Biased and unbiased random-key genetic
algorithms: An experimental analysis *

José F. Gongalves!, Mauricio G. C. Resende?, and Rodrigo F. Toso®

! Universidade do Porto, 4200-464 Porto, Portugal,
jfgoncal@fep.up.pt
2 AT&T Labs Research, Florham Park, NJ 07932, USA,
mgcr@research.att.com
% Rutgers University, Piscataway, NJ 08854, USA,
rtoso@cs.rutgers.edu

Abstract. We study the runtime performance of three types of random-
key genetic algorithms: the unbiased algorithm of Bean (1994); the bi-
ased algorithm of Gongalves and Resende (2011); and a greedy version
of Bean’s algorithm on 12 instances from four types of covering prob-
lems: general-cost set covering, Steiner triple covering, general-cost set
k-covering, and unit-cost covering by pairs. The experiments show that,
in 11 of the 12 instances, the greedy version of Bean’s algorithm is faster
than Bean’s original method and that the biased variant is faster than
both variants of Bean’s algorithm.

Keywords: Genetic algorithm, biased random-key genetic algorithm,
random keys, combinatorial optimization, heuristics, metaheuristics, ex-
perimental algorithms.

1 Introduction

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean [2]. In a RKGA, solutions are encoded as vectors
of randomly generated real numbers in the interval [0, 1). Though Bean proposed
they be used to solve combinatorial optimization problems where solutions can
be represented as permutation vectors, e.g. sequencing and quadratic assignment,
they are in fact applicable to a much wider range of problems [6]. A determin-
istic algorithm, called a decoder, takes as input a solution vector and associates
with it a feasible solution of the combinatorial optimization problem for which
an objective value or fitness can be computed. In a minimization (resp. max-
imization) problem, we say that solutions with smaller (resp. larger) objective
function values are more fit than those with larger (resp. smaller) values.
A RKGA evolves a set, or population, of random-key vectors, or individuals,

over a number of iterations, or generations. The initial population is made up of

* This research was partially supported by funds granted by the ERDF through the
Programme COMPETE and by the Portuguese Government through FCT — Foun-
dation for Science and Technology, project PTDC/ EGE-GES/ 117692/ 2010.

p real n-vectors of random keys. Each component of an initial solution vector is
generated independently of each other, at random, in the real interval [0, 1). After
the fitness of each individual is computed by the decoder in generation k, the
population is partitioned into two groups of individuals: a small group of p. elite
individuals, i.e. those with the best fitness values, and the remaining set of p—p,
non-elite individuals. To evolve the population, a new generation of individuals
must be produced. All elite individuals of the population of generation k are
copied without modification to the population of generation k + 1. Mutation, in
genetic algorithms as well as in biology, is key for evolution of the population.
RKGAs implement mutation by introducing mutants into the population. A
mutant is simply a vector of random keys generated the same way as an element
of the initial population. At each generation, a small number (p,,) of mutants are
introduced into the population. With the p, elite individuals and the p,,, mutants
accounted for in population k + 1, p — p. — pyn additional individuals need to
be produced to complete the p individuals that make up the new population.
This is done by producing p — pe — pm, offspring through the process of mating
or crossover, by combining pairs of individuals of the current population.

Bean [2] selects two parents at random from the entire population to imple-
ment mating in a RKGA and allows a parent to be selected more than once
in a given generation. One parent is referred to as parent A while the other is
parent B. A biased random-key genetic algorithm, or BRKGA [6], differs from
Bean’s algorithm in the way parents are selected for mating. In a BRKGA, each
element is generated combining one element selected at random from the elite
partition of the current population (this is parent A) and one from the non-
elite partition (parent B). We say the selection is biased since an elite parent
has a higher probability of being selected for mating than a non-elite parent.
Repetition in the selection of a mate is allowed and therefore an individual can
produce more than one offspring in the same generation. Parameterized uniform
crossover [13] is used to implement mating in both RKGAs and BRKGAs. Let
pA > 0.5 be the probability that an offspring inherits the vector component of
parent A. As before, let n denote the number of components in the solution
vector of an individual. For ¢ = 1,...,n, the i-th component ¢(7) of the offspring
vector ¢ takes on the value of the i-th component a(i) of parent A with proba-
bility pa and the value of the i-th component b(4) of parent B with probability
pp = 1 — pa. In this paper, we also introduce a slight variation of Bean’s algo-
rithm, which we call RKGA*, where once two parents are selected for mating,
the best fit of the two takes on the role of parent A while the other is parent B.
Ties are broken by rank in the sorted population.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key
vectors and the population is once again partitioned into elite and non-elite
individuals to start a new generation.

As aforementioned, the role of mutants is to help the algorithm escape from
local (non-global) optima. An escape occurs when a locally-optimal elite solution
is combined with a mutant and the resulting offspring is better fit than both

parents. Another way to avoid getting stuck in local optima is to embed the
random-key genetic algorithm in a multi-start strategy. After i, > 0 generations
without improvement in the fitness of the best solution, the best overall solution
is tentatively updated with the best fit solution in the population, the population
is discarded and the algorithm is restarted.

The paper is organized as follows. In Section 2 we describe the four cover-
ing problems and in Section 3 propose random-key genetic algorithms for each
problem. Experimental results comparing implementations of RKGA, RKGA*,
and BRKGA for each of the four covering problems are presented in Section 4.

2 Four set covering problems

In this section, we define four set covering problems for which later, in Sec-
tion 3, we propose random-key genetic algorithms. All problems addressed in
this section are NP-hard [5].

Given n finite sets Py, Ps, ..., Py, let sets I and J be defined as I = U}_; P; =
{1,2,...,m} and J = {1,...,n}. Associate a cost ¢; > 0 with each element
j € J. Asubset J* C Jis called a cover if Uje s« P; = I. The cost of the cover
is Zje]* cj. The general-cost set covering problem is to find a minimum cost
cover.

A special case of set covering is where ¢; = 1, for all j € J. This problem is
called the unit-cost set covering problem and its objective can be thought of as
finding a cover of minimum cardinality.

The set k-covering problem is a generalization of the set covering problem, in
which each object i € I must be covered by at least k elements of {P,...,P,}.
Note that the general-cost set covering problem as well as the unit-cost set cover-
ing problem are special cases of set k-covering. In both, £ = 1, and furthermore,
in unit-cost set covering c¢; =1 for all j € J.

Let I ={1,2,...,m}, J = {1,2,...,n}, and associate with each element of
j € J acost ¢; > 0. For every pair {j,k} € J x J, with j # k, let w(j,k) be
the subset of elements in I covered by pair {j, k}. A subset J* C J is a cover by
pairs if

U =Gk=r

{j,k}yeT*xJ*

The cost of J* is ZjeJ* c;j. The set covering by pairs problem is to find a mini-
mum cost cover by pairs.

3 Random-key genetic algorithms for covering

Biased random-key genetic algorithms for set covering have been proposed in [4,
8,11]. These include a BRKGA for the Steiner triple covering problem, a unit-
cost set covering problem [11], BRKGA heuristics for the set covering and set
k-covering problems [8], and a BRKGA for set covering by pairs [4]. We review
these heuristics in the remainder of this section.

The random-key genetic algorithms for the set covering problems of Section 2
that we describe in this section all encode solutions as a n-vector X of random
keys, where n = |J|. The j-th key X; corresponds to the j-th element of set J,
forj=1,...,n.

Decoding is similar for all four covering problems. The decoding scheme has
three steps. In step 1, a tentative cover solution J* is constructed by placing in
J* all elements j € J for which A; > 1/2. If J* is a feasible cover, then step 2
is skipped. Otherwise, in step 2, a greedy algorithm is used to construct a valid
cover starting from J*. Later in this section, we describe these greedy algorithms.
Finally, in step 3, a local improvement procedure is applied to the cover. Later
in this section, we describe the different local improvement procedures.

The decoder not only returns the cover J* but also modifies the vector of
random keys X" such that it decodes directly into J* with the application of only
the first phase of the decoder. To do this we reset X as follows:

X; if X; >0.5and j € J*
yo_ J1-% X <05andje
L ¥ if X; <0.5and j ¢ J*

1—Xj 1fXJZO5andj¢J*

We use two greedy algorithms. The first is for set k-covering and its special
cases, set covering and unit-cost set covering. The second one is for covering by
pairs.

A greedy algorithm for set covering [7] starts from the partial cover J* defined
by X. This greedy algorithm proceeds as follows. While J* is not a valid cover,
add to J* the smallest index j € J \ J* for which the inclusion of j in J*
corresponds to the minimum ratio 7; of cost ¢; to number of yet-uncovered
elements of I that become covered with the inclusion of 7 in J*. For the special
case of unit-cost set covering, this reduces to adding the smallest index j € J\ J*
for which the inclusion of j in J* maximizes the number 7; of yet-uncovered
elements of I that become covered with the inclusion of j in J*. In this iterative
process, we use a binary heap to store the 7; values of unused columns, allowing
us to retrieve a column j with largest 7; value in O(log m)-time and update the
7 values of the remaining columns in O(logn)-time after column j is added to
the solution.

A greedy algorithm for unit-cost covering by pairs is proposed in Breslau et
al. [4]. It starts with set J* defined by X. Then, as long as J* is not a valid
cover, find an element j € J\ J* such that J* U {j} covers a maximum number
of yet-uncovered elements of I. Ties are broken by the index of element j. If the
number of yet-uncovered elements of I that become covered is at least one, add
j to J*. Otherwise, find a pair of {j1,7j2} C J\ J* such that J* U {j1} U {j2}
covers a maximum number of yet-uncovered elements in I. Ties are broken first
by the index of ji, then by the index of jo. If such a pair does not exist, then
the problem is infeasible. Otherwise, add j; and js to J*.

Given a cover J*, the local improvement procedure attempts to make ele-
mentary modifications to the cover with the objective of reducing its cost. We

use two types of local improvement procedures: greedy uncover and 1-opt. In the
decoder for set k-covering we apply greedy uncover, followed by 1-opt, followed
by greedy uncover if necessary. In the special case of unit-cost set covering only
greedy uncover is used. The decoder implemented for set covering by pairs does
not make use of any local improvement procedure. Instead, greedy uncover is
applied to each elite solution after the iterations of the genetic algorithm end. In
the experiments described in Section 4, this local improvement is not activated.

Given a cover J*, greedy uncover attempts to remove superfluous elements
of J*, i.e. elements j € J* such that J*\ {j} is a cover. This is done by scanning
the elements j € J* in decreasing order of cost c;, removing those elements that
are superfluous.

Given a cover J*, I-opt attempts to find an element j € J* and another
element ¢ ¢ J* such that ¢; < ¢; and J*\ {j} U {i} is a cover. If such a pair
is found, 4 replaces j in J*. This is done by scanning the elements j € J*
in decreasing order of cost c¢;, searching for an element ¢ ¢ J* that covers all
elements of I left uncovered with the removal of each j € J*.

4 Computational experiments

We report in this section computational results with the three variants of random-
key genetic algorithms introduced in Section 1. They are the biased variant —
BRKGA, Bean’s unbiased variant - RKGA, and - RKGA*, the variant of Bean’s
algorithm that assigns the best fit parent the role of parent A.

Our goal in these experiments is to compare the performance of these three
types of heuristics on different problem instances and show that the BRKGA
variant is the most effective of the three.

In the experiments, we consider four problem types: general-cost set cov-
ering (instances scp4l, scp51, and scpal of Beasley [3]), Steiner triple (unit-
cost) covering (instances stn135, stn243, and stn405 of Resende et al. [11]),
general-cost set k-covering (instances scp41-2, scp45-11, and scp48-7 of Pes-
soa et al. [9]), and unit-cost covering by pairs (instances n558-i0-m558-b140,
n220-10-m220-b220, and n190-19-m190-b95 of Breslau et al. [4]).

The experiment consists in running the three variants 100 times on each of
the 12 instances. Therefore, the genetic algorithms are run a total of 3600 times.
Each run is independent of the other and stops when a solution with cost at
least as good as a given target solution value is found. The objective of these
runs is to derive empirical runtime distributions, or time-to-target (TTT) plots
[1], for each of the 36 instance/variant pairs and then estimate the probabilities
that a variant is faster than each of the other two, using the iterative method
proposed in Ribeiro et al. [12].

Table 1 lists the instances, their dimensions, the values of the target solutions
used in the experiments, and the best solution known to date. Of the 12 instances,
a target solution value equal to the best known solution was used on 10 instances
while on two (stn405 and n558-i10-m558-b140) larger values were used. The
best known solution to this date for stn405 is 435 and we used a target solution

6

Table 1. Test instances used in the computational experiments. For each instance,
the table lists its class, name, dimensions, value of the target solution used in the
experiments, and the value of the best known solution to date.

Problem class Instance name m n k Triples Target BKS
General set covering scpél 200 1000 1 - 429 429
scpb1 200 2000 1 - 253 253
scpal 300 3000 1 - 253 253
Steiner triple covering stn135 3015 135 1 - 103 103
stn243 9801 243 1 - 198 198
stn405 27270 405 1 - 339 335
Set k-covering scp41-2 200 1000 2 - 1148 1148
scp45-11 200 1000 11 - 188856 188856
scp48-7 200 1000 7 - 8421 8421

Covering by pairs n558-10-m558-b140 558 140 1 1,301,314 55 50
n220-i0-m220-b220 220 220 1 289,657 62 62
n190-i9-m190-b95 190 95 1 173,030 37 37

value of 439 while for n558-10-m558-b140 the best known solution is 50 and
we used 55. This was done since Bean’s algorithm did not find the best known
solutions for these instances after repeated attempts.

All algorithms were implemented in C++ using the BRKGA Application
Programming Interface (API) of Toso and Resende [14]. The parameter settings
for each problem class are shared by all three variants (BRKGA, RKGA, and
RKGA¥*). These parameters are listed in Table 2. For each problem class, the
table lists its name, population size, the sizes of the elite and mutant sets, the
probability that the offspring will inherit the key of parent A, and the number of
iterations without improvement of the incumbent solution that triggers a restart
of the multi-start algorithm in which the genetic algorithms are embedded. For
each problem class, variants BRKGA, RKGA, and RKGA* share the same C++
code, differing only in how parents are selected and which parent is assigned the
role of parent A. This eliminates any differences in performance that could be
attributed to coding.

Recall that our goal is to derive runtime distributions for the three heuris-
tics on the set of 12 instances. Runtime distributions, or time-to-target plots,
are useful tools for comparing running times of stochastic search algorithms.
Since the experiments involve running the algorithms 3600 times, with some
very long runs, we distributed the experiment over several heterogeneous com-
puters. Since CPU speeds vary among the computers used for the experiment,
instead of producing runtime distributions directly, we first derive computer-
independent iteration count distributions and use them to subsequently derive

7

Table 2. Parameter settings used in the computational experiments. For each problem
class, the table lists its name and the following parameters: size of population (p), size
of elite partition (pe), size of mutant set (p.,), inheritance probability (p4), and number
of iterations without improvement of incumbent that triggers a restart (i,).

Problem class P De Dm PA ir

General set covering 10 x m [0.2 x p] [0.15 x p] 0.70 200
Steiner triple covering 10 x n [0.15 X p] [0.55 x p] 0.65 200
Set k-covering 10 x m [0.2 x p] [0.15 x p] 0.70 200

Covering by pairs m [0.2 x p] [0.15 x p] 0.70 200

runtime distributions. To do this, we multiply iteration counts for each heuris-
tic/instance pair by their corresponding mean running time per iteration. Mean
running times per iteration of each heuristic/instance pair are estimated on an
8-thread computer with an Intel Core i7-2760QM CPU running at 2.40GHz. On
the 12 instances, we ran each heuristic independently 10 times for 100 genera-
tions and recorded the average running (user) time. User time is the sum of all
running times on all threads and corresponds to the running time on a single
processor. These times are listed in Table 3.

Figures 1 and 2 show iteration count distributions for the three heuristics on
each of the 12 problem instances that make up the experiment. Suppose that for
a given variant, all 100 runs find a solution at least as good as the target and
let t1,%9,...,t100 be the corresponding iteration counts sorted from smallest to
largest. Each iteration count distribution plot shows the pairs of points

{t1,.5/100}, {t2,1.5/100}, . .., {t100, 99.5/100},

connected sequentially by lines. For each heuristic/instance pair and target solu-
tion value, the point {¢;, (i —0.5)/100} on the plot indicates that the probability
that the heuristic will find a solution for the instance with cost at least as good as
the target solution value in at most ¢; iterations is estimated to be (i —0.5)/100,
fori=1,...,100.

For each heuristic/instance pair, let 7 denote the average CPU time for one
iteration of the heuristic on the instance. Then a runtime distribution plot can
be derived from an iteration count distribution plot with the pairs of points

{7 x t1,.5/100}, {7 x t2,1.5/100}, ..., {7 X t100,99.5/100}.

For each heuristic/instance pair and target solution value, the point {7 x ¢;, (i —
0.5)/100} on the plot indicates that the probability that the heuristic will find a
solution for the instance with cost at least as good as the target solution value
in at most time 7 X t; is estimated to be (i — 0.5)/100, for i = 1,...,100.

8

Table 3. Average CPU time per 100 generations for each problem and each algorithm.
For each instance, the table lists the average CPU times (in seconds on an Intel Core
i7-2760QM CPU at 2.40GHz) for 100 generations of heuristics BRKGA, RKGA, and
RKGA¥*. Averages were computed over 10 independent runs of each heuristic.

Instance name BRKGA RKGA RKGA*

scpél 21.01 24.71 22.67
scpb51 29.64 34.20 31.57
scpal 68.30 82.82 T77.73
stn135 17.61 18.05 18.43
stn243 134.67 137.99 137.20
stn405 769.87 777.37 773.80
scp41-2 43.28 50.76 47.08
scp45-11 398.94 412.35 404.60
scp48-7 211.79 231.89 218.87

n558-i0-m558-b140 318.36 426.89 386.53
n220-10-m220-b220 34.62 43.14 39.81
n190-i9-m190-b95 12.55 1595 14.26

Visual examination of time-to-target plots usually allow easy ranking of
heuristics. However, we may wish to quantify these observations. To do this
we rely on the iterative method described in Ribeiro et al. [12]. Their itera-

tive method takes as input two sets of k time-to-target values {t.,t2 ... tk
and {t},t2,...,tF}, drawn from unknown probability distributions, correspond-

ing to, respectively, heuristics a and b, and estimates Pr(t, < #5), the probability
that t, < tp, where t, and t;, are the random variables time-to-target solution of
heuristics a and b, respectively. Their method iterates until the error is less than
0.001. Applying their procedure to the sets of time-to-target values collected in
the experiment, we compute Pr(tgrrxca < trxca), Pr(tprxca < trkca-), and
Pr(trxcar < trkga) for all 12 instances.* These values are shown in Table 4.

We conclude this section with some remarks about the experiment.

On all instances BRKGA was the fastest per iteration of the three heuris-
tics while on all but one instance (stn135), RKGA* was faster per iteration than
RKGA. BRKGA was as high as 34% faster than RKGA (on n558-10-m558-b140)
to as low as 1% faster (on stn405) while it was as high as 21% faster than RKGA*
(on n558-10-m558-b140) to as low as 0.5% faster (on stn405). These differences
in running times per iteration can be explained by the fact that the incomplete
greedy algorithms as well as the local searches implemented in the decoders take

4 The authors of [12] kindly shared with us a perl script implementation of their
iterative method to compute the probabilities.

)}. ;%x.ir‘”'*
09 1 09 | gty 1
.. 08 1 .. o8¢t 1
Z 07 1 5 o7t 1
© ©
g 06 1 8 06¢f 1
> 05 scpdl { o 05 stn135 -
> >
g o4 1 § o4]
= >
g 03 1 g€ 03¢ 1
3 3
0.2 BRKGA —— | 021 BRKGA —— |
0.1 & RKGA* 1 0.1 RKGA* B
o RKGA - o . RKGA -
0 2k 4k 6k 8k 10k 12k 14k 0 20k 40k 60k 80k 100k 120k 140k
iterations to target solution iterations to target solution
1 e I T p—
09 | l i 1 |
> 087) 1 = 1
3 07¢ I 1 3 1
© . ©
5 o I i f
> 05t i sep5l | o stn243
2 2
B 04y 1 E]
=] =]
€ 03¢ § I 1 £]
3 3
02 ¢ [.| BRKGA —— | BRKGA —— |
01} . i RKGA* 1 RKGA* J
s | i RKGA ~-x- RKGA ~-x-
0 et L ES L L L L 0 L L n L
4 6 8 10 12 14 16 18 20 22 0 1k 2k 3k 4k
iterations to target solution iterations to target solution
1 [, : ; e
4 0.9 e ¥ 4
e
2 |z o8 ! 1
3 1 3 07 1
© ©
8 1 8 o6 |
> 1 S os stn405
2 2
<] 1 & 04 1
= =
£ 1 g 03 1
3 3
0.2
R 0.1
0 . . .
0 1k 2k 3k 4k
iterations to target solution iterations to target solution

Fig. 1. Iteration count distributions for general-cost set covering instances scp4i,
scp51, and scpal with target values 429, 253, and 253, respectively (on the left from
top to bottom) and for Steiner triple covering instances stn135, stn243, and 405 with
target values 103, 198, and 439, respectively (on the right from top to bottom).

10

= *

09 | 4 f" j w**ﬁ ,
> 087 ; 15 . Fi |
s Ty I | 3 - |
S 06} i] 2 |
o : o
> 05t scpdl2 | o n558-i0-m558-b140
=3 =3
g 04t { % 1
£ o3} | 2]
3 0.2 l R 3 1

: l" BRKGA —— BRKGA ——

01} g A RKGA* 1 RKGA*]

o e RKGA - = _ ., RKGA -
0 10 20 30 40 50 60 70 0 5k 10k 15k 20k 25k 30k 35k 40k
iterations to target solution iterations to target solution

09t f/i oot] e]
z %8 ~ | 2z " 1
5 077 Kf 1 3)
8 06 18 |
> 05 ¢ scpas1l | o ; n220-i0-m220-b220 1
> > §

g 04 1 8 044§ 1
g o3 1 B o03#¢]
3 0.2 1 3 f 1
100k 150k 200k 250k 300k 350k 10k 15k
iterations to target solution iterations to target solution

0.9 ot 1 . 1
5 08 {50 |
3 07 1 3 . i 1
5 os [£]
> 05 scpd8-7 1 o O Nn190-i9-m190-b95 1
=3 =3
g o4 { & o 1
g o3 1 2 o3l]
3 3
o 0.2 | o . |

BRKGA —— BRKGA ——

0.1 RKGA* B X RKGA* B

o] _ RKGA .- o ... RKGA -
100k 200k 300k 400k 500k 600k 0 1k 2k 3k 4k 5k 6k 7k
iterations to target solution iterations to target solution

Fig. 2. Iteration count distributions for general-cost set k-covering instances scp41-2,
scp45-11, and scp48-7 with target values 1148, 18856, and 8421, respectively
(on the left from top to bottom) and for unit-cost covering by pairs instances
n558-10-m558-b558, n220-i0-m220-b220, and n190-i9-m190-b95 with target values
55, 62, and 37, respectively (on the right from top to bottom).

11

Table 4. Probability that random variable “time-to-target solution” of BRKGA
(tBrrca) will be less than that of RKGA (trxga) and RKGA* (trkxga+) and that
random variable “time-to-target solution” of RKGA* will be less than that of RKGA
on an Intel Core i7-2760QM CPU at 2.40GHz. Computed for empirical runtime distri-
butions of the heuristics using the method of Ribeiro et al. [12] with error 0.001.

Instance name Pr(terrca < trxca) Pr(tBrrxca < trxca=) Pr(trxcas < trkxca)
scp4l 0.740 0.652 0.588
scp51 0.999 0.960 0.943
scpal 0.733 0.643 0.642
stn135 0.485 0.496 0.489
stn243 0.864 0.730 0.768
stn405 0.917 0.721 0.859
scp41-2 0.999 0.975 0.975
scp45-11 0.881 0.547 0.854
scp48-7 0.847 0.591 0.797
n558-i0-m558-b140 0.892 0.743 0.754
n220-i0-m220-b220 0.883 0.735 0.734
n190-i9-m190-b95 0.841 0.728 0.701

longer to converge when starting from random vectors, i.e. vectors containing
keys mostly from mutants (recent descendents of mutants). This behavior has
been also observed in GRASP heuristics where variants with restricted candidate
list (RCL) parameters leading to more random constructions usually take longer
than those with more greedy constructions [10]. Of the three variants, RKGA
is the most random, while BRKGA is the least. The exception is in the Steiner
triple covering class where the algorithms have parameter settings that make
them near equally random. In that class, we observe the most similar running
times per iteration.

With respect to iteration count distribution, we observe visually that with the
exception of instance stn135, BRKGA dominates both RKGA and RKGA* and
RKGA* dominates RKGA. The parameter settings of the BRKGA for Steiner
triple covering in Resende et al. [11] were such that the resulting heuristic was
more random than BRKGAs used to solve other problems. The less random
parameter settings simply did not result in BRKGAs that were as effective as
the more random variant. With respect to stn135, it appears that even more
randomness results in improved performance. Of the three heuristics, the most
random is RKGA while the least random is BRKGA.

Putting together the measured average times per iteration and iteration count
distributions allows us to compute the probabilities listed in Table 4. They

12

show, with the exception of instance stn135, a clear domination of BRKGA
over RKGA and RKGA*, and of RKGA* over RKGA.

Though we have confined this study only to set covering problems, we have

observed that the described relative performances of the three variants occurs on
most, if not all, other problems we have tackled with biased random-key genetic
algorithms [6].

References

10.

11.

12.

13.

14.

. Aiex, R., Resende, M., Ribeiro, C.: TTTPLOTS: A perl program to create time-

to-target plots. Optimization Letters 1 (2007) 355-366

Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. on Computing 6 (1994) 154-160

Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal of
the Operational Research Society 41 (1990) 1069-1072

Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Hajiaghayi, M., Johnson, D.,
Resende, M., Sen, S.: Disjoint-path facility location: Theory and practice. In:
ALENEX 2011: Workshop on algorithm engineering and experiments. (January
2011)

Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of
NP-completeness. W.H. Freeman and Company, San Francisco, Calif (1979)

. Gongalves, J., Resende, M.: Biased random-key genetic algorithms for combinato-

rial optimization. J. of Heuristics 17 (2011) 487-525

Johnson, D.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9 (1974) 256-278

Pessoa, L., , Resende, M., Toso, R.: Biased random-key genetic algorithms for set
k-covering. Technical report, AT&T Labs Research, Florham Park, New Jersey
(2011)

Pessoa, L., Resende, M., Ribeiro, C.: A hybrid Lagrangean heuristic with GRASP
and path relinking for set k-covering. Computers and Operations Research (2012)
Published online 3 January.

Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures: Ad-
vances and applications. In Gendreau, Potvin, J.Y., eds.: Handbook of Meta-
heuristics. 2nd edn. Springer (2010) 281-317

Resende, M., Toso, R., Gongalves, J., Silva, R.: A biased random-key genetic
algorithm for the Steiner triple covering problem. Optimization Letters 6 (2012)
605-619

Ribeiro, C., Rosseti, 1., Vallejos, R.: Exploiting run time distributions to compare
sequential and parallel stochastic local search algorithms. J. of Global Optimization
54 (2012) 405-429

Spears, W.M., DeJong, K.A.: On the virtues of parameterized uniform crossover.
In: Proceedings of the Fourth International Conference on Genetic Algorithms.
(1991) 230236

Toso, R., Resende, M.: A C++ application programming interface for biased
random-key genetic algorithms. Technical report, AT&T Labs Research, Florham
Park, New Jersey (2012)

