
A BIASED RANDOM-KEY GENETIC ALGORITHM FOR THE

STEINER TRIPLE COVERING PROBLEM

M.G.C. RESENDE, R.F. TOSO, J.F. GONÇALVES, AND R.M.A. SILVA

Abstract. We present a biased random-key genetic algorithm (BRKGA) for
finding small covers of computationally difficult set covering problems that

arise in computing the 1-width of incidence matrices of Steiner triple systems.
Using a parallel implementation of the BRKGA, we compute improved covers
for the two largest instances in a standard set of test problems used to evaluate
solution procedures for this problem. The new covers for instances A405 and
A729 have sizes 335 and 617, respectively. On all other smaller instances our
algorithm consistently produces covers of optimal size.

1. Introduction

Given n finite sets P1, P2, . . . , Pn, let sets I and J be defined as I = ∪n
j=1Pj =

{1, 2, . . . , m} and J = {1, . . . , n}. A subset J∗ ⊆ J is called a cover if ∪j∈J∗Pj = I.
The set covering problem is to find a cover of minimum cardinality. Let A be
the binary m × n matrix such that Ai,j = 1 if and only if i ∈ Pj . An integer
programming formulation for set covering is

min {enx : Ax ≥ em, x ∈ {0, 1}n},

where ek denotes a vector of k ones and x is a binary n-vector such that xj = 1 if
and only if j ∈ J∗. The set covering problem has many applications (Vemuganti,
1998) and is NP-hard (Garey and Johnson, 1979).

Fulkerson et al. (1974) introduced a class of computationally difficult set covering
problems that arise in computing the 1-width of incidence matrices of Steiner triple
systems. In this paper, we will refer to this problem as the Steiner triple covering

problem. The A matrix in the integer programming formulation of this problem
has exactly three ones per row. Furthermore, for every pair of columns j and k
there is exactly one row i for which Ai,j = Ai,k = 1. Steiner triple system A is said
to contain triple {i, j, k} if there exists a row q such that Aq,i = Aq,j = Aq,k = 1.
Let A3 be the 1 × 3 matrix of all ones. A recursive procedure can generate Steiner
triple systems for which n = 3k or n = 15 · 3k−1, k = 1, 2, . . . (Hall, 1967; Fulkerson
et al., 1974; Avis, 1980). Starting from A3 this recursive procedure generates Steiner
triple systems A9, A27, A81, A243, A729, . . . Fulkerson et al. (1974) introduced A15

and A45, two Steiner triple systems for which n 6= 3k. From A15, the recursive
procedure generates Steiner triple systems A45, A135, A405, . . .

Fulkerson et al. (1974) solved A9, A15, and A27 to optimality, but were unable
to solve A45. Avis (1980) reported that A45 was finally solved optimally in 1979 by

Date: October 20, 2010. Revised January 17, 2011.
Key words and phrases. Steiner triple covering, set covering, genetic algorithm, biased random-

key genetic algorithm, random keys, combinatorial optimization, heuristics, metaheuristics.
AT&T Labs Research Technical Report.

1

2 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

Table 1. Steiner triple covering instances. For each instance, the
table lists its name (instance), cardinality of J (n), cardinality of I
(m), best known solution value (BKS), indication if best solution
value is optimal (opt), and reference where instance was solved
optimally if optimal or where best known solution was found if
optimality is unknown (reference).

instance n m BKS opt reference

stn9 9 12 5 yes Fulkerson et al. (1974)
stn15 15 35 9 yes Fulkerson et al. (1974)
stn27 27 117 18 yes Fulkerson et al. (1974)
stn45 45 330 30 yes Ratliff (1979)
stn81 81 1080 61 yes Mannino and Sassano (1995)
stn135 135 3015 103 yes Ostrowski et al. (2009; 2010) and

Österg̊ard and Vaskelainen (2010)
stn243 243 9801 198 yes Ostrowski et al. (2009; 2010)
stn405 405 27270 335 ? This paper.
stn729 729 88452 617 ? This paper.

H. Ratliff. A81 was solved to optimality by Mannino and Sassano (1995). Recently,
A135 and A243 were both solved to optimality by Ostrowski et al. (2009; 2010). The
solution of A135 required slightly over 10 million CPU seconds (126 days) while A243

was solved in just over 51 hours.
Several heuristic approaches for the Steiner triple covering problem have been

proposed. Feo and Resende (1989) proposed a GRASP heuristic with which they
found a cover of size 61 for A81. This cover was later shown to be optimal by
Mannino and Sassano (1995). Karmarkar et al. (1991) proposed an interior point
method with which they found a cover of size 105 for A135. In the same paper,
they used a GRASP to produce a better cover of size 104. Mannino and Sassano
(1995) also found a cover of this size. In 1998, Odijk and van Maaren (1998)
produced a cover of size 103. This value was recently shown to be optimal by
Ostrowski et al. (2009; 2010) and Österg̊ard and Vaskelainen (2010). Furthermore,

Österg̊ard and Vaskelainen (2010) generated all solutions to A135, proving that they
are isomorphic.

The GRASP of Feo and Resende (1989) as well as the interior point method of
Karmarkar et al. (1991) produced covers of size 204 for A243. Karmarkar et al.
(1991) used the GRASP of Feo and Resende (1989) to improve the best known
solution of A243 at that time to 203. Mannino and Sassano (1995) improved it
further to 202. Odijk and van Maaren (1998) produced a cover of size 198, recently
shown to be optimal by Ostrowski et al. (2009; 2010). A405 and A729 were recently
introduced by Ostrowski et al. (2009; 2010). To date, no computational results
have been reported for A405. Ostrowski et al. (2010) report that the best solution
produced for A729 by CPLEX (v9) after two weeks was 653. Using their enumerate-
and-fix scheme as a heuristic, Ostrowski et al. (2010) were able to find a better cover,
of size 619. The test problem instances as well as the sizes of the best covers found
over the years are summarized in Table 1.

BRKGA FOR STEINER TRIPLE COVERING 3

Figure 1. Flowchart of biased random-key genetic algorithm with
problem independent and problem dependent components.

In this paper, we propose a new effective heuristic for the Steiner triple covering
problem. The heuristic is based on the algorithmic framework of biased random-
key genetic algorithms (BRKGA). We show that our heuristic finds the best known
solutions for all instances Ak, for k = 9, 15, 27, 45, 81, 135, 243, 405, 729. For A405

we produce covers of size 335, while for A729 we found an improved cover of size
617.

The paper is organized as follows. In Section 2 we describe biased random-
key genetic algorithms. This is followed by a description of solution encoding and
random-key vector decoding in Section 3. In Section 4 we present some implemen-
tation details of our multi-population parallel genetic algorithm. Computational
results are given in Section 5 and concluding remarks are made in Section 6.

2. Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean (1994) for solving combinatorial optimization prob-
lems involving sequencing. In a RKGA, chromosomes are represented as vectors of
randomly generated real numbers in the interval [0, 1). A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1). After the fitness of each individual is computed by the decoder
in generation k, the population is partitioned into two groups of individuals: a
small group of pe elite individuals, i.e. those with the best fitness values, and the
remaining set of p − pe non-elite individuals. To evolve the population, a new
generation of individuals must be produced. All elite individuals of the population

4 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

of generation k are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants into the population.
A mutant is simply a vector of random keys generated in the same way that an
element of the initial population is generated. At each generation, a small number
(pm) of mutants is introduced into the population. With the pe elite individuals
and the pm mutants accounted for in population k + 1, p − pe − pm additional
individuals need to be produced to complete the p individuals that make up the
new population. This is done by producing p−pe−pm offspring through the process
of mating or crossover.

Bean (1994) selects two parents at random from the entire population to im-
plement mating in a RKGA. A biased random-key genetic algorithm, or BRKGA
(Gonçalves and Resende, 2010a), differs from a RKGA in the way parents are se-
lected for mating. In a BRKGA, each element is generated combining one element
selected at random from the elite partition in the current population and one from
the non-elite partition. Repetition in the selection of a mate is allowed and there-
fore an individual can produce more than one offspring in the same generation.
Parametrized uniform crossover (Spears and DeJong, 1991) is used to implement
mating in BRKGAs. Let ρe > 0.5 be the probability that an offspring inherits the
vector component of its elite parent. Let n denote the number of components in
the solution vector of an individual. For i = 1, . . . , n, the i-th component c(i) of the
offspring vector c takes on the value of the i-th component e(i) of the elite parent e
with probability ρe and the value of the i-th component ē(i) of the non-elite parent
ē with probability 1 − ρe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed by the decoder for all of the newly created random-key vectors
and the population is partitioned into elite and non-elite individuals to start a new
generation. Figure 1 shows a flow diagram of the BRKGA framework with a clear
separation between the problem dependent and problem independent components
of the method.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous n-dimensional hypercube, using the decoder
to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.

To describe a BRKGA for a specific combinatorial optimization problem, one
needs only to show how solutions are encoded as vectors of random keys and how
these vectors are decoded to feasible solutions of the optimization problem. In the
next section, we describe a BRKGA for Steiner triple covering.

3. A BRKGA heuristic for Steiner triple covering

In this section we show how solutions are encoded to a vector of random keys
and how solutions are decoded from a vector of random keys.

3.1. Encoding a solution to a vector of random keys. A solution is encoded
as a vector X = (X1, . . . ,Xn) of size n = |J |, where Xj is a random number in the
interval [0, 1), for j = 1, . . . , n. The j-th component of X corresponds to the j-th
element of J (i.e. the j-th column of matrix A).

3.2. Decoding a solution from a vector of random keys. A decoder takes as
input the vector of random keys X and returns a cover J∗ ⊆ J corresponding to the

BRKGA FOR STEINER TRIPLE COVERING 5

indices of the columns of A selected to cover the rows of A. To describe the decoding
procedure, let the cover be represented by a binary vector Y = (Y1, . . . ,Yn) of size
n = |J |, where Yj = 1 if and only of j ∈ J∗.

Our decoder has three phases. In the first phase, the values of Y are initially set
according to

Yj =

{

1 if Xj ≥ 0.5

0 otherwise.

The indices implied by the binary vector Y can correspond to either a feasible or
infeasible cover J∗. If J∗ is a feasible cover, then the second phase is skipped. If J∗

is not a valid cover, then the second phase of the decoding procedure builds a valid
cover with a greedy algorithm for set covering (Johnson, 1974), starting from the
partial cover J∗ defined by Y. This greedy algorithm proceeds as follows. While J∗

is not a valid cover, select the smallest index j ∈ J \ J∗ for which the inclusion of j
in J∗ covers a maximum number of yet-uncovered elements of I. The third phase
of the decoder attempts to remove superfluous elements from cover J∗. While there
is some element j ∈ J∗ such that J∗ \ {j} is still a valid cover, then such element
having the smallest index is removed from J∗.

4. Implementation details

The algorithm described in this paper was implemented using the BRKGA

framework, a C++ framework for biased random-key genetic algorithms (Resende
and Toso, 2010). We observed in Section 2 that a BRKGA consists of a problem-
dependent phase (the decoder) and a general-purpose problem independent phase
(see Figure 1). We designed the BRKGA framework as an object-oriented, multi-
threaded, general-purpose framework which implements all problem independent
components and provides a simple hook for chromosome decoding. This enables
seamless interaction with any problem-specific decoder.

To the user, the BRKGA framework consists of a template class (Stroustrup,
1997) BRKGA< class Decoder, class RNG > that is initialized with the hyper-
parameters n, p, pe, pm, ρe, together with the desired number of threads to per-
form the decoding in parallel. Moreover, the framework evolves π populations si-
multaneously, exchanging the best t chromosomes from each population at every q
generations, whenever there is no repeated chromosomes in the target populations.
Classes Decoder and RNG are also required to perform decoding and random number
generation tasks, respectively, each having to implement the following methods:

• double Decoder::decode(vector< double >& chromosome) returns the
fitness (double) of the vector of random keys X , implemented as a vector
of doubles of size n.

• double RNG::rand() returns a double precision random deviate in range
[0.0, 1.0).

• unsigned long int RNG::randInt() returns an unsigned long integer in
the range [0, std :: numeric limits < unsigned long >:: max()], where the
last command indicates the maximum unsigned long supported by the
architecture.

The BRKGA framework does decoding in parallel. It uses OpenMP (OpenMP,
2010), a multi-platform application programming interface (API) for shared-memory

6 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

generations to optimal cover of size 30

stn45

Figure 2. Distribution of generations to optimal cover for stn45.
100 independent runs were done, each stopping when a cover with
optimal value (30) was found.

parallel programming in C, C++, and FORTRAN. In the computational experi-
ments, we make use of a parallel version of the biased random-key genetic algorithm.

In our implementation, the decoder not only returns the cover J∗ but also mod-
ifies the vector of random keys X such that it decodes directly into J∗ with the
application of only the first phase of the decoder. To do this we reset X as follows:

Xj =



















Xj if Xj ≥ 0.5 and j ∈ J∗

1 −Xj if Xj < 0.5 and j ∈ J∗

Xj if Xj < 0.5 and j 6∈ J∗

1 −Xj if Xj ≥ 0.5 and j 6∈ J∗.

5. Experimental results

The objective of this computational experiment is threefold. We first investigate
the effectiveness of our BRKGA to find the optimal solutions for the test problems in
the literature with known optima. Secondly, for the two problems for which optimal
solutions are unknown, we seek to produce smaller covers than those previously
produced. Finally, we investigate the effectiveness of our parallel implementation.

The standard set of test problems consists of instances stn9, stn15, stn27, stn45,
stn81, stn135, stn243, stn405, and stn729. The instances can be downloaded from
http://www.research.att.com/~mgcr/data/steiner-triple-covering.tar.gz.
Table 1 shows some characteristics of these instances.

BRKGA FOR STEINER TRIPLE COVERING 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

generations to optimal cover of size 103

stn135

Figure 3. Distribution of generations to optimal cover for stn135.
100 independent runs were done, each stopping when a cover with
optimal value (103) was found.

The experiments were conducted on a server with four 2.4 GHz Quad-core Intel
Xeon E7330 processors with 128 Gb of memory running CentOS 5 Linux. The
code was compiled with the g++ compiler (version 4.1.2 20080704) with flags -O3

-fopenmp. Random numbers were generated with the Mersenne Twister (Mat-
sumoto and Nishimura, 1998).

We used the following parameters in the BRKGA. The population size was set to
p = 10n of which pe = ⌈1.5n⌉ solutions are considered elite and p− pe = ⌊8.5n⌋ are
non-elite. At each iteration, pm = ⌊5.5n⌋ mutants are generated. The probability
that a child inherits the random key of its elite parent is ρe = 60%. The multi-
population scheme evolves π = 3 populations. Once every q = 100 generations, each
population potentially exchanges its t = 2 best solutions with the other populations.
These parameter settings are somewhat different from those used in the literature
(Gonçalves and Resende, 2010a) because of the flat nature of the solution space
landscape in this problem. To explore the neighborhood, more randomness had to
be added to this BRKGA than what is customary (common settings are pe ≈ 0.15p,
pm ≈ 0.15p, and ρe ≈ 70%). These parameter settings were determined following a
small experiment where we considered several parameter configurations on the three
largest instances for which optimal solutions were known. Parameters π, q, and t
were set without tuning, following in part the recommendation made in Gonçalves
and Resende (2010b).

We use different stopping criteria in the different experiments, which we describe
below.

8 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

generations to optimal cover of size 198

stn243

Figure 4. Distribution of generations to optimal cover for stn243.
100 independent runs were done, each stopping when a cover with
optimal value (of 198) was found.

In the rest of this section, we first describe the experiments on instances stn9,
stn15, stn27, stn45, stn81, stn135, and stn243, for which optimal cover values are
known. Then we consider instances stn405 and stn729, both of which have unknown
optimal cover values. Finally, we report on some experiments with the parallel
implementation using up to 16 processors.

5.1. Experiments on instances with known optimal covers. For the in-
stances with known optimal solution, we ran the genetic algorithm independently
100 times, using a different random number generator seed for each run. Each run
was done in parallel using 16 processors and stopped when an optimal cover was
found. On all 100 runs for each instance, the algorithm found an optimal cover. On
the smallest instances (stn9, stn15, and stn27) the optimal cover was always found
in the initial population. On stn81, the optimal cover was also found in the initial
population in 99 of the 100 runs. In the remaining run on stn81, the optimal cover
was found in the second generation. Runtime distributions (Aiex et al., 2007) are
shown for instances stn45, stn135, and stn243 in Figures 2, 3, and 4, respectively.

As can be observed in Figure 2, an optimal cover for stn45 was found in the
initial population on 54 of the 100 runs. The largest number of iterations over the
100 runs was 12. The time per 1000 generations on instance stn45 was 4.70s (real),
70.55s (user), and 2.73s (system).

Figure 3 shows that stn135 is the most difficult of the instances with known
optimal covers. Though 9 of the 100 runs required less than 1000 generations, 39
of the 100 runs required over 10,000 generations to produce an optimal cover. No

BRKGA FOR STEINER TRIPLE COVERING 9

Table 2. Several covers of size 335 were found for stn405. The
indices of the 405− 335 = 70 zeroes of three of these solutions are
listed here.

Solution 1

1 2 3 4 5 31 32
33 34 35 56 57 58 59
60 86 87 88 89 90 91
92 93 94 95 106 107 108

109 110 146 147 148 149 150
171 172 173 174 175 201 202
203 204 205 221 222 223 224
225 226 227 228 229 230 266
267 268 269 270 271 272 273
274 275 306 307 308 309 310

Solution 2

6 7 8 9 10 26 27
28 29 30 41 42 43 44
45 51 52 53 54 55 71
72 73 74 75 86 87 88
89 90 151 152 153 154 155

196 197 198 199 200 226 227
228 229 230 261 262 263 264
265 286 287 288 289 290 331
332 333 334 335 361 362 363
364 365 396 397 398 399 400

Solution 3

6 7 8 9 10 21 22
23 24 25 31 32 33 34
35 46 47 48 49 50 76
77 78 79 80 96 97 98
99 100 136 137 138 139 140

151 152 153 154 155 176 177
178 179 180 196 197 198 199
200 251 252 253 254 255 266
267 268 269 270 341 342 343
344 345 371 372 373 374 375

10 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

Table 3. A cover of size 617 was found for stn729. The indices of
the 729 − 617 = 112 zeroes of this solution are listed here.

3 5 11 12 27 36 39 43
52 54 56 63 70 73 74 85
94 121 128 142 159 166 167 176

177 181 197 200 201 214 215 220
225 230 237 239 245 252 255 263
264 277 279 283 288 291 299 309
313 322 323 331 333 334 343 344
355 357 364 365 377 382 390 392
400 405 410 430 437 446 470 483
497 509 520 535 548 550 560 561
565 567 570 578 580 590 591 599
600 608 614 621 627 629 632 639
648 652 661 663 669 673 680 682
693 697 699 705 709 712 717 723

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

cu
m

m
ul

at
iv

e
pr

ob
ab

ili
ty

real time to optimal cover of size 198 (seconds)

stn243

1 proc
2 procs
4 procs
8 procs

16 procs

Figure 5. Runtime distributions to optimal cover of size 198 on
stn243 for 1, 2, 4, 8, and 16 processor runs. 10 independent runs
were done for each processor configuration, each stopping when a
cover with optimal value (of 198) was found.

BRKGA FOR STEINER TRIPLE COVERING 11

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

av
er

ag
e

sp
ee

du
p

processors

stn243

Figure 6. Average speedup with 1, 2, 4, 8, and 16 processors to
find optimal cover of size 198 on stn243. 10 independent runs were
done for each processor configuration, each stopping when a cover
with optimal value (of 198) was found.

run required fewer than 23 generations. The largest number of iterations over the
100 runs was 75,741. The time per 1000 generations on instance stn135 was 19.91s
(real), 316.70s (user), and 0.85s (system).

Though larger than stn135, instance stn243 appears to be much easier to solve.
Figure 4 shows that 39 of the 100 runs took fewer than 100 generations to produce
an optimal cover and 95% of the runs took fewer than 200 generations. The largest
number of iterations over the 100 runs was 341. The time per 1000 generations on
instance stn243 was 68.60s (real), 1095.19s (user), and 0.79s (system).

To show that the success of the BRKGA to consistently find covers of size 198
was not due to the decoder alone, we conducted 100 independent runs simulating a
random multi-start method. Each run consisted of 1000 generations of the BRKGA
with three populations of size 1000, each with an elite set of one, and a mutant set
of size 999. This way, at each iteration, 2997 random solutions are generated, and
each is evaluated with the three-phase decoder used in the genetic algorithm runs.
The elite sets of one keep track of the incumbent solution in each population. Since
the elite together with the mutants make up the entire population, mating never
takes place (differentiating these runs from those of the BRKGA). The 100 runs
generated a total of about 300 million solutions. The random multi-start heuristic
was far from the optimal value of 198, finding covers of size 202 in 9 of the 100 runs
and of size 203 in the remaining 91.

12 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2´ 4 8 16 32 64

pa
ra

lle
l e

ffi
ci

en
cy

processors

log fit
parallel eficiency

Figure 7. Parallel efficiency (t1
p·tp

), where p is the number of pro-

cessors and tp is average real (wall clock) time for the p processor
runs) with 1, 2, 4, 8, and 16 processors to find optimal cover of size
198 on stn243. 10 independent runs were done for each processor
configuration, each stopping when a cover with optimal value (of
198) was found. A log fit 0.975− 0.1164 log(p) is also plotted.

5.2. Computing covers for the two largest instances. For stn405 and stn729,
the two largest instances in the test set, we ran the BRKGA and stopped after 5000
generations without improvement. For both instances, we found improved solutions.

For stn405 three covers of size 335 were found. The first run produced a cover
after 203 generations. The second run, after 5165 generations. The third run found
the cover after 2074 generations. The complements of the three covers are shown
in Table 2. The time per 1000 generations on instance stn405 was 796.82s (real),
12723.40s (user), and 11.67s (system).

On the largest instance, stn729, a cover of size 617 were found in 1601 gener-
ations. The complement of this cover is shown in Table 3. The time per 1000
generations on instance stn729 was 6099.40s (real), 93946.68s (user), and 498.00s
(system).

5.3. Computing covers with a parallel implementation. The BRKGA pro-
posed in this paper does decoding in parallel. Though decoding is the major com-
putational bottleneck of this algorithm, there are several other tasks that are not
done in parallel. These include: generation of random-key vectors for initial pop-
ulation and mutants at each iteration of the algorithm with corresponding calls to
the random number generator; crossover operations at each iteration to produce
offspring random-key vectors; periodic exchange of elite solutions among multiple

BRKGA FOR STEINER TRIPLE COVERING 13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

B
K

S

quadratic fit (opt solns)
linear fit (opt solns)

best known solution

n = |J |

Figure 8. Value of best known cover as a function of n = |J |. A
linear and a quadratic fit were computed using the optimal cover
values and are plotted together with all best solution values.

populations; ordering of populations by fitness values; and copying elite solutions
to next population at each iteration of the algorithm. Consequently, one cannot ex-
pect 100% efficiency (linear speedup) in a parallel implementation of this BRKGA.
Nevertheless, we show that significant speedup is observed.

To illustrate the effectiveness of our parallel OpenMP implementation of the
BRKGA, we carried out the following experiment on instance stn243. On each of
five processor configurations (single processor, two, four, eight, and 16 processors),
we carried out ten independent runs, stopping when the algorithm produced a
cover of size 198. Figure 5 shows runtime distributions (in seconds) for the five
configurations. Average speedup is shown in Figure 6. As can be observed in the
figure, with 16 processors the speedup is still above tenfold. Figure 7 shows parallel
efficiency, i.e. t1/(p · tp), where p is the number of processors and tp is average real
(wall clock) time for runs with p processors. A log fit is also plotted indicating that
if parallel efficiency continues to decline at this rate, we still expect a speedup of
about 32-fold when we use 64 processors.

6. Concluding remarks

This paper introduced a biased random-key genetic algorithm for the Steiner
triple covering problem, a computationally difficult set covering problem. Our par-
allel multi-population biased random-key genetic algorithm not only found optimal
covers for all instances with known optimal solution, but also found new improved
covers (best known solutions) of size 335 and 617, respectively, for the two largest

14 M.G.C. RESENDE, R.F. TOSO, J. F. GONÇALVES, AND R.M.A. SILVA

instances, stn405 and stn729, in the standard test set. Figure 8 shows how the best
known solution increases with n, the size of the problem.

The parallel implementation achieved a speedup of 10.8 on 16 processors and is
expected to achieve a speedup of about 32 on 64 processors.

The BRKGA described in this paper can be easily extended to solve other types
of set covering problems.

Acknowledgment

José F. Gonçalves was partially supported by Fundação para a Ciência e Tec-
nologia (FCT) project PTDC/GES/72244/2006. Ricardo M.A Silva was partially
supported by the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq) and the Foundation for Support of Research of the State of Minas
Gerais, Brazil (FAPEMIG).

References

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to
create time-to-target plots. Optimization Letters, 1:201–212, 2007.

D. Avis. A note on some computationally difficult set covering problems. Mathe-

matical Programming, 18:138–145, 1980.
J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.

ORSA J. on Computing, 6:154–160, 1994.
T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8:67–71, 1989.
D.R. Fulkerson, G.L. Nemhauser, and L.E. Trotter, Jr. Two computationally dif-

ficult set covering problems that arise in computing the 1-width of incidence
matrices of Steiner triple systems. Mathematical Programming Study, 2:72–81,
1974.

M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory

of NP-completeness. WH Freeman and Company, San Francisco, Calif, 1979.
J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for

combinatorial optimization. J. of Heuristics, 2010a. DOI: http://dx.doi.org/
10.1007/s10732-010-9143-1.

J.F. Gonçalves and M.G.C. Resende. A parallel multi-population genetic al-
gorithm for a constrained two-dimensional orthogonal packing problem. J.

of Combinatorial Optimization, 2010b. DOI: http://dx.doi.org/10.1007/

s10878-009-9282-1.
M. Hall. Combinatorial theory. Blaisdell Company, 1967.
D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences, 9:256–278, 1974.
N.K. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior point

algorithm to solve computationally difficult set covering problems. Mathematical

Programming, 52:597–618, 1991.
C. Mannino and A. Sassano. Solving hard set covering problems. Operations Re-

search Letters, 18:1–5, 1995.
M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Mod-

eling and Computer Simulation, 8:3–30, 1998.

BRKGA FOR STEINER TRIPLE COVERING 15

M.A. Odijk and H. van Maaren. Improved solutions to the Steiner triple covering
problem. Information Processing Letters, 65:67–69, 1998.

OpenMP. http://openmp.org, 2010. Last visited on October 19, 2010.

P. Österg̊ard and V. Vaskelainen. Russian doll search for the Steiner triple covering
problem. Optimization Letters, pages 1–8, 2010. URL http://dx.doi.org/10.

1007/s11590-010-0225-7. 10.1007/s11590-010-0225-7.
J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Solving large Steiner triple

covering problems. Technical Report 1663, Computer Sciences Department, U.
of Wisconsin, Madison, 2009.

J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Solving Steiner triple covering
problems. Optima, 83, July 2010.

M.G.C. Resende and R.F. Toso. BRKGA framework: A C++ framework for im-
plementing biased random-key genetic algorithms. Technical report, AT&T Labs
Research, October 2010.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

B. Stroustrup. The C++ programming language. Addison-Wesley, 1997.
R.R. Vemuganti. Applications of set covering, set packing and set partitioning mod-

els: A survey. In D-Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial

Optimization, volume 1, pages 573–746. Kluwer Academic Publishers, 1998.

(Mauricio G.C. Resende) Algorithms and Optimization Research Department, AT&T
Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

(Rodrigo F. Toso) Department of Computer Science, Rutgers University, 110 Frel-
inghuysin Road, Piscataway, NJ 08854-8019 USA.

E-mail address: rtoso@cs.rutgers.edu

(José Fernando Gonçalves) Faculdade de Economia do Porto / NIAAD, Rua Dr. Roberto
Frias, 4200-464 Porto, Portugal.

E-mail address: jfgoncal@fep.up.pt

(R.M.A. Silva) Centro de Informática (CIn), Federal University of Pernambuco, Av.
Professor Lúıs Freire s/n, Cidade Universitária, Recife, PE, Brazil.

E-mail address, R.M.A. Silva: rmas@cin.ufpe.br

