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Abstract. One of the main goals in transportation planning is to achieve
solutions for two classical problems, the traffic assignment and toll pricing
problems. The traffic assignment problem aims to minimize total travel de-
lay among all travelers. Based on data derived from the first problem, the
toll pricing problem determines the set of tolls and corresponding tariffs that
would collectively benefit all travelers and would lead to a user equilibrium
solution. Obtaining high-quality solutions for this framework is a challenge
for large networks. In this paper, we propose an approach to solve the two
problems jointly, making use of a biased random-key genetic algorithm for the
optimization of transportation network performance by strategically allocat-
ing tolls on some of the links of the road network. Since a transportation
network may have thousands of intersections and hundreds of road segments,
our algorithm takes advantage of mechanisms for speeding up shortest-path
algorithms.

1. Introduction

Stable transportation systems are one of the main factors contributing to a high
quality of life. Moreover, as reported by Arnott and Small (1994), millions of dollars
are spent every day on traffic issues. Thus, traffic planning is a crucial component
of any planning process for investment and operating policies. Traffic Assignment
models have been used to provide the necessary description of real-world traffic
flows with accuracy. These problems are mathematically modeled on a graph, with
nodes representing locations of interest and arcs representing valid roads on which
traffic can flow. Some pairs of nodes define commodities, or origination-destination
(OD) pairs, representing traffic flow start and end points. In most instances, each
arc of the network has an associated capacity and cost of use, as a function of the
amount of traffic using the arc. In addition, some arcs might have tolls levied on
them, adding to the arc cost. The main goal in the traffic planning model is to levy
tolls on some arcs of the network such that the overall cost of the network (the sum
of the cost of each arc) is minimized.

As an example, one can look at New York City. Each day, many people living
in New Jersey commute into New York City to work. Suppose we label the city
of Newark (in New Jersey) as one origination node of our traffic network, and the
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borough of Queens (in NYC) as a destination node. It is easy to see that there are
many possible traffic paths to go from the origination node to the destination node.
Some of the arcs in these paths have tolls levied on them (Holland and Lincoln
tunnels, for example), while others do not. In addition, each arc has an associated
cost as a function of the number of commuters using that arc. Each commuter
ideally would want to minimize the cost of their trip, i.e. of getting from their
starting point to their destination.

Optimizing transportation network performance has been widely discussed in
the literature (Bai, 2004, Bai et al., 2006, Dial, 1999b,a, Florian and Hearn, 1995,
Lawphongpanich and Hearn, 2004) and two fundamental traffic assignment models
have been developed: User Equilibrium (UE ) and System Optimal (SO) models.
UE is used to describe the behavior of users on a given traffic network. In a UE
solution, each driver will follow their shortest path (least cost path) in traveling
from their origination to their destination. In contrast, SO describes a traffic
network at its best operation. This means that a SO solution seeks to spread
the traffic flow over all the arcs of the network so that the overall network cost is
minimized. Hence, a UE solution attempts to do what is best for each individual
driver, without consideration of other users on the network, while a SO solution
considers the overall performance of the network, without consideration of any
individual user. These two concepts seem contradictory, and in a way they are.
The overall traffic assignment problem can therefore be viewed as simultaneously
solving the UE and SO problems, i.e. to find a traffic flow that is both UE and
SO. In most instances, tolls are introduced on some of the arcs in the network so
that the resulting SO and UE solutions coincide.

It is important to note that while the transportation problem can be stated in
terms of both system optimality and user equilibrium, to the best of our knowledge,
there has been no effort to solve these problems jointly. In effect, the problem has
always been split into two subproblems. In the literature, the SO problem is first
considered (see, for instance Hearn and Ribera (1980)). Convex functions are used
to represent the cost of traveling along each arc, as a function of the flow on the arc.
This problem is solved to optimality, and the SO solution is then used as input into
the UE problem. In order to induce users to choose the SO path solution, tolls are
levied on certain arcs within the traffic network. A genetic algorithm which solves
the toll location and level problem separately has been proposed by Shepherd and
Sumalee (2004).

The Minimum Toll Booth Problem (MINTB) was introduced in Bai et al. (2006)
as an approach to minimize the number of toll locations for which a UE solution is
achieved, maintaining the SO solution. MINTB was formulated as a mixed-integer
program (Bai et al., 2006), and is NP-hard (Bai, 2004). Various heuristics have
been designed in an effort to solve the MINTB. The reader is referred to (Bai,
2004) for a survey of traffic assignment problems as well as solution techniques.

One problem with the above two-phase approach is that the SO solution may
result in an infeasible UE program. Hearn and Ramana (1988) report infeasibility
with a toll pricing problem for a network with 416 links, 962 nodes, and 1623 OD
pairs, when an approximate solution to the SO program, with a relative optimality
gap of 10−3, is used to construct the constraints defining the MINTB program. To
overcome infeasibility, methods based on penalty terms (Hearn and Ribera, 1980)
and relaxation of constraints (Kim and Pardalos, 1999) are employed. However,
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obtaining high quality solutions for this framework remains a challenge for large
networks. Another issue, related to the heuristics defined for the MINTB problem,
is to select an appropriate neighborhood structure, that is a set of solutions near a
given solution. In Bai (2004) and Kim and Pardalos (1999) a binary vector {ya} is
used to indicate whether arc a has a toll levied on it and the neighborhood is limited
to adjacent vertices in the unit hyper-cube (N.B.: each binary vector {ya} can be
seen as one vertex of the unit hyper-cube). Due to this neighborhood, even for
small problem instances, the computation time reported was large, and the quality
of the solution was poor. For a complete review of the design and evaluation of
road network pricing schemes we refer the reader to the survey by Tsekeris and Voß
(2009).

In this paper we propose a biased random-key genetic algorithm, similar to the
one presented in Ericsson et al. (2002) for the optimization of Internet traffic flow,
that seeks a system efficient pattern and user optimal solution for a fixed number
of toll booths. The results presented here improve upon the ones in Buriol et al.
(2009).

This paper is organized as follows. In Section 2 we present the mathematical
framework for the traffic assignment problem. In Section 3 we review the basic
concepts of biased random-key genetic algorithms. Section 4 describes the biased
random-key genetic algorithm used to determine the optimal or near-optimal traf-
fic pattern and tolling scheme. Computational results are reported in Section 5.
Finally, conclusions are presented in Section 6.

2. Problem formulation

Given a network topology and certain traffic flow demands, we levy tolls on arcs,
seeking an efficient system such that the resulting multi-commodity least-cost (UE )
solution is optimal for the overall system. In a mathematical framework, consider
a directed graph G = (N, A), with N representing the set of nodes and A the set
of arcs. Each arc a ∈ A has an associated capacity ca and cost Φa, which is a
function of the load ℓa (or flow) on the arc, the time ta to transverse the unloaded
arc, a power parameter pa, and a cost Ba. In real-world traffic networks, arc (road)
delays are generally described by nonlinear functions associated with these network
congestion parameters. We assume that Φa is a strictly increasing, convex function.
In addition, define K ⊆ N × N to be the set of commodities, or origination-
destination (OD) pairs, having o(k) and d(k) as origination and destination nodes,

respectively, ∀ k ∈ K̂ = {1, . . . , |K|}. Each commodity k ∈ K̂ has an associated
demand of traffic flow dk defined, i.e., for each OD pair {o(k), d(k)}, there is an
associated amount of flow dk that emanates from node o(k) and terminates at node
d(k). Furthermore, define xk

a to be the contribution of commodity k to the flow on
arc a. We can write the traffic optimization problem as

(1) minimize Φ =
∑

a∈A

ℓata
[

1 + Ba(ℓa/ca)pa

]

/
∑

k∈K̂

dk

subject to

(2) ℓa =
∑

k∈K̂

xk
a, ∀ a ∈ A
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(3)
∑

i:(j,i)∈A

xk
(j,i) −

∑

i:(i,j)∈A

xk
(i,j) =











−dk if j = d(k)

dk if j = o(k) ∀ j ∈ N, k ∈ K̂

0 otherwise

(4) xk
a ≥ 0, ∀ a ∈ A, ∀ k ∈ K̂.

Objective function (1) represents the average trip duration for the system, based
on the travel cost function of the Bureau of Public Roads (BPR) (Bureau of Public
Roads, 1964). This function may vary according to a specific network. Φ uses the
volume delay (time) on arc a as a function of total flow. Our goal is to allocate
a fixed number K of tolls on arcs such that the delay value Φ is minimized, thus
corresponding to a system efficient solution. In this function, ℓa/ca is the utilization
of arc a. In Section 5 we describe in more detail the delay function for some real-
world problems. Constraint (2) defines the load on each arc a as the sum of flow
on arc a arising from each commodity. Constraint (3) defines flow conservation on

the network, which is equivalent to the system of equations Mxk = dk, ∀ k ∈ K̂,
where M is the arc-node incidence matrix for the network and xk = {xk

a}a∈A is the

flow vector corresponding to commodity k ∈ K̂. Constraint (4) specifies that the
flow on each arc must be non-negative.

Our approach to solving (1)-(4) is indirect. We seek to levy tolls on K arcs of
the transportation network such that if traffic is routed on least cost paths, then
the objective function Φ =

∑

a∈A ℓata
[

1 + Ba(ℓa/ca)
pa

]

/
∑

k∈K̂
dk is minimized.

We call this problem the toll booth problem. We accomplish this minimization with
a biased random-key genetic algorithm.

3. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for solving combinatorial optimization prob-
lems involving sequencing. In a RKGA, chromosomes are represented as vectors of
randomly generated real numbers in the interval [0, 1]. A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of n random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder
in generation k, the population is partitioned into two groups of individuals: a
small group of pe elite individuals, i.e. those with the best fitness values, and
the remaining set of p − pe non-elite individuals. In the experiments described
in Section 5, we set pe = 0.25p. To evolve the population, a new generation of
individuals must be produced. All elite individual of the population of generation
k are copied without modification to the population of generation k + 1. RKGAs
implement mutation by introducing mutants into the population. A mutant is
simply a vector of random keys generated in the same way that an element of the
initial population is generated. At each generation, a small number pm of mutants
is introduced into the population. In the experiments described in Section 5, we
set pm = 0.05p. With the pe elite individuals and the pm mutants accounted for
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in population k + 1, p − pe − pm additional individuals need to be produced to
complete the p individuals that make up the new population. This is done by
producing p− pe − pm offspring through the process of mating or crossover.

Bean (1994) selects two parents at random from the entire population to im-
plement mating in a RKGA. A biased random-key genetic algorithm, or BRKGA
(Gonçalves and Resende, 2009), differs from a RKGA in the way parents are se-
lected for mating. In a BRKGA, each element is generated combining one element
selected at random from the elite partition in the current population and one from
the non-elite partition. Repetition in the selection of a mate is allowed and there-
fore an individual can produce more than one offspring in the same generation.
Parameterized uniform crossover (Spears and DeJong, 1991) is used to implement
mating in BRKGAs. Let ρe be the probability that an offspring inherits the vec-
tor component of its elite parent. Let n denote the number of components in the
solution vector of an individual. For i = 1, . . . , n, the i-th component c(i) of the
offspring vector c takes on the value of the i-th component e(i) of the elite parent e
with probability ρe and the value of the i-th component ē(i) of the non-elite parent
ē with probability 1−ρe. In the experiments described in Section 5, we set ρe = 0.7.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous n-dimensional hypercube, using the decoder
to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.

To specify a biased random-key genetic algorithm, we simply need to specify
how solutions are encoded and decoded. We specify our algorithm next.

4. A BRKGA for the toll booth problem

In this section we describe a biased random-key genetic algorithm for the toll
booth problem by first showing how solutions are encoded and then how they are
decoded.

A BRKGA was applied to Open Shortest Path First (OSPF ) (Ericsson et al.,
2002, Buriol et al., 2005) and Distributed Exponentially-weighted Flow Splitting
(DEFT) (Roger Reis and Resende, 2010) intra-domain Internet routing problems.
In this paper, we take advantage of some similarities between the OSPF routing
problem and the traffic assignment problem, and apply a BRKGA, similar to the
one proposed in Buriol et al. (2005), to optimize traffic networks.

4.1. Solution encoding. Solutions in the toll booth problem are specified by the
location of the toll booths and the corresponding toll tariff for each booth. Solu-
tions are encoded with the 2m-dimensional array X , where m = |A|. Components
Xm+1, . . . ,X2m determine the location of the toll booths and together with compo-
nents X1, . . . ,Xm, they determine the toll tariffs. Tariffs are integer-valued in the
interval [1, wmax].

4.2. Solution decoding. The decoder takes as input the encoded solution vector
(X1, . . . ,Xm,Xm+1, . . . ,X2m), and outputs a solution of the toll booth problem,
i.e. the location and tariff of each of the K toll booths as well as the average trip
duration Φ (which is the objective function we seek to minimize). The random
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keys Xm+1, . . . , X2m are used to determine the location of the K toll booths. The
keys are sorted (ties are broken by key index) and the indices of K largest keys
correspond to the locations where tolls are to be levied, i.e. if key Xm+a is one of
the K largest among keys Xm+1, . . . ,X2m, then a toll booth is placed on arc a. For
all a ∈ A, let the zero-one variable ba = 1 if and only if a toll booth is placed on
arc a. Then arc a ∈ A has toll tariff

(5) wa = ⌈Xa · wmax⌉ · ba,

i.e. if arc a has a toll booth, the value of its toll tariff is determined by the random
key Xa.

Once toll booth locations with their corresponding tariffs are determined, the
decoder needs to determine the cost of the solution w. To do this, the total flow
ℓa is computed for all edges a ∈ A by routing the traffic on least cost routes.
This is accomplished by routing forward each demand from its starting node to its
destination. Traffic at intermediate nodes is split equally among all outgoing links
on least cost paths to the destination. The corresponding cost (mean delay time)
is computed as

(6) Φ =
∑

a∈A

ℓata
[

1 + Ba(ℓa/ca)
pa

]

/
∑

k∈K̂

dk.

A fast local search attempts to modify the tariffs to further reduce the mean delay.
In OSPF routing, there is no link weight equal to zero, so the least weight path

is the one with the shortest distance. For the toll booth problem, untolled links are
considered to have zero weight (no tariff). The least cost paths are calculated based
on the tariffs of the tolled arcs. Depending on the number of tolls, there can be
several paths with cost zero. Thus, we consider a slightly different notion of least
cost path. Two paths are considered of equal cost if they have the same total cost
and the same number of hops. In case they have the same total cost, but different
hop counts, the least cost path is considered to be the one with the fewest hops.

In the remainder of this section, we show how the total flow on each edge is
computed and how local search is carried out.

4.3. Solution evaluation. The main computational bottleneck of this biased
random-key genetic algorithm is in the solution evaluation. In this section, we
describe the procedure used for evaluating a solution (see pseudo-code in Figure 1).

Let T be the set of destination nodes. We compute |T | single-destination shortest
path graphs gt. Each graph gt, with destination t ∈ T , has an |A|-vector, Lt,
associated with its arcs, that stores the partial loads flowing to t that traverse each
arc a ∈ A. The total load on each arc is stored in the |A|-vector l. For each
destination t, the |N |-vectors πt and δt are associated with the nodes. The least
cost from each node to t is stored in πt, while δt keeps the number of least-cost
links outgoing from each node in gt.

In order to update the new arc loads, we compute the shortest paths to all
destination nodes t ∈ T and arrive at a graph gt = (N, At), ∀ t ∈ T . This is
achieved using Dijkstra’s well-known shortest path algorithm (Ahuja et al., 1993)
with a simple change. Two paths are considered of equal cost if they have the
same total distance and the same hop counts. Since we compute shortest paths
to all destination nodes, we reverse the direction of all arcs in G and compute the
distances πt

u, ∀ u ∈ N , to destination in T , similar to what is done in Buriol et al.
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procedure EvaluateSolution(w)
1 forall t ∈ T do

2 πt ← ReverseDijkstra(w);
3 gt ← ComputeSPG(w, πt);
4 δt ← ComputeDelta(gt);
5 Lt ← ComputePartialLoads(µ, δ, π, gt);
6 end forall

7 l ← ComputeTotalLoads(L);
8 Φ←

∑

a∈A φa;
9 return(Φ);
end procedure

Figure 1. Pseudo-code for the solution evaluation procedure.

(2005). Given the shortest paths to each destination, we can calculate the flows Lt

for all OD demand pairs with destination t and finally the total flows l. The cost
of a solution is computed according to function (6).

4.4. Local improvement procedure. We next describe an adaptation for the toll
booth problem of the local improvement procedure proposed in Buriol et al. (2005).
Starting from a given solution w produced by the decoder, the local improvement
procedure analyzes solutions in the neighborhood of a current solution w searching
for a solution having a smaller cost. If such a solution exists, then it replaces
the current solution. Otherwise, the current solution is returned as the decoded
solution.

Besides being computationally demanding, the use of large local search neigh-
borhoods in a BRKGA decoder can lead to loss of population diversity, and con-
sequently premature convergence to low-quality local minima. Below, we describe
the local improvement procedure using a small neighborhood.

As before, let la denote the total load on arc a ∈ A in the solution defined by the
current weight settings w. We recall that Φa(la) denotes the routing cost on this
arc. The local improvement procedure examines the effect of increasing the weights
of a small subset of the arcs. These candidate arcs are selected among those with
the highest routing costs and whose tariff is less than wmax. To reduce the routing
cost of a candidate arc, the procedure attempts to increase its tariff, in case there
is a toll installed on the arc, in order to induce a reduction of its load with the
objective of reducing not only Φa but also the total cost Φ. If the selected arc has
no toll booth present, a toll booth is created on it with tariff of value one. After the
procedure attempts to increase its tariff, a toll booth is removed from some other
link to maintain the constant number of toll booths.

To select the link to have its toll removed, a subset of r arcs of R, the set of
tolled arcs, are tested in circular order to avoid testing an arc twice without having
tested all tolled arcs. In case the solution does not improve, the search returns
to the previous state. If this leads to a reduction in the overall routing cost, the
change is accepted and the procedure is restarted. The procedure stops at a local
minimum when no change in the toll tariffs can improve the total routing cost Φ.
The pseudo-code in Figure 2 describes the local improvement procedure in detail.
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procedure LocalImprovement(q, w, b)
1 Sort the arcs such that Φa ≥ Φa+1, ∀a = 1, . . . , |A| − 1;
2 for 1 ≤ i ≤ q do

3 w̃ ← w; b̃← b; Φ′ ← Φw,b;
4 a′ ← ai; flag ← false;
5 if ba′ = 0, i.e. a′ has no toll booth then

6 ba′ ← 1; wa′ ← 1;
7 flag ← true;
8 end if

9 for ŵ = wa′ + 1, . . . , wa′ + ⌈(wmax − wa′)/4⌉ do

10 w′

a ← wa, ∀a ∈ A, a 6= a′;
11 w′

a′ ← ŵ;
12 if Φw′,b < Φw,b then

13 w ← w′;
14 end if

15 end for

16 if flag then

17 for r arcs ā ∈ R do

18 b′a ← ba, ∀a ∈ A, a 6= ā; b′ā ← 0;
19 if Φw,b′ < Φ′ then break

20 end for

21 end if

22 if solution improved then

23 b← b′;
24 else

25 w ← w̃; b← b̃;
26 end if

27 end for

end LocalImprovement.

Figure 2. Pseudo-code of procedure LocalImprovement.

The procedure LocalImprovement takes as input parameters the current solution
defined by the weights w, the vector b that indicates which are the tolled arcs, and a
parameter q which specifies the maximum number of candidate arcs to be examined
in each local improvement iteration. In the experiments described in Section 5, we
set q = 5. In the pseudo-code, solution values for the solution represented by vector
pairs {w, b} are denoted by Φw,b.

The loop in lines 2 to 27 analyzes at most q selected candidate arcs for weight
increase in the current solution. The arc indexes are renumbered in line 1 such
that the arcs are considered in non-increasing order of routing cost. The current
solution {w, b} and its cost Φw,b is saved in line 3. Arc a′ is selected in line 4. If arc
a′ has no toll booth, we install a toll of tariff one (line 6), and set a flag in line 7 to
indicate that this operation was performed. The loop in lines 9 to 15 examines all
possible weight changes for arc a′ in the range [wa′ + 1, wa′ + ⌈(wmax−wa′)/4⌉]. A
neighbor solution w′, keeping all arc weights unchanged except for arc a′, is built in
lines 10 and 11. If the new solution w′ has a smaller routing cost than the current
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solution (test in line 12), then the current solution is updated in line 13. The loop
in lines 16 to 21 is executed only if the current arc being analyzed was previously
not tolled. In line 17, r arcs belonging to the set R of tolled arcs, are tested one at
a time, always considering arcs with smallest costs first. In our experiments, we set
r = 10. Initially, tolled arcs are tested in order of increasing routing cost, but once
a change is performed, the new tolled arc is placed in the position occupied by the
previous tolled arc, and the order may be not respected anymore, since the vector
is not resorted. We observed that resorting the vector did not show improvement
in the final results. In line 19 we test if the solution is better than the current
solution in the beginning of the loop in line 2. In case the new solution is better,
it is taken as the current solution in line 23, and the for loop stops. If there is no
better solution, then the current solution is reset to the solution at the start of the
current iteration in line 25.

The routing cost Φ(w′) associated with the neighbor solution w′ must be evalu-
ated in lines 12 and 19. Instead of computing it from scratch, we use fast update
procedures for recomputing the shortest path graphs as well as the arc loads. When
a toll booth is installed in an arc, or a toll booth is removed from an arc, or the
weight of a tolled arc changes, we used the dynamic shortest paths described in Bu-
riol et al. (2008) to update the shortest path graph, instead of recomputing it from
scratch. Once the new arc loads are known, the total routing cost is computed as
the sum of the individual arc routing costs. In Buriol et al. (2005) the use of short-
est paths reduced the total runtime of the algorithm by a factor of approximately
15. We observe similar speedups here.

5. Computational results

We performed a set of experiments with the aim of exploring the quality of the
solutions found by our heuristic methods. We compare two variants of the BRKGA:
one with the fast local search in the decoder and another without. We refer to these
heuristics as BRKGA-LS and BRKGA, respectively. For the experiments, we used
a computer with an Intel Pentium Core 2 Duo processor, running at 3 GHz, with
2 Gb of main memory. The algorithms were coded in C and compiled with the gcc

compiler, version 4.2.4 with optimization flag -03.
Both variants of the genetic algorithm were run with identical parameters. The

size of the population was set at 50, the elite set had 13 solutions, while the mutant
set had three. In the crossover, the probability of the offspring inheriting the
random key of the elite parent was set at 70%.

5.1. The Nine-Node example. To provide an example of how our heuristics
work in comparison with the MINTB approach, we consider the nine-node problem
proposed in Hearn and Ramana (1988). The objective function used for this prob-
lem is based on BPR data and is identical to the one used to describe cost delay for
larger instances. The nine-node network has 18 links, and four OD pairs. Figure
3 displays the optimality gap obtained for this example when running BRKGA-LS
for different numbers of tolls.

The objective function value of the optimal solution of model (1)-(4) for this
instance is 22.59314 (Hearn and Ramana, 1988). It is important to note that
BRKGA-LS does not produce the optimal configuration for this instance. The
solution found by BRKGA-LS was about the same as the one found by BRKGA.
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Figure 3. Number of tolls installed vs. optimality gap for the
nine-node example.

This is due to the fact, that in small networks, a system optimal solution can deviate
significantly from an equal-cost multi-path routing solution.

For this instance, MINTB generated a solution with zero-cost paths for all com-
modities, while our approach allows nonzero flows on all links. The fact that we
split flows evenly on all outgoing arcs while minimizing the cost of the user’s paths
allows for us to find solutions displaying system efficiency and user equilibrium.

5.2. Real-world problems. Some real-world problems with known attributes from
the transportation science literature have a particular objective function. We con-
sider for example, the Sioux Falls, North Dakota instance (LeBlanc et al., 1975).
In this instance, the delay function on each arc is Φa = ℓata[1 +βa(ℓa/ca)

4]. Other
instances, such as Stockholm, Winnipeg, and Barcelona are also studied in this
paper, and have the same delay function. Their attributes (number of nodes, num-
ber of links, number of OD pairs, and number of destinations) are displayed in
Table 1. These instances are available online (Bar-Gera, 2007).

Table 1. Attributes of real-world problem instances.

Instance Vertices Arcs OD pairs Destinations
Sioux Falls 24 76 528 24
Stockholm 416 962 1623 45
Barcelona 1020 2522 7922 108
Winnipeg 1052 2836 4345 138

5.3. Optimal solutions. The traffic optimization problem (1)–(4) has a convex
objective function and linear constraints. Therefore it can, in principle, be solved
by standard methods of convex optimization. We implemented a solver for the
traffic optimization problem based on cvxopt (Dahl and Landenberghe, 2005), a
freely available solver for convex programs.

Our implementation uses a more compact, but equivalent, formulation of (1)–
(4), which represents the flows of all OD pairs with the same destination as a single
commodity. This reduces the number of variables from |A| |K| to |A|D, where
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Figure 4. Number of tolls installed vs. optimality gap of results
of the both variants of BRKGA (with and without local search)
for the Sioux Falls instance. We tested installing 10, 20, 30, 40,
50, 60, and 70 tolls.

D = |{d | (o, d) ∈ K}| is the number of different destinations. Table 1 shows that
this number is a factor between 22 to 73 smaller than the number of OD pairs.

The cvxopt solver was able to produce optimal values for only the two smallest
instances shown in Table 2. On Stockholm, an instance with 416 nodes and 962
arcs, the solver did not terminate within three days of CPU time. Therefore, we
did not attempt to optimally solve the two other larger instances with cvxopt.

Table 2. Optimal solutions.

Instance Optimal value Solution time (secs)
nine-node 22.539181 < 1
Sioux Falls 19.950794 22
Stockholm Did not finish > 259, 200

5.4. Quality of the BRKGA solutions. We compare the best solution values
and the optimality gap (when possible) obtained by two variants of our heuristic,
BRKGA and BRKGA-LS. For each instance, we used different numbers of tolled
arcs, varying from a few and up to a toll booth on every arc. For each number of
tolled arcs, we ran both variants of the heuristic three times with different random
seeds for 5, 000 generations, but at most up to a time limit of one hour. The results
represent the average of these runs. Each run of instance Sioux Falls took on
average about 2 minutes of CPU time, while the runs on instance Stockholm took
about 18 minutes. Runs for instances Winnipeg and Barcelona always terminated
with the 60 minute time limit. The number of generations for instance Winnipeg

varied from 169 to 912, while for instance Barcelona this number varied from 240
to 1296. The BRKGA-LS variant spent between 50 and 70 percent of its time in
the local search.

Figures 3 and 4 shows computational results for instances nine-node and Sioux

Falls, respectively. Since it was possible to optimally solve these instances, the
plots show the optimality gap (in percent above the optimal solution), while the
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results for the remaining instances are absolute values. Figure 4 shows that for a
sufficient number of installed tolls (40 or more), the solution found by BRKGA-LS
lies within 15% of the SO solution for the Sioux Falls instance.
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Figure 5. Number of tolls installed vs. quality of results of
BRKGA and BRKGA-LS on instances Stockholm (top), Winnipeg
(middle), and Barcelona (bottom).

Figures 5 shows computational results for instances Stockholm, Winnipeg, and
Barcelona. For each instance, we present results found by BRKGA and BRKGA-
LS.
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The experiments show that BRKGA-LS finds better solutions than BRKGA with
similar running times. For all tests performed, on only two cases was the average
solution value found by BRKGA better than the corresponding value found by
BRKGA-LS (Winnipeg with 500 tolls and Barcelona with 500 tolls).

For most of the instances, the quality of the results improves with larger toll sets.
For BRKGA-LS, the solution value almost always decreases monotonically with an
increasing number of tolls, while for BRKGA, even more variation is observed.

Given that in almost all cases BRKGA-LS finds better solutions as the number
of installed tolls increases, one can choose a trade-off between the number of tolled
links and the quality of the solution.

6. Conclusions

In this paper, we adapted the evolutionary algorithm introduced in Buriol et al.
(2005) to a transportation problem. We were only able to solve small instances
to optimality with cvxopt, a solver for convex optimization. We proposed and
evaluated two variant of a biased random-key genetic algorithm (BRKGA), one
with and the other without local search in the decoder. By means of computing a
solution that minimizes the average delay of the trips, we deal with both SO and
UE problems simultaneously. As we have applied a heuristic to solve this problem,
there is no guarantee that the system optimal solution is achieved. Instead, an
efficient solution for the overall transportation system is obtained. We show both
genetic algorithms obtain solutions of good quality for small and large instances.
In almost all cases, the quality of the solution improves with the increase in the
number of tolls deployed. However, a large number of tolls may be not suitable to
apply, at this time, in a real-world situation. Thus, one can choose the number of
tolls to be installed by considering the quality of solution achieved.
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do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970 Brazil.

E-mail address: marcus.ritt@inf.ufrgs.br


