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This paper presents a biased random key genetic algorithm (BRKGA) for the
unequal area facility layout problem (UA-FLP) where a set of rectangular facilities
with given area requirements has to be placed, without overlapping, on a rectan-
gular floor space. The objective is to find the location and the dimensions of the
facilities such that the sum of the weighted distances between the centroids of the
facilities is minimized. A hybrid approach combining a BRKGA, to determine the
order of placement and the dimensions of each facility, a novel placement strat-
egy, to position each facility, and a linear programming model, to fine-tune the
solutions, is developed. The proposed approach is tested on 100 random datasets
and 28 of benchmark datasets taken from the literature and compared against
21 other benchmark approaches. The quality of the approach was validated by
the improvement of the best known solutions for 19 of the 28 extensively studied
benchmark datasets.
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1 Introduction

The facility layout design (FLP) problem is a challenging non-linear combinatorial optimiza-
tion problem encountered in many service and manufacturing organizations. The problem
has been extensively studied in the literature and good reviews can be found in Kusiak and
Heragu (1987) and Meller and Gau (1996).

∗ This work has been partially supported by projects PTDC/EGE-GES/117692/2010 and NORTE-07-0124-
FEDER-000057 funded by the North Portugal Regional Operational Programme (ON.2 – O Novo Norte),
under the National Strategic Reference Framework (NSRF), through the European Regional Development
Fund (ERDF) and the Programme COMPETE, and by national funds, through the Portuguese funding
agency, Fundação para a Ciência e a Tecnologia (FCT).
AT&T Labs Research Technical Report.
Date: 2014-08-15.

1



The variant of the FLP we focus on in this paper was originally formulated by Armour and
Buffa (1963) and involves determining the most cost-efficient arrangement of a given number
of rectangular facilities with unequal area requirements within a given rectangular floor space.
This problem is denoted as UA-FLP. The objective of the problem is to minimize the cost
associated with the interactions between facilities (the cost of material-handling flows). This
cost is commonly represented by the sum of the products (over all facility pairs) of the weighted
rectilinear distance and the material-handling flow between the centroids. The constraints of
the problem include facility area requirements and shape restrictions, as well as making sure
that the facilities do not overlap and are located within the boundary of the space floor.
The UA-FLP is NP-hard since it is a generalization of the quadratic assignment prob-

lem (QAP), where the optimization is carried over a finite set of possible facility locations.
The QAP was shown to be NP-hard by Sahni and Gonzalez (1976). Various methods and
procedures have been proposed to solve the FLP and can be classified classified into:

• Exact procedures - Montreuil (1991) proposed one of the first MIP formulations of the
FLP on the continuous plane. The model includes disjunctive constraints to prevent
facility overlaps and bounded perimeter constraints to enforce specified facility area and
shape requirements. The largest problem instance solved optimally by Montreuil’s orig-
inal formulation had six facilities. Meller et al. (1998) used valid inequalities to tighten
Montreuil’s formulation and were able to solve optimally problems with up to eight fa-
cilities. Sherali et al. (2003) used a polyhedral outer approximation to the facility area
to improve the model of Meller et al. (1998) and solved a nine-facility problem optimally.
Castillo and Westerlund (2005) developed an ε-accurate approximation. However, the
largest problem solved had only nine facilities. By reformulating the FLP, using the
sequence-pair representation of Murata et al. (1996), Meller et al. (2007) were able to
solve problems with up to 11 facilities. Konak et al. (2006) modeled the facility area
constraints exactly using a set of linear constraints derived from the structure of the
flexible bay structure representation and reported solving problems having up to 14 fa-
cilities. Banerjee et al. (1992), Montreuil et al. (1993), and Banerjee et al. (1997) used
design skeletons to reduce the complexity of MIP formulations for the FLP. Lacksonen
(1997) fixed the orientations of obvious facility pairs using a pre-processing heuristic.

• Heuristics and meta-heuristics - Tam and Li (1991) proposed a hierarchical approach
that employs a divide-and-conquer strategy consisting of three phases: (1) cluster anal-
ysis, (2) initial layout, and (3) layout refinement. The cluster analysis generates a
hierarchical structure of the layout. The second phase produces an initial layout of each
cluster which is subsequently refined in the third phase. Langevin et al. (1994) devel-
oped a heuristic approach based on Montreuil’s MIP model (Montreuil, 1991) to solve
spine layout problems. Kado (1996) developed six types of genetic algorithms using
a slicing-tree structure representation. Garces-Perez et al. (1996) proposed a multiple
purpose genetic programming kernel to generate slicing trees that are converted into
candidate solutions. Schnecke and Vornberger (1997) introduced a genetic algorithm
with a tree-structured genotype representation and hybrid problem-specific operators.
Dunker et al. (2003) developed a coevolutionary approach that improved mutation and
crossover operators and clustered the facilities into groups. Scholz et al. (2009) proposed
a tabu search algorithm with a slicing-tree representation and incorporated a bounding
curve for solving fixed and flexible facilities in UA-FLPs. Their tabu search incorporated
four types of neighborhood moves to find better solutions. Komarudin and Wong (2010)
proposed an Ant System to solve the UA-FLP using a slicing-tree representation and
several types of local search to improve its search performance. Wong and Komarudin
(2010) developed an Ant System algorithm for solving UA-FLPs using an improved
flexible bay structure representation called modified-FBS (mFBS). McKendall Jr and
Hakobyan (2010) introduced an approach which uses a boundary search construction
technique that places facilities along the boundaries of already placed facilities. The
solution is improved using a tabu search. Kulturel-Konak and Konak (2011b) use an
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ant colony optimization approach which uses a flexible bay structure representation.
Kulturel-Konak and Konak (2011a) produced an hybrid particle swarm optimization
and local search approach using a relaxed flexible bay structure (RFBS).

• Matheuristics - Gau and Meller (1999) proposed an algorithm that iterates between a
genetic algorithm with a slicing-tree representation and a mixed-integer program with
a subset of the binary variables set via the genetic algorithm. Montreuil et al. (2004)
put together an algorithm based on ant colony optimisation (ACO) and the zone-based
MIP (Montreuil et al., 2002) where the ACO-based heuristic searches for assignments of
facilities to zones, and then the zone-based MIP is used to determine the detailed layout,
including the input/output points of the facilities. Liu and Meller (2007) proposed a GA
combining the sequence-pair representation (Murata et al., 1996) with the MIP model of
Sherali et al. (2003). For a given sequence-pair, the corresponding layout is determined
in this hybrid approach using the linear programming (LP) relaxation of the MIP model.
Bozer and Wang (2012) introduced a hybrid approach based on a new representation
called the graph-pair representation. The graph-pair representation encodes the relative
locations of the facilities and the shape and a uses an LP to determine the exact location
of each facility. A simulated annealing algorithm is used to search for new layouts
based on the graph-pair representation. Recently, Kulturel-Konak and Konak (2013)
proposed a hybrid genetic algorithm and linear programming approach to solve the UA-
FLP which uses a new encoding scheme, called location/shape and which represents
the relative facility positions based on the centroids and orientations of the facilities.
After the relative facilities positions are set by the GA, the actual facility locations and
shapes are determined by solving an LP problem.

Our contribution to solve the UA-FLP is a matheuristic which combines a biased random-key
genetic algorithm (BRKGA), a novel placement strategy, and a linear programming model to
fine-tune the solutions.
The remainder of the paper is organized as follows. Section 2 presents a formal model of the

UA-FLP. Section 3 introduces the new approach, describing in detail the BRKGA, the novel
placement strategy, and the fitness function. Finally, in Section 4, we report on computational
experiments, and in Section 5 make concluding remarks.

2 Problem Formulation

Let N be the number of rectangular facilities with unequal areas to be placed, without any
overlap, on a rectangular floor space with dimensions (W,H) along the X- and Y -axis, re-
spectively. Each facility i = 1, ..., N is defined by its dimensions along the horizontal and
vertical axis (wi, hi), its area Ai = wi × hi, and the maximum aspect ratio, Rmax, which due
to practical reasons imposes the maximum permissible ratio between its longest and shortest
dimensions, i.e., Rmax ≥ max {wi, hi} /min {wi, hi}≥ 1.
A layout is defined by the coordinates of the centroid (xi, yi) and the horizontal (wi) and

vertical (hi) dimensions of each facility i. The cost function to be minimized is

Cost =
i=N∑
i=1

j=N∑
j=1

ci,j fi,j di,j

where fi,j represents the flow between facilities i and j (we assume that fi,i = 0), ci,j is
the cost per unit distance between i and j, and di,j is the distance between the centroids of
facilities i and j. This distance di,j can be measured according to one of the following distance
norms:

• Rectilinear distance (R): di,j = |xi − xj |+ |yi − yj |

• Euclidean distance (E ): di,j =
√

(xi − xj) ² + (yi − yj) ²
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• Squared Euclidean distance (SE ): di,j = (xi − xj) ² + (yi − yj) ²

Since most real-world layout problems make use of the rectilinear distance norm, we will
model the problem using this distance norm. In practice the dimensions of the floor space
and the area of the facilities are usually not hard constraints and can accommodate small
variations. To be able to include this flexibility when searching for a solution we will add to
our model the variables 4wi and 4hi to represent, respectively, the amount that each facility
i exceeds with respect to the horizontal and vertical dimensions of the floor space dimensions
(W,H) and include a term in the objective function to penalize this excess.
The problem can be cast in an intuitive way in the form of a nonlinear mixed integer

programming model, FLP-NMIP. In the model we will use the following additional notation:

Pi,j , Qi,j = Binary variables used to model the non-overlapping constraints;
Mx,My = Parameters defining upper bounds on the horizontal and vertical distance

between any two facilities, respectively.
dxi,j ,dxi,j , = Variables representing the distances between the facilities i and j along the

X- and Y -axis, respectively.
M = Constant used to penalize the solutions for exceeding the floor space

dimensions. The value of this constant should be chosen according to the
available flexibility to accommodate small variations in the dimensions of the
floor space. If no variations are allowed, then M =∞.

A nonlinear integer programming model of the facility layout problem is given in (2)-(15).
The objective function (2) minimizes the total cost using the appropriate distance norm.
Constraints (3)-(4) define the horizontal and vertical dimensions of the facility according
to the area and maximum ratio allowed. Constraints (5)-(8) impose the non-overlapping
constraints by forcing the facilities to be separated horizontally and/or vertically. Constraints
(9)-(10) force each facility to be within the horizontal and vertical limits of the floor space,
respectively. Constraints (11)-(14) represent the distances between all pairs of facilities (i, j)
according to the rectilinear norm distance function. Finally, constraints (15) are the domain
constraints for the variables.
In the model FLP-NMIP the constraints (3) are non-linear resulting in a hard-to-solve

model. However, Castillo and Westerlund (2005) developed a linear approximation based on a
cutting plane representation of the actual area constraint that guarantees that, at optimality,
the final area of each facility is within an ε% error of the required area regardless of the
aspect ratio of the facilities. To linearize the model and make it easier to solve, we replace
the non-convex and hyperbolic area constraints (3) and the aspect ratio constraints 4 with an
ε-accurate representation as follows:

− hi −
Ai

w2
i,k

wi ≤ 2
Ai

wi,k
, k = 0, . . . , Ci, ∀ i (1)

where wi,k corresponds to the tangent points of the cutting planes on the real curve and Ci is
the total number of points being used in the approximation according to the chosen ε% error
value. The resulting model with constraints (1) in place of constraints (3) will be denoted as
FLP-MIP.

(FLP -NMIP ) Minimize Cost =
i=N∑
i=1

j=N∑
j=1

ci,j fi,j
(
dxi,j + dxi,j

)
+M

i=N∑
i=1

(4wi +4hi) (2)

Subject to:

Facility aspect constraints

wi × hi = Ai ∀ i (3)
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Rmax
≤ wi

hi
≤ Rmax ∀ i (4)

Non-overlapping constraints

xi − xj +Mx (Pi,j +Qi,j) ≥
wi + wj

2
∀ i, j | j > i (5)

xj − xi +Mx (1− Pi,j +Qi,j) ≥
wi + wj

2
∀ i, j | j > i (6)

yi − yj +My (1 + Pi,j −Qi,j) ≥
hi + hj

2
∀ i, j | j > i (7)

yj − yi +My (2− Pi,j −Qi,j) ≥
hi + hj

2
∀ i, j | j > i (8)

Floor space constraints

wi

2
≤ xi ≤W −

wi

2
+4wi ∀ i (9)

hi
2
≤ yi ≤ H −

hi
2

+4hi ∀ i (10)

Distance constraints

xi − xj ≤ dxi,j ∀ i, j | j > i (11)

xj − xi ≤ dxi,j ∀ i, j | j > i (12)

yi − yj ≤ dyi,j ∀ i, j | j > i (13)

yj − yi ≤ dyi,j ∀ i, j | j > i (14)

Domain constraints

xi, yi, wi, hi, d
x
i,j , d

x
i,j ≥ 0 ∀ i and Pi,j , Qi,j ∈ {0, 1} ∀ i, j | j > i (15)

The mixed integer model FLP-MIP developed above is still computationally difficult and
fails to provide optimal or even near-optimal solutions on real-size problems due to the large
number of binary variables. To overcome this problem we developed a new solution methodol-
ogy, which combines a biased random-key genetic algorithm with a novel placement strategy.
In the next section we describe the new methodology.

3 Biased random-key genetic algorithm

We begin this section with an overview of the proposed solution methodology. This is followed
by a discussion of the biased random-key genetic algorithm, including detailed descriptions of
the solution encoding and decoding, evolutionary process and novel placement strategy.
We will first describe the algorithm for the case where the dimensions of the floor space are

unconstrained (i.e., we do not take into account equations 9 and 10). Later in Section 4.2 we
extend the approach to the constrained case.
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3.1 Overview

The new approach is based on a constructive heuristic algorithm which places the facilities,
one at a time, on the rectangular floor space. To avoid overlapping the facilities, we propose a
novel placement strategy which uses the concept of empty maximal-spaces, as described in Lai
and Chan (1997), and a novel, very efficient, placement procedure to position a facility within
a given empty maximal space. The new approach combines a biased random-key genetic
algorithm and the novel placement strategy.
The role of the genetic algorithm is to evolve the encoded parameters, or chromosomes, that

represent the facility placement sequence (FPS), the vector of facility aspect ratios (FAR),
and the position of the first facility (xfirst, yfirst). The vectors of encoded parameters are
decoded using a novel placement strategy which results in the placement of each facility. For
each chromosome, the following phases are applied to decode the chromosome:

1. Facility placement sequence decoder : This first phase decodes part of the chromosome
into the FPS, i.e., the sequence in which the facilities are placed on the floor space.

2. Facility aspect ratio decoder : The second phase decodes part of the chromosome into
the FAR, i.e., the vector of facility aspect ratios.

3. Position of the first facility decoder : The third phase decodes part of the chromosome
into the coordinates (xfirst, yfirst) of the first facility to be placed on the floor space.

4. Placement strategy : The fourth phase makes use of FPS, FAR, and (xfirst, yfirst),
defined in phases 1, 2, and 3, and places all the facilities on the floor space using the
novel placement strategy.

5. Fitness evaluation: The final phase computes the fitness of the solution obtained in
phase 4 (a measure of quality of the facility placement) using equation (2).

Figure 1 illustrates the sequence of steps applied to each chromosome generated by the
BRKGA.
The remainder of this section describes the genetic algorithm, the decoding procedure, and

the placement strategy in detail.

3.2 Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), for solving
sequencing problems were introduced in Bean (1994). In a RKGA, chromosomes are repre-
sented as vectors of randomly-generated real numbers in the interval [0, 1]. A decoder is a
deterministic algorithm that takes as input a chromosome and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness can be
computed.
A RKGA evolves a population of random-key vectors over a number of generations (itera-

tions). The initial population is made up of p vectors of r random keys. Each component of
the solution vector, or random key, is generated independently at random in the real interval
[0, 1]. After the fitness of each individual is computed by the decoder in generation g, the
population is partitioned into two groups of individuals: a small group of pe elite individuals,
i.e. those with the best fitness values, and the remaining set of p − pe non-elite individuals.
To evolve the population of generation g, a new generation (g+ 1) of individuals is produced.
All elite individuals of the population of generation g are copied without modification to the
population of generation g + 1. RKGAs implement mutation by introducing mutants into
the population. A mutant is a vector of random keys generated in the same way that an
element of the initial population is generated. Its role is similar to that of mutation in other
genetic algorithms (Goldberg, 1989), i.e. to introduce noise into the population and avoid
convergence of the entire population to a local optimum. At each generation, a small number
pm of mutants is introduced into the population. With pe + pm individuals accounted for in
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Figure 1: Architecture of the algorithm.

the population g+ 1, p− pe− pm additional individuals need to be generated to complete the
p individuals that make up population g+ 1. This is done by producing p− pe− pm offspring
solutions through the process of mating or crossover.

A biased random-key genetic algorithm (Gonçalves and Resende, 2011), or simply BRKGA,
differs from a RKGA in the way parents are selected for mating and how mating is carried
out. While in the RKGA of Bean (1994) both parents are selected at random from the entire
current population, in a BRKGA each element is generated combining a parent selected
at random from the elite partition in the current population and one from the rest of the
population. Repetition in the selection of a mate is allowed and therefore an individual can
produce more than one offspring in the same generation. As in a RKGA, parametrized uniform
crossover (Spears and Dejong, 1991) is used to implement mating in a BRKGA. Let ρe be
the probability that an offspring inherits the vector component of its elite parent. Recall that
r denotes the number of components in the solution vector of an individual. For i = 1, . . . , r,
the i-th component c(i) of the offspring vector c takes on the value of the i-th component
e(i) of the elite parent e with probability ρe and the value of the i-th component ē(i) of the
non-elite parent ē with probability 1− ρe. While in a BRKGA ρe >

1
2 , in a RKGA this is not

necessarily the case.
When the next population is complete, i.e. when it has p individuals, fitness values are

computed for all of the newly created random-key vectors and the population is partitioned
into elite and non-elite individuals to start a new generation.
A BRKGA searches the solution space of the combinatorial optimization problem indirectly

by searching the continuous r-dimensional hypercube, using the decoder to map solutions in
the hypercube to solutions in the solution space of the combinatorial optimization problem
where the fitness is evaluated.
To specify a biased random-key genetic algorithm, we simply need to specify its parame-

ters, how solutions are encoded and decoded, and how their corresponding fitness values are
computed. We specify our algorithm next by first showing how the facility placement problem

7



is encoded and then decoded into a solution and how their fitness evaluation is computed.

3.2.1 Chromosome representation and decoding

A chromosome encodes a solution to the problem as a vector of random keys. In a direct
representation, a chromosome represents a solution of the original problem, and is called
genotype, while in an indirect representation it does not. In an indirect representation, special
procedures are needed to extract a solution, or phenotype, from it. In the present context,
solutions will be represented indirectly by parameters that are later used by a decoding proce-
dure to obtain a solution. To obtain the phenotype we use the decoding procedures described
in Section 3.3.3.
Each solution chromosome is made of 2N + 2 genes as depicted in Figure 2, where N is the

number of facilities to be laid out. The first N genes are used to obtain the Facility Placing
Sequence (FPS), genes N + 1 to 2N are used to obtain the vector of Facility Aspect Ratios
(FAR), and genes 2N + 1 and 2N + 2 are used to obtain the coordinates (xfirst, yfirst) of the
first facility to be placed. The placement procedure, described in Section 3.3.3, makes use of
FPS, FAR, and (xfirst, yfirst) to construct a solution from the chromosome.

Facility Placement Sequence

ChromosomeChromosome = ( gene1  , … , geneN , geneN+1  , … , gene2N ,  gene2N+1 , gene2N+2 )

( x, y ) coordinates of 

the first facility to be 

placedFacility Aspect Ratios

Figure 2: Solution encoding.

The decoding (mapping) of the first N genes of each chromosome into a FPS is accom-
plished by sorting the key values of the genes in increasing order. The sorted indices corre-
spond to the sequence in which facilities will be laid out. Figure 3 shows an example of the
decoding process for the FPS. There are eight facilities in this example. Sorting the eight
random keys in increasing order produces the following FPS = (5, 8, 3, 1, 4, 2, 6, 7).

Unordered facilities 

Unsorted genes 

Facility Placement Sequence (FPS) 

Sorted genes 

4 

0.49 

7 

0.87 

2 

0.67 

8 

0.17 

1 

0.45 

3 

0.35 

1 

0.45 

2 

0.67 

3 

0.35 

4 

0.49 

5 

0.07 

6 

0.78 

7 

0.87 

8 

0.17 

5 

0.07 

6 

0.78 

Facility Placement Sequence (FPS) 

Figure 3: Decoding of the Facility Placement Sequence.

The decoding of the vector of facility aspect ratios (FAR) is accomplished for i = 1, . . . , N ,
using the following expression:
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FARi =
1

Rmax
+ genei ×

(
Rmax −

1

Rmax

)
. (16)

Since FARi =
wi

hi
, the dimensions of each facility i can now be computed as

wi =
√
Ai × FARi , (17)

and

hi = Ai/wi. (18)

The first facility to be laid out is defined by the FPS and will be denoted as FPS1. Its
coordinates, i.e. (xfirst, yfirst) are decoded as follows:

xfirst =
wi

2
+ gene 2N+1 × (W − wi) (19)

yfirst =
hi
2

+ gene 2N+2 × (H − hi) . (20)

FPS, FAR, and (xfirst, yfirst) are used later by the placement procedure to construct a
layout with all the facilities placed on the floor space.

3.2.2 Fitness function

To evolve the solutions, the evolutionary process needs a measure of the solution fitness, or
quality. A natural fitness function for this type of problem is the layout cost defined as

Cost =
i=N∑
i=1

j=N∑
j=1

ci,j fi,j di,j + M
i=N∑
i=1

(4wi +4hi) ,

where, as defined above, ci,j and fi,j are respectively, the cost per distance unit and the flow
between facilities i and j, and di,j is the distance according to the appropriate norm. The
second term in the fitness corresponds to the penalty for exceeding the dimensions of the floor
space. Note that when the dimensions of the floor space are unconstrained the value of the
penalty term will be equal to zero, i.e., M = 0.

3.3 Placement strategy

In the next sections we describe the main components of the placement strategy.

3.3.1 Maximal-spaces and the difference process

While trying to place a facility on the floor space we use a list S of empty maximal-spaces
(EMSs), i.e., largest empty rectangular spaces available on the floor space. An empty
maximal-space s is represented by its vertices with minimum and maximum coordinates
(min_xs, min_ys and max_xs, max_ys, respectively). When searching for a place to posi-
tion a facility, we need to consider only the available EMSs where the facility being placed fits.
This way, we guarantee that there will be no overlap between facilities. To generate and keep
track of the EMSs, we make use of the difference process (DP ), developed by Lai and Chan
(1997). Figure 4 depicts an example of the application of the DP process. In the example,
we assume that we have two facilities to be placed on the floor space. Since the floor space is
initially empty, we only have the empty maximal-space EMS0 which is the entire floor space
(see Figure 4a). After placing facility 1 in EMS0 we update the list S of available empty
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maximal-spaces so we can try to place facility 2. Figure 4b shows the four newly generated
EMSs. Facility 2 is placed in EMS 2 and the DP process results in the six EMSs shown in
Figure 4c. Every time a facility is placed on the floor space, we reapply the DP process to
update list S before we place the next facility.

2 

1 

a)  Facilities to be placed and the initial 

empty maximal-space (the floor space) 

c)  Empty maximal-spaces after placing facility 2. 

1 

1 

EMS1 

Floor space 
1 

1 
EMS2 

1 

EMS3 

1 

E
M

S
4

 

2 

1 

EMS1 

2 

1 

EMS5 

2 

1 
EMS6 

2 

1 

EMS7 

2 

1 

EMS8 

2 

2 

1 

E
M

S
4
 

b)  Empty maximal-spaces after placing facility 1. 

EMS0 

Figure 4: Difference process (DP) example.

In the unconstrained case we assume that the floor space can include all the facilities laid
out horizontally or vertically at their maximum horizontal or vertical dimensions, i.e.,

EMS0 =

(
0 , 0,

∑
i

√
Ai ×Rmax ,

∑
i

√
Ai ×Rmax

)
.

3.3.2 Placement of a facility in an empty maximal-space

When attempting to place a facility i on the floor space we want the facility to have the least
cost with respect to the facilities already laid out. To achieve this we solve the following
problem for every available empty maximal-space s and all facilities k ∈ K already placed on
the floor space:

(FLP_EMS ) Minimize Cost (i) =
∑
k∈K

ci,k fi,k di,k (21)

Subject to:

min_xs +
wi

2
≤ xi ≤ max_xs −

wi

2
(22)

min_ys +
hi
2
≤ yi ≤ min_ys −

hi
2

(23)

Note that we solve FLP_EMS only for empty maximal-spaces in which facility i fits.
FLP_EMS has a non-linear objective function (21) and the variables xi, yi are subject

only to box constraints (22)-(23). This problem can be solved with the non-monotone spec-
tral projected gradient method proposed in Birgin et al. (2000) (FORTRAN source code
in http://www.ime.usp.br/∼egbirgin/tango/codes.php#spg). However, we developed a new
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more efficient surrogate approach. The new approach starts by computing the unconstrained
optimal (i.e., without the box constraints), denoted by UO (details on how to compute UO
for the three distance norms can be found in Heragu (1997)). Next, facility i is tentatively
positioned at the geometric center of EMS s, i.e., at the point(

min_xs +max_xs
2

,
min_ys +max_ys

2

)
.

The final position of facility i is obtained by moving its centroid as close as possible to UO
without leaving the boundaries of EMSs. We first try to get as close as possible to UO by
moving vertically and then by moving horizontally (or vice-versa). Figure 5 illustrates this
approach for two empty maximal spaces.

2

4

7

Unconstrained Optimal

5

5

2

4

7

Unconstrained Optimal

5

5

Minimum cost position
Initial position

Minimum cost position

Initial position

Figure 5: Example of the novel approach used to solve FLP_EMS.

In some cases there is no flow between the facility i being placed and all the other facilities
k ∈ K already placed on the floor space, i.e., fi,k = 0 ∀ k ∈ K . When this occurs we consider
UO to be equal to the geometric center of all laid-out facilities, i.e.,

(UOx , UOy) =

 1
|K|
∑
k∈K

xk ,
1
|K|
∑
k∈K

yk

.

From this point on we will denote by FLP_EMS (i, s, x, y) the procedure that determines
the minimum-cost position (x, y) of facility i in EMS s.

3.3.3 Placement procedure

The placement procedure follows a sequential process which places a single facility at each
stage. The procedure combines FPS, FAR, and (xfirst, yfirst) evolved by the BRKGA. Each
stage is comprised of four main steps:

1. Facility selection;

2. Computation of the facility aspect ratio and its dimensions;

3. Facility placement;

4. State information update.
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Pseudo-code of the placement procedure is given in Figure 6. The facility selection at stage
i chooses for placement the facility in the ith position of the FPS (line 4 of the pseudo-
code). The facility dimensions are defined by the ith position of the FAR (line 5). The facility
placement is carried out in lines 6-18. The coordinates of the first facility placed are defined in
line 16 while the coordinates of the other facilities are defined in lines 7-14 of the pseudo-code.
The facility placement is carried out in line_18. The final step, state information update,
consists in updating the list of empty maximal spaces, according to the facility being placed
and the corresponding coordinates, using the DP procedure (line 19 of the pseudo-code).

3.4 Constrained case

Our first approach to extend the algorithm for the case where the dimensions of the floor
space are constrained was to use BRKGA with a large value assigned to the penalty constant

M , i.e.,M = (W +H)
i=N∑
i=1

j=N∑
j=1

fi,j . This approach works quite well, for all the three distance

norms presented above when the area of the floor space exceeds the sum of the areas of the
facilities by more than about 25%. However, when the area of the floor space is close to the
sum of the areas of the facilities, the quality of the solution worsens significantly and most
of the times no feasible solution is found. To overcome this problem, we developed a new
hybrid approach, denoted by BRKGA-LP, to solve problems with floor space constraints.
In the hybrid BRKGA-LP approach, the BRKGA produces unconstrained solutions defining
the relative locations of facilities in the floor space. The relative locations are then used
to define the separation constraints of the FLP-MIP model transforming it into a linear
program, denoted by FLP-LP. The solution of the FLP-LP determines the new locations and
dimensions of all the facilities that may improve the BRKGA solution.
The constrained approach, BRKGA-LP, can be described for each chromosome by the

following steps:

1. Solve the problem with BRKGA, the unconstrained approach. In this case and after
some experimentation we came to the conclusion that limiting the unconstrained floor
space to 1.7 times of the real horizontal and vertical dimensions of the floor space
produces better results, when solving in the next step the FLP-LP, than if the two
dimensions where both unconstrained, i.e., very large. Therefore, when solving the
unconstrained problem we use a floor space with dimensions (1.7×W, 1.7×H), as
shown in Figure 7a. Let SBRKGA be the solution produced by the BRKGA in this step.
Note that sometimes, due to the limitations of the floor dimensions, it is not possible to
position all the facilities in the floor space. In that case, we consider the fitness of the
solution SBRKGA to be equal to ∞ and skip steps 2 and 3.

2. Based on the solution SBRKGA obtained in the previous step, formulate the corre-
sponding linear model FLP-LP(SBRKGA), where the non-overlapping constraints (5),
(6), (7), and (8) in the FLP-MIP model are replaced by a single constraint defined
according to SBRKGA. The single separating constraint that will replace the origi-
nal separating constraints in the FLP-MIP model can be determined as follows. Let
DisWi,j = |xi − xj | − wi

2 −
wj

2 and DistHi,j = |yi − yj | − hi
2 −

hj

2 be, respectively, the
horizontal and vertical distances separating facilities i and j. If DistWi,j ≥ DistHi,j

then separate facilities i and j horizontally. If xi ≤ xj , use constraint xi + wi
2 +

wj

2 ≤ xj .
Otherwise, use xj + wi

2 +
wj

2 ≤ xi. If DistWi,j < DistHi,j then separate facilities i and
j vertically. If yi ≤ yj use constraint yi + hi

2 +
hj

2 ≤ yj . Otherwise, use yj + hi
2 +

hj

2 ≤ yi.
Note that this way of defining the constraint guarantees that we will always obtain a
feasible solution in terms of the relative position and dimensions of the facilities.

3. Solve FLP-LP(SBRKGA) to try to improve the solution SBRKGA by using new locations
and dimensions for all facilities. Figure 7b depicts a possible improved solution obtained
by FLP-LP(SBRKGA) for the BRKGA solution presented in Figure 7a.

12



procedure PLACEMENT (FPS, FAR, xfirst, yfirst)
1 Let S be the set of EMSs available;

// ** Initialization
2 S ← {FloorSpace};

3 for i = 1, . . . , N do

· // ** Facility selection
4 FacToP lace← FPSi // select the facility in the ith position of FPS;

· // ** Computation of facility aspect ratio and dimensions
5 Compute FARi, wi and hi, using equations 16, 17 and 18, respectively;

· // ** Facility placement
6 if i > 1 then // not first facility
· // Place facility FacToP lace in the position having the minimum cost
7 BestCost =∞;
8 for all s in EMSs do
9 Cost = FLP_EMS(FacToP lace, s, x, y);
10 if Cost ≤ BestCost then
11 BestCost = Cost;
12 x∗ = x, y∗ = y;
13 endif
14 end for
15 else
16 x∗ = xfirst, y∗ = yfirst
17 endif

18 Place the centroid of FacToP lace at position (x∗, y∗);

· // ** State information update
19 Update the list of S of using
· the DP procedure of Lai and Chan (1997);

20 end for
end PLACEMENT;

Figure 6: Pseudo-code for the PLACEMENT procedure.
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Figure 7: BRKGA solution in a) and the corresponding FLP-LP improved solution in b).

Since solving FLP-LP(SBRKGA) is quite expensive in terms of computational time we only
carry on to steps 2 and 3 if the solution SBRKGA seems promising. A solution is considered
promising if the following two conditions are satisfied:

1. The area of the facilities outside the real floor space dimensions is smaller than 45% of
the real floor space, i.e.,

Area of the facilities outside of the real floor space ≤ 0.45×W ×H.

2. The cost of the solution SBRKGA is at most 40% above the cost of the best solution
found so far in the solution process. At the beginning of the solution process the cost
of the best solution is equal to ∞.

4 Numerical experiments

To evaluate the performance and the capabilities of our BRKGA and BRKGA-LP approaches,
we performed a series of computational experiments. The numerical experiments were con-
ducted on a computer with a Intel Xeon E5-2630 @2.30GHz CPU and 16 GB of physical
memory running the Linux operating system with Fedora release 18. The algorithm BRKGA
and BRKGA-LP were coded using the C++ programming language and the linear programs
were solved using GUROBI OPTIMIZER version 5.5.
Two different types of FLPs were investigated; in the unconstrained case, we consider prob-

lems in which the dimensions of the floor space are allowed to be determined by the optimiza-
tion algorithm; in the constrained case, we consider problems with given dimensions for the
final layout.
The next subsections report the details of the experiments and the results obtained by

approach proposed in this paper.

4.1 BRKGA configuration

The parameters of the BRKGA were configured based on our past experience with genetic
algorithms based on the same evolutionary strategy (see Gonçalves and Almeida (2002),
Gonçalves and Resende (2004), Gonçalves et al. (2005), Mendes et al. (2009), Gonçalves et al.
(2009), Gonçalves et al. (2011), Gonçalves and Sousa (2011), Gonçalves and Resende (2012),
Fontes and Gonçalves (2013), Gonçalves and Resende (2013), Gonçalves and Resende (2014),
Gonçalves et al. (2014a) and Gonçalves et al. (2014b)) has shown that good results can be
obtained with the values of pe, pm, and Crossover Probability (ρe) shown in Table 1.

For the population size we obtained good results by indexing it to the size of the problem,
i.e., use small size populations for small problems and larger populations for larger problems.
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Table 1: Range of parameters for the evolutionary strategy.
Parameter Interval
pe 0.10 – 0.25
pm 0.15 – 0.30
Crossover Probability (ρe) 0.70 – 0.85

The configuration shown in Table 2 was held constant for all problem instances in the ex-
periments. The experimental results demonstrate that this configuration not only provides
high-quality solutions but it is also very robust.

Table 2: Configuration parameters for the BRKGA algorithm.

Parameter Value
p = 100×N
pe = min(0.25× p, 50)
pm= 0.25× p
ρe= 0.70

Fitness = Cost of layout given by eq. (2) (to be minimized)
Stopping Criterion = 50 generations for the unconstrained case

and
100 generations for the constrained case

4.2 Unconstrained case

As mentioned above in the unconstrained case the dimensions of the floor space are free
and are determined by the optimizing algorithm. Additionally, note that the unconstrained
approach can be used with any of the distance measures (R-rectilinear, E -Euclidean and
SE -Squared Euclidean).

4.2.1 Datasets and benchmark approaches

To compare the performance of the BRKGA approach against other approaches for the uncon-
strained case, we used 16 datasets from the literature and 100 randomly generated datasets
which were constructed in such a way that the optimal solution is known. We do that in order
to be able to measure, in absolute terms, the deviation from the optimal values. A summary
of the datasets used is presented in Table 3.
We compare the unconstrained version of the BRKGA with the approaches listed in Table 4.

4.2.2 Experimental results

In Tables 5, 6, and 7 we report the best cost and average times obtained over ten runs of
BRKGA for all datasets. For the other approaches we also report the best cost. Even though
the computational times reported by the other approaches might not be comparable we report
them if they are available.
In Table 5 we evaluate the performance of BRKGA on the datasets TL05-TL30. As can

be seen in column %Imp. BRKGA has improved the best solution for six out of the eight
datasets. The improvements vary from 1.4% for TL08 to 25% for TL30. For dataset TL06 the
approach GA-TSG ranks first and BRKGA ranks second while for dataset TL15 the approach
HA-C ranks first and BRKGA second. It is clear that overall the BRKGA approach has the
best performance in terms of solution quality.
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Table 3: Benchmark datasets used in the unconstrained case.

Dataset Distance
Measure

Description Source

L020, L028,
L050, L075,
L100, L125A,
L125B

R
L020, L075,
L100, L125A
and L125B

SE
L028

E
L050

Seven datasets with sizes equal to 20, 28,
50, 75, 100, 125, and 125 respectively.
There are no constraints in the floor space
dimensions.

Imam and Mir (1993),
Mir and Imam (1996),Imam and Mir
(1998),Mir and Imam (2001) and
VIP-PLANOPT (2010)
available from from the commercial
software
Engineering Optimization Software,
VIP-PLANOPT 2006 and 2010 at
http://www.planopt.com.

Dunker62 R A dataset with 63 facilities. There are no
constraints in the floor space dimensions.

Dunker et al. (2003)

TL05-30 SE Eight datasets with sizes equal to 5, 6, 7,
8, 12, 15, 20, and 30 facilities. There are
no constraints in the floor space
dimensions.

Tam and Li (1991)

RND10-100 R 100 random generated datasets. Ten
datasets for facility sizes equal to 10, 20,
30, 40, 50, 60, 70, 70, 80, 90, and 100.
There are no constraints in the floor space
dimensions. The dimensions of each of
the facilities are individually given in the
datasets. These datasets were generated
in such away that the optimal solution is
known.

Available from the authors upon request.
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Table 4: Benchmark approaches used in the unconstrained case.

Approach Type of method Source of approach
HA-C Hierarchical approach with clusters. Tam and Li (1991)
GA-STS Genetic Algorithm with a Slicing Tree Structure

method.
Kado (1996)

GP-STS Genetic Programming algorithm that generates
Slicing Tree Structures later converted to FLP
solutions.

Garces-Perez et al. (1996)

GA-TSG Genetic algorithms with tree-structured
genotype representation and hybrid
problem-specific operators.

Schnecke and Vornberger
(1997)

CA-C Coevolutionary algorithm with clusters. Dunker et al. (2003)
TSaST Tabu search with slicing-tree. Scholz et al. (2009)
VIP-
PLANOPT

VIP-PLANOPT 2010 is a commercial software
from Engineering Optimization Software which is
based on the algorithms presented in Mir and
Imam (1996),Imam and Mir (1998), and Mir and
Imam (2001).
Since VIP-PLANOPT presents better or equal
results than the ones reported in the papers we
will be using it for comparisons purposes instead
of the above three approaches.

www.planopt.com.

TS-BST Tabu search with boundary search technique. McKendall Jr and
Hakobyan (2010)

GUROBI Version 5.5 of commercial software solver from
Gurobi Optimization.

http://www.gurobi.com

Table 5: Experimental results: Datasets TL05-TL30.

HA-C GA-STS GP-STS GA-TSG TSaST BRKGA
Dataset Cost Cost Cost Cost Cost T(s) Cost T(s) %Imp.
TL05 247 228 226 214 213.48 2.3 210.06 0.035 1.60
TL06 514 361 384 327 348.76 3.0 345.03 0.049 -5.51
TL07 559 596 568 629 562.91 2.5 549.68 0.060 1.67
TL08 839 878 878 833 810.43 4.7 799.09 0.080 1.40
TL12 3162 3283 3220 3164 3054.23 12.5 2920.47 0.162 4.38
TL15 5862 7384 7510 6813 6615.81 17.0 6395.43 0.251 -9.10
TL20 – 16393 14033 13190 13198.40 50.0 9892.38 0.443 25.00
TL30 – 41095 39018 35358 33721.20 95.4 31454.23 1.132 6.72

Best values are in bold.
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In Table 6 we evaluate the performance of BRKGA on the datasets L020-L125B and
Dunker62. The best cost values of VIP-PLANOPT on datasets L020-L125B are obtained
from the 2010 demo version while the times are taken from the user manual of the 2006
version since they are not reported elsewhere. The values for the cost and CPU times for
dataset Dunker62 are taken from McKendall Jr and Hakobyan (2010). As can be seen in
column %Imp., BRKGA improved the best solution for all eight datasets. The improvements
vary from 1.86% for L020 to 11.05% for L125A. It is clear that, overall, the BRKGA-based
approach has the best performance in terms of solution quality. In terms of computational
times, the BRKGA solves all the datasets in less than two minutes.

Table 6: Experimental results: Datasets L020-L125B and Dunker62

VIP-PLANOPT TSaST TS-BST BRKGA
Dataset Cost T(s) Cost T(s) Cost T(s) Cost T(s) %Imp.
L20 1157 0.3 - - 1151.4 10351.86 1130 0.48 1.86
L28 6447.25 1.5 - - - - 6014.07 0.95 6.72
L50 78224.68 7 - - 71291.4 7626.52 69404.64 6.26 2.65
L75 34396.38 13 - - 31482.84 11.60 8.47
L100 538193.1 14 - - 496820.4 11397.19 478910.09 57.03 3.60
L125A 288774.6 110 - - 256860.78 83.58 11.05
L125B 1084451 70 - - 1008839 9250.28 943140.06 118.65 6.51

Dunker62 3939362 4996 3871510 252.0 3812825 7304.05 3685136.02 9.07 3.35
Best values are in bold.

To study the absolute error of layouts produced by BRKGA we generated 100 datasets with
known optimal solution (ten datasets for a number of facilities equal to 10, 20, 30, 40, 50,
60, 70, 70, 80, 90, and 100). In Table 7 we report on the average and maximum percentage
deviation from optimal, % and %, (over all the datasets having the same number of facilities)
of the best cost of BRKGA over 10 runs. Additionally, we also include the average deviation
from optimal obtained by GUROBI when solving the FLP-MIP model for a maximum of 3600
CPU seconds (1 hour). The times for the BRKGA correspond to the total time for the ten
BRKGA runs.
The results in Table 7 show that BRKGA performs quite well in terms of absolute deviation

from optimal. From 10 to 40 facilities the % and % equal zero. For datasets having between
50 and 100 facilities, the value of % increases from 0.11% to 7.36% while the value of %
increases from 1.12% to 10.97%. The relative performance of BRKGA when compared to
GUROBI with the FLP-MIP model is also good both in terms of CPU time and solution
quality. Note that as the number of facilities increases the quality of the solutions found by
GUROBI with FLP-MIP decreases, e.g., for datasets with 100 facilities GUROBI has % value
equal to 101.78% while for BRKGA this value is only 7.36%.
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Table 7: Experimental results: Random generated datasets with known optimal solution.

GUROBI BRKGA
Number of Facilities T(s) % % T(s) % %

10 3600 0.21 1.66 1.76 0.00 0.00
20 3600 0.01 0.12 6.13 0.00 0.00
30 3600 0.32 2.14 15.00 0.00 0.00
40 3600 2.37 7.10 28.67 0.00 0.00
50 3600 3.99 9.30 48.30 0.11 1.12
60 3600 16.65 29.73 72.86 0.02 0.15
70 3600 12.21 22.70 102.90 1.44 5.29
80 3600 22.31 50.97 143.37 3.31 7.10
90 3600 36.11 52.99 186.87 6.00 9.09
100 3600 101.78 235.31 235.84 7.36 10.97

4.3 Constrained case

As mentioned above, the dimensions of the floor space in the constrained case are fixed and
are given as input. Additionally, note that the constrained approach can be only be used for
the rectilinear distance measure (R).

4.3.1 Datasets and benchmark approaches

The performance of the BRKGA-LP approach for the constrained case is investigated using
a comprehensive set of test problems from the literature. Table 8 summarizes the parameters
of the datasets. These datasets were chosen because because of their variety in size (from
seven up to 35 facilities) and because they are frequently used in the literature to benchmark
alternative approaches for solving the FLP.

Table 8: Datasets used in the constrained case.

Floor dimensions
Dataset N W H Facility requirements Source

O7 7 8.54 13 Rmax = 4 Meller et al. (1998)
O8 8 11.31 13 Rmax = 4 Meller et al. (1998)
O9 9 12 13 Rmax = 4 Meller et al. (1998)
F10 10 90 95 Rmax = 3 Montreuil et al. (2004)
VC10 10 25 51 wmin = hmin = 5 Van Camp et al. (1992)
BA12 12 10 6 wmin = hmin = 1 Bazaraa (1975)
BA14 14 9 7 wmin = hmin = 1 Bazaraa (1975)
AB20 20 30 20 Rmax = 4 Armour and Buffa (1963)
TAM20 20 40 35 Rmax = 5 Tam (1992) and Gau and Meller (1999)
TAM30 30 45 40 Rmax = 5 Tam (1992) and Gau and Meller (1999)
SC30 30 15 12 Rmax = 5 Liu and Meller (2007)
SC35 35 16 15 Rmax = 4 Liu and Meller (2007)

Some authors have relaxed the dimensions of the facilities, or of the floor space, or both,
when conducting the computational experiments. Although, in practice, adjusting dataset
input parameters to find practical solutions is acceptable, modifying the datasets parameters
makes it difficult to benchmark alternative approaches. BRKGA-LP finds feasible solutions
for all datasets without modifying the original dataset parameters. Therefore, the BRKGA-LP
will only be compared against previous approaches which use the original dataset parameters.
Table 9 lists the approaches used for comparison with BRKGA-LP. We included approaches
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Table 9: Benchmark approaches used in the unconstrained case.

Approach Type of method Source of approach
GA-ST GA with slicing-tree Gau and Meller (1999)
ACO-ZB Ant Colony Optimization with zone-based layout 2004Montreuil et al. (2004)
I-MIP Improved mixed-integer programming model Sherali et al. (2003)
MIP-ε MIP ε-accurate Castillo and

Westerlund (2005)
MIP-MINLP Mixed-integer linear and mixed-integer nonlinear

optimization methods
Castillo et al. (2005)

GA-SP-MIP GA with sequence pair and MIP Liu and Meller (2007)
STaTS Tabu search with slicing-tree Scholz et al. (2009)
ACO-ST Ant colony optimization with slicing tree Komarudin and Wong

(2010)
AS-FBS Ant system with flexible bay structure Wong and Komarudin

(2010)
ACO-LS-FBS Ant colony optimization with local search and

flexible bay structure
Kulturel-Konak and Konak
(2011b)

PSO-RFBS Particle swarm optimization with relaxed flexible
bay structure

Kulturel-Konak and Konak
(2011a)

GA-LP Linear programming based genetic algorithm Kulturel-Konak and Konak
(2013)

which do not impose any additional constraints in the solutions sought (Castillo and West-
erlund (2005), Castillo et al. (2005), Liu and Meller (2007) and Kulturel-Konak and Konak
(2013)) and the other approaches based on zone-based layouts, slicing-tree representation,
and flexible bay structure representation which impose additional limitations in the search
domain. The former approaches require longer computational times since they have a larger
search domain but usually find better solutions. The latter take less computing times due to
the reduced search domain but usually generate worst solutions (with higher cost).

4.3.2 Experimental results

The BRKGA-LP approach approximates the facility areas by tangential supports (see eq.1)
which tends to produce solutions with smaller facility areas than the actual area requirements.
However, the area approximation quality can be increased by increasing the number of tangen-
tial supports (4) at the expense of an increase in computational effort. To evaluate the area
approximation error incurred for each facility, we use the average percent area approximation
error (%Eavg) and the maximum percent area approximation error (%Emax) metrics (as pro-
posed in Castillo and Westerlund (2005) and Kulturel-Konak and Konak (2013)). These are
defined, respectively, as:

%Eavg =
100%

N

N∑
1

|Ai − wihi|
Ai

,

%Emax = 100% max
i=1,...,N

{ |Ai − wihi|
Ai

}
.

The solution process of the BRKGA-LP uses a strategy equal to the one implemented
by Kulturel-Konak and Konak (2013) in their GA-LP approach, i.e., we used ∆ = 25 to
obtain a solution and after the last generation is complete we solve the best solution found
again using ∆ = 100 to ensure that area approximation error is negligible. Consequently,
the best solutions reported in this paper for the BRKGA-LP approach have a facility area
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approximation error either equal to 0% or very close to 0%. Tables 10 and 12 present the
experimental results, respectively, for the datasets O7-O9 and F10-SC35. For all the best
found solutions we report %Eavg and %Emax. As can be observed, the largest value of
%Emax was 0.0095 %, which for a facility with an area of 100 units corresponds to a negligible
reduction of only 0.0095 units.
Table 10 reports the best cost solutions found by BRKGA-LP, over 10 runs, and six other

approaches from the literature for datasets O7-O9. Even though the computational times
reported by the other approaches might not be comparable we report them, if available, in
Table 11.
The best costs obtained by BRKGA-LP are very similar to those of the other approaches.

The best solutions reported in Table 10 vary only slightly; this may be due to different
approximations of the area of facilities (e.g., Castillo and Westerlund (2005) reports the best
values but has a %Emax equal to 0.05, 0.15 and 0.30, respectively, for O7, O8 and O9, while
BRKGA-LP has %Emax values equal to 0.0030, 0.0012, and 0040 which are at least one order
of magnitude smaller).

Table 10: Experimental results: Layout costs for datasets 07-09.

BRKGA-LP
Dataset I-MIP MIP-ε MIP-MINLP GA-SP-MIP STaTS AS-FBS BRKGA-LP %Eavg %Emax

07 131.64 131.57 131.64 131.63 132 131.68 131.56 0.0019 0.0030
08 242.89 242.77 242.73 242.88 243.16 243.12 242.92 0.0004 0.0012
09 235.95 235.87 236.14 235.95 239.07 236.14 236.57 0.0013 0.0040

As can be observed in Table 11 the computational times of BRKGA-LP and STaST are
small and similar and vary from 4.3s to 12.77s. However, the other approaches run in com-
putational times that are between 115 and 6676 times greater than those of BRKGA-LP.
The final solutions generated by BRKGA-LP for datasets O7-O9 are shown in the appendix

in Figures 16 and 17.

Table 11: Experimental results: Computing times for datasets 07-09.

Dataset I-MIP MIP-ε MIP-MINLP GA-SP-MIP STaTS AS-FBS BRKGA-LP
07 7700 2301 1195 790 4.3 4032 6.85
08 43000 54443 18392 3860 6.2 4248 10.18
09 60000 85255 83211 5384 8.9 5184 12.77

Table 12 reports the cost for the best solutions found by BRKGA-LP , over 10 runs, and ten
other approaches from the literature for datasets F10-SC35. Even though the computational
times reported by the other approaches might not be comparable we report them, if available,
in Table 13.
As can be observed in Table 12 the layout costs obtained by BRKGA-LP, with the exception

of dataset VC10, are better than or equal to the best found costs reported by any other
approach in the study. BRKGA-LP improved the best known solution costs for datasets BA14,
AB20, TAM20, TAM30, and SC35 by, respectively, 1.24%, 1.04%, 0.89%, 1.42%, and 2.03%.
Given that these datasets have been extensively studied in the literature, an improvement
greater then 0.89% over the previously best-known solutions is significant. Also, given the
small area approximation errors for these datasets, we believe that the achieved improvements
cannot be attributed to the area approximation.
The computational times reported in Table 13 show that BRKGA-LP takes significantly

less computing time when compared with the similar approaches MIP-MINLP, GA-SP-MIP,
and GA-LP. However, the approaches using a smaller search domain with slicing trees or
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Table 12: Experimental results: Layout costs for datasets F10-SC35.

Datasets
Approaches F10 VC10 BA12 BA14 AB20 TAM20 TAM30 SC30 SC35

GA-ST 8485.4 4804.1 9513.5 20658
ACO-ZB 8567

MIP-MINLP 21297.98 8180
GA-SP-MIP 1997 8702 5004 8180.00 3707 3604

STaTS 19994.1 8264 4712.33 5225.96
ACO-ST 19967 8252.67 4724.68 5073.82 3868.55 4132.36
AS-FBS 8299.5 4913.22 3679.85 3962.72

ACO-LS-FSB 9020.75 8801.33 4904.67 5360.8 9003.82 19667.45 3794.82 4011.31
PSO-RFBS 9020.75 18823.74 8129 4780.91 5336.36 8753.57 19462.41 3443.34 3700.75
GA-LP 7651.28 8021 4686.81 5196.38 8058.06 19009.9 3370.98 3385.48

BRKGA-LP 7650.95 19951.17 8020.97 4628.79 5021.17 7986.48 18740.3 3367.87 3316.77
%Imp 0.00 -5.99 0.00 1.24 1.04 0.89 1.42 0.09 2.03

%Eavg 0.0016 0.0054 0 0.0016 0.0019 0.0011 0.0016 0.0012 0.0010
%Emax 0.0054 0.0016 0 0.0095 0.0046 0.0065 0.0061 0.0052 0.0048

Best values are in bold.

flexible bays, like PSO-RFBS (from Kulturel-Konak and Konak (2011a)) and ACO-LS-FSB
(from Kulturel-Konak and Konak (2011b)) use significantly less computing time but generate
solutions with higher layout costs.
The final solutions generated by BRKGA-LP for datasets F10-SC35 are shown in the ap-

pendix in Figures and 17, 18, 19, 20, and 21.

Table 13: Experimental results: Computing times for datasets F10-SC35.

Datasets
Approaches F10 VC10 BA12 BA14 AB20 TAM20 TAM30 SC30 SC35

GA-ST 412 396 499 1397
ACO-ZB 26300
STaTS 8.9 13.6 16.1 13.6
ACO-ST 1008 4104 8568 17820 23544 83988
AS-FBS 164 292 919 19135 28671

ACO-LS-FSB 51 146 131 106 226 623 902 1185
PSO-RFBS 2 3 10 19 85 104 924 873 1842
MIP-MINLP 43200 43200

GA-LP 3000 6000 7500 22500 22500 73500 22038.3 29538.9
GA-SP-MIP 6660 2988 2880 4919.47 14652 57744

BRKGA-LP 49.15 46.40 113.81 160.46 426.09 686.00 3004.55 998.74 1556.03

5 Concluding remarks

In this paper we present a biased random key genetic algorithm (BRKGA) for the unequal
area facility layout problem where a set of rectangular facilities with a given area requirements
have to be placed, without overlapping, on a rectangular floor space, so as to minimize the
quadratic cost of products of inter-facility flows and inter-facility distances. The hybrid ap-
proach combines a BRKGA, to determine the order of placement and the dimensions of each
facility, a novel placement strategy, to position each facility, and a linear programming model,
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to fine-tune the solutions. The unconstrained version of the approach generates high-quality
solutions in relatively small computing times. The constrained version of the algorithm,
BRKGA-LP, uses the solutions generated by BRKGA and tries to improves them in terms of
cost and feasibility using a linear programming model. The approach is tested on 100 random
datasets and 28 of benchmark datasets taken from the literature and compared against 21
other benchmark approaches proposed in the literature. The unconstrained version BRKGA
improved the best known solutions for 14 of the 16 benchmark datasets while the constrained
version BRKGA-LP improved the best known solutions for 5 of the 8 extensively studied
benchmark datasets.
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Figure 8: BRKGA solutions for datasets TL05 and TL06.
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Figure 9: BRKGA solutions for datasets TL07 and TL08.
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Figure 10: BRKGA solutions for datasets TL12 and TL15.
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Figure 11: BRKGA solutions for datasets TL20 and TL30.
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Figure 12: BRKGA solutions for datasets L020 and L028.
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Figure 13: BRKGA solutions for datasets L050 and L075.
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Figure 14: BRKGA solutions for datasets L100 and L125A.
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Figure 15: BRKGA solutions for datasets L125B and Dunker62.
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Figure 16: BRKGA-LP solutions for datasets O7 and O8.
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Figure 17: BRKGA-LP solutions for datasets O9 and F10.
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Figure 18: BRKGA-LP solutions for datasets VC10 and BA12.
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Figure 19: BRKGA-LP solutions for datasets BA14 and AB20.
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Figure 20: BRKGA-LP solutions for datasets TAM20 and TAM30.
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Figure 21: BRKGA-LP solutions for datasets SC30 and SC35.
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