97.43 99.24 99.24 99.24 ? 99.24 ? 99.24 97.71
in139 72840.3940 35.02 94.24 92.53 98.79 ? ? ? ? 96.13 98.94
in140 73665.2310 43.72 ? 92.15 92.42 ? ? ? ? ? ?
in141 69605.0770 40.43 98.91 96.15 99.67 ? ? ? ? 95.42 98.91
in142 74777.9850 49.90 97.26 94.59 96.20 ? ? ? ? 97.52 97.52
in143 69699.0547 34.12 95.14 98.81 ? ? ? ? ? 98.19 98.89
in144 73197.0730 49.56 94.95 93.48 99.03 ? ? ? ? ? ?
in145 73695.0150 39.38 96.88 92.77 96.25 ? ? 97.81 ? ? 97.80
in146 73746.9375 38.30 95.29 93.65 ? ? ? ? ? 97.29 97.29
in147 65878.3020 58.53 95.28 97.17 97.17 ? ? ? ? 94.88 94.88
in148 72116.9690 51.94 96.01 95.66 98.84 99.81 ? 98.84 ? 99.81 99.81
in149 70800.1800 46.53 97.27 95.68 98.61 ? ? 99.30 ? 99.02 ?
in150 72839.4240 46.46 94.35 93.20 98.91 ? ? ? ? ? ?
in151 68834.5010 45.83 99.99 97.90 99.13 ? ? ? ? 98.85 99.75
in152 76224.7812 41.04 93.71 93.62 ? ? ? ? ? 97.94 97.94
in153 70110.7650 43.46 99.49 96.81 99.49 ? ? 99.60 ? 96.54 98.00
in154 69215.5240 7.16 94.14 96.66 98.48 ? 99.27 99.27 99.27 99.09 99.27
in155 74936.7730 36.64 96.51 96.26 97.22 ? ? 99.75 ? 99.75 ?
in156 69704.1300 50.74 93.01 99.24 99.24 ? ? ? ? 96.64 96.64
in157 73934.8438 33.75 91.20 93.38 ? ? ? ? ? 92.71 ?
in158 69489.5430 47.97 ? 92.69 97.71 ? ? ? ? ? 95.13
in159 71091.8047 55.58 96.38 95.46 ? ? ? ? ? 98.53 98.53
in160 70606.9180 46.45 96.31 99.48 99.48 ? ? ? ? 98.61 98.61
in161 66266.3710 15.81 92.56 93.91 98.53 ? 99.34 ? ? 97.88 ?
in162 74720.7940 54.27 93.32 95.58 97.44 99.44 99.44 ? ? 99.44 99.44
in163 64976.9910 46.23 98.63 98.45 99.06 ? 99.86 99.86 99.86 99.06 99.06
in164 67950.6230 43.67 93.99 91.64 99.41 ? ? ? ? 98.38 98.38
in165 70361.9531 39.37 95.13 95.97 ? ? ? 98.61 ? 97.19 97.19
in166 71460.8930 34.20 92.35 95.05 97.99 99.80 ? 99.45 99.80 97.56 97.83
in167 74523.7656 26.61 ? 96.58 ? ? ? ? ? 96.86 96.86
in168 72097.3210 43.31 97.37 96.68 96.86 ? ? 99.54 ? ? ?
in169 71827.3400 45.18 96.43 97.32 98.45 ? ? 98.62 ? 95.21 ?
in170 74564.7490 42.64 92.70 92.51 95.80 ? ? 96.46 ? 90.03 95.15
in171 71279.4840 37.03 96.53 94.32 97.33 ? ? 98.48 ? 98.48 98.45
in172 70361.8070 3.68 99.57 93.91 96.82 ? ? 99.57 ? 97.41 98.66

Continue in next page. . .



BRKGA FOR WINNER DETERMINATION 45

Table 18: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in173 73677.2030 57.65 96.29 93.20 99.78 ? ? ? ? 94.10 97.49
in174 73523.6094 44.59 96.31 92.89 ? ? ? ? ? 96.48 95.46
in175 72924.8740 49.45 97.54 91.49 97.26 ? 99.67 99.67 99.67 99.67 99.67
in176 67761.4830 38.10 97.51 95.42 99.35 ? ? ? ? 98.33 99.43
in177 70187.1540 49.13 94.27 95.49 98.94 ? ? ? ? 98.88 98.94
in178 70833.3720 53.70 90.85 92.84 95.71 ? ? ? ? 94.42 95.20
in179 72205.2980 42.51 96.80 95.57 96.60 ? ? 98.97 ? 96.60 ?
in180 70513.3520 54.50 93.16 94.07 96.53 ? ? ? ? 96.26 96.31
in181 72238.0859 37.33 95.06 97.16 ? ? ? ? ? 96.76 99.07
in182 71645.0312 37.70 97.82 ? ? ? ? ? ? 98.80 98.80
in183 71520.4688 37.89 98.38 93.86 ? ? ? ? ? 99.57 99.57
in184 74377.5380 1.74 92.64 87.92 94.41 ? ? ? ? ? ?
in185 73714.9531 47.24 ? 94.44 ? ? ? 99.52 ? 99.52 ?
in186 70736.2480 47.66 97.98 94.98 98.72 ? ? ? ? 97.98 97.98
in187 70166.3660 31.20 95.26 94.28 97.34 ? ? ? ? 98.55 98.55
in188 70485.1950 40.11 93.17 95.47 96.52 ? ? 98.86 ? 99.49 ?
in189 69786.0220 38.77 95.35 96.84 98.82 ? ? ? ? 98.54 ?
in190 73765.2090 38.54 97.07 97.07 98.60 ? ? ? ? ? 99.72
in191 72587.0780 8.24 99.65 97.87 98.63 ? ? 99.65 ? ? ?
in192 71156.8280 34.93 93.02 94.22 99.45 ? ? ? ? 99.61 99.61
in193 72526.4688 33.95 97.21 94.22 ? ? ? ? ? 97.46 97.46
in194 75803.5156 47.87 94.14 ? ? ? ? ? ? 99.91 99.91
in195 69066.8672 29.99 91.41 96.21 ? ? ? ? ? 96.25 96.25
in196 69776.2220 51.81 98.39 98.47 99.91 ? ? 99.91 ? 98.70 97.77
in197 68457.8040 55.49 ? ? 98.33 ? ? ? ? 97.41 97.41
in198 73474.3830 41.26 98.84 92.37 97.19 ? ? ? ? 97.19 97.19
in199 70955.9130 37.03 93.84 95.59 99.98 ? ? 99.98 ? 98.21 98.34
in200 76803.1830 46.02 95.19 95.17 98.09 ? ? 98.88 ? ? ?

Table 19. Best results for LG 1000/1000 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in201 81557.7578 45.28 94.10 ? ? ? ? ? ? 99.71 96.02
in202 90708.1406 38.91 98.60 93.30 ? ? ? ? ? 99.96 ?
in203 86239.2266 7.67 95.45 93.96 ? ? ? 99.12 ? 97.69 97.69
in204 87075.4453 38.39 94.14 94.39 ? ? ? ? ? 95.49 98.62
in205 86515.9510 34.40 93.59 92.44 97.11 ? ? ? ? 94.14 96.80
in206 91518.9640 19.12 94.93 93.41 94.93 ? ? ? ? ? ?
in207 93129.2900 27.22 ? 97.75 99.99 ? ? 99.99 ? 94.91 94.91
in208 94904.6953 25.73 88.80 90.18 ? ? ? 96.71 ? 96.71 96.71
in209 87268.9650 47.58 98.88 93.37 99.41 ? ? 99.41 ? 98.88 96.83
in210 89962.4062 39.71 96.64 95.73 ? ? ? ? ? 98.38 ?
in211 84913.6840 55.07 93.20 92.87 99.54 ? ? ? ? 97.60 98.48
in212 90778.2188 40.06 96.81 91.38 ? ? ? ? ? 98.97 98.97
in213 85369.1850 34.71 95.81 97.87 97.87 ? ? ? ? 98.97 98.97
in214 85181.6090 39.16 97.34 96.19 99.58 ? ? ? ? 99.58 ?
in215 91531.7031 46.31 95.42 93.46 ? ? ? ? ? 99.56 97.91
in216 91580.9800 48.61 ? 93.53 94.72 ? ? ? ? ? ?
in217 86962.9270 52.45 97.72 93.77 98.33 ? ? ? ? 97.72 99.92
in218 94965.2109 45.14 90.34 91.55 ? ? ? ? ? ? ?
in219 93586.4380 46.99 90.94 96.02 96.02 ? ? ? ? 96.08 96.08
in220 89792.9219 44.44 97.87 96.82 ? ? ? 98.48 ? 98.63 98.63
in221 87410.7800 41.62 ? 93.56 97.23 ? ? ? ? 96.00 96.23
in222 89905.5391 45.82 94.77 90.80 ? ? ? ? ? ? ?
in223 83045.4297 40.13 96.04 88.95 ? ? ? ? ? 94.30 94.71
in224 87105.2770 49.10 96.86 98.39 99.92 ? ? ? ? 97.13 97.40
in225 89430.1094 38.68 95.90 91.21 ? ? ? ? ? ? ?
in226 88176.1220 34.96 91.75 90.75 95.92 ? ? 95.09 ? 95.92 95.92
in227 92613.3710 44.80 96.95 95.57 98.94 ? ? ? ? ? ?
in228 92684.0781 56.28 96.70 96.70 ? ? ? ? ? 98.86 95.33
in229 90468.1420 49.34 96.50 91.38 96.75 ? ? ? ? 96.76 96.76
in230 91559.1562 48.44 96.66 94.13 ? ? ? ? ? 97.74 97.74
in231 101458.6094 40.11 93.07 88.09 ? ? ? ? ? ? ?
in232 87270.8630 17.55 95.18 91.66 99.45 ? ? ? ? 92.66 ?

Continue in next page. . .



46 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 19: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in233 86151.8980 39.85 96.84 94.09 98.81 ? ? ? ? 96.91 97.09
in234 88874.3359 49.60 98.17 92.70 ? ? ? ? ? 96.84 96.84
in235 93246.5700 38.90 ? 89.98 ? ? ? ? ? 93.01 97.24
in236 87876.7891 38.94 98.10 91.59 ? ? ? ? ? 95.25 96.84
in237 87616.0450 54.09 96.48 94.61 98.30 ? ? ? ? 97.16 99.78
in238 87004.0781 49.72 98.22 90.70 ? ? ? 99.57 ? 98.70 ?
in239 81435.3020 41.92 99.86 92.88 99.86 ? ? ? ? 98.41 98.41
in240 86608.4120 45.38 98.11 98.61 98.61 ? ? ? ? 95.04 98.90
in241 89961.1641 39.00 98.80 92.63 ? ? ? ? ? 98.80 98.80
in242 92480.5420 35.73 90.80 91.44 92.68 ? ? ? ? 95.12 96.56
in243 91839.5970 37.24 99.91 91.99 99.91 ? ? ? ? 96.47 96.47
in244 91029.7940 42.40 95.61 92.89 98.11 ? ? 98.11 ? 97.04 97.04
in245 90590.5630 34.27 95.38 96.10 96.10 ? ? ? ? 94.46 99.06
in246 87158.2344 24.83 99.39 ? ? ? ? 99.17 ? 99.39 99.17
in247 89044.3828 45.42 96.32 96.01 ? ? ? ? ? 99.54 99.54
in248 93058.1406 57.39 91.53 92.92 ? ? ? ? ? 95.73 95.73
in249 95169.5190 62.17 93.98 93.98 98.01 ? ? ? ? 96.22 96.22
in250 93775.8359 48.37 ? ? ? ? ? ? ? 98.82 98.82
in251 88734.0770 43.94 92.56 92.35 96.09 ? ? 96.42 ? 96.11 96.11
in252 89504.9220 53.90 93.49 98.03 98.03 ? ? ? ? 99.86 99.86
in253 88253.3125 24.40 95.78 96.70 ? ? ? ? ? 96.87 ?
in254 85897.5010 31.00 96.01 96.37 96.37 ? ? ? ? 98.85 ?
in255 89368.1990 37.11 94.69 94.32 98.13 ? ? 97.74 ? 98.67 98.67
in256 89253.2656 38.86 93.03 92.12 ? ? ? 96.74 ? ? 95.03
in257 88605.5950 12.67 96.54 94.88 99.49 ? ? ? ? 97.23 99.17
in258 85183.9110 44.59 99.33 97.74 98.65 ? ? ? ? ? ?
in259 95397.3516 37.58 ? 87.77 ? ? ? ? ? 93.80 93.80
in260 90407.2050 42.48 99.25 92.46 96.03 ? ? ? ? 99.38 ?
in261 89790.1900 46.72 ? 92.80 ? ? ? ? ? 97.30 97.30
in262 88470.1100 50.02 ? 92.98 99.03 ? ? ? ? 96.68 ?
in263 93087.8530 37.55 94.59 94.24 97.35 ? ? ? ? 98.98 98.98
in264 86498.9141 48.56 97.86 91.86 ? ? ? ? ? 99.00 99.00
in265 83621.1700 41.51 95.48 97.91 98.94 ? ? 98.47 ? ? 99.16
in266 90038.9920 31.15 96.12 94.84 98.48 ? ? ? ? 98.50 98.50
in267 91438.2109 24.48 99.40 92.66 ? ? ? ? ? ? ?
in268 89482.2790 41.41 97.93 93.04 99.78 ? ? ? ? 98.80 98.80
in269 83546.6830 48.56 99.19 96.77 99.88 ? ? ? ? 99.46 99.46
in270 87509.4062 34.87 97.20 92.81 ? ? ? ? ? 95.73 95.73
in271 85951.6810 42.83 95.87 93.42 97.72 ? ? ? ? 98.51 98.51
in272 88642.8220 49.07 92.82 95.86 97.28 ? ? ? ? ? ?
in273 87909.9070 39.27 99.20 95.06 99.96 ? ? 99.21 ? ? ?
in274 83417.7890 45.77 98.89 93.02 99.18 ? ? 98.89 ? 98.33 98.33
in275 89915.1500 37.12 98.05 94.19 99.17 ? ? 99.57 ? 98.79 98.79
in276 86626.4375 50.65 99.36 99.40 ? ? ? 99.78 ? 97.18 99.36
in277 88537.7270 37.49 96.56 98.09 98.79 ? ? 98.79 ? 96.58 96.58
in278 91326.9531 52.88 95.55 96.72 ? ? ? 99.28 ? 99.28 99.28
in279 87058.9800 46.83 ? 89.91 96.27 ? ? 98.88 ? 97.82 98.45
in280 86529.5938 38.92 97.14 93.11 ? ? ? ? ? 99.46 99.46
in281 88470.4141 53.98 96.51 95.42 ? ? ? ? ? 99.75 99.75
in282 88985.3290 46.25 92.23 91.56 96.27 ? ? ? ? 95.57 96.27
in283 88915.6590 49.94 95.47 96.33 96.33 ? ? ? ? ? ?
in284 88241.9750 39.20 96.30 96.86 96.86 ? ? ? ? ? 97.14
in285 85953.2490 45.59 96.57 93.35 97.89 ? ? ? ? 99.16 99.16
in286 88323.4844 57.41 92.98 ? ? ? ? ? ? 92.53 92.31
in287 91652.7400 32.42 99.46 88.37 99.46 ? ? ? ? 93.58 ?
in288 85639.0090 41.68 95.93 96.81 97.90 ? ? ? ? 96.81 96.17
in289 86032.8140 49.01 96.03 91.94 96.03 ? ? ? ? 97.12 97.48
in290 92103.2070 42.87 95.79 90.63 96.06 ? ? ? ? 94.55 95.24
in291 94188.2910 59.11 92.98 95.55 96.30 ? ? ? ? 94.64 94.64
in292 94063.9650 57.29 97.14 95.96 96.56 ? ? ? ? 97.90 ?
in293 85810.6210 51.78 98.18 95.25 98.82 ? ? ? ? 97.04 ?
in294 91167.3160 49.30 94.62 91.92 96.80 ? ? ? ? ? ?
in295 89267.5156 34.74 94.01 93.08 ? ? ? ? ? ? 95.56
in296 90000.2970 22.43 98.55 93.35 98.55 ? ? ? ? ? ?
in297 89725.9360 27.45 ? 94.05 94.84 ? ? ? ? 97.43 97.43
in298 89166.7422 47.96 98.65 93.52 ? ? ? ? ? ? 98.77
in299 92218.6094 41.60 98.03 95.49 ? ? ? 99.53 ? 93.10 93.10

Continue in next page. . .



BRKGA FOR WINNER DETERMINATION 47

Table 19: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in300 88373.3281 48.68 97.91 ? ? ? ? ? ? 99.30 96.75

Table 20. Best results for LG 1500/1500 instances.

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in601 108800.4450 58.25 95.76 91.03 96.77 ? ? 98.18 ? 97.43 97.43
in602 105611.4760 24.41 93.92 92.95 95.78 ? ? ? ? 94.12 94.12
in603 105121.0220 39.04 92.40 88.06 92.54 ? ? 97.57 ? ? ?
in604 107733.8050 50.52 96.29 96.13 96.29 98.96 98.96 98.96 ? 98.04 98.04
in605 109840.9840 52.38 93.23 92.38 94.98 ? ? ? ? ? ?
in606 107113.0670 37.26 92.47 97.42 98.23 ? ? ? ? 93.83 93.83
in607 113180.2840 43.74 90.23 93.54 93.54 ? ? ? ? 91.09 ?
in608 105266.1070 50.50 96.26 88.48 97.88 ? ? ? ? 99.07 99.07
in609 109472.3320 3.23 96.71 90.87 95.77 ? ? ? ? 94.18 95.55
in610 113716.9650 32.91 93.89 88.04 95.86 ? ? 98.04 ? 95.87 98.04
in611 106666.3438 10.31 94.57 88.69 ? ? ? ? ? 98.76 98.76
in612 109796.7400 54.31 ? 96.59 ? ? ? ? ? 96.91 94.91
in613 107980.1570 71.82 93.49 86.40 93.09 ? ? ? ? 96.58 ?
in614 108364.5859 49.66 ? 89.98 ? ? ? ? ? ? ?
in615 110508.8281 37.36 97.15 86.14 ? ? ? 98.92 ? 92.40 92.40
in616 109740.4922 44.02 88.30 91.67 ? ? ? ? ? 95.39 96.64
in617 113302.4340 45.99 92.27 91.02 93.78 ? ? ? ? 91.75 95.29
in618 111385.0810 47.03 94.81 88.56 99.93 ? ? 99.58 ? 95.53 99.57
in619 107571.5930 43.20 97.72 90.46 94.97 ? ? ? ? 97.72 ?
in620 110937.9750 59.54 92.13 93.65 95.07 ? ? 97.96 ? 97.96 96.75
in621 106133.8500 41.62 ? 93.40 93.40 ? ? ? ? 98.14 98.14
in622 107551.7370 55.58 91.12 94.14 98.49 ? ? ? ? 96.71 97.53
in623 109487.0290 42.38 94.77 94.57 94.99 ? ? ? ? 96.90 96.90
in624 104386.9790 48.61 92.76 92.27 95.69 ? ? ? ? ? ?
in625 109065.3594 43.83 96.90 88.55 ? ? ? ? ? 94.30 97.57
in626 114704.0340 50.12 89.36 88.28 96.60 ? ? ? ? 97.77 92.88
in627 108846.2344 37.55 91.65 95.31 ? ? ? 99.17 ? 99.17 99.17
in628 108169.6953 42.91 94.53 ? ? ? ? 97.07 ? 97.51 96.74
in629 107929.2600 40.10 95.76 94.64 97.16 ? ? ? ? 98.12 98.29
in630 105830.0620 54.00 94.55 93.68 99.65 ? ? ? ? 99.75 99.75
in631 116505.2440 31.18 94.57 94.02 96.91 ? ? ? ? ? ?
in632 104631.7140 52.88 92.98 90.76 95.18 ? ? 99.59 ? 98.28 ?
in633 105564.4000 65.72 ? 90.90 98.72 ? ? ? ? 94.20 94.02
in634 108901.7300 47.86 94.31 91.85 93.34 ? ? ? ? 93.80 93.80
in635 112902.6340 39.75 92.44 86.62 92.44 ? ? ? ? 94.72 94.72
in636 106574.7480 48.82 92.64 91.03 98.23 ? ? 99.07 ? 97.76 93.89
in637 107989.7280 33.07 92.70 91.77 99.01 ? ? ? ? 99.01 99.01
in638 112899.6320 30.01 97.48 88.95 92.88 ? ? 97.48 ? 97.48 97.48
in639 108894.4550 43.77 92.99 94.68 95.35 ? ? ? ? ? ?
in640 108275.1328 53.59 96.04 91.48 ? ? ? 99.08 ? 96.60 96.60
in641 109744.0625 56.06 98.77 92.27 ? ? ? 99.73 ? 98.77 98.77
in642 114182.9688 40.41 91.12 90.13 ? ? ? ? ? ? ?
in643 104015.0240 13.04 94.62 91.75 97.97 ? ? ? ? 97.97 ?
in644 108025.7490 60.10 98.22 93.57 98.34 ? ? 99.03 ? 99.03 98.25
in645 105841.6720 37.99 92.97 90.05 96.51 ? ? ? ? 96.08 97.25
in646 107800.1030 33.71 93.84 94.90 95.98 ? ? ? ? ? ?
in647 107701.7109 51.25 90.90 93.95 ? ? ? 95.92 ? 95.37 95.37
in648 105790.5900 37.28 ? 96.66 ? ? ? 99.93 ? 99.55 99.55
in649 107587.3710 40.30 88.79 94.52 95.70 ? ? 98.63 ? ? 99.79
in650 103330.9010 45.80 92.36 93.79 96.86 ? ? ? ? 97.02 97.50
in651 103827.2970 55.97 95.17 94.21 98.85 ? ? ? ? ? ?
in652 107760.2480 28.48 94.24 97.48 97.48 ? ? ? ? 97.20 96.19
in653 113946.4766 34.60 91.38 89.41 ? ? ? ? ? 94.22 94.22
in654 111738.2310 35.91 94.25 89.29 98.26 ? ? ? ? ? ?
in655 111785.0640 44.33 91.74 88.65 97.39 ? ? ? ? 96.13 96.13
in656 112259.2750 43.93 90.25 96.67 96.67 ? ? ? ? 94.21 95.51
in657 112708.6560 37.47 ? 93.86 96.88 ? ? ? ? 95.65 ?
in658 110751.5340 38.17 91.70 91.29 93.87 ? ? 96.80 ? ? ?
in659 106545.4270 39.45 94.76 96.16 96.16 ? ? 99.03 ? ? ?

Continue in next page. . .



48 C.E. ANDRADE, R.F. TOSO, M.G.C. RESENDE, AND F.K. MIYAZAWA

Table 20: (continued).

Inst. Best CORAL CPLEX RGRK BOMA CARA CALP GARA GALP SDRA SDLP

in660 112293.6080 39.96 98.65 91.81 96.61 ? ? 99.72 ? 99.72 98.65
in661 113106.6290 30.29 97.20 87.06 92.81 ? ? ? ? 95.86 97.63
in662 108298.0790 58.18 97.41 91.26 91.26 ? ? ? ? 94.29 94.29
in663 104826.7800 52.39 95.93 95.40 95.40 ? ? ? ? 99.03 92.33
in664 112866.8650 42.89 95.93 91.67 94.66 ? ? 99.38 ? 99.68 99.68
in665 113002.6720 39.05 98.78 94.75 97.33 ? ? 98.78 ? 96.68 96.68
in666 106441.1562 46.49 ? 91.88 ? ? ? ? ? 98.54 98.54
in667 104683.7500 65.93 97.55 91.77 ? ? ? ? ? 97.75 97.75
in668 107483.1580 45.33 94.12 93.41 98.89 ? ? ? ? 98.12 98.12
in669 108163.4690 42.49 97.80 93.65 96.78 ? ? ? ? 95.71 94.23
in670 110200.8160 50.35 94.90 92.73 96.53 ? ? ? ? 99.98 99.85
in671 109306.8438 48.13 99.75 ? ? ? ? ? ? 99.75 99.75
in672 107534.8870 43.05 93.33 95.58 95.58 ? ? ? ? 96.40 95.58
in673 112320.2500 44.61 92.20 92.34 ? ? ? ? ? 98.43 98.43
in674 109558.2344 37.01 91.87 87.59 ? ? ? ? ? 95.40 95.40
in675 108131.9880 47.04 ? 92.14 97.81 ? ? ? ? ? ?
in676 107052.1910 37.62 94.64 88.05 96.10 ? ? ? ? ? ?
in677 107831.5370 45.33 96.19 97.47 99.68 ? ? 99.68 ? 97.03 97.22
in678 102422.8290 29.45 ? 95.83 96.87 ? ? ? ? ? ?
in679 107982.4560 48.90 90.90 92.06 99.21 ? ? 98.61 ? 96.35 96.11
in680 107500.5000 44.67 96.69 91.50 ? ? ? ? ? 98.92 98.92
in681 105237.2870 53.94 93.19 92.10 99.85 ? ? ? ? ? ?
in682 107948.1260 38.39 97.33 89.67 98.25 ? ? ? ? 98.25 99.93
in683 107777.6130 7.06 95.19 93.47 96.08 ? ? ? ? 98.25 98.25
in684 114153.7410 62.07 91.14 85.74 94.52 ? ? ? ? 92.55 94.26
in685 106686.6160 39.69 94.83 92.42 92.74 ? ? 97.71 ? 97.81 97.81
in686 106364.3580 19.52 99.45 92.48 98.55 ? 99.53 99.45 99.53 97.70 97.70
in687 108301.4710 44.81 97.06 94.98 97.05 ? ? ? ? 99.10 99.10
in688 112012.5703 50.12 93.49 94.55 ? ? ? 99.83 ? 95.27 97.60
in689 105968.1680 48.45 92.72 94.96 97.70 ? ? ? ? 98.39 98.39
in690 108489.7109 34.23 92.05 92.90 ? ? ? ? ? 97.02 97.02
in691 105564.6090 37.21 93.06 96.78 96.78 ? ? ? ? 98.50 98.50
in692 109226.0700 44.39 93.71 91.40 97.15 ? ? ? ? 98.99 97.40
in693 106719.6950 31.31 97.08 93.34 97.58 ? ? 99.56 ? 99.56 97.08
in694 114477.0540 47.90 89.45 94.44 94.44 ? ? 96.94 ? 93.66 93.66
in695 110240.9860 14.09 91.30 93.91 93.91 ? ? 98.04 ? ? ?
in696 104559.9530 39.47 ? 95.00 98.94 ? ? ? ? 99.43 99.43
in697 105958.6570 23.47 98.78 92.49 98.46 ? ? ? ? 98.78 98.78
in698 105463.0312 26.21 95.12 92.14 ? ? ? ? ? 97.86 97.77
in699 107132.3340 41.24 96.37 96.85 98.42 ? ? 99.26 ? 99.14 99.14
in700 106730.6770 45.46 95.37 95.11 95.11 ? ? ? ? 97.09 94.31

(Carlos E. Andrade) University of Campinas, Av. Albert Einstein, 1251, Campinas, SP,

Brazil

E-mail address: andrade@ic.unicamp.br

(Rodrigo F. Toso) Department of Computer Science, Rutgers University, 110 Frel-

inghuysen Road, Piscataway, NJ 08854 USA
E-mail address: R.F. Toso

(Mauricio G.C. Resende) AT&T Labs Research, 200 South Laurel Avenue, Room A5-
1F34, Middletown, NJ 07748 USA

E-mail address: mgcr@research.att.com

(Flávio K. Mizasawa) University of Campinas, Av. Albert Einstein, 1251, Campinas, SP,
Brazil

E-mail address: fkm@ic.unicamp.br


