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Abstract. This paper surveys several applications of biased random-key ge-
netic algorithms (BRKGA) in optimization problems that arise in telecommu-
nications. We first review the basic concepts of BRKGA. This is followed by
a description of BRKGA-based heuristics for routing in IP networks, design of
survivable IP networks, redundant server location for content distribution, re-
generator location in optical networks, and routing and wavelength assignment
in optical networks.

1. Introduction

Optimization problems are abundant in telecommunications (Resende and Parda-
los, 2006). Among optimization problems, combinatorial optimization arises in nu-
merous application domains such as IP routing, network design, and network facility
location. Much progress has been made in recent years in finding provably opti-
mal solutions to combinatorial optimization problems employing techniques such as
branch and bound, branch and cut, cutting planes, and dynamic programming, as
well as provably near-optimal solutions using approximation algorithms. Neverthe-
less, many combinatorial optimization problems arising in telecommunications can
benefit from heuristic methods that quickly produce good-quality solutions. Many
modern heuristics for combinatorial optimization are based on guidelines provided
by metaheuristics.

Metaheuristics (Glover and Kochenberger, 2003; Gendreau and Potvin, 2010) are
high-level procedures that coordinate simple heuristics, such as local search, to find
solutions that are of better quality than those found by the simple heuristics alone.
Many metaheuristics have been introduced in the last thirty years. Among these,
we find GRASP, simulated annealing, tabu search, variable neighborhood search,
scatter search, path-relinking, iterated local search, ant colony optimization, swarm
optimization, and genetic algorithms.

A variant of genetic algorithm, introduced in the last 10 years, is the so-called
biased random-key genetic algorithm or BRKGA (Gonçalves and Resende, 2010a).
BRKGA heuristics encode a solution of the combinatorial optimization problem
as a vector of random keys, i.e. a vector with real-valued components randomly
generated in the interval [0, 1). They search the solution space of the combinatorial
optimization problem indirectly, by exploring the continuous unit hypercube and
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mapping continuous solutions to discrete solutions of the combinatorial optimiza-
tion problem using a simple heuristic called a decoder. The decoder is designed
to guarantee that, given as input a vector of random keys, it produces a feasible
discrete solution of the combinatorial optimization problem. This way there is a
clear separation between the problem independent portion of the BRKGA and the
problem dependent part, so these methods can be seen as high-level procedures
that coordinate simple heuristics to find solutions that are of better quality than
those found by the simple heuristics alone.

Random-key genetic algorithms can be traced back to the genetic algorithm with
random keys, proposed by Bean (1994), for sequencing problems. Biased random-
key genetic algorithms differ from Bean’s algorithm in the way parents are chosen for
crossover. In a BRKGA one parent is always chosen from a set of elite individuals in
the population, while in Bean’s algorithm both parents are selected from the entire
population. BRKGAs were first introduced by Gonçalves and Beirão (1999) and
Gonçalves and Almeida (2002) for sequencing problems and by Buriol et al. (2002;
2005) and Gonçalves and Resende (2004) for problems not involving sequencing.

The paper is organized as follows. In Section 2 we describe biased random-key
genetic algorithms. This is followed by five sections, each presenting a BRKGA for
an optimization problem that arises in telecommunications. Section 3 considers the
weight setting problem for routing in IP networks with the Open Shortest Path First
(OSPF) routing protocol. Section 4 addresses the design of survivable IP networks
where routing is done with the OSPF protocol. In Section 5, we consider the
problem of locating content distribution centers in a network. Section 6 describes a
BRKGA for the regenerator location problem in optical networks. Finally, Section 7
considers the problem of routing and assigning wavelengths to a set of lightpaths
in an optical network. Concluding remarks are made in Section 8.

2. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for solving combinatorial optimization prob-
lems involving sequencing. In a RKGA, chromosomes are represented as vectors of
randomly generated real numbers in the interval [0, 1). A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a feasible
solution of the combinatorial optimization problem for which an objective value
or fitness can be computed. In a minimization (resp. maximization) problem, we
say that solutions with smaller (resp. larger) objective function values are more fit
than those with larger (resp. smaller) values.

Consider the example in Figure 1 of encoding/decoding for a routing problem
on a graph G = (V, E). In this problem links e ∈ E are assigned weights We and
routes are computed by following least-weighted routes. A solution is encoded as
a random real-valued |E|-vector X where Xe ∈ [0, 1) for all e ∈ E and are decoded
into integer |E|-vectors of link weightsW using the decoderWe = ⌈30Xe⌉, for e ∈ E.
The example shows encoding/decoding for two parent solutions and the child that
results from the crossover of the two parents. The shortest paths between nodes 1
and 3 in the three solutions are shown by dashed links.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each component of the solution vector is generated independently at random in
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(a) Parent 1 (b) Parent 2

(c) Child

Figure 1. Example of encoding/decoding of parent and child so-
lutions for a graph routing problem. Encoded real-valued random
vectors X are decoded into an integer vector of link weights W
with decoder Wi = ⌈30Xi⌉. Parent 1 has chromosome X = {.031,
.370, .503, .116, .832, .827, .113, .338, .950, .326} which is decoded
as W = {1, 12, 16, 4, 25, 25, 4, 11, 29, 10}. Parent 2 has chro-
mosome X = {.035, .666, .181, .900, .019, .252, .471, .821, .907,
.855} which is decoded as W = {2, 20, 6, 27, 1, 8, 15, 25, 28,
26}. Child obtained by mating parents 1 and 2 with coin flips
{THTHHHTTTH} resulting in chromosome X = {.035, .370,
.181, .116, .832, .827, .471, .821, .907, .326} which is decoded as
W = {2, 12, 6, 4, 25, 25, 15, 25, 28, 10}. The shortest paths from
node 1 to node 3 for the solutions are indicated by the dashed
arrows.

the real interval [0, 1). After the fitness of each individual is computed by the
decoder in generation k, the population is partitioned into two groups of individuals
(see Figure 2): a small group of pe elite individuals, i.e. those with the best
fitness values, and the remaining set of p− pe non-elite individuals. To evolve the
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Figure 2. Population of p solutions is partitioned into a smaller
set of pe elite (most fit) solutions and a larger set of p−pe non-elite
(least fit) solutions.

population, a new generation of individuals must be produced. All elite individual of
the population of generation k are copied without modification to the population of
generation k+1 (see Figure 3). RKGAs implement mutation by introducing mutants

into the population. A mutant is simply a vector of random keys generated in the
same way that an element of the initial population is generated. At each generation,
a small number (pm) of mutants is introduced into the population (see Figure 3).
With the pe elite individuals and the pm mutants accounted for in population k+1,
p−pe−pm additional individuals need to be produced to complete the p individuals
that make up the new population. This is done by producing p− pe− pm offspring
through the process of mating or crossover (see Figure 4).

Bean (1994) selects two parents at random from the entire population to imple-
ment mating in a RKGA and allows a parent to be selected more than once in a
given generation. A biased random-key genetic algorithm, or BRKGA (Gonçalves
and Resende, 2010a), differs from a RKGA in the way parents are selected for mat-
ing. In a BRKGA, each element is generated combining one element selected at
random from the elite partition in the current population and one from the non-elite
partition. We say the selection is biased since one parent is always an elite individ-
ual. Repetition in the selection of a mate is allowed and therefore an individual can
produce more than one offspring in the same generation. Parameterized uniform

crossover (Spears and DeJong, 1991) is used to implement mating in BRKGAs.
Let ρe > 0.5 be the probability that an offspring inherits the vector component of
its elite parent. Let n denote the number of components in the solution vector of an
individual. For i = 1, . . . , n, the i-th component c(i) of the offspring vector c takes
on the value of the i-th component e(i) of the elite parent e with probability ρe

and the value of the i-th component ē(i) of the non-elite parent ē with probability
1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key vectors
and the population is partitioned into elite and non-elite individuals to start a new
generation. Figure 5 shows a flow diagram of the BRKGA framework with a clear
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Figure 3. All pe elite solutions from population k are copied un-
changed to population k+1 and pm mutant solutions are generated
in population k + 1 as random-key vectors.

Figure 4. To complete population k + 1, p − pe − pm offspring
are created by combining a parent selected at random from the
elite set of population k with a parent selected at random from the
non-elite set of population k. Parents can be selected for mating
more than once per generation.

separation between the problem dependent and problem independent components
of the method.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by exploring the continuous n-dimensional hypercube, using the decoder
to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.
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Figure 5. Flowchart of biased random-key genetic algorithm with
problem independent and problem dependent components.

To describe a BRKGA for a specific combinatorial optimization problem, one
needs only to show how solutions are encoded as vectors of random keys and how
these vectors are decoded to feasible solutions of the optimization problem. In the
next sections, we describe biased random-key genetic algorithms for optimization
problems arising in telecommunications.

3. Weight setting problem in IP routing

The Internet is made up of routing domains, called autonomous systems (ASes),
which are networks consisting of routers and links connecting the routers. When
customer and peer routers are considered, ASes can have thousands of routers
and links. ASes interact to control and deliver Internet Protocol (IP) traffic. They
typically fall under the administration of a single institution, such a service provider.
Neighboring ASes use the Border Gateway Protocol (BGP) to route traffic between
them.

The goal of intra-domain traffic engineering is to improve user performance and
make more efficient use of network resources within an AS. Interior Gateway Pro-
tocols (IGPs), such as OSPF (Open Shortest Path First) and IS-IS (Intermediate
System-Intermediate System), are commonly used to select the paths along which
traffic is routed within an AS.

These routing protocols direct traffic based on link weights assigned by the net-
work operator. Each router in the AS computes shortest paths, using Dijkstra’s
algorithm (Dijkstra, 1959), and creates destination tables used to direct each IP
packet to the next router on the path to its final destination. OSPF calculates
routes as follows. An integer weight ranging from 1 to 65,535 (= 216 − 1) is as-
signed to each link. The weight of a path is the sum of the link weights on the
path. OSPF requires that each router compute a graph of shortest paths with itself
as the root. This graph gives the least weight routes (including multiple routes in
case of ties) to all destinations in the AS. In the case of multiple shortest paths
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originating at a router, OSPF is usually implemented so that it will accomplish
load balancing by splitting the traffic flow over all shortest paths leaving from each
router. A common assumption is to consider that traffic is split evenly between all
outgoing links on the shortest paths to the destination IP address. OSPF requires
routers to exchange routing information with all the other routers in the AS, a
requirement for the computation of the shortest paths.

Given a set of traffic demands between origin-destination pairs, the OSPF weight

setting problem consists in determining weights to be assigned to the links so as to
optimize a cost function, typically associated with a network congestion measure.
Figure 6 shows an example of two weight settings and the link loads resulting from
routing the demands with the OSPF protocol.

Ericsson et al. (2002) and Buriol et al. (2005) describe BRKGA heuristics for the
weight-setting problem in OSPF routing. A related BRKGA is described in Reis
et al. (2010), where a different routing protocol, Distributed Exponentially-Weighted

Flow Splitting (DEFT), is used.

3.1. Problem definition. Consider a directed network graph G = (N, A) where
N denotes the set of nodes (where routers are located) and A denotes the set of
links connecting the routers with a capacity ca for each a ∈ A, and a demand
matrix D that, for each pair (s, t) ∈ N × N , gives the demand ds,t in traffic flow
from node s to node t. The OSPF weight-setting problem consists in assigning
positive integer weights wa ∈ [1, wmax] to each arc a ∈ A, such that a measure
of routing cost is minimized when the demands are routed according to the rules
of the OSPF protocol. The routing cost is a function of the link capacities and
the total traffic that traverses each link. In OSPF, traffic between nodes s and t
is routed on a shortest-weight path connecting these nodes. The OSPF protocol
allows for wmax ≤ 65535.

For each pair (s, t) and each arc a, let f
(st)
a indicate how much of the traffic flow

from s to t goes over arc a. Let la be the total load on arc a, i.e. the sum of
the flows going over a, and let the trunk utilization rate ua = la/ca. The routing
cost in each arc a ∈ A is taken as the piecewise linear function Φa(la), proposed
by Fortz and Thorup (2004) and depicted in Figure 7, which increasingly penalizes
flows approaching or violating the capacity limits:

(1) Φa(la) =
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ua, ua ∈ [0, 1/3)
3 · ua − 2/3, ua ∈ [1/3, 2/3),
10 · ua − 16/3, ua ∈ [2/3, 9/10),
70 · ua − 178/3, ua ∈ [9/10, 1),
500 · ua − 1468/3, ua ∈ [1, 11/10),
5000 · ua − 16318/3, ua ∈ [11/10,∞).

The routing cost is Φ =
∑

a∈A Φa(la).

3.2. Solution encoding. Each solution is encoded as a vector x of random keys
of length n = |A|, where the i-th gene corresponds to the i-th link of G.

3.3. Chromosome decoder. To decode a link weight wi from xi (for i = 1, . . . , n),
simply compute wi = ⌈xi × wmax⌉. Once link weights are computed, shortest
weight (path) graphs from each node to all other nodes in the graph can be derived,
traffic can be routed on least weight paths, the total traffic on each link computed,
resulting in a routing cost which is the fitness of the solution. Buriol et al. (2005)
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(a) Weight setting configuration 1

(b) Weight setting configuration 2

Figure 6. Each node must send one unit of flow to each other node in the network. For each configuration, the
network on top shows link weights and total flow on each link. Links on the top network are bi-directional and weights
are symmetric. The flows are determined by routing the demands on shortest weight paths (see four networks on the
bottom). Assuming the links have equal capacities, configuration 2 has a smaller congestion cost than configuration
1. Configuration 2 also has less maximum utilization.
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Figure 7. Piecewise linear function Φa(la).

apply a fast local search to the solution in an attempt to further reduce the routing
cost of OSPF routing. Let A∗ be the set of five links with the highest routing cost
values. For each link i ∈ A∗, a local improvement heuristic attempts to increase wi

by one unit at a time in a specified range and adjust the traffic accordingly. If the
total routing cost can be reduced this way, the new weight is accepted, a new set
A∗ is constructed, and the process repeats itself. If, after scanning the five links,
the cost cannot be reduced, then the procedure stops. This fast local search was
adapted for DEFT routing in Reis et al. (2010).

3.4. Experimental results. Ericsson et al. (2002) compare routing solutions pro-
duced by their BRKGA for the 13 test problems proposed by Fortz and Thorup
(2004) with lower bounds derived by solving a multicommodity flow linear program
(LP), the tabu search heuristic of Fortz and Thorup, and the simple heuristics Uni-

tOSPF, InvCapOSPF, and RandomOSPF. The BRKGA was run for 700 generations
on each instance and easily outperformed the simple heuristics, finding solutions
comparable with those of Fortz and Thorup. These solutions were close to the LP
lower bounds for a wide range of traffic demands. By running BRKGA indepen-
dently 9 times for 8000 generations on each one of the instances, the BRKGA was
shown to produce better solutions than Fortz and Thorup on all 9 runs. Figure 8
shows the fitness of the best solution of each of the nine runs on an instance pro-
posed by Fortz and Thorup (2004) as a function of CPU time. The best solution
found was closer to the LP lower bound than to the solution produced by the search
heuristic of Fortz and Thorup.

Buriol et al. (2005) test their BRKGA on the same 13 test instances considered
by Fortz and Thorup (2004) and Ericsson et al. (2002). Figure 9 shows that the
new decoder with the fast local search finds better solutions than the BRKGA of
Ericsson et al. Furthermore, Buriol et al. (2005) show that given a target solution
value, the new BRKGA is also faster than the BRKGA of Ericsson et al. Finally,
they show results of experiments comparing run-time distributions for the BRKGA
and the tabu search of Fortz and Thorup. Using three target values on a large real
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Figure 8. Fitness values of best solution on nine independent
runs of the BRKGA of Ericsson et al. (2002) on a test instance
proposed in Fortz and Thorup (2004). The figure shows the best
value obtained by the local search of Fortz and Thorup (2004) as
well as the value of linear programming lower bound.
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Figure 9. Cost of best solution found by the BRKGA of Ericsson
et al. (2002) and the the BRKGA of Buriol et al. (2005) as a
function of number of iterations for a one hour run on a 196-MHz
MIPS R10000 processor.

instance, the experiments show that the tabu search distribution has a long tail
while the distribution for the BRKGA does not.
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Figure 10. A four-node network with three link-types (denoted
with three different line widths) that is survivable to single arc
failures. An arc failure knocks out all link types on that arc and
each remaining working arc has to have enough installed capacity
to handle the additional traffic that will be pass through it to avoid
the failed arc.

Reis et al. (2010) compare their BRKGA for DEFT routing with the BRKGA of
Buriol et al. (2005) for OSPF routing. They show results for the 13 test problems
used by previous papers and confirm that DEFT routing can achieve solutions that
result in less congestion than OSPF routing.

4. Design of survivable IP networks

Given a set of nodes in a network, a traffic matrix estimating the demand, or
traffic, between pairs of these nodes, a set of arcs, each having endpoints at a pair of
the given nodes, a set of possible fiber link types, each with an associated capacity
and cost per unit of length, and a set of failure configurations, the survivable
network design problem seeks to determine how many units of each cable type will
be installed in each link such that all of the demand can be routed on the network
under the no failure and all failure modes such that the total cost of the installed
fiber is minimized. Figure 10 illustrates a four node survivable network with three
link types. Buriol et al. (2007) proposed a BRKGA to design survivable networks
where traffic is routed using the Open Shortest Path First (OSPF) protocol and
there is only one link type. Andrade et al. (2006) extended this BRKGA to handle
composite links, i.e. the case where there are several fiber types. Four decoders are
proposed by Andrade et al.

4.1. Problem definition. Given a directed graph G = (V, E), where V is the set of
routers and E is the set of potential arcs where fiber can be installed, and a demand
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matrix D, that for each pair (u, v) ∈ V × V , specifies the demand Du,v between
u and v. Arc e ∈ E has length de. Link types are numbered 1, . . . , T . Link type i
has capacity ci and cost per unit of length pi. We make two assumptions about the
capacities and costs per unit length. First, given capacities c1 < c2 < . . . < cT and
prices p1 < p2 < . . . < pT , we assume that (pT /cT ) < (pT−1/cT−1) < . . . < (p1/c1),
i.e., the price per unit of capacity is smaller for links with greater capacities. Second,
given capacities c1 < c2 < . . . < cT , we assume that ci = αci−1 (α ∈ N, α > 1), i.e.,
the capacities are multiples of each other by powers of the integer α.

We wish to determine integer OSPF weights we ∈ [1, 65535] as well as the number
of copies of each link type to be deployed at each arc such that when traffic is routed
according to the OSPF protocol in a no-failure or any single failure situation there
is enough installed capacity to move all of the demand. Furthermore, we want the
total cost of the installed capacity to be minimum.

4.2. Solution encoding. Assume arcs in E are numbered 1, . . . , |E|. A solution
of the survivable network design problem is encoded as a vector x of |E| random
keys. The i-th key corresponds to the i-th arc.

4.3. Chromosome decoder. To produce the OSPF weight wi of the i-th arc,
scale the random key by the maximum weight, i.e. set wi = ⌈xi × 65535⌉. For the
no-failure mode and each failure mode, route the traffic using the OSPF protocol
using the computed arc weights, compute the loads on each arc and record the
maximum load over the no-failure and all failure modes. For each arc, determine
an optimal allocation of link types such that the resulting capacity of the set of
composite links is enough to accommodate the maximum load on the arc. To do
this on a particular arc, start with load l. Use as much as possible of the highest
capacity link type without exceeding the load. This means that ⌊l/cT ⌋ units of link
t are used. Compute the cost if we were now to satisfy the load using the current
link type and save this configuration and its cost but do not deploy this link type
for now. Update the remaining load (l := l − ⌊l/cT ⌋), and repeat the operation
on the next link type (T − 1), until the link type (1) with smallest capacity is
reached. Then, satisfy the remaining load with ⌈l/c1⌉ units of link type 1. Of
the several configurations considered for the arc, deploy the one with smallest cost
configuration. Finally, when all arcs have link deployments, add up the costs of
these deployments and return the sum as the fitness of the solution.

4.4. Experimental results. Since this was the first heuristic proposed in the lit-
erature for this problem, Buriol et al. (2007) compare network designs produced
with their BRKGA with those produced by a similar process where instead of find-
ing good OSPF weights with the BRKGA, link weights are set in one case to unit
(UNIT ) and randomly (RAND) in another. They also compare their solutions with
a simple lower bound (LB). Four networks of sizes varying from 10 nodes and 90
links to 71 nodes and 350 links make up the benchmark test set. For each net-
work, four instances were created: one with no failures, one with both single router
and single link failures, one with single link failures and no router failure, and one
with single router failures and no link failure. The results show that the solutions
produced by the BRKGA are superior to those produced with the other heuristics.
For example, a 1000-generation run with a 500-element population produced for
one of the instances with no failure the following ratios of solution values: 1.64
for RAND :BRKGA, 1.82 for RAND :BRKGA, and 1.94 for BRKGA:LB. Figure 11
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Figure 11. Network cost of BRKGA as a function of CPU time
for unprotected network and three networks having different types
of protection: single router failure, single link failure, and single
router or link failure.

illustrates the additional cost of adding different types of protection on a 74 node,
278 edge network with 18 routers that make up 306 router pairs with traffic re-
quirements (Buriol et al., 2007). Networks were designed by running the BRKGA
variants for 10,000 seconds on a 1.5 GHz Itanium-2 processor. To add protection
against single link failures costs 61% more than having no protection. Protection
against single router failure costs 65% more and against both single router or single
link failure is 78% more expensive than having no protection at all.

Andrade et al. (2006) show the results of an experiment on a real network with
54 routers and 278 arcs. Three link types were considered. All four decoders were
tested and the so-called min cost decoder achieved the best results among the
decoders tested.

5. Redundant server location for content distribution

Breslau et al. (2011) study two new facility location problems that arise in
telecommunications. A BRKGA is proposed for these problems. In these appli-
cations a customer must be served by a pair of facilities. In addition, the service
routes from the facilities to the customer must be vertex-disjoint. In this context,
we wish to find a minimum-size set of facilities such that each customer has asso-
ciated with it at least two facilities where the service routes from the facilities to
the customer are vertex-disjoint.

One of the applications discussed in Breslau et al. (2011) is redundant server
location for content distribution. Suppose we wish to operate a robust system
to distribute real-time content, such as television broadcasts, on a network that
does not have a fast scheme to recover from link or node failures. A common
characteristic of robustness is survivability to single link or node failures. To achieve
this we place multiple copies of our content in the network. Since content-hosting
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Figure 12. Servers store digital content that is consumed by cus-
tomers. Each customer requires that two servers be assigned to
deliver content to it. These servers must be such that all paths
from the first server to the customer are disjoint from all paths
from the second server to the customer. That way a single edge
failure will not affect service to the customer.

facilities are expensive, we wish to deploy as few of them as possible, as long as
the required resilience is achieved. A customer c is said to be covered if there exist
at least two content-hosting facilities f1 and f2 such that the paths from f1 to f2

are such that they only share node c. We wish to cover all customers with as few
facilities as possible.

5.1. Problem definition. Suppose we are given a network modeled as an undi-
rected graph G = (V, A) and two sets C and F such that C, F ⊆ V . C is the set
of customer locations and F the set of potential facility locations. Furthermore,
suppose that for each pair (c, f) such that c ∈ C and f ∈ F we are given a set
P (c, f) of simple directed paths from f to c in G. These paths could, for example,
be the set of all OSPF shortest-path routes from c to f . We say (f1, f2) covers c
in a pathwise-disjoint way if there exist paths p1 ∈ P (f1, c) and p2 ∈ P (f2, c) that
have no common vertex except c. The pair (f1, f2) covers c in a setwise-disjoint way
if all paths p1 ∈ P (f1, c) and p2 ∈ P (f2, c) share only vertex c. A subset F ′ ⊆ F is
called a pathwise-disjoint cover for C if for every c ∈ C there exists a pair (f1, f2),
where f1, f2 ∈ F ′ such that (f1, f2) covers c in a pathwise-disjoint way. Similarly, a
subset F ′ ⊆ F is called a setwise-disjoint cover for C if for every c ∈ C there exists
a pair (f1, f2), where f1, f2 ∈ F ′ such that (f1, f2) covers c in a setwise-disjoint
way. In the pathwise-disjoint facility location problem, we are given G, C, F , and
the sets P (c, f) and want to find a pathwise-disjoint cover of minimum size for C,
if such a cover exists. Similarly, in the setwise-disjoint facility location problem, we
are given G, C, F , and the sets P (c, f) and want to find a setwise-disjoint cover of
minimum size for C, if such a cover exists. These facility location problems are not
only NP-hard but also strongly inapproximable in the worst-case (Breslau et al.,
2011).
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5.2. Solution encoding. Assume the potential facility locations in F are num-
bered 1, . . . , |F |. A solution of the pathwise (setwise) facility location problem is
encoded as a vector x of |F | random keys. The i-th key corresponds to the i-th
potential facility location.

5.3. Chromosome decoder. The decoder takes as input a vector x of |F | random
keys and returns a subset F ′ ⊆ F of facilities that is a cover for C.

A greedy algorithm for this problem is proposed in Breslau et al. (2011). It
initializes the set F ′ ⊆ F to the empty set. Then, as long as F ′ does not cover all
customers c ∈ C, find a facility f ∈ F \ F ′ such that F ′ ∪ {f} covers a maximum
number of yet-uncovered customers. Ties are broken by facility index. If the
number of yet-uncovered customers that become covered is at least one, add f to
F ′. Otherwise, find a pair of facilities (f1, f2) ∈ F \ F ′ such that F ′ ∪ {f1} ∪ {f2}
covers a maximum number of yet-uncovered customers. Ties are broken first by the
index of f1, then by the index of f2. If such a pair does not exist, then the problem
is infeasible. Otherwise, add f1 and f2 to F ′.

The decoder initializes set F ′ according to the values of the random keys. For
f = 1, . . . , |F |, if key xf ≥ 0.5 then f is added to set F ′. If the resulting set F ′ is
a cover for C, then the decoder returns it and stops. Otherwise, the above greedy
algorithm is applied starting with the facilities in F ′ instead of the empty set.

5.4. Experimental results. Breslau et al. (2011) tested the BRKGA for disjoint-
path facility location on synthetic and real-world instances modeling two different
types of data networks and having distinct characteristics. Synthetic networks had
up to 558 nodes while the largest real-world network had about 1000 nodes.

The BRKGA was compared with a greedy algorithm, and a more sophisticated
heuristic, called the double-hitting set heuristic, with respect to accuracy, execution
time, and cost reduction with respect to a trivial solution.

With respect to accuracy, on 41 problem instance classes, the BRKGA was on
average never over 2.5% above a strong lower bound (compared to 3.7% for the
double-hitting set heuristic and 2.8% for greedy). Of the 560 synthetic instances,
the BRKGA found the best solution on 527 (versus 491 for the double-hitting
set and 499 for greedy). On the real-world instances, the results were similar to
those for the synthetic instances, i.e. the BRKGA was slightly better than the
double-hitting set heuristic in many comparison (with the exception of the largest
instances, too large for the single-thread implementation of BRKGA to handle).
Both the BRKGA and the double-hitting set heuristic outperformed the greedy
algorithm on the real-world instances.

With respect to execution times, the BRKGA was slowest of the three proposed
heuristics, taking over a day on a 531 node instance. In fact, it was not even run
on the largest real-world instances. This, of course, can be mitigated with a multi-
thread implementation of the BRKGA. Our experience with another set covering
problem (Resende et al., 2010) showed a speedup of about 40 using 120 processors.
Since the publication of Breslau et al. (2011), we have developed a new multi-
threaded BRKGA implementation which can solve the largest 1000-node instance
to optimality (proven by a tight lower bound) in about 1 hour and 43 minutes on a
single 2.27GHz Xeon X7560 processor and 4 minutes 25 seconds with 64 processors
(a factor of 23 speedup).
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Perhaps most importantly, compared to the trivial solution of locating a facility
in each node of the network, the BRKGA was able to achieve significant reductions.
On the synthetic instances, the smallest savings amounted to 33% while the largest
was 76%. If the set-disjoint variant of the problem is considered, the savings are
even slightly better. These savings were even more pronounced on the real-world
instances, were the BRKGA found solution that had savings of 85-90% with respect
to the trivial solution.

6. Regenerator location

Telecommunication systems transmit information with optical signals. Because
of attenuation, the strength of a signal deteriorates, losing power, the further it
gets from the source. To enable the signal to arrive at its intended destination
with sufficient strength, it may be necessary to regenerate the signal one or more
times using regenerators. Since regenerators are relatively expensive, it is desirable
to deploy as few of them as possible in the network. In the regenerator location

problem (RLP) we seek paths connecting all pairs of nodes in the network with a
minimum number of regenerators. Duarte et al. (2010) proposed a BRKGA for the
RLP.

6.1. Problem definition. Consider an undirected graph G = (V, E), where V is
the node set, E is the set of edges. Each edge (i, j) ∈ E has a real-valued length
di,j ∈ R

+. A parameter D ∈ R
+ specifies the maximum length that a signal

can travel before its quality deteriorates such that regeneration is required. The
regenerator location problem (RLP) consists in determining paths that connect all
pairs of nodes in the graph and, if necessary, locating single regenerators at some
of those nodes. The regenerator location problem was shown to be NP-hard by
Flammini et al. (2009) and Chen et al. (2010).

Between each pair of nodes {s, t} ∈ V × V , a path {(s, v1), (v1, v2), . . . , (vk, t)}
connecting these nodes is formed by one or more path segments. A path segment

consists of a sequence of consecutive edges {(vi, vi+1), (vi+1, vi+2), . . . , (vq−1, vq)}
in the path, satisfying the condition that the total length of the segment

dvi,vi+1
+ dvi+1,vi+2

+ · · ·+ dvq−1,vq
≤ D.

If the total length of the path is not greater than D, then the path consists of a
single path segment. Otherwise, it consists of two or more path segments and one
or more regenerators will be located in the internal nodes of the path, separating
consecutive path segments.

Figure 13(a) shows an example of a network with seven nodes and a maximum
distance parameter D = 100. The numbers beside the edges represent their lengths.
Note that the length d1,5 = 150 of edge (1, 5) is greater than D and therefore it
cannot be part of any path. In the figure we can see that the shortest path from
node 1 to node 3 is {(1, 2), (2, 3)} with a total length of 60 + 70 = 130 > 100.
Therefore, it must be decomposed into two path segments, {(1, 2)} and {(2, 3)},
and a regenerator must be placed in node 2 so that nodes 1 and 3 can be connected
using this path. Since edge (1, 5) cannot be part of any path, then to connect
nodes 1 and 5 we observe that the shortest feasible path is {(1, 2), (2, 3), (3, 5)}
with total length 60 + 70 + 90 = 220. Since 60 + 70 > 100 and 70 + 90 > 100,
this path must be decomposed into three path segments using two regenerators,
one at node 2 and one at node 3. On the other hand, we can connect nodes 5
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(a) Graph G = (V, E) (b) Graph M = (V, E′)

Figure 13. Example of a seven node graph G with edges lengths
and corresponding communication graph M .

and 7 without needing a regenerator using path {(5, 6), (6, 7)} which has a length
of 40 + 40 = 80. Finally, note that placing regenerators in nodes 2 and 7 allows for
communication between all pairs of nodes in the graph.

Chen et al. (2010) introduce the communication graph to describe algorithms
for the RLP. To generate the unweighted communication graph M = (V, E′) cor-
responding to the input graph G = (V, E), first delete all edges that have length
greater than D. Add an edge between each non-adjacent pairs of nodes of length
equal to the length of the corresponding shortest path if the path length in G is not
greater than D. Finally, disregard all length information from M . If the resulting
communication graph M is complete, then there is no need for any regenerator. If
the resulting graph is not connected, then the problem is infeasible. Alternatively,
if the resulting graph is connected but not complete, then one or more regenerators
will be required.

Figure 13(b) represents the communication graph M that results from the graph
in the example of Figure 13(a). The dashed link in the graph between nodes 5
and 7 is the only link added during the procedure to create M from G. Since M is
not complete, then one or more regenerators are needed to enable communication
between all node pairs in G.

6.2. Solution encoding. Assume nodes in V are numbered 1, . . . , n, where n =
|V |. A solution of the regenerator location problem is encoded as a vector x of n
random keys. The i-th key corresponds to the i-th node.

6.3. Chromosome decoder. Chen et al. (2010) propose a greedy algorithm for
the RLP. The decoder described below makes use of this greedy algorithm. The
greedy algorithm takes as input the set of pairs of nodes that are not directly con-
nected (NDC) in the communication graph and builds a set R of regenerator nodes,
one node at a time. At each iteration, the procedure determines a node u∗ whose
inclusion in R enables the connection of the largest number of yet unconnected
pairs in the communication graph. Node u∗ is added to R and the communication
graph is updated by adding to it the edges connecting those yet unconnected pairs
that become connected by placing a regenerator in u∗.



18 MAURICIO G.C. RESENDE

procedure Decoder

Data: Communication graph M = (V, E′) and vector x of
random keys

Result: Set of regenerator nodes: R ⊆ V
1 R← ∅; C ← V ;

2 Ē′ = {(i, j) ∈ V × V : (i, j) 6∈ E′};

3 Order the nodes in C w.r.t. their associated x value;

4 while Ē′ 6= ∅ do

5 Select the next node k ∈ C following the x-order;

6 X (k)← ∅;

7 A← N (k) = {v ∈ V : (k, v) ∈ E′};

8 for v ∈ A ∩R do

9 A← A ∪ N (v);

10 end

11 for (i, j) ∈ A×A do

12 if (i, j) 6∈ E′ then

13 X (k)← X (k) ∪ {(i, j)};

14 end

15 end

16 R← R ∪ {k};

17 C ← C \ {k};

18 E′ ← E′ ∪ X (k);

19 Ē′ ← Ē′ \ X (k);

20 end

21 return R;

Algorithm 1: Pseudo-code for DECODER.

In the decoder, instead of selecting the next node to add to set R as the one
which enables the connection of the largest number of yet unconnected pairs in
the communication graph, the next node is determined according to the vector of
random-keys.

Pseudo-code for the decoder is shown in Algorithm 1. In the initialization of
the algorithm the set C consists of all the nodes in V . The elements of C are
ordered according to the vector of random keys x. This way, nodes associated with
components in x with a relatively large value (i.e., those close to 1) come first.
The main loop of the Decoder goes from line 4 to 20. It is repeated until the
communication graph M is complete, i.e. while Ē′ 6= ∅. In this loop, nodes are
selected following the order induced by x. For each candidate node k ∈ C, lines 6
to 15 compute the set X (k) of yet unconnected pairs in M that would become
connected if node k where to house a regenerator. In lines 16 to 19, sets R, C, E′,
and Ē′ are updated to reflect the inclusion of node k in set R. In line 21, the set
R of regenerator nodes is returned.

6.4. Experimental results. Duarte et al. (2010) compared their implementation
of the BRKGA for the RLP with H1+LS, the best algorithm in Chen et al. (2010),
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and with a GRASP heuristic proposed in Duarte et al. (2010). On the instances
tested the GRASP heuristic found the best solutions on all 280 instances whereas
H1+LS did so on 77% of them. The BRKGA, while taking the longest among the
heuristics tested, found the best solution on 89% of the 280 instances.

7. Routing and wavelength assignment in optical networks

The problem of routing and wavelength assignment (RWA) in wavelength divi-
sion multiplexing (WDM) optical networks consists in routing a set of lightpaths
(a lightpath is an all-optical point-to-point connection between two nodes) and as-
signing a wavelength to each of them, such that lightpaths whose routes share a
common fiber are assigned different wavelengths. Noronha et al. (2010) propose a
BRKGA for routing and wavelength assignment with the goal of minimizing the
number of different wavelengths used in the assignment (this variant of the RWA is
called min-RWA). This BRKGA extends the best heuristic in the literature (Skorin-
Kapov, 2007) by embedding it into an evolutionary framework.

7.1. Problem definition. We are given a bi-directed graph G = (V, E) that rep-
resents the physical topology of the optical network, where V is the set of nodes
and E is the set of fiber links, and a set T of lightpaths to be established. Each
lightpath is characterized by its pair of endpoints {s, t} ∈ V × V, s 6= t. Each
lightpath is routed on a single path from s to t and is assigned the same wavelength
for the entire path. If two lightpaths share an arc, they must be assigned different
wavelengths. The objective is to minimize the number of wavelengths used.

7.2. Solution encoding. A solution of the routing and wavelength assignment
problem is encoded in a vector x of |T | random keys, where |T | is the number of
lightpaths. The key xi corresponds to the i-th lightpath, for i = 1, . . . , |T |.

7.3. Chromosome decoder. Skorin-Kapov (2007) proposed the current state-of-
the-art heuristic for min-RWA. Each wavelength is associated with a different copy
of the graph G. Lightpaths that are routed on arc disjoint paths on the same copy
of G are assigned the same wavelength. Copies of G are associated with the bins
and lightpaths with the items of an instance of the bin packing problem. Therefore,
min-RWA can be reformulated as the problem of packing all the lightpath requests
in a minimum number of bins. Let minlength(i) be the number of hops in the path
with the smallest number of arcs between the endnodes of lightpath i in G. These
values are only used for sorting the lightpaths in the decoding heuristics, even
though the lightpaths are not necessarily routed on shortest paths. This occurs
because whenever a lightpath is routed on a copy of G (or, equivalently, placed
in the corresponding bin), all arcs in its route are deleted from this copy to avoid
that other lightpaths use them. Therefore, the next lightpaths routed in this copy
of G might be routed on a path that is not a shortest path in the original graph
G. The classical best fit decreasing heuristic is used to pack the lightpaths. Since
the number of lightpaths is usually much greater than the diameter of the graph,
there are many lightpaths with the same minlength value. In the case of ties,
Skorin-Kapov (2007) recommended breaking them randomly. The BRKGA uses
the vector of random keys to randomly perturb the values of minlength(i) and get
rid of the ties. These values are adjusted as minlength(i)← minlength(i) + x(i).
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(a) Network and connection requests

(b) Routings and wavelength assignments

Figure 14. Subfigure (a) shows the network and the five re-
quested lightpath connections. Three wavelengths are needed to
route these lightpaths. Subfigure (b) show wavelength assignments
and routes for each lightpath.

7.4. Experimental results. Noronha et al. (2010) test their BRKGA extensively
on a set of hard instances of the RWA problem. The BRKGA is compared with a
multi-start variant MS-RWA of the heuristic BFD-RWA of Skorin-Kapov (2007) as
well as the tabu search based heuristic 2-EDR+TS-PCP of Noronha and Ribeiro
(2006). Noronha et al. observe in their computational experiments that the multi-
start heuristic MS-RWA was able to improve the results of BFD-RWA and also that
their BRKGA identifies the relationships between keys and good solutions, converg-
ing to better solutions, on average, in 23% less time than MS-RWA. The average
solution gap observed with the BRKGA was almost 50% of that presented by 2-

EDR+TS-PCP. The experiments also illustrated the robustness of the BRKGA,
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Figure 15. Runtime distributions (time-to-target plots) of the
BRKGA of Noronha et al. (2010) and the multi-start variant of
the best fit decreasing (BFD) heuristic of Skorin-Kapov (2007).

since all versions of the BRKGA (using different parameter settings) obtained good
and similar results. Figure 15 shows runtime distributions (time-to-target plots)
of the BRKGA of Noronha et al. (2010) and the multi-start variant of the best
fit decreasing (BFD) heuristic of Skorin-Kapov (2007). The instance used to pro-
duce the runtime distributions is a 100-node network with probability of existing
an edge between two nodes equal to 0.05 and probability of existing a lightpath
request between two nodes equal to 0.8. Each heuristic was run independently 200
times and was stopped when a solution having cost at least as good as a target
value was found. The target solution value used equals 1.093 times the value of the
LP lower bound suggested in Bannerjee and Mukherjee (1995). The figure clearly
shows that the probability that the BRKGA finds the target solution by a given
CPU time is greater than the probability of the multi-start BFD heuristic, from
which the BRKGA was derived, doing so.

8. Concluding remarks

The capacity to find optimal or near-optimal solutions to combinatorial opti-
mization problems that arise in telecommunications has far reaching consequences.
Given the high-cost of designing and operating telecommunication systems, even a
small 1% decrease in costs can result in substantial savings to the system opera-
tor. This can potentially translate to better service and lower tariffs to customers.
In this paper we survey some recent applications of biased random-key genetic al-
gorithms to find optimal or near-optimal solutions to combinatorial optimization
problems that arise in the design and operation of telecommunication systems.

Biased random-key genetic algorithms encode solutions as vectors of random-
keys, i.e. randomly generated vectors where each component is a real number in
the interval [0, 1). They are characterized by a clear division between a problem
independent module and a problem dependent module. The problem dependent
module is called a decoder and its role is to map solutions in the continuous unit
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hypercube to feasible solutions of the combinatorial optimization problem. The
algorithm searches the discrete solution space of the combinatorial optimization
problem indirectly by searching the continuous unit hypercube and mapping those
solutions to the discrete solution space with the decoder.

To define a biased random-key genetic algorithm, we only need to specify how
solutions are encoded and how they are decoded. We show how this is done for
five combinatorial optimization problems that arise in telecommunications: the
weight setting problem in OSPF routing in IP networks; design of survivable IP
networks where routing is done with OSPF; location of redundant servers for con-
tent distribution; location of signal regenerators in optical networks; and routing
and wavelength assignment in optical networks.

For each problem we show how a biased random-key genetic algorithm can result
in an effective heuristic, often finding better solutions than existing heuristics, other
times finding same-quality solutions in less CPU time.

In addition to these applications in telecommunications, biased random-key ge-
netic algorithms have been applied to a number of different combinatorial optimiza-
tion problems, including tollbooth location and tariff assignment in transportation
systems (Buriol et al., 2010), scheduling (Gonçalves et al., 2005; Valente et al., 2006;
Gonçalves et al., 2008; Valente and Gonçalves, 2008; Mendes et al., 2009; Gonçalves
et al., 2010), manufacturing cell formation (Gonçalves and Resende, 2004), pack-
ing (Gonçalves, 2007; Gonçalves and Resende, 2009; 2010b), set covering (Resende
et al., 2011), and concave network optimization (Fontes and Gonçalves, 2007).

References

D. V. Andrade, L. S. Buriol, M. G. C. Resende, and M. Thorup. Survivable
composite-link IP network design with OSPF routing. In Proceedings of The

Eighth INFORMS Telecommunications Conference, 2006.
D. Bannerjee and B. Mukherjee. Practical approach for routing and wavelength as-

signment in large wavelength routed optical networks. IEEE Journal on Selected

Areas in Communications, 14:903–908, 1995.
J. C. Bean. Genetic algorithms and random keys for sequencing and optimization.

ORSA J. on Computing, 6:154–160, 1994.
L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Hajiaghayi, D.S. Johnson,

M.G.C. Resende, and S.Sen. Disjoint-path facility location: Theory and prac-
tice. In ALENEX 2011: Workshop on algorithm engineering and experiments,
January 2011.

L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup. A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing. Networks, 46:
36–56, 2005.

L. S. Buriol, M. G. C. Resende, and M. Thorup. Survivable IP network design with
OSPF routing. Networks, 49:51–64, 2007.

L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup. A memetic algorithm
for OSPF routing. In Proceedings of the 6th INFORMS Telecom, pages 187–188.
Citeseer, 2002.

L.S. Buriol, M.J. Hirsch, T. Querido, P.M. Pardalos, M.G.C. Resende, and M. Ritt.
A biased random-key genetic algorithm for road congestion minimization. Opti-

mization Letters, 4:619–633, 2010.



BRKGA WITH APPLICATIONS IN TELECOMMUNICATIONS 23
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J. F. Gonçalves, M. G. C. Resende, and J. J. M. Mendes. A biased random-

key genetic algorithm with forward-backward improvement for the resource



24 MAURICIO G.C. RESENDE

constrained project scheduling problem. J. of Heuristics, 2010. URL http:

//dx/doi/org/10.1007/s10732-010-9142-2.
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