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ABSTRACT. Hubs are facilities used to treat and dispatch resources in a trans-
portation network. The main idea of Hub Location Problems (HLP) is to
locate a number of hubs in a network and route resources from origins to des-
tinations such that the total cost of attending all demands is minimized. In this
study, we investigate a particular HLP, called the Tree of Hubs Location Prob-
lem in which hubs are connected by means of a tree and the overall network
infrastructure relies on a spanning tree. This problem is particularly interest-
ing when the total cost of building the hub backbone is high. In this paper,
we propose a biased random key genetic algorithm for solving the tree of hubs
location problem. Computational results show that the proposed heuristic is
a robust and effective method to tackle this problem. The method was able
to improve some best known solutions from the benchmark instances used in
the experiments.

1. INTRODUCTION

Hub Location Problems (HLP) have been investigated for the past 30 years
(Farahani et al., 2013; Alumur and Kara, 2008), and similar ideas can be traced
back to the early sixties (Hakimi, 1964). Hubs are facilities used to treat and
dispatch resources in a transportation network. The main idea of HLP is to locate
a number of hubs in a network and route resources from origins to destinations
such that the total cost of attending all demands is minimized. Several variants of
HLP are found in the literature and are defined, among others, by their network
infrastructure (e.g. star, trees), number of hubs (single or multiple hubs), resource
availability (unlimited or limited) and their optimization criteria (min, min-max,
min-sum).

HLP was firstly studied in the context of telecommunication networks,
according to Farahani et al. (2013). However, HLP have had a growing interest
in many real applications such as transportation systems (Cunha and Silva, 2007;
Gelareh and Nickel, 2008; Limbourg and Jourquin, 2009), supply chain and logistics
(Wang and Cheng, 2010; Ishfaq and Sox, 2012), emergencies (Berman et al., 2007),
airlines and airport industries (Adler and Hashai, 2005; Costa et al., 2010). Obvi-
ously, the resources, also called flows, passing through the network are differentiated
according to the applications, e.g., commodities for telecommunication networks,
supplies for logistics, etc. In this study, we investigate a particular HLP, called the
Tree of Hubs Location Problem (THLP) in which hubs are connected by means of a
tree and the overall network infrastructure relies on a spanning tree. This problem
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is particularly interesting when the total cost of building the hub backbone is high.
Potential applications appear in telecommunications, transportation, logistics, and
in the design of high-speed railways (Chen et al., 2008; Contreras et al., 2010).

The THLP is formally defined on an undirected connected finite and simple
graph G = (V, E), where V and FE stand, respectively, for a set of vertices and a
set of edges. Costs ¢; ; > 0 are associated with every edge [i,j] € E. Moreover,
let P be the set of hubs, where 3 < p = |P| < |V] is the number of hubs to be
deployed and d; ; the demand from i € V to j € V. A tree T = (V/,E') is a
connected subgraph of G with no cycles, such that V' C V and E' C FE, while
in a spanning tree 7/ = (V/,E’') of G, V' =V and E’ C E. Since the network
infrastructure (topology) relies on a spanning tree, by definition there is a unique
path between ¢ and j. In the THLP, a demand from ¢ to j is routed from ¢ to a hub
k, then uses a path Py ; in the tree of hubs, and finally is sent to its destination
j, whenever j is not a hub. Costs associated with edges in the tree of hubs path
(Pr..1) receive a discount «, where 0 < o < 1. The problem consists in locating p
hubs and assigning V'\ P nodes, each to a unique hub such that the total cost of
routing all the demands is minimized, the hubs are connected by means of a tree,
and the overall network topology define a spanning tree. The THLP was proved to
be NP-hard by Contreras et al. (2010).

Figure 1 illustrates an example of a partial solution for the THLP, where V =
{1,2,3,4,5,6,7,8} and the set of hubs is located at P = {3,5,6}. Furthermore,
the dotted black lines correspond to the edges of the tree of hubs and the cost
associated with each edge is the price of routing one resource unit. Suppose one
has to decide to connect node “2” to hub “3” or “6”. Let us consider dz; = 2 and
do.4 = 10, and o = 0. Connecting “2” to hub “3” implies respectively costs of 10
and 50 to route 2 units to “1” and 10 units to “4”. This results in a total cost of
60. Whenever “2” is connected to node “6”, the total cost of routing the resources
is equal to 108. One may note that even if co 5 < ca 3, it is better to connect “2” to
hub “3”. This example illustrates the demands and the total routing cost strongly
impact the final result and illustrate the combinatorial nature of the problem.

FiGUuRE 1. Example of a partial solution for the THLP.

The THLP problem was introduced by Contreras et al. (2010; 2009) inspired
by the pioneering work of O’Kelly (1987) for the quadratic HLP. Contreras et al.
(2009) proposed a Mixed Integer Linear Programming (MILP) formulation based
on shortest paths between all pair of nodes, a Lagrangian relaxation, and a heuris-
tic. Computational results were presented for instances with up to 100 vertices
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with optimality gaps of about 10%. Contreras et al. (2010) proposed a more effi-
cient MILP applying valid inequalities. Experiments were addressed for instances
with up to 25 nodes. The MILP of Contreras et al. (2009) has O(|V[*) variables
and constraints and the one of Contreras et al. (2010) has O(|V|?) variables and
constraints. In terms of exact algorithms, S4 et al. (2013) worked on a Benders
decomposition algorithm using the formulation of Contreras et al. (2009) which was
able to prove optimality for instances with up to 100 nodes in about 75 hours on
an Intel Xeon with 8 cores of 2.53 GHz and 24 Gb of memory, running the Linux
operating systems. Recently, Abreu Junior et al. (2015) proposed an ad-hoc al-
gorithm to solve the subproblems of the Benders decomposition introduced by Sa
et al. (2013), which speed up the procedure by about 28%. The work of S4 et al.
(2015) presents Benders based algorithms and heuristics for the multiple lines hub
location. The study focuses on a generalization of the Hub Line Location Problem
(HLLP), named g-line hub location problem (q-HLLP). The g-HLLP problem aims
to locate a set of hubs in lines such that the total cost of routing demands from
origins to destinations is minimized. The number of hubs is a decision variable of
the model and upper and lower limits are given.

In this study, we propose a Biased Random-Key Genetic Algorithm (BRKGA)
for the THLP. BRKGA has produced high-quality results for network de-
sign problems (Resende, 2012) and is an interesting method for solving
problems relying on trees and spanning trees (Ruiz et al., 2015; Coco
et al., 2013; Fontes and Gongalves, 2013) since well-known algorithms
for such structures can be adapted and used as a decoder in a BRKGA.
To the best of our knowledge, this is the first metaheuristic-based heuristic pro-
posed for solving the THLP. The remaining of this paper is organized as follows.
An MILP formulation is given in Section 2. The main ideas of the BRKGA are
shown in Section 3, followed by the proposed BRKGA for the THLP in Section 4.
Computational experiments and concluding remarks are, respectively, described in
Sections 5 and 6.

2. MILP FORMULATION

The mathematical formulation presented in this section was proposed by Con-
treras et al. (2010) and their results will be used to measure the performance of
the proposed heuristic. It makes use of graph G, previously defined, with costs
¢i,; > 0 associated with each edge [¢,j] € E. Some variables are defined in a sup-
port digraph G’ obtained from G as follows: every edge [i,j] € E is transformed
into two arcs (4,7) and (j,7) belonging to A with identical cost. Moreover, d; ; is
the demand to be routed from ¢ € V to j € V. The oriented flow variables yfj >0
guarantee the final solution is connected and are also responsible for determining
the amount of flow (resources) k passing through arc (i,j) € A. The total flow O;
(D;) leaving (entering) node i is given by

(1) 0; = Z di’j VieV,

JjEV

and
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(2) D= dj; VieV.
jeV

The formulation has decision variables z;;, [i,j] € E that determine whether two
hubs are connected (x;; = 1) or not (z;; = 0). The binary variables z;; are used
to identify links between hub and non-hubs node, as well determine if a node is a
hub. If ¢ # j, z;; = 1 implies that non-hub node 7 is connected to hub j, z;; = 0
otherwise. Whenever i = j, if z;; = 1, then node 7 is set as a hub, z;; = 0 otherwise.
The MILP formulation for the THLP is given in (3) to (13).

(3) min Z = Z Z (Ci,j O; + Ciji Di) Zij + Z Z Z QG ylk] s.t.

i€V jeV kEV i€V jEVit)
(4) > zi=p
eV
(5) Y zj=1 VieV
JEV
(6) Zij + i < 245 Vi,jeV,i<j
(7) zji + x5 < 2z Vi,jeV,ii<j
(8) Ui + Yy < Ok Vi, k€ Vi< j
(9) Z yij — Z Yy = Z di,izij — Okzij Vk,jeV.k#j
i:(1,j)€EA i:(4,0)€EA %
(0 D) DL
ieV jeVv
k ..
(11) y;i; >0 V(i,j) e AkeV
(12) i € {0,1} Vi,jev
(13) Zij € {0, 1} Vi,j € V.

The objective function (3) has two parts, the first part represents the cost of
routing all demands from a non-hub node to a hub while the second part gives the
cost of routing flow on the tree of hubs with a discount . Equation (4) guarantees
that p hubs will be opened, while Constraints (5) to (7) ensure that non-hub nodes
are connected to a unique and open hub. All flow from a node ¢ is aggregated
by means of O; and its conservation on the tree of hubs is given by Inequalities
(8). Constraints (9) are the flow conservation of the overall path leaving node k
and entering all nodes j € V. Equation (10) ensures that the tree of hubs
has the correct number of edges. One may note that the overall topology
is implicitly guaranteed to be a spanning tree since the hubs form a tree and all
non-hubs are connected to a unique hub. The variables are defined by (11) to (13).
This formulation has O(|V|?) variables and constraints.
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3. BIASED RANDOM-KEY GENETIC ALGORITHMS

A genetic algorithm can be classified as a population-based heuristic (Beasley,
2002) which works with a population of solutions and combines them in some way
to generate new solutions.

In this paper, we applied a genetic algorithm that encodes a solution (a chromos-
some) as a string of real-valued numbers in the interval [0,1] — a vector of random
keys. A random-key plays the role of a gene in the chromossome. The biased as-
pect of the algorithm is due to the priority given to the best solutions to pass their
characteristics to the future generations. Biased Random-Key Genetic Algorithms
(or BRKGA, for short) have been successfully applied to a variety of optimization
problems, as surveyed by Gongalves and Resende (2011).

The first generation (initial population) is made up of I individual chromosomes
composed of G genes. Each gene has a value (allele) generated uniformly at random
in the interval [0,1]. Each chromossome is given to a decoder which converts the
random-key sequence in a feasible solution and evaluates the solution cost, or fitness
value.

The strategy to evolve the population begins partitioning the population into
two sets: ELITE and NON-ELITE. A parameter I, defines the elite set size. As
illustrated in Figure 2, three operations are carried out on the current population
to obtain the next generation:

most ReEroduction ;
ELITE TOP

fit
Warent

Crossover (X —»

NON- Non-elite parent
ELITE
least

fit / BOT

Mutants
/\,

FI1GURE 2. Transitional process between consecutive generations.

Reproduction is acomplished by copying all individuals from the elite set to the
TOP partition, without change, to the population of the next generation.

Crossover combines two parent chromossomes and produces an offspring indi-
vidual. Note, in Figure 2, that one parent comes from the elite set and the other
parent is a non-elite individual. Both are chosen at random. The crossover process
applies the parametrized uniform crossover scheme proposed by Spears and DeJong
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(1991). A parameter p4 > 0.5 defines the probability of an allele of the elite parent
to be passed to the offspring individual.

The concept of mutants is used instead of mutation. That is, at each generation,
a group of I, individuals are randomly generated in the same way as the original
population. These new individuals are placed in set BOT.

This evaluation-selection-evolution cycle is repeated until a satisfactory solution
is found. In practice, the algorithm stops when a maximum processing time is
reached, a solution as good as given target is found, or a certain number of gener-
ations is produced.

4. CHROMOSOME REPRESENTATION AND DECODING

In this section, we specialize a BRKGA for the tree of hubs location problem.

A chromosome that encodes a solution for the THLP is represented by a string
having three parts, as shown in Figure 3. Each gene in the chromosome is a real-
value number in the interval [0,1]. The first |V| genes define hub and non-hub
vertices. The next |V| — p genes assign a non-hub node to a hub node. Finally, the
last p(p — 1)/2 genes decode into a tree with the hub vertices.

|V| genes |V|-p genes p(p-1)/2 genes
N AN J
Non-hubs to hubs Arcs between

Hubs + non-hubs
assignment hubs

FIGURE 3. A chromosome for the Tree of Hubs Location

Figure 4 shows an example of the decoder for the Tree of Hubs Location, by
considering a set of 10 vertices, among which 3 are chosen as hubs. In this case, a
chromossome is made up 20 genes. Initially, the first |V'| genes are labeled 1, ..., |V|
and sorted, so that after sorting, the first p labels are defined as hubs and, the
rest, as non-hub vertices (Figure 4(a)). Then (see Figure 4(b)) a non-hub vertice
is assigned to a hub by the association of each hub to a range of values in the
interval [0, 1], so that each hub has probability 1/p of being selected. Finally, each
of the last p(p —1)/2 genes represents an arc between two hub vertices. After being
labeled and sorted, these genes give the order in which the arcs are considered to
grow a spanning tree, one arc at a time, until all vertices are connected (Figure
4(c)). Figure 4(d) gives the solution obtained for this example. After mapping the
random-key vector into a feasible solution, the decoder evaluates the solution cost.

5. COMPUTATIONAL EXPERIMENTS

The computational experiments were performed on a 3.16GHz Intel Core2-Duo
processor with 4 GB RAM computer running Linux Ubuntu. Each run was limited
to a single processor. All codes were implemented in C.

The experiments reported in this section aim to evaluate the quality of the so-
lutions returned by different variants of BRKGA. Configuration parameters shown
in Table 1 were considered to generate 15 variants of BRKGA for the tree of hubs
location problem. Parameters I, and I, define different sizes for the partitions
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(@) verices (1) (2)(3)(@)(5)(6)(7)(8) (8)@0) (c) Arcs between hubs
Unsorted genes ‘ 0400‘ 0.71‘ 0.74‘ 0.87‘ 0.14‘ 0.16‘ 0.65‘ 0.75‘ 0.33‘ 0.81‘ : : :
Genes
Sorted genes W 0.38‘ 0.65‘ 0.71‘ 0.74‘ 0.75‘ 0.81‘ 0.87‘ sorting
eoo
Hubs Non-hubs : : :
(®) Non-hubs  (9) (7) (2) (3)(8) @WO(®) @Y

Arcs sequence for

‘ 0.77‘ 0.75‘ 0.80‘ 0.33‘ 0.37‘ 0.35‘ 0.23‘ building a tree of hubs

[0,00.0.33] @
Non-hubs to hubs
33,000 -+@ @
o 100} +® ® @
E—@—®
©DO@ ® @ OO

FIGURE 4. A decoder for the Tree of Hubs Location

TOP and BOT. We tested all the combinations of I. and I,,. Population size I
was kept proportional to the problem size. Gongalves and Resende (2011) showed
that this is a good strategy. Parameter p4 was set to 0.7 based on some prelimi-
nary experiments. The algorithm stops after 100 generations without improvement.
To evaluate each variant of BRKGA, ten runs were carried out for each instance,
varying the initial seed given to the random number generator.

TABLE 1. Configuration parameters for the BRKGA algorithm

Parameter Value
I. = {0.15,0.20,0.25} x I
Iy = {0.15,0.20,0.25,0.35,0.45} x I
I= 100 x |V|
pA = 0.7
Stopping Criterion = 100 generations without improvement
Number of seeds = 10

5.1. Datasets. We have considered two datasets described by Contreras et al.
(2010). There are 63 instances: 36 derived from the CAB dataset and 27 from AP
dataset. Both test sets correspond to complete graphs . Instance sizes vary
from n = 10 to 25. For each instance, a number p € {3,5,8} is required to be
chosen as hubs, and a discount factor o € {0.2,0.5,0.8} is given. Contreras et al.
(2010) present the optimal solution values for 59 out of 64 instances.
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5.2. Comparative Metrics. We used the following metrics, as described by Re-
sende et al. (2010) to compare the solutions obtained by each BRKGA variant with
those obtained by Contreras et al. (2010):

o BestValue: for each instance, BestValue is the best solution value obtained
over all executions of the variants considered.

e Dev: for each run of a variant, Dev is the relative deviation in percentage
between BestValue and the solution value obtained in that run.

e ADev: average value of Dev over all instances and runs of a variant in a
particular experiment.

e #Best: for each variant, this metric gives the number of instances for which
the BestValue was found.

e NScore: as described by Ribeiro et al. (2002), for each variant and instance,
this metric gives the number of variants that found better solutions than
this specific variant for this instance. In case of ties, all variants receive the
same score, equal to the number of variants strictly better than all of them.

e Score: for each variant, this metric gives the sum of the NScore values over
all instances in the experiment. Thus, lower values of Score correspond to
better variants.

e ATime: for each variant and instance, ATime is the average time taken
to reach the best solution found by this variant over all runs of the same
instance.

e TTime: for each variant, this metric gives the sum over all instances of
ATime.

5.3. Experimental results. Table 2 summarizes the results obtained by each
of the 15 variants of BRKGA over each set of instances. The fifteen variants
were able to find good solutions of similar or better quality than those presented
by Contreras et al. (2010), as demostrated by their ADev metric, which ranged
from 0.49 to 1.24%. For the CAB dataset, the best results were obtained by setting
1,=0.15 and I,,=0.35. The relative deviation from the best known solutions was,
on average, 0.49%. This variant was able to find the best solution for 25 out of 36
instances. Besides, it presented the smallest Score metric. For the AP dataset, the
variant with I,=0.20 and I,,=0.35 obtained the best average deviation (0.66%)
and Score metric, although it was not able to reach the largest number of best
solutions. The last line of this table presents the metrics relative to Contreras’
results. The results shows that BRKGA improved the best known solution for two
instances (one instance of each dataset) which resulted in an average deviation of
0.0005% for CAB dataset and, 0.01% for AP dataset. It is worth noting that
TTime increases along with [,,. This can be explained by the fact that
small values of [,,, produce a small number of mutants and, consequently,
a soft perturbation in the population. Therefore, the algorithm has a fast
convergence to a local optimum. The opposite situation is observed as
well. Larger values of [, lead to a large perturbation in the population,
which contributes to increase the computational time since the algorithm
will spend more time to converge for local optima.

The plots in Figures 5 and 6 summarize the results for all evaluated variants,
displaying points whose coordinates are the values of the ADev and TTime metrics
for each combination of parameter values. We note that there is no correlation
between processing time and solutions quality.
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TABLE 2. Summary of the numerical results obtained by each of
the fifteen variants of the BRKGA

BRKGA CAB dataset AP dataset

(IeyIim) ADev(%) #Best Score TTime | ADev (%) #Best Score TTime
(0.15, 0.15) 0.67 21 115 1401.60 1.02 6 103 828.6
(0.15, 0.20) 0.80 22 110 1548.80 1.07 6 87 862.5
(0.15, 0.25) 0.61 24 81 1518.10 0.99 6 91 1035.2
(0.15, 0.35) 0.49 25 55 1822.10 0.92 7 94 1187.0
(0.15, 0.45) 0.68 22 109 2264.90 0.80 7 85 1674.9
(0.20, 0.15) 0.59 22 111  1410.00 0.90 6 103 868.0
(0.20, 0.20) 0.56 22 73 1516.20 1.00 7 76 951.8
(0.20, 0.25) 0.73 22 117 1700.10 0.83 8 93 1021.9
(0.20, 0.35) 0.64 21 102 1948.40 0.66 6 61 1615.1
(0.20, 0.45) 0.55 22 84 2983.70 0.88 7 88 2392.4
(0.25, 0.15) 0.52 22 99 1507.40 1.03 5 103 1040.7
(0.25, 0.20) 0.60 23 86 1764.50 0.89 5 91 1144.5
(0.25, 0.25) 0.69 23 103 1863.80 1.15 6 113 1330.4
(0.25, 0.35) 0.79 21 130 2386.50 1.24 5 125 1897.6
(0.25, 0.45) 0.54 22 85 4013.80 0.88 8 95 3464.6
Contreras 0.0005 35 1 - 0.01 26 2 -

Tables 3 and 4 detail the best results obtained over all BRKGA variants for
each instance. The first three columns give the instances chacteristics. Column 4
presents the optimal values for these instances, except for those marked with an
asterisk. The percent deviation with respect to the optimal solution is showed in
column 5. The next two columns under Time(seconds) give the smallest time to our
BRKGA and the results on the MIP proposed by Contreras et al. (2010)
, respectively, to reach the best solution found. Even though the methods run on
different machines (Contreras’ methods run on a 2.33GHz Intel Core2 processor
with 3GB RAM computer running Windows) and computational times reported
might not be comparable we report them for completeness. Each table shows the
new best solutions found by BRKGA. For the CAB (n=25, p=8, «=0.8) instance,
BRKGA improved the best known solution by 0.02% . The improvement for the
AP (n=25, p=8, «=0.8) instance was 0.26%. The average percent deviation over
the AP dataset and the CAB dataset was only, 0.15% and 0.21%, respectively.

6. CONCLUDING REMARKS

In this paper we presented a biased random-key genetic algorithm (BRKGA) for
the tree of hubs location problem, whose potential applications appear in telecom-
munications and in transportation logistics.

The computational experiments showed that BRKGA was a robust and effective
approach to tackle this problem. The solutions found presented small differences
when compared among fifteen variants of BRKGA. Besides, our method was able
to produce new best-known solutions for two out of five instances with unknown
optimal values, and to reach the optimal solutions for 48 out of 58 instances. On
the remaining instances, a small percent deviation to the optimal solutions was
reached in small running times.
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TABLE 3. Numerical results for CAB instances: the best solutions
found among all variants of BRKGA and processing times. Note
that BRKGA experiments were performed on a 3.16GHz
Intel Core2-Duo processor while MIP run on a 2.33GHz
Intel Core2.

n p «a Optimum %Dev Time(seconds)
BRKGA MIP

10 3 02 494.50 0.00 0.2 0.2
0.5 613.00 0.00 0.2 0.2

0.8 719.00 0.00 0.2 0.7

5 0.2 322.90 0.00 1.4 0.8

0.5 499.40 0.00 2.1 2.9

0.8 667.40 0.00 3.5 10.4

8 0.2 190.50 0.00 2.6 10.5

0.5 411.80 0.00 3.0 18.3

0.8 631.60 0.00 3.1 34.8

15 3 0.2 1,915.20 0.00 3.6 3.4
0.5 2,324.40 0.00 4.3 57.9

0.8 2,666.10 0.00 7.2 93.9

5 0.2 1,299.60 0.00 8.9 22.3

0.5 1,935.10 0.00 7.9 415.9

0.8 2,454.20 0.00 14.6  2953.7

8 0.2 876.40 0.00 11.5 4320

0.5 1,590.30 0.00 12.7  2317.8

0.8 2,250.30 0.00 13.8 10980

20 3 02  4,170.10 0.00 12.3 7.6
0.5 5,234.90 0.00 60.2 18.6

0.8 6,279.40 0.49 31.8 351.5

5 0.2 2,808.70  0.00 54.5 67.3

0.5  4,384.30 0.00 34.9 604.0

0.8 5,663.50 1.15 46.5 6660

8 0.2 2,057.00 0.00 61.8 1798.2

0.5 3,700.20 0.03 65.2 24240

0.8 5,283.10% 0.56 60.7 144000

25 3 0.2 6,554.60 0.00 53.4 15.3
0.5  8,274.00 0.00 177.8 36.6

0.8  9,923.90 0.00 161.7 1131.2

5 02 4,791.10 0.00 136.3 430.0

0.5 7,190.70 0.34 130.5 16440

0.8  9,173.40 0.00 192.4 28200

8§ 0.2 3,752.90 1.72 165.9 15780

0.5 6,272.90% 1.04 212.9 144000

0.8 8,756.70* -0.02 (8755.0) 216.83 144000
Average 0.15
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FIGURE 5. Average deviation from the best value and total run-
ning time for 15 different variants of BRKGA on the CAB in-
stances: each point represents a unique combination of parameters
I., and I,,, as detailed in Table 2.

3500 o

3000

2500 B

2000 - b

TTime (s)

1500 b

1000 . + ° B

0.6 0.7 0.8 0.9 1 11 1.2 1.3
ADev (%)

FIGURE 6. Average deviation from the best value and total run-
ning time for 15 different variants of BRKGA on the AP instances:
each point represents a unique combination of parameters I., and
1,, as detailed in Table 2.
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TABLE 4. Numerical results for AP instances: the best solutions
found among all variants of BRKGA and processing times. Note
that BRKGA experiments were performed on a 3.16GHz
Intel Core2-Duo processor while MIP run on a 2.33GHz
Intel Core2.

n p a Optimum %Dev Time(seconds)
BRKGA MIP

10 3 0.2 52,541.0 0.00 1.7 0.5
0.5 63,166.8 0.00 1.1 0.6

0.8 72,640.8 0.00 0.2 1.1

5 0.2 34,340.0 0.00 0.6 0.9

0.5 49,418.7  0.00 2.2 3.2

0.8  64,013.2 0.00 2.6 5.6

8 0.2 20,513.4 0.00 3.6 11.5

0.5 39,288.1 0.00 4.4 23.6

0.8 57,953.4 0.00 2.9 36.6

20 3 0.2 58,761.2 0.00 35.5 5.9
0.5 69,515.9 0.00 15.8 38.0

0.8  78,177.6 0.00 39.6 60.1

5 0.2 46,480.4 0.00 32.5 71.6

0.5 61,061.4 0.13 30.8 436.8

0.8 73,5929 0.07 33.2  2780.5

8 0.2 35,421.0 0.00 80.1 1637.7

0.5 52,294.3 0.00 64.6 7980

0.8  68,272.7 0.00 62.6 81060

25 3 02 60,602.3 0.00 95.6 26.3
0.5 70,130.9 1.97 58.7 122.9

0.8 79,442.4 0.31 89.2 488.1

5 0.2 47,4327  0.00 132.7 278.4

0.5 61,046.7 1.58 100.8  1175.5

0.8 73,569.9 0.51 138.5 9060

8 0.2 37,295.6 1.36 128.6 9000

0.5 54,318.7% 0.00 122.9 144000

0.8 70,072.5*% -0.26 (69,890.6) 140.14 144000

Average 0.21




BRKGA FOR TREE OF HUBS 13

REFERENCES

J. C. Abreu Junior, T. F. Noronha, and A. C. Santos. O problema de localizacao
de concentradores em &rvores: um procedimento para acelerar um algoritmo
baseado em decomposicao de Benders. In XLVII Simpdsio Brasileiro de Pesquisa
Operacional (SBPO), page 9p., Porto de Galinhas, Brazil, 2015.

N. Adler and N. Hashai. Effect of open skies in the middle east region. Transporta-
tion Research Part A: Policy and Practice, 39(10):878 — 894, 2005.

S. Alumur and B. Y. Kara. Network hub location problems: The state of the art.
European Journal of Operational Research, 190:1-21, 2008.

J. E. Beasley. Population heuristics. In P.M. Pardalos and M.G.C. Resende, editors,
Handbook of Applied Optimization, pages 168-183. Oxford University Press, 2002.

O. Berman, Z. Drezner, and G. O. Wesolowsky. The transfer point location problem.
European Journal of Operational Research, 179(3):978 — 989, 2007.

H. Chen, A. M. Campbell, and B. W. Thomas. Network design for time-constrained
delivery. Naval Research Logistics, 55:493-515, 2008.

A. A. Coco, T. F. Noronha, and A. C. Santos. Algoritmo baseado em BRKGA
para o problema de arvore geradora minima robusta. In Proceedings of the XLV
Simpdsio Brasileiro de Pesquisa Operacional (SBPO), Natal, Brazil, pages 3658—
3669, 2013.

I. Contreras, E. Fernandez, and A. Marin. Tight bounds from a path based formu-
lation for the tree of hub location problem. Computers & Operations Research,
36(12):3117 — 3127, 20009.

I. Contreras, E. Ferndndez, and A. Marin. The tree of hubs location problem.
European Journal of Operational Research, 2:390—400, 2010.

T. F.G. Costa, G. Lohmann, and A.V.M. Oliveira. A model to identify airport
hubs and their importance to tourism in Brazil. Research in Transportation
Economics, 26(1):3 — 11, 2010. ISSN 0739-8859. Economics of Transport for
Tourism.

C. B. Cunha and M. R. Silva. A genetic algorithm for the problem of configuring a
hub-and-spoke network for a LTL trucking company in Brazil. European Journal
of Operational Research, 179(3):747 — 758, 2007.

R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. Hub location
problems: A review of models, classification, solution techniques, and applica-
tions. Computers €& Industrial Engineering, 64(4):1096 — 1109, 2013.

D. B. M. M. Fontes and J. F. Gongalves. A multi-population hybrid biased random
key genetic algorithm for hop-constrained trees in nonlinear cost flow networks.
Optimization Letters, 7(6):1303-1324, 2013. ISSN 1862-4472.

S. Gelareh and S. Nickel. A Benders decomposition for hub location problems arising
in public transport. In Jorg Kalcsics and Stefan Nickel, editors, Operations Re-
search Proceedings 2007, volume 2007 of Operations Research Proceedings, pages
129-134. Springer Berlin Heidelberg, 2008.

J. F. Gongalves and M. G. C. Resende. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17:487-525, 2011.

S. L. Hakimi. Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research, 12(3):450-459, 1964.

R. Ishfaq and C. R. Sox. Design of intermodal logistics networks with hub delays.
European Journal of Operational Research, 220(3):629-641, 2012.



14 LUCIANA S. PESSOA, ANDREA C. SANTOS, AND MAURICIO G. C. RESENDE

S. Limbourg and B. Jourquin. Optimal rail-road container terminal locations on the
European network. Transportation Research Part E: Logistics and Transportation
Review, 45(4):551 — 563, 2009.

M. E. O’Kelly. A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research, 32:393-404, 1987.

M. G. C. Resende. Biased random-key genetic algorithms with applications in
telecommunications. TOP, 20:120-153, 2012.

M.G.C. Resende, R. Marti, M. Gallego, and A. Duarte. GRASP and path-relinking
for the max-min diversity problem. Computers and Operations Research, 37:498—
508, 2010.

C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A hybrid GRASP with perturbations
for the Steiner problem in graphs. INFORMS Journal on Computing, 14:228-246,
2002.

E. Ruiz, M. Albareda-Sambola, E. Fernandez, and M. G. C. Resende. A biased
random-key genetic algorithm for the capacitated minimum spanning tree prob-
lem. Computers € Operations Research, 57:95 — 108, 2015.

E. M. S4, R. S. Camargo, and G. Miranda. An improved Benders decomposition
algorithm for the tree of hubs location problem. European Journal of Operational
Research, 226(2):185 — 202, 2013.

E. M. S4, I. Contreras, and J. F. Cordeau. Exact and heuristic algorithms for the
design of hub networks with multiple lines. Furopean Journal of Operational
Research, 246(1):186-198, 2015.

W. M. Spears and K. A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230-236, 1991.

J. J. Wang and M. C. Cheng. From a hub port city to a global supply chain
management center: a case study of Hong Kong. Journal of Transport Geography,
18(1):104 — 115, 2010.

(Luciana S. Pessoa) DEPARTMENT OF INDUSTRIAL ENGINEERING, PUC-R10, RuA MARQUES DE

SAO VICENTE, 225, GAVEA - 22453-900 RIO DE JANEIRO, RJ, BRAZIL.
E-mail address, Luciana S. Pessoa: lucianapessoa@esp.puc-rio.br

(Andréa C. Santos) ICD-LOSI, UMR CNRS 6281, UNIVERSITE DE TECHNOLOGIE DE TROYES,
12, RUE MARIE CURIE, CS 42060, 10004, TROYES CEDEX, FRANCE.
E-mail address: andrea.duhamel@utt.fr

(Mauricio G. C. Resende) MATHEMATICAL OPTIMIZATION AND PLANNING (MOP), AMAZON.COM,
SEATTLE, WA 98109, USA.
E-mail address: resendem@amazon.com



