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Abstract

A biased random-key genetic algorithm (BRKGA) encodes solutions to an optimization problem

as a vector of random-keys, i.e. a vector of real numbers in the interval [0, 1), each generated in-

dependently and uniformly at random. A BRKGA evolves a population of random-keys applying a

simple evolutionary strategy in which pairs of vectors from one generation are combined to produce

offspring solutions of the next generation. An offspring is more likely to inherit the keys of its most

fit parent. Strategies to avoid getting trapped in locally optimal solutions include increasing random-

ness in the algorithm and population restart. A BRKGA can be imbedded in a multi-start strategy

in which a population is evolved for a number of iterations and then is thrown away so the evolu-

tionary process can be restarted with a fresh population. Such restart points are triggered by a restart

strategy. We describe a restart strategy for biased random-key genetic algorithms. A computational

experiments illustrates the speed-up that can be achieved by applying such a strategy.

1 Biased random-key genetic algorithms

Biased random-key genetic algorithms (BRKGA) [3] are based on the random-key genetic algorithm

(RKGA) of Bean [2]. Both evolutionary algorithms encode solutions as vectors of n random keys and

evolve a population of p vectors of random keys. A random key is simply a real number generated

uniformly at random in the interval [0, 1). A decoder is a deterministic algorithm that takes as input

a vector of n random keys and returns a feasible solution of the optimization problem and its cost or

fitness.

At each iteration k, the random-key vectors are decoded and the population is partitioned into a

smaller elite set of pe vectors made up of the most fit solutions and a larger set of p − pe non-elite

solutions. Population k+1 contains all pe elite-set vectors of population k as well as pm newly-generated

mutants. A mutant is simply a vector of n-random keys and its role is to help the algorithm avoid getting

trapped in locally optimal solutions. The remaining p − pe − pm solutions are produced by combining

pairs of solutions (vectors a and b) from population k using uniform parameterized crossover [7], where

the i-th key c(i) of the offspring inherits the the i-th key of parent a, i.e. c(i) = a(i) with probability ρa
and the i-th key of parent b with probability ρb = 1 − ρa. RKGAs and BRKGAs differ in how parents

are selected for mating and how crossover is applied. In a RKGA both parents are selected at random

from the entire population, the first denoted by a and the second by b. In a BRKGA parent a is always

selected from the elite set and parent b from the non-elite set. Furthermore, in a BRKGA ρa > 0.5, i.e.

the child has a greater probability of inheriting the key of its elite parent than that of its non-elite parent.

As a result, a BRKGA is almost always more efficient than a RKGA [4].

2 Restart strategy

An effective global optimization algorithm must have a mechanism to hinder entrapment in locally op-

timal solutions. In a BRKGA, the mutants play this role. By changing the value of parameter pm one
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Figure 1: Iteration count distribution of a BRKGA to find an optimal covering of Steiner triple covering

problem stn243 [6].

controls the amount of noise in the population. The larger the value of pm, the greater the amount of

randomness in the population and the less likely it becomes that the population will converge to one or

more locally optimal solutions. Another solution is to adopt a restart strategy. We propose a restart

strategy for BRKGA that is similar to the one described by Resende and Ribeiro [5] for GRASP with

path-relinking. This strategy, called restart(k) restarts the BRKGA every k iterations without improve-

ment in the value of the best found solution. It does this by emptying out the population and reloading

it with newly-generated random-key vectors. The incumbent over all restarts is saved for output at the

conclusion of the run.

Consider the iteration count distribution of a BRKGA of [6] to find an optimal solution of Steiner

triple covering problem stn243 in Figure 1. The iteration-to-target plot [1] is generated by running

a BRKGA 100 times, each using a different seed for the random number generator and recording the

number of iterations taken by the algorithm to find an optimal solution. The figure shows that 25%

of runs took no more than 55 iterations, 50% took no more than 74, and 75% took no more than 246.

However, 10% took more than 4597 iterations, 5% took more than 5532 iterations, 2% more than 7061,

and the longest run took 9903. Let I be the random variable number of iterations to target solution. For

stn243, Figure 1 suggests that Pr(I ≥ 246) ≈ 1/4. By restarting after 246 iterations and assuming

independence runs, Pr(I ≥ 492 | I ≥ 246) ≈ 1/4. Therefore, Pr(I ≥ 492) = Pr(I ≥ 246) × Pr(I ≥
492 | I ≥ 246) ≈ 1/42. It is easy to show by induction that the probability that the algorithm will

still be running after k cycles of 246 iterations is approximately 1/4k . For example, the probability the

algorithm with restart will still be running after 1230 iterations (five cycles of 246 iterations between

restarts) is approximately 1/45 = 1/1024 ≈ 0.1%. This is in contrast to the estimated 80% probability

the algorithm without restart will run for over 641 iterations. This is an example of a slightly different

restart strategy than the one we propose. In this strategy restarts are done every k iterations while in the

more robust strategy proposed in this paper restarts are done every k iterations without improvement of

the incumbent. We discuss this issue of robustness in greater detail in the full paper.

3 Numerical example

As an illustration of our strategy consider the BRKGA of Resende et al. [6] for the Steiner triple covering

problem, a type of set covering problem. In set covering, we are given n finite sets P1, P2, . . . , Pn. Let

sets I and J be defined as I = ∪n
j=1

Pj = {1, 2, . . . ,m} and J = {1, . . . , n}. A subset J∗ ⊆ J is

called a cover if ∪j∈J∗Pj = I . The set covering problem is to find a cover of minimum cardinality.

The characteristics of sets P1, P2, . . . , Pn make the Steiner triple covering problem a computationally

difficult set covering problem. See [6] for a review of the literature of Steiner triple covering.
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Figure 2: Iteration count distributions of BRKGAs with and without restart on Steiner covering problem

stn243.

Figure 2 illustrates how the restart strategy can improve the performance of a BRKGA. The figure

shows in red the iteration count distribution to a best known solution of stn243 of a BRKGA with a

restart(246) strategy and in black the same BRKGA, but with no restart. While the BRKGA with restart

exhibits behavior similar to what we estimated in the previous section and never took over 1162 iterations

to find a solution, in 19 of 100 runs the BRKGA without restart took over 1370 iterations. With respect

to the variant without restart, restart(246) reduced the average number of iterations from 1003.89 to a

mere 166.81 and the standard deviation from 206.80 to only 20.75.

4 Conclusion

In the full paper, we will discuss the choice of parameter k in restart (k) to produce a robust heuristic

and report on extensive computational experiments with several implementations of biased random-key

genetic algorithms for different optimization problems.
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