
AN EXPERIMENTAL COMPARISON OF BIASED AND

UNBIASED RANDOM-KEY GENETIC ALGORITHMS

J.F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

Abstract. Random key genetic algorithms are heuristic methods for solving
combinatorial optimization problems. They represent solutions as vectors of
randomly generated real numbers, the so-called random keys. A deterministic
algorithm, called a decoder, takes as input a vector of random keys and asso-
ciates with it a feasible solution of the combinatorial optimization problem for
which an objective value or fitness can be computed. We compare three types
of random-key genetic algorithms: the unbiased algorithm of Bean (1994);
the biased algorithm of Gonçalves and Resende (2010); and a greedy version
of Bean’s algorithm on 12 instances from four types of covering problems:
general-cost set covering, Steiner triple covering, general-cost set k-covering,
and unit-cost covering by pairs. Experiments are run to construct runtime
distributions for 36 heuristic/instance pairs. For all pairs of heuristics, we
compute probabilities that one heuristic is faster than the other on all 12 in-
stances. The experiments show that, in 11 of the 12 instances, the greedy
version of Bean’s algorithm is faster than Bean’s original method and that the
biased variant is faster than both variants of Bean’s algorithm.

1. Introduction

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for combinatorial optimization problems for
which solutions can be represented as a permutation vector, e.g. sequencing and
quadratic assignment. In a RKGA, chromosomes are represented as vectors of ran-
domly generated real numbers in the interval [0, 1). A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a feasible
solution of the combinatorial optimization problem for which an objective value
or fitness can be computed. In a minimization (resp. maximization) problem, we
say that solutions with smaller (resp. larger) objective function values are more fit
than those with larger (resp. smaller) values.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p real n-vectors of random
keys. Each component of the solution vector is generated independently of each
other at random in the real interval [0, 1). After the fitness of each individual is
computed by the decoder in generation k, the population is partitioned into two
groups of individuals (see Figure 1): a small group of pe elite individuals, i.e. those
with the best fitness values, and the remaining set of p − pe non-elite individuals.
To evolve the population, a new generation of individuals must be produced. All

Date: December 12, 2012; Revised October 10, 2013.
Key words and phrases. Genetic algorithm, biased random-key genetic algorithm, random

keys, combinatorial optimization, heuristics, metaheuristics, experimental algorithms.
AT&T Labs Research Technical Report.

1



2 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

Figure 1. Population of p solutions is partitioned into a smaller
set of pe elite (most fit) solutions and a larger set of p−pe non-elite
(least fit) solutions.

elite individual of the population of generation k are copied without modification to
the population of generation k + 1 (see Figure 2). Mutation, in genetic algorithms
as well as in biology, is key for evolution of the population. RKGAs implement
mutation by introducing mutants into the population. A mutant is simply a vector
of random keys generated in the same way as an element of the initial population. At
each generation, a small number (pm) of mutants is introduced into the population
(see Figure 2). With the pe elite individuals and the pm mutants accounted for
in population k + 1, p − pe − pm additional individuals need to be produced to
complete the p individuals that make up the new population. This is done by
producing p − pe − pm offspring through the process of mating or crossover (see
Figure 3).

Bean (1994) selects two parents at random from the entire population to imple-
ment mating in a RKGA and allows a parent to be selected more than once in a
given generation. One parent is referred to as parent A while the other is parent B.
A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende, 2011),
differs from a RKGA in the way parents are selected for mating. In a BRKGA,
each element is generated combining one element selected at random from the elite
partition (this is parent A) in the current population and one from the non-elite
partition (parent B). We say the selection is biased since one parent is always an
elite individual. Repetition in the selection of a mate is allowed and therefore an
individual can produce more than one offspring in the same generation. Parame-

terized uniform crossover (Spears and DeJong, 1991) is used to implement mating
in both RKGAs and BRKGAs. Let ρA > 0.5 be the probability that an offspring
inherits the vector component of parent A. Let n denote the number of components
in the solution vector of an individual. For i = 1, . . . , n, the i-th component c(i) of
the offspring vector c takes on the value of the i-th component a(i) of parent A with
probability ρA and the value of the i-th component b(i) of parent B with probabil-
ity 1 − ρA. In this paper, we also consider a slight variation of Bean’s algorithm,
which we call RKGA∗, where once two parents are selected for mating, the best fit
of the two is called parent A while the other is parent B.



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 3

When the next population is complete, i.e. when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key vectors
and the population is partitioned into elite and non-elite individuals to start a new
generation. Figure 4 shows a flow diagram of the BRKGA framework with a clear
separation between the problem dependent and problem independent components
of the method.

Random-key genetic algorithms search the solution space of the combinatorial
optimization problem indirectly by exploring the continuous n-dimensional hyper-
cube, using the decoder to map solutions in the hypercube to solutions in the
solution space of the combinatorial optimization problem where the fitness is eval-
uated.

As aforementioned, the role of mutants is to help the algorithm escape from local
optima. An escape occurs when a locally-optimal elite solution is combined with a
mutant and the resulting offspring is better fit than both parents. Another way to
avoid getting stuck in local optima is to embed the random-key genetic algorithm
in a multi-start strategy. After ir > 0 generations without improvement in the
fitness of the best solution, the best overall solution is tentatively updated with the
best fit solution in the population, the population is discarded and the algorithm
is restarted.

To describe a random-key genetic algorithm for a specific combinatorial opti-
mization problem, one needs only to show how solutions are encoded as vectors of
random keys and how these vectors are decoded to feasible solutions of the opti-
mization problem. In the next section, we describe random-key genetic algorithms
for the four set covering problems problems considered in this paper.

The paper is organized as follows. In Section 2 we describe the four covering
problems and in Section 3 we propose random-key genetic algorithms for each
problem. Experimental results comparing implementations of RKGA, RKGA∗,

Figure 2. All pe elite solutions from population k are copied un-
changed to population k+1 and pm mutant solutions are generated
in population k + 1 as random-key vectors.



4 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

Figure 3. To complete population k + 1, p − pe − pm offspring
are created by combining a parent selected at random from the
elite set of population k with a parent selected at random from the
non-elite set of population k. Parents can be selected for mating
more than once per generation.

Figure 4. Flowchart of random-key genetic algorithm with prob-
lem independent and problem dependent components.

and BRKGA for each of the four covering problems are presented in Section 4. We
make concluding remarks in Section 5.

2. Four set covering problems

In this section, we define four set covering problems and propose random-key
genetic algorithms for each.

2.1. General-cost set covering. Given n finite sets P1, P2, . . . , Pn, let sets I and
J be defined as I = ∪n

j=1Pj = {1, 2, . . . ,m} and J = {1, . . . , n}. Associate a cost



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 5

cj > 0 with each element j ∈ J . A subset J∗ ⊆ J is called a cover if ∪j∈J∗Pj = I.
The cost of the cover is

∑

j∈J∗ cj . The set covering problem is to find a minimum
cost cover. Let A be the binary m × n matrix such that Ai,j = 1 if and only if
i ∈ Pj . An integer programming formulation for set covering is

min {cx : Ax ≥ em, x ∈ {0, 1}n},

where em denotes a vector of m ones and x is a binary n-vector such that xj = 1 if
and only if j ∈ J∗. The set covering problem has many applications (Vemuganti,
1998) and is NP-hard (Garey and Johnson, 1979).

2.2. Unit-cost set covering. A special case of set covering is where cj = 1, for all
j ∈ J . This problem is called the unit-cost set covering problem and its objective
can be thought of as finding a cover of minimum cardinality.

2.3. General-cost set k-covering. The set k-covering problem is a generalization
of the set covering problem, in which each object i ∈ I must be covered by at least
k elements of {P1, . . . , Pn}. As before, let A be the binary m × n matrix such
that Ai,j = 1 if and only if i ∈ Pj . An integer programming formulation for set
k-covering is

min {cx : Ax ≥ km, x ∈ {0, 1}n},

where km denotes an m-vector of all ks. For example, k4 = (k, k, k, k)⊤.
Note that the set covering problem (Subsection 2.1) as well as the unit-cost set

covering problem (Subsection 2.2) are special cases of set k-covering. In both, k = 1
and, furthermore, in unit-cost set covering cj = 1 for all j ∈ J .

2.4. Covering by pairs. Let I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, and associate
with each element of j ∈ J a cost cj > 0. For every pair {j, k} ∈ J ×J , with j 6= k,
let π(j, k) be the subset of elements in I covered by pair {j, k}. A subset J∗ ⊆ J is
a cover by pairs if

⋃

{j,k}∈J∗×J∗

π(j, k) = I.

The cost of J∗ is
∑

j∈J∗ cj. The set covering by pairs problem is to find a minimum
cost cover by pairs.

For all j ∈ J , let xj be a binary variable such that xj = 1 if and only if j ∈ J∗.
For every pair {j, k} ∈ J × J with j < k, let the continuous variable yjk be such
that yjk ≤ xj and yjk ≤ xk. Therefore, if yjk > 0 then xj = xk = 1. Let π−1(i)
denote the set of pairs {j, k} ∈ J × J that cover i ∈ I. An integer programming
formulation for the covering by pairs problem is

min
∑

j∈J

cjxj

subject to
∑

{j,k}∈π−1(i)

yjk ≥ 1, ∀i ∈ I,

yjk ≤ xj , ∀{j, k} ∈ J × J, (j < k),

yjk ≤ xk, ∀{j, k} ∈ J × J, (j < k),

xj = {0, 1}, ∀j ∈ J,

0 ≤ yjk ≤ 1, ∀{j, k} ∈ J × J, (j < k).



6 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

3. Random-key genetic algorithms for covering

Biased random-key genetic algorithms for set covering have been proposed by
Resende et al. (2012), Breslau et al. (2011), and Pessoa et al. (2011). These include
a BRKGA for the Steiner triple covering problem, a unit-cost set covering problem
(Resende et al., 2012), BRKGA heuristics for the set covering and set k-covering
problems (Pessoa et al., 2011), and a BRKGA for set covering by pairs (Breslau
et al., 2011). We review these heuristics in the remainder of this section.

The random-key genetic algorithms for the set covering problems of Section 2
that we describe in this section all encode solutions as a |J |-vector X of random
keys. The j-th key Xj corresponds to the j-th element of set J .

Decoding is similar for all four covering problems. The decoding scheme has
three steps. In step 1, a tentative cover solution J∗ is constructed by placing in
J∗ all elements j ∈ J for which Xj > 1/2. If J∗ is a feasible cover, then step 2
is skipped. Otherwise, in step 2, a greedy algorithm is used to construct a valid
cover starting from J∗. Later in this section, we describe these greedy algorithms.
Finally, in step 3, a local improvement procedure is applied to the cover. Later in
this section, we describe the different local improvement procedures.

The decoder not only returns the cover J∗ but also modifies the vector of random
keys X such that it decodes directly into J∗ with the application of only the first
phase of the decoder. To do this we reset X as follows:

Xj =



















Xj if Xj ≥ 0.5 and j ∈ J∗

1−Xj if Xj < 0.5 and j ∈ J∗

Xj if Xj < 0.5 and j 6∈ J∗

1−Xj if Xj ≥ 0.5 and j 6∈ J∗.

3.1. Greedy algorithms. We use two greedy algorithms. The first is for set k-
covering and its special cases, set covering and unit-cost set covering. The second
one is for covering by pairs.

3.1.1. Greedy algorithm for set k-covering. A greedy algorithm for set covering
(Johnson, 1974) starts from the partial cover J∗ defined by X . This greedy algo-
rithm proceeds as follows. While J∗ is not a valid cover, add to J∗ the smallest
index j ∈ J \ J∗ for which the inclusion of j in J∗ corresponds to the minimum
ratio πj of cost cj to number of yet-uncovered elements of I that become covered
with the inclusion of j in J∗. For the special case of unit-cost set covering, this
reduces to adding the smallest index j ∈ J \ J∗ for which the inclusion of j in J∗

maximizes the number πj of yet-uncovered elements of I that become covered with
the inclusion of j in J∗. In this iterative process, we use a binary heap to store
the πj values of unused columns, allowing us to retrieve a column j with largest
πj value in O(logm)-time and update the π values of the remaining columns in
O(log n)-time after column j is added to the solution.

3.1.2. Greedy algorithm for unit-cost covering by pairs. A greedy algorithm for unit-
cost covering by pairs is proposed in Breslau et al. (2011). It starts with set J∗

defined by X . Then, as long as J∗ is not a valid cover, find an element j ∈ J \ J∗

such that J∗ ∪{f} covers a maximum number of yet-uncovered elements of I. Ties
are broken by the index of element j. If the number of yet-uncovered elements
of I that become covered is at least one, add j to J∗. Otherwise, find a pair of



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 7

{j1, j2} ⊆ J \ J∗ such that J∗ ∪ {j1} ∪ {j2} covers a maximum number of yet-
uncovered elements in I. Ties are broken first by the index of j1, then by the index
of j2. If such a pair does not exist, then the problem is infeasible. Otherwise, add
j1 and j2 to J∗.

3.2. Local improvement procedures. Given a cover J∗, the local improvement
procedure attempts to make elementary modifications to the cover with the objec-
tive of reducing its cost. We use two types of local improvement procedures: greedy
uncover and 1-opt. In the decoder for set k-covering we apply greedy uncover,
followed by 1-opt, followed by greedy uncover if necessary. In the special case of
unit-cost set covering only greedy uncover is used. The decoder implemented for set
covering by pairs does not make use of any local improvement procedure. Instead,
greedy uncover is applied to each elite solution after the iterations of the genetic
algorithm end. In the experiments described in Section 4, this local improvement
is not activated.

3.2.1. Greedy uncover. Given a cover J∗, greedy uncover attempts to remove su-
perfluous elements of J∗, i.e. elements j ∈ J∗ such that J∗ \ {j} is a cover. This
is done by scanning the elements j ∈ J∗ in decreasing order of cost cj , removing
those elements that are superfluous.

3.2.2. 1-Opt. Given a cover J∗, 1-Opt attempts to find an element j ∈ J∗ and
another element i 6∈ J∗ such that ci < cj and J∗ \ {j} ∪ {i} is a cover. If such a
pair is found, i replaces j in J∗. This is done by scanning the elements j ∈ J∗ in
decreasing order of cost cj , searching for an element i 6∈ J∗ that covers all elements
of I left uncovered with the removal of each j ∈ J∗.

4. Computational experiments

We report in this section computational results with the two variants of random-
key genetic algorithms (the biased variant – BRKGA – and Bean’s unbiased vari-
ant – RKGA) of Section 1 as well as a variant of Bean’s algorithm which we shall
refer to as RKGA*. Like Bean’s RKGA, RKGA* selects both parents at random
from the entire population. This is unlike a BRKGA, where one parent is always
selected from the elite partition of the population and the other from the non-elite
partition. Unlike Bean’s algorithm, a RKGA* assigns the best fit of both parents
as parent A and the other as parent B for crossover. Ties are broken by rank in the
sorted population. RKGA assigns the selected parents to the roles of parent A and
parent B at random.

Our goal in these experiments is to compare these three types of heuristics on
different problem instances and show that the BRKGA is the most effective of the
three.

In the experiments, we consider four problem types: general-cost set cover-
ing, Steiner triple (unit-cost) covering, general-cost set k-covering, and unit-cost
covering by pairs. For general-cost set covering we consider instances scp41,
scp51, and scpa1 of Beasley (1990). The Steiner triple covering instances used
are stn135, stn243, and stn405 (Resende et al., 2012). For general-cost set k-
covering we consider instances scp41-2, scp45-11, and scp48-7 of Pessoa et al.
(2013). For unit-cost covering by pairs, we consider instances n558-i0-m558-b140,
n220-i0-m220-b220, and n190-i9-m190-b95 of Breslau et al. (2011).



8 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

Table 1. Test instances used in the computational experiments.
For each instances, the table lists its class, name, dimensions, value
of the target solution used in the experiments, and the value of the
best solution known to date.

Problem class Instance name m n k Triples Target BKS

General set covering scp41 200 1000 1 – 429 429
scp51 200 2000 1 – 253 253
scpa1 300 3000 1 – 253 253

Steiner triple covering stn135 3015 135 1 – 103 103
stn243 9801 243 1 – 198 198
stn405 27270 405 1 – 339 335

Set k-covering scp41-2 200 1000 2 – 1148 1148
scp45-11 200 1000 11 – 188856 188856
scp48-7 200 1000 7 – 8421 8421

Covering by pairs n558-i0-m558-b140 558 140 1 1,301,314 55 50
n220-i0-m220-b220 220 220 1 289,657 62 62
n190-i9-m190-b95 190 95 1 173,030 37 37

The experiment consists in running the three variants (BRKGA, RKGA, and
RKGA*) 100 times on each of the 12 instances. Therefore, the genetic algorithms
are run a total of 3600 times. Each run is independent of the other and stops when
a solution with cost at least as good as a given target solution value is found. The
objective of these runs is to derive empirical runtime distributions, or time-to-target
(TTT) plots (Aiex et al., 2007) for each of the 36 instance/variant pairs and then
estimate the probabilities that a variant is faster than each of the other two, using
the iterative method proposed in Ribeiro et al. (2012). This way, the three variants
can be compared on each instance.

Table 1 lists the instances, their dimensions, the values of the target solutions
used in the experiments, and the best solution known to date.

All algorithms were implemented in C++ using the BRKGA Application Pro-
gramming Interface (API) of Toso and Resende (2012). The parameter settings for
each problem class are shared by all three variants (BRKGA, RKGA, and RKGA*).
These parameters are listed in Table 2. For each problem class, the table lists its
name, population size, the sizes of the elite and mutant sets, the probability that
the offspring will inherit the key of parent A, and the number of iterations without
improvement of the incumbent solution that triggers a restart. For each problem
class, variants BRKGA, RKGA, and RKGA* share the same C++ code, differing
only in how parents are selected and which parent is assigned the role of parent A.
This eliminates any differences in performance that could be due to coding.

The goal of the experiment is to derive runtime distributions for the three heuris-
tics on a set of 12 instances from the four problem classes. Runtime distributions,
or time-to-target plots (Aiex et al., 2007), are useful tools for comparing running
times of stochastic search algorithms. Since the experiments involve running the
algorithms 3600 times, with some very long runs, we distributed the experiment



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 9

Table 2. Parameter settings used in the computational experi-
ments. For each problem class, the table lists its name and the
following parameters: size of population (p), size of elite parti-
tion (pe), size of mutant set (pm), inheritance probability (ρA),
and number of iterations without improvement of incumbent that
triggers a restart (ir).

Problem class p pe pm ρA ir

General set covering 10×m ⌈0.2 × p⌉ ⌈0.15 × p⌉ 0.70 200

Steiner triple covering 10× n ⌈0.15 × p⌉ ⌈0.55 × p⌉ 0.65 200

Set k-covering 10×m ⌈0.2 × p⌉ ⌈0.15 × p⌉ 0.70 200

Covering by pairs m ⌈0.2 × p⌉ ⌈0.15 × p⌉ 0.70 200

Table 3. Average CPU time per 100 generations for each problem
and each algorithm. For each instance, the table list the CPU times
(in seconds on an Intel Core i7-2760QM CPU at 2.40GHz) for 100
generations of heuristics BRKGA, RKGA, and RKGA*. Averages
were computed over 10 independent runs of each heuristic.

Instance name BRKGA RKGA RKGA*

scp41 21.01 24.71 22.67
scp51 29.64 34.20 31.57
scpa1 68.30 82.82 77.73

stn135 17.61 18.05 18.43
stn243 134.67 137.99 137.20
stn405 769.87 777.37 773.80

scp41-2 43.28 50.76 47.08
scp45-11 398.94 412.35 404.60
scp48-7 211.79 231.89 218.87

n558-i0-m558-b140 318.36 426.89 386.53
n220-i0-m220-b220 34.62 43.14 39.81
n190-i9-m190-b95 12.55 15.95 14.26

over several heterogeneous computers. Since CPU speeds vary among the comput-
ers used for the experiment, instead of producing runtime distributions directly,
we first derive computer-independent iteration count distributions and use them
to subsequently derive runtime distributions. To do this, we multiple iteration
counts for each heuristic/instance pair by their corresponding mean running time
per iteration. Mean running times per iteration of each heuristic/instance pair are
estimated on an 8-thread computer with an Intel Core i7-2760QM CPU running



10 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

at 2.40GHz. On the 12 instances, we ran each heuristic independently 10 times
for 100 generations and recorded the average running (user) time. User time is the
sum of all running times on all threads and corresponds to the running time on a
single processor. These times are listed in Table 3.

Figures 5 –16 show iteration count distributions for the three heuristics on each
of the 12 problem instances that make up the experiment. Suppose that for a
given variant, all 100 runs find a solution at least as good as the target and let
t1, t2, . . . , t100 be the corresponding iteration counts sorted from smallest to largest.
Each iteration count distribution plot shows the pairs of points

{t1, .5/100}, {t2, 1.5/100}, . . . , {t100, 99.5/100},

connected sequentially by lines. For each heuristic/instance pair and target solution
value, the point {ti, (i − 0.5)/100} on the plot indicates that the probability that
the heuristic will find a solution for the instance with cost at least as good as the
target solution value in at most ti iterations is (i− 0.5)/100, for i = 1, . . . , 100.

For each heuristic/instance pair, let τ denote the average CPU time for one
iteration of the heuristic on the instance. Then a runtime distribution plot can be
derived from an iteration count distribution plot with the pairs of points

{τ × t1, .5/100}, {τ × t2, 1.5/100}, . . . , {τ × t100, 99.5/100}.

For each heuristic/instance pair and target solution value, the point {τ × ti, (i −
0.5)/100} on the plot indicates that the probability that the heuristic will find a
solution for the instance with cost at least as good as the target solution value in
at most time τ × ti is (i− 0.5)/100, for i = 1, . . . , 100.

Iteration count distributions are a useful graphical tool to compare algorithms on
a given instance. Consider, for example, the plots in Figure 5 which shows iteration
count distributions for BRKGA, RKGA*, and RKGA for general-cost set covering
instance scp41 using the optimal solution of 429 as the target solution. The plots
in this figure clearly show an ordering of the heuristics with respect to the number
of iterations needed to find an optimal solution. For example the probabilities
that BRKGA, RKGA*, and RKGA will find n optimal solution in at most 2000
iterations are, respectively, 83.5%, 58.5%, and 49.5%. Similarly, with a probability
of 60.5% the heuristics BRKGA, RKGA*, and RKGA will find an optimal solution
in at most 1076, 2139, and 2715 iterations.

However, we are often more interested in the distribution of the random variable
time-to-target solution than in iterations to target solution, so if the heuristic that
took the largest number of iterations to reach the optimal had the fastest running
time per iteration, it could be that its runtime distribution would be better than the
distribution of the heuristic that took the fewest iterations. For problem instance
scp41, this is not a problem since the average running times per 100 iterations for
BRKGA, RKGA*, and RKGA are, respectively, 22.02s, 22.67s, and 24.71s. As can
be seen in Table 3, this relative ordering is maintained for all instances with the
exception of stn135 where RKGA is slightly faster per iteration than RKGA*.

To produce runtime distributions we would ideally run the experiments on the
same machine. Since for these experiments this was not practical, we estimate
runtime distributions on a machine by computing the average time per iteration of
the heuristic on the instance on the machine and then multiply the entries of the
iteration count distributions by the corresponding average time per iteration.



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2000  4000  6000  8000  10000  12000  14000  16000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 5. Iteration count distributions for BRKGA, RKGA*, and
RKGA on instance scp41 with target solution 429.

Visual examination of time-to-target plots usually allow easy ranking of heuris-
tics. However, we may wish to quantify these observations. To do this we rely on the
iterative method described in Ribeiro et al. (2012). Their iterative method takes as
input two sets of k time-to-target values {t1a, t

2
a, . . . , t

k
a} and {t1b , t

2
b , . . . , t

k
b}, drawn

from unknown probability distributions, corresponding to, respectively, heuristics
a and b and estimates Pr(ta ≤ tb), the probability that ta ≤ tb, where ta and tb
are the random variables time-to-target solution of heuristics a and b, respectively.
Their algorithm iterates until the error is less than 0.001. A perl language script
of their method is described in Ribeiro and Rosseti (2013). Applying their pro-
gram to the sets of time-to-target values collected in the experiment, we compute
Pr(tBRKGA ≤ tRKGA), Pr(tBRKGA ≤ tRKGA∗), and Pr(tRKGA∗ ≤ tRKGA) for all 12
instances. These values are shown in Table 4.

We make the following remarks about the experiment.

• The experiment consisted in generating runtime distributions for three
types of heuristics: biased random-key genetic algorithm (Gonçalves and
Resende, 2011) – BRKGA, random-key genetic algorithm (Bean, 1994) –
RKGA, and a slightly modified variant of RKGA – RKGA*, on four classes
of combinatorial optimization problems: general-cost set covering, Steiner
triple covering, general-cost set k-covering, and unit-cost covering by pairs.
For each of the four problem classes, runtime distributions were generated
for each of the three heuristics on three problem instances.



12 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4  6  8  10  12  14  16  18  20  22

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 6. Iteration count distributions for BRKGA, RKGA*, and
RKGA on instance scp51 with target solution 253.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 7. Iteration count distributions for BRKGA, RKGA*, and
RKGA on instance scpa1 with target solution 253.



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20000  40000  60000  80000  100000  120000  140000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 8. Iteration count distributions for BRKGA, RKGA*, and
RKGA on instance stn135 with target solution 103.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 9. Iteration count distributions for BRKGA, RKGA*, and
RKGA on instance stn243 with target solution 198.



14 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 10. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance stn405 with target solution 339.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 11. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance scp41-2 with target solution 1148.



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50000  100000  150000  200000  250000  300000  350000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA
RKGA

Figure 12. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance scp45-11 with target solution 18856.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100000  200000  300000  400000  500000  600000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 13. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance scp48-7 with target solution 8421.



16 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5000  10000  15000  20000  25000  30000  35000  40000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 14. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance n558-i0-m558-b140 with target solution
55.

• Since the number of runs required to carried out the experiment was large
(3600) and many runs were lengthy, we distributed them on four multi-
core linux computers and generated iteration count distributions for all 36
heuristic/instance pairs. Each iteration count distribution was produced
running the particular heuristic on the instance 100 times, each using a
different initial seed as input for the random number generator.

• Of the 12 instances, a target solution value equal to the best known solution
was used on 10 instances while on two (stn405 and n558-i0-m558-b140)
larger values were used. The best known solution to this date for stn405 is
435 and we used a target solution value of 439 while for n558-i0-m558-b140
the best known solution is 50 and we used 55. This was done since Bean’s
algorithm did not find the best known solutions for these instances after
repeated attempts.

• To compute average running time per iteration, we ran all 36 heuristic/ in-
stance pairs 10 times for 100 iterations each on a Intel Core i7-2760QMCPU
at 2.40GHz using eight threads. Average 100-iteration user times (sum of
times over all threads) were measured for each pair and these values were
each divided by 100 to compute average time per iteration. On all instances
BRKGA was the fastest per iteration of the three heuristics while on all
but one instance (stn135), RKGA* was faster per iteration than RKGA.
BRKGA was as high as 34% faster than RKGA (on n558-i0-m558-b140)
to as low as 1% faster (on stn405) while it was as high as 21% faster than
RKGA* (on n558-i0-m558-b140) to as low as 0.5% faster (on stn405).



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5000  10000  15000  20000  25000  30000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 15. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance n220-i0-m220-b220 with target solution
62.

These differences in running times per iteration can be explained by the
fact that the incomplete greedy algorithms as well as the local searches
implemented in the decoders take longer to converge when starting from
random vectors, i.e. vectors containing keys mostly from mutants (recent
descendents of mutants). This behavior has been also observed in GRASP
heuristics where variants with restricted candidate list (RCL) parameters
leading to more random constructions usually take longer than those with
more greedy constructions (Resende and Ribeiro, 2010). Of the three vari-
ants, RKGA is the most random, while BRKGA is the least. The exception
is in the Steiner triple covering class where the algorithms have parameter
settings that make them near equally random. In that class, we observe
the most similar running times per iteration.

• With respect to iteration count distribution, we observe visually that with
the exception of instance stn135, BRKGA dominates both RKGA and
RKGA* and RKGA* dominates RKGA. The parameter settings of the
BRKGA for Steiner triple covering in Resende et al. (2012) were such that
the resulting heuristic was more random than BRKGAs used to solve other
problems. The less random parameter settings simply did not result in
BRKGAs that were as effective as the more random variant. With respect
to stn135, it appears that even more randomness results in improved per-
formance. Of the three heuristics, the most random is RKGA while the
least random is BRKGA.



18 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000  6000  7000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA*
RKGA

Figure 16. Iteration count distributions for BRKGA, RKGA*,
and RKGA on instance n190-i9-m190-b95 with target solution
37.

• Visual inspection of Figures 5 to 16 shows a clear domination of BRKGA
over RKGA, with the exception of instance stn135. This is backed up by
the probabilities shown in Table 4, where 0.733 ≤ Pr(tBRKGA ≤ tRKGA) ≤
0.999 for all but instance stn135 where Pr(tBRKGA ≤ tRKGA) = 0.485.

• Visual inspection of Figures 5 to 16 shows a clear domination of BRKGA
over RKGA*, with the exception of instances stn135 and scp45-11. This is
backed up by the probabilities shown in Table 4, where 0.591 ≤ Pr(tBRKGA ≤
tRKGA∗) ≤ 0.975 for all but instances instances stn135 and scp45-11,
where Pr(tBRKGA ≤ tRKGA∗) = 0.496 and 0.547, respectively.

• Visual inspection of Figures 5 to 16 shows a clear domination of RKGA*
over RKGA, with the exception of instance scp41. This is backed up by
the probabilities shown in Table 4, where 0.588 ≤ Pr(tBRKGA ≤ tRKGA) ≤
0.975 for all but instances scp41 and stn135, where Pr(tBRKGA ≤ tRKGA) =
0.489.

5. Concluding remarks

This paper studies runtime distributions for three types of random-key genetic
algorithms: the algorithm of Bean (1994) – RKGA, a slight modification of Bean’s
algorithm in which the best fit of the two parents selected for mating has higher
probability of passing along its keys to its offspring – RKGA*, and the biased
random-key genetic algorithm of Gonçalves and Resende (2011) – BRKGA. We
use the methodology described in Aiex et al. (2007) to generate plots of iteration



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 19

Table 4. Probability that time-to-target solution of BRKGA
(tBRKGA) will be less than that of RKGA (tRKGA) and RKGA*
(tRKGA∗) and probability that time-to-target solution of RKGA*
will be less than that of RKGA on an Intel Core i7-2760QM CPU
at 2.40GHz. Computed for empirical runtime distributions of the
three heuristics using the iterative method of Ribeiro et al. (2012).

Instance name Pr(tBRKGA ≤ tRKGA) Pr(tBRKGA ≤ tRKGA∗) Pr(tRKGA∗ ≤ tRKGA)

scp41 0.740 0.652 0.588
scp51 0.999 0.960 0.943
scpa1 0.733 0.643 0.642

stn135 0.485 0.496 0.489
stn243 0.864 0.730 0.768
stn405 0.917 0.721 0.859

scp41-2 0.999 0.975 0.975
scp45-11 0.881 0.547 0.854
scp48-7 0.847 0.591 0.797

n558-i0-m558-b140 0.892 0.743 0.754
n220-i0-m220-b220 0.883 0.735 0.734
n190-i9-m190-b95 0.841 0.728 0.701

count distributions for BRKGA, RKGA*, and RKGA on problem instances from
four classes of set covering problems: general-cost covering, Steiner triple covering,
general cost set k-covering, and unit-cost covering by pairs. In each class, the
experiment considers three instances. On each, the heuristics are run 100 times,
independently, and stop when a given target solution value (in most cases the best
known solution value) is found.

To obtain runtime distributions from the iteration count distributions we multi-
ply iteration counts for each algorithm/instance pair by the corresponding average
time per iteration obtained by running all algorithm/instance pairs 10 times for
100 iterations on the same computer.

With the sets of runtimes from each distribution on hand, we use the iterative
method of Ribeiro et al. (2012) to compute precise probabilities (having error at
most 0.001) that one method is faster than another.

We conclude that Bean’s algorithm (RKGA) can be improved by simply making
the best fit of the two parents chosen for mating have a higher probability of
passing along its keys to it offspring than the other parent. The resulting algorithm
is denoted RKGA*. For 11 of the 12 instances Pr(tRKGA∗ ≤ tRKGA) ≥ 0.588,
where tA is the random variable time-to-target solution of heuristic A. In 9 of the
12 instances Pr(tRKGA∗ ≤ tRKGA) ≥ 0.7. In 4 of the 12 instances Pr(tRKGA∗ ≤
tRKGA) ≥ 0.854. In 2 of the 12 instances Pr(tRKGA∗ ≤ tRKGA) ≥ 0.943. The biased
random-key genetic algorithm (BRKGA) does even better. In 11 of the 12 instances
Pr(tBRKGA ≤ tRKGA) ≥ 0.733. In 9 of the 12 instances Pr(tBRKGA ≤ tRKGA) ≥
0.841. In 3 of the 12 instances Pr(tBRKGA ≤ tRKGA) ≥ 0.917. Despite the fact



20 J. F. GONÇALVES, M.G.C. RESENDE, AND R.F. TOSO

that BRKGA has to order the population by fitness at each iteration, in addition
to the same work done by RKGA and RKGA*, it is still faster per iteration, on
average, than both RKGA and RKGA*. This is mainly due to the fact that it is not
as random as RKGA and RKGA*. Combining time per iteration with number of
iterations shows that BRKGA is faster than RKGA*, too. In 11 of the 12 instances
Pr(tBRKGA ≤ tRKGA∗) ≥ 0.547. In 9 of the 12 instances Pr(tBRKGA ≤ tRKGA∗) ≥
0.643. In 7 of the 12 instances Pr(tBRKGA ≤ tRKGA∗) ≥ 0.721. In 2 of the 12
instances Pr(tBRKGA ≤ tRKGA∗) ≥ 0.96.

Randomness is not always bad. On the Steiner triple covering instances, where
the fitness landscapes are flat, it pays off to be more random. In fact, for the Steiner
triple covering class, the parameter setting of BRKGA was more random than usual,
with pm = ⌈.55p⌉ instead of the usual ⌈.15p⌉ and ρA = 0.65 instead of the usual 0.7.
BRKGA was faster than both RKGA and RKGA* on both stn243 and stn405.
On stn135, however, both RKGA and RKGA* were slightly faster than BRKGA,
with Pr(tRKGA∗ ≤ tBRKGA) = 0.504 and Pr(tRKGA ≤ tBRKGA) = 0.515.

Though we have confined this study only to set covering problems, we have
observed that the described relative performances of the three variants occurs on
most, if not all, other problems we have tackled with biased random-key genetic
algorithms (Gonçalves and Resende, 2011).

Acknowledgment

This research has been partially supported by funds granted by the ERDF
through the Programme COMPETE and by the Portuguese Government through
FCT – Foundation for Science and Technology, project PTDC/ EGE-GES/ 117692/
2010.

References

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to
create time-to-target plots. Optimization Letters, 1:355–366, 2007.

J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA J. on Computing, 6:154–160, 1994.

J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal

of the Operational Research Society, 41:1069–1072, 1990.
L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Hajiaghayi, D.S. Johnson,
M.G.C. Resende, and S. Sen. Disjoint-path facility location: Theory and prac-
tice. In ALENEX 2011: Workshop on algorithm engineering and experiments,
January 2011.

M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory

of NP-completeness. W.H. Freeman and Company, San Francisco, Calif, 1979.
J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for
combinatorial optimization. J. of Heuristics, 17:487–525, 2011.

D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences, 9:256–278, 1974.
L.S. Pessoa, , M.G.C. Resende, and R.F. Toso. Biased random-key genetic algo-
rithms for set k-covering. Technical report, AT&T Labs Research, Florham Park,
New Jersey, 2011.



BIASED AND UNBIASED RANDOM-KEY GENETIC ALGORITHMS 21

L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro. A hybrid Lagrangean heuristic
with GRASP and path relinking for set k-covering. Computers and Operations

Research, 40:3132–3146, 2013.
M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:
Advances and applications. In Gendreau and J.-Y. Potvin, editors, Handbook of

Metaheuristics, pages 281–317. Springer, 2nd edition, 2010.
M.G.C Resende, R.F. Toso, J.F. Gonçalves, and R.M.A Silva. A biased random-key
genetic algorithm for the Steiner triple covering problem. Optimization Letters,
6:605–619, 2012.

C. C. Ribeiro and I. Rosseti. tttplots-compare: A perl program to compare
time-to-target plots or general runtime distributions of randomized algorithms.
Technical report, Department of Computer Science, Universidade Federal Flumi-
nense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil, 2013.

C.C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to
compare sequential and parallel stochastic local search algorithms. J. of Global

Optimization, 54:405–429, 2012.
W. M. Spears and K. A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

R.F. Toso and M.G.C. Resende. A C++ application programming interface for
biased random-key genetic algorithms. Technical report, AT&T Labs Research,
Florham Park, New Jersey, 2012.

R.R. Vemuganti. Applications of set covering, set packing and set partitioning mod-
els: A survey. In D-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial

Optimization, volume 1, pages 573–746. Kluwer Academic Publishers, 1998.

(José Fernando Gonçalves) Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-
464 Porto, Portugal.

E-mail address: jfgoncal@fep.up.pt

(Mauricio G.C. Resende) AT&T Labs Research, 200 South Laurel Avenue, Room A5-
1F34, Middletown, NJ 07748 USA.

E-mail address: mgcr@research.att.com

(Rodrigo F. Toso) Rutgers University, 110 Frelinghuysin Road, Piscataway, NJ 08854-
8019 USA.

E-mail address: rtoso@cs.rutgers.edu


