THE MULTI-PARENT BIASED RANDOM-KEY GENETIC
ALGORITHM WITH IMPLICIT PATH-RELINKING AND ITS
REAL-WORLD APPLICATIONS

CARLOS E. ANDRADE, RODRIGO F. TOSO, JOSE F. GONCALVES,
AND MAURICIO G.C. RESENDE

ABSTRACT. In this paper, we present the Multi-Parent Biased Random-Key
Genetic Algorithm with Implicit Path-Relinking (BRKGA-MP-IPR), a variant
of the Biased Random-Key Genetic Algorithm that employs multiple (biased)
parents to generate offspring instead of the usual two, and is hybridized with
a novel, implicit path-relinking local search procedure. By operating over the
standard unit hypercube, such path-relinking mechanism leverages the popu-
lation representation of the BRKGA and thus provides complete independence
between the local search procedure and the problem definition and implemen-
tation. This approach contrasts with traditional path-relinking procedures
that are tied to the problem structure. Having both BRKGA and IPR operate
over the same solution space not only makes the intensification/diversification
paradigm more natural but also greatly simplifies the development effort from
the perspective of the practitioner, as one only needs to develop a decoder to
map unit random-key vectors to the solution space of the problem on hand.
Apart from such key benefits, extensive computational experiments solving
real-world problems, such as over-the-air software upgrade scheduling, network
design problems, and combinatorial auctions, show that the BRKGA-MP-IPR
offers performance benefits over the standard BRKGA as well as the BRKGA
with multiple parents.

1. INTRODUCTION

Genetic algorithms (Holland), (1975) have become a popular choice to solve hard,
large-scale, real-world optimization problems. This metaheuristic, based on the

principles of natural selection/survival of the fittest, offers an efficient mechanism
for searching a solution space that is exponentially large. As a result, genetic
algorithms are extremely popular in several domains.

Among several variants of GAs , the Biased Random-Key Ge-
netic Algorithm (BRKGA) has been used with success on several classical hard
combinatorial optimization problems (Resende et al., |2011; [Rochman et al., 2017)
as well as on real-world problems such as packing (Gongalves and Resende, 2011b)),
scheduling (Andrade et al [2017c; 2019alb} [Pessoa and Andrade, 2018)), combinato-
rial auctions (Andrade et al, 2015b), vehicle routing (Andrade et al., [2013} [Lopes
et all [2016), clustering (Andrade et all, [2014), complex network design (Andrade
et al.,[2015al), placement of virtual machines in data centers (Stefanello et al., [2015),
and machine learning (Caserta and Reiners, 2016). BRKGA has also been used to

Date: July 2019. Revised November 2019.
Key words and phrases. Genetic algorithms, Path-relinking algorithms, Hybrid heuristics.
AT&T Labs Research Technical Report.

2 ANDRADE, TOSO, GONCALVES, AND RESENDE

check feasibility for instances from mixed integer programming problems for which
feasible solutions are challenging to find (Andrade et al., |2017a). Elements of
BRKGA have appeared in [Beirao| (1997), |Ericsson et al.| (2002), [Gongalves and
Beirao| (1999)), and |Gongalves and de Almeida (2002). However, the BRKGA
methodology was formally introduced in |Gongalves and Resende (2011a), which
defined a clear framework and presented the first results as such.

The main advantage of the BRKGA over other genetic algorithm variants is
perhaps the fast convergence to high-quality solutions. This is mainly supported by
the adoption of double elitism when generating offspring through mating, namely:
(1) one parent is drawn from an elite set that holds the best chromosomes found
so far, and (2) the genes from the offspring are inherited from the elite parent with
a higher probability. From a practical perspective, the BRKGA allows for fast
prototyping, since the BRKGA solution space and the problem solution space are
kept separate. [Lucena et al|(2014) presented two variants of the BRKGA. In the
gender-defining version (BRKGA-GD), each chromosome has a bit flag indicating
its “gender,” and mating is performed with an individual with the bit on and another
with it off. In the multi-parent version (BRKGA-MP), more than two parents are
used to generate a new offspring. Experimental results suggested that the BRKGA-
MP can obtain better results than the BRKGA-GD. Similar behavior was reported
in|Rochman et al.| (2017)), when comparing results for the standard BRKGA and the
BRKGA-GD applied to the capacitated vehicle routing problem with time windows.

For robustness, we typically find problem-specific intensification strategies such
as local search or path-relinking being used within metaheuristic algorithms. In
this paper, we focus on the path-relinking, which exploits the neighborhood formed
in the path between two feasible solutions and was first proposed by [Glover| (1997)).
The main idea of a path-relinking search is to construct a series of modifications
on a base solution that leads to a guide solution, under the expectation that such
intermediate solutions will be of high-quality due to the combination of elements
from both solutions. The main issue with virtually all robust optimization solutions
adopting path-relinking is that the procedure is developed around the problem,
which makes code reuse and modularization very difficult.

In this paper, we extend the work of |Lucena et al| (2014)) by strengthening
the BRKGA-MP with an Implicit Path-Relinking (IPR) procedure. We intro-
duce and implement path-relinking strategies that operate on the random-key vec-
tor of the BRKGA, thus being generic and modular; in some sense, we have a
meta-intensification strategy that can be paired with the BRKGA metaheuristic
as building blocks for a robust optimization framework. Finally, we validate our
work extensively and thoroughly using three complex real-world problems. In the
first problem, one wants to design a complex hybrid wireless backhaul network
that mixes several technologies such as 4G/LTE and Wi-Fi, backhauled using ei-
ther fiber or microwave links (Andrade et al. 2015a)). Several cost factors are
used in this problem, such as equipment cost, maintenance/pole rental costs, fiber
trenching, among others. In the second problem, one must schedule over-the-air
software updates for a massive base of Internet of Things devices, especially con-
nected cars (Andrade et all 2017bgc; 2019al). This problem has several practical
constraints, with hundreds of thousands of updates that need to be scheduled. In
the third problem, we tackle the winner determination problem in combinatorial
auctions (Andrade et al., 2015b)). These auctions are used for selling rights such

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 3

as wave spectrum (bands) across different markets. The results show that the hy-
bridization of BRKGA and IPR can significantly improve solution quality when
compared to the standard versions.

The structure of this paper is as follows. Section [2| describes the standard
BRKGA and the BRKGA-MP procedures. Section |3| discusses path-relinking, the
IPR procedures, and their details. Section [4] addresses the hybridization options
between BRKGA and IPR. Section [§] reports the computational experiments. Con-
cluding remarks are made in Section [f]

2. A PRIMER ON BRKGA AND THE MULTI-PARENT BRKGA

The BRKGA is an elitist method that evolves a population of solutions in the
unit hypercube, i.e., each solution is represented by a point in [0,1]" for a given
dimension n. This representation was first proposed in Bean| (1994) and makes the
method independent of the problem it solves. A decoder function f :[0,1]" — S is
necessary to map individuals from the BRKGA space to the problem space S. Since
all evolutionary operators are applied in the BRKGA space, custom operators based
on the problem structure are unnecessary. This allows for fast prototyping and
testing, thus reducing development costs. One crucial aspect of the decoder is that
it must be a deterministic function, i.e., given a chromosome, the decoder should
always generate the same solution. This prerequisite ensures the reproducibility of
the results while not forbidding the use of random signals by decoders, say for tie
breaking — if a pseudo-random number generator must be used in the decoder then
it should be generated by a specific gene in the chromosome.

In the standard BRKGA, the population P is partitioned into elite, P., and
non-elite sets. The solutions in the elite set are the best of the entire population
according to some performance metric (fitness). The non-elite set contains the
remaining individuals (P \ P.). In each BRKGA iteration, the elite set is copied
to the next generation population P’ and a small percentage of random solutions
(called mutants, P,) is also added to this new population. Considering that |P. U
P!.| < |P|, the population is completed with offspring, each generated from the
combination (mating) of a randomly chosen individual from the elite set and a
randomly chosen individual from the non-elite set. Mating is done using biased
uniform crossover, where a gene is taken from the elite individual with probability p,
or otherwise it is taken from the non-elite individual. For more details, the reader
can refer to|Gongalves and Resende| (2011al).

Since the just introduced “double elitist” evolutionary dynamics is a key enabler
behind the success of standard BRKGASs, a natural extension is to improve it even
further by drawing genes from a combination of several individuals. This variant
is called Multi-Parent Biased Random-Key Genetic Algorithm (BRKGA-MP). A
BRKGA-MP selects as many parents as the parameter 7; determines. Among these,
m. are elite parents and m; — 7. are non-elite parents. Each parent has a probability
of passing its alleles to the offspring, which is calculated by taking the bias of the
parent into account. Parent bias is defined by a pre-determined, non-increasing
weighting bias function ® : N — R* over its rank 7. We used the bias functions
proposed by [Bresina) (1996)):

o Logarithmic: ®(r) = 1/log(r + 1);
e Linear: ®(r) = 1/r;
e Polynomial (in d): ®(r) =r~%;

4 ANDRADE, TOSO, GONCALVES, AND RESENDE

Algorithm 1: BRKGA-MP crossover scheme.

Input: Population P; non-increasing function ® : N — R*; values 7; < |P|, and
e < min(me, [Pel).
Output: A new chromosome c.

1 Uniformly sample 7 individuals from P. and 7 — 7. individuals from P \ Pe. Let
Q@ be the set of these individuals;

N

Sort @ in non-increasing order of fitness;

totalweight < 0;
foreach q € Q in the given order do
weight(q) < ®(rank(q));
L totalweight < totalweight + weight(q);
foreach ¢ € Q do
L weight(q) < weight(q)/total yeight;

o N O ok oW

9 Let ¢ be an empty new chromosome;

10 for i =1 to n do

11 Select an individual ¢ €) at random, with probabilities defined by weight;
12 L cli] < qli];

13 return c;

-

e Exponential: ®(r) =e™";
e Constant: ®(r) = 1/m.

Note that the constant bias give us a uniform distribution between the chosen
parents.

Algorithm [T] shows the complete crossover procedure for BRKGA-MP. In lines]
and [2] the parents are drawn and sorted according with their fitness. Lines
to [8] calculate the probabilities of drawing a gene from each parent. The function
rank : N — N returns the position of the given chromosome in the sorted list of
parents (Q; this in turn is passed to the bias function ®. Note that a normalization
step is required to compute the proper probabilities for each parent (given by the
vector weight). Lines |§| to carry out the crossover. For each gene, a parent is
chosen using the well-known “roulette” method that uses the probabilities calculated
in the previous steps, and its allele is assigned to the gene of the new chromosome.
Note that the procedure is carried out for each new offspring that is generated.

To conclude, for robustness we also employ other techniques used in several vari-
ants of genetic algorithms and metaheuristic algorithms in general. One of them is
to evolve a set Z,, of p populations independently and exchange their best ¢ individ-
uals after every g generations. This strategy is known as the island model (Whitley
et al., [1998), and usually improves the variability of individuals, speeding up con-
vergence and avoiding local optima. The second is to restart the algorithm if it
is trapped in local optima and cannot improve the best solution after r genera-
tions, keeping only the best overall solution. However, this strategy can be too
drastic because it destroys well-conserved parts of the genome usually appear in
good solutions during the evolution process. To avoid such drastic mode, |Andrade
et al| (2019b) introduced the shaking procedure which instead of fully resetting
the whole population, applies random modifications to the individuals in the elite

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 5

TABLE 1. BRKGA parameters. The first column describes the pa-
rameter name and the second its definition. In the third column,
parameters can be applicable to either “both” variants, only the
standard (“std.”), or only the multi-parent (“MP”). “Extra” indi-
cates a parameter that hardens the metaheuristic.

Parameter Description Version
|P| Population size Both
|Pe| Elite set size Both
| P Mutant set size Both

P Probablllty that. an c')ffsprmg inher- Only std.
its the allele of its elite parent

ur Number of parents in the crossover Only MP

™ Number of elite parents in the Only MP
crossover

P Bias function Only MP

» Number of independent popula- Extra
tions

; Number of individuals in the ex-

i Extra
change

g Number of generations for exchange Extra

- Number .of non-improving itera- Extra
tions until reset

set, and resets the non-elite individuals. Therefore, we guarantee diversity in the
non-elite set and preserve the convergence structure on the shaken elite set.

Table [I]lists the parameters of each BRKGA variant, plus additional parameters
for robustness. One disadvantage of BRKGAs in general is the large number of
parameters to be set; often, automatic parameter tuning tools are necessary to
effectively and efficiently find a good set of values.

3. ImpLICIT PATH-RELINKING

Path-Relinking (PR) is an intensification strategy that exploits the neighborhood
formed in the path between two feasible solutions (Glover, [1997)). Path-relinking
has been successfully employed in several contexts such as routing (Resende and
Ribeiro, 2003)), covering (Pessoa et all 2013), assignment (Mateus et al., |2011),
logic (Festa et al., [2007), scheduling (Aiex et all 2003), etc. For a comprehensive
survey, we point the reader to Ribeiro and Resende| (2011)). The main idea of a
path-relinking search is to construct a series of modifications on a base solution that
leads to a guide solution, under the expectation that such intermediate solutions
will be of high-quality due to the combination of elements from both solutions.
Standard path-relinking procedures start by choosing a base and a guide solution
that are sufficiently diverse. Then, iteratively, a component of the base solution
is chosen, removed, substituted with another component from the guide solution,
and evaluated. When all components of the base solution are replaced with ones
from the guide solution, the search is concluded and the best intermediate solution

6 ANDRADE, TOSO, GONCALVES, AND RESENDE

is returned. Components can be edges and nodes of a graph (for graph problems
such as covering and routing), slots in a schedule or timetable, etc.

The one thing in common with most robust optimization solutions adopting path-
relinking is that the procedure is developed around the problem, which makes code
reuse and modularization very difficult. We depart from the standard approach
and henceforth leverage the separation between problem space and solution space
of the BRKGA to propose an Implicit Path-Relinking (IPR) strategy. This novel
algorithm builds the path entirely in the unit hypercube of the BRKGA, making use
of the (already existing) decoder function to map the intermediate vectors v € [0, 1]™
into the solution space for evaluation. The advantages of this approach are twofold,
as it offers (1) considerable reduction in research and development time; and (2)
robust hybridization for any random-key genetic algorithm such as the BRKGA.

While traditional PR implementations “understand” the problem structure by
operating explicitly in the solution neighborhood (nodes or edges of the graph,
timetable slots or items, etc), the IPR can only rely on the implicit structure of the
random-key vector v. In general, random keys v; are used in the following ways:

(1) Thresholds: These keys are tied to decision variables such as nodes, edges,
etc and usually indicate their inclusion into or exclusion from the solution.
For instance, Resende et al.| (2011]) propose and analyze a BRKGA for the
Steiner Triple Covering problem where key v; > 0.5 indicates that the set
P; is part of the covering; this implementation found (thus far) the best
coverings for the two largest instances in a standard problem set;

(2) Permutations: The random-key vector v can induce a permutation of de-
cision variables by first assigning each variable with an index of the vec-
tor and then sorting the vector for a permutation. As an example, let
v = {0.3,0.1,0.6,0.4}; and associate key 0.3 with index 0, key 0.1 with
index 1, etc. Finally, sort v to obtain the permutation {1,0,3,2}. The
traveling salesman problem and its variants can be easily encoded in such
way; nodes are assigned sequentially to keys, which are then sorted to ob-
tain a sequence of cities to be visited.

In some hybrid cases, v is split into sub-vectors such that each sub-vector is
interpreted in a particular way. As an example, a representation can have v di-
vided into multiple non-overlapping sub-vectors or segments, each either based on
permutations or thresholds.

In light of these options, we propose different routines to accommodate each one
specifically. We describe these in the upcoming sections.

3.1. Direct implicit path-relinking. In the direct path-relinking strategy, the
algorithm assumes that no particular structure exists in vectors v, thus the keys
are exchanged directly between the incumbent and the guide solutions. Although
such a strategy is similar to standard path-relinking procedures, it is too slow if
only a single key is replaced at a time — it requires O(n?) calls to the decoder since
for each key in the base solution, the procedure has to find the best replacement
key from the guide solution. Such a route leads to a metaheuristic that focuses too
much on intensification, leaving little time for diversification.

We also note that a hidden structure should be expected to appear in the vec-
tors v throughout the evolutionary process, even though in this section we assume
a unit vector without any explicit structure. This can be visualized for example

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 7

in the context of a traveling salesman problem, where nearby cities form clusters
of similar keys in the random key vector. Generalizing, certain portions of v can
become essential building blocks for high-quality solutions; consequently, tearing
apart such blocks when combining with another solution can be ineffective, since
the operation may destroy the blocks.

Therefore, we propose a direct path-relinking approach that exchanges a block
of keys (rather than a single key) in each iteration. Algorithm [2[depicts such a
procedure for a minimization problem. Lines [IH4] set up the algorithm. First, it
computes the number of blocks based on the given block size and the size of the
path to pursue. Later this attribute serves as an additional stopping criterion,
allowing the user to control the extent of the search. Next, we define RB as the set
from which the block indices are sampled. We set up the base and guide solution
to the input vectors and set the current best solution.

The main loop consists of lines In each iteration, the algorithm scans
all possible solutions assigning blocks from the guide solution to the incumbent
solution. This is done in the inner loop For each block, we compute the start
position and offset, and extract the corresponding blocks from the incumbent and
guide solution.

In line we compare blocks b; and by using the function affectSolution :
[0,1]™ x [0,1]™ — {true, false} which returns true if the swap between b,y and
bnew can produce a new solution. If this assertion fails, we remove the block from
consideration. We comment about this function later. In lines[T4HI5] the algorithm
copies the block from the guide solution to the incumbent solution, and calls the
decoder function to evaluate its fitness. Note that we can use the same decoder
function we use in BRKGA. Then, in lines[I7THI8|we hold the block that has obtained
the best solution in the current iteration.

Once the block search is ended, the algorithm commits the best change into the
incumbent solution and remembers the best solution value found so far (lines
22). The block is removed from further considerations and we swap the roles of
the base and the guide solutions (lines ; this implements the bidirectional
relinking, which produces better solutions than just forward or backward path-
relinking strategies (Resende and Ribeiro, [2016). Lines adds two stopping
criteria besides the number of blocks: the maximum size of the path to be explored
and the maximum time for the search. Finally, the algorithm returns the best
solution found in line

We make some observations about Algorithm[2] First, function affectSolution
plays an important role at keeping the PR away from exploring regions already
visited. For instance, suppose the vector v represents thresholds for binarization
where key ¢ is active if v; > 0.5. Then, note that block & = [0.1,0.6,0.3] generates
the same solution as block v” = [0.4,0.9,0.5], and thus there is no need to explore b".
Function affectSolution can be a generic function or a user customized function
tailored to the problem to be solved. This function can be used to model many types
of relationships between the subvectors such as discretizations and small/local key
permutations, for example. Also, note that affectSolution has an important role
in providing nowledge to the path-relinking procedure so it is not totally unaware
of the problem structure.

8 ANDRADE, TOSO, GONCALVES, AND RESENDE

Algorithm 2: Direct Implicit Path-Relinking.
Input: Vectors base, guide € [0,1]"; block size bs; path percentage P% € (0, 1];
maximum time.
Output: The best solution found as a tuple (vector, value).

1 numblocks < [n/bs];
2 pathsize + [numblocks x P%];
3 Let RB = {1,...,numblocks} be the set of remaining blocks to be exchanged;
4 bestsolution < (base, 00);
5 while RB is not empty do
6 bestblock < (—1,00);
7 foreach block € RB do
8 offset < block x bs
9 boia < base[offset : offset + bs];
10 bnew < guide|offset : offset + bs];
11 if not affectSolution(boid, bnew) then
12 RB + RB\ {block};
13 L Go to line |7}
14 base[offset : offset + bs] < bpew;
15 solutionvalue < decode(base);
16 base|offset : offset + bs| < boa;
17 if solutionvalue < bestblock.value then
18 L bestblock < (block, solutionvalue);

19 offset < bestblock.block x bs;

20 base|offset : offset + bs] < guide[offset : offset + bs];
21 if bestblock.value < bestsolution.value then

22 L bestsolution < (base, bestblock.value);

23 RB <+ RB\ {bestblock.block};

24 swap(base, guide);
25 pathsize < pathsize — 1;
26 if pathsize = 0 or mazimum time is reached then

27 L Go to line

28 return bestsolution;

The decoding procedure is also a sensitive piece of the direct IPR. Several
BRKGA implementations have included local search procedures as part of the de-
coder for better solution quality and also faster convergence. Since such procedures
can be computationally expensive, they would severely impact the performance of
the IPR. Another technique commonly found in BRKGAs with local search is to
make the decoder update the chromosome (adjust the chromosome keys) to reflect
the solution from the local search, since such a strategy also speeds up the conver-
gence. However, chromosome adjustment will invalidate the IPR and should thus
be disabled, since the calls to the decoder could potentially modify the incumbent
solution and interfere with the path-relinking.

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 9

3.2. Permutation-based implicit path-relinking. As previously mentioned, it
is common to find random-key algorithms that use random keys to induce permu-
tations on the structures of a solution, that is, the order of the keys is used to build
a solution. In such scenarios, the direct implicit path-relinking described in the
previous section may be inefficient due to the nature of the solution representation
in which there exists an infinite number of vectors representing the same solution.
Therefore, simple key exchange frequently does not result in a new solution, even
if we use key blocks and implement a proper function affectSolution. To ad-
dress the aforementioned shortcomings, we propose the permutation-based implicit
path-relinking. In this method, instead of exchanging keys between the base and
guide solutions, we use the permutation from the guide solution to switch the keys
of the base solution in such a way that they induce the same “sub-permutation” on
the base solution.

Let us assume that we have two permutations p and p’, representing sequences of
elements from two distinct solutions for the problem (for instance, p and p’ can be
sequences of vertices representing solution for a traveling salesman problem). For a
given position ¢ in these sequences, the permutation-based implicit path-relinking
checks whether such position 7 contains the same element in both sequences p and p’.
If this is the case, i is skipped. Otherwise, the algorithm switches the keys of the
base solution to induce the same position of ¢ in the guide solution. Algorithm
depicts such procedure. Lines perform the initial setup computing the path
size, setting the base and guide solutions, and initializing the best solution found
so far in this procedure. Line [f] starts the set of indices to be checked. In lines [f]
and |Z|, we create the tuples I, and I, to represent the permutations induced by
vectors v and vg. This is why they are sorted in non-increasing order of the keys
of the base and guide solution, respectively.

In the main loop (lines , the algorithm builds the path using swap moves
between the positions of the elements in the permutations. In each iteration, the
inner loop (lines checks each position i: if ¢ has the same elements in per-
mutations I;, and I,;, we remove it from consideration and analyze the next po-
sition. Otherwise, we swap the keys of the base solution so that the element in
position i matches where it is encountered in the guide solution (line [IF). To
clarify, consider the following example. Suppose that the base solution vector is
b=10.1,0.5,0.9,0.3,0.7] and the guide solution vector is g = [0.8,0.4,0.2,0.6,0.1],
inducing the permutations I, = (1,4,2,5,3) and I, = (5,3,2,4, 1), respectively.
Note that position ¢ = 3 has the same item (element 2) in both permutations and
nothing must be done. On the other hand, position 7« = 1 has different elements
in both permutations, i.e., I;[1] = 1 and I,[1] = 5. Since our goal is to have the
same element in position 4 in both sequences, we swap the key in position I,[1] = 1,
which is b[I,[1]] = 0.1, for the key in position I4[1] = 5, which is b[I4[1]] = 0.7.
Such change results in the vector [0.7,0.5,0.9,0.3,0.1] and, consequently, the new
permutation (5,4,2,1,3). Once we have the new base solution, the algorithm de-
codes it and switches the keys back to the former base solution. This procedure is
carried out for each position, and we hold the one that generates the best solution
(lines . After finding the best move, in lines the algorithm commits
the change, updates the best solution, removes position ipes from further consider-
ation, and swaps the roles of the base and the guide solutions (forward/backward

10 ANDRADE, TOSO, GONCALVES, AND RESENDE

Algorithm 3: Permutation-based Implicit Path Relinking.

Input: Vectors vi,v2 € [0,1]"; path percentage P% € [0, 1]; maximum time.
Output: The best solution found as a tuple (vector, value).

pathsize < [n x P%];

base < v1;

guide < va;

W N =

bestsolution < (v1,00);
5 Let RI ={1,...,n} be the set of remaining indices to be checked;

6 Let I, =(1,...,n) and I, = (1,...,n) to be the set of indices of vectors v; and v2
respectively;

7 Sort I, and I, according to non-increasing order of the corresponding keys in v;
and va;

8 while RI is not empty do

9 ibest — —17
10 Val pest < 00;
11 foreach i € RI do
12 if I[i] = I4[i] then
13 RI « RI\ {i};
14 Go to line
15 swap(base[ly[i]], base[I4[i]]);
16 solutionvalue <— decode(base);
17 swap(base[I,,[i]], base[I4[i]]);
18 if solutionvalue < valpes: then
19 ibest — 7’7
20 valpest <— solutionvalue;
21 swap(base[ly[ivest]], base[Ig[ivest]]);
22 if valpest < bestsolution.value then
23 L bestsolution < (base, valpest);

24 RI < RI \ {ihest};

25 swap(base, guide);
26 pathsize < pathsize — 1;
27 if pathsize = 0 or mazimum time is reached then

28 L Go to line

29 return bestsolution;

path-relinking). Lines implement additional stopping criteria besides the
number of checked elements, and in line 29 the best solution found is returned.
Algorithm [3|is very sensitive to the size of the input, since it makes O(n?) calls
to the decoder. Unfortunately, we cannot use the block strategy of Algorithm [2] off-
the-shelf, since permutations between blocks cannot be directly translated between
the base and guide solutions. Thus, the user must control this process using the ad-
ditional stopping criteria, i.e., maximum time or maximum path size, for otherwise
the BRKGA will spend too much time on intensification. As with the direct implicit

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 11

path-relinking, the decoding function is a sensitive piece and all guidelines made in
Section [3.I] must be observed in the permutation-based implicit path-relinking.

3.3. Selecting solutions for path-relinking. One of the requirements for a suc-
cessful path-relinking strategy is to choose two high-quality solutions that are differ-
ent enough so that, when combining their substructures, we may produce a better
solution with reasonable likelihood.

Since IPR is built on the same platform as the BRKGA-MP, we leverage the
island model of the multiple populations, performing path-relinking between elite
chromosomes from different populations in a circular fashion. For example, sup-
pose we have three populations. The framework performs three path-relinking
operations: the first between elite individuals from populations 1 and 2, the second
between populations 2 and 3, and the third between populations 3 and 1. When
just one population is evolved, both base and guide individuals must be sampled
from the elite set of that population.

When selecting individuals, we propose two sampling strategies. In the first,
we simply pick the best individual from each population. This strategy has the
advantage of always using the highest-quality individuals, with the drawback that
such chromosomes may be too similar and thus constrain the path-relinking neigh-
borhood. In the second strategy, we sample individuals the from the elite sets to
improve the likelihood of having chromosomes that are different enough to result
in a successful path-relinking. Since neither of the two strategies guarantees that
the individuals are sufficiently different, we also use a distance function between
individuals in the unit hypercube as a pre-requisite for running the IPR. In con-
trast, traditional path-relinking procedures implement a distance function between
individuals using the particular structure of the problem.

When using threshold-based representations, we can compute the Hamming dis-
tance between the two vectors, i.e., the number of positions where the vectors
differ. To compute such distance, we first apply the thresholds in each key of the
random-key vectors to discretize them. After such categorical transformation, we
can then compute the edit distance between the two vectors. For instance, let
v; = [0.1,0.3,0.7] and vy = [0.5,0.1,0.9]. Using the threshold of 0.4, we have a dis-
tance of one. Now using a threshold of 0.6, the distance is zero. Hamming distance
computation runs in O(n).

When using permutation-based representation, we can use the Kendall tau rank
distance (Kendall, |1938), which is a metric that computes the number of pairwise
disagreements between two ranking lists and, therefore, can be used to measure
distance between two permutations. Given two vectors v’ and v”, let 7/ and 7"
be the order (ranking) induced by sorting v" and v” non-increasingly, respectively.
The Kendall tau distance between 7/ and 7" is

K(r', 7" = |{(Z,j) ci < g, (Tl < 73] A T[] > T[4]) Vv
(r'li] > 7'[5) A Tl < T}
Using v and vy from the previous example, we have 7/ = (3,2,1) and 7 = (3,1, 2),
which yields a distance of one. The Kendall tau distance can be computed with a
simple O(nlogn) algorithm, but it can be reduced to O(n+/logn) using the method
presented in |Chan and Patragcul (2010).

In population methods such as the BRKGA, it is common that the population
converges to similar individuals over time. Therefore, IPR may have to test many,

12 ANDRADE, TOSO, GONCALVES, AND RESENDE

perhaps all pairs of elite chromosomes before proceeding to the path-relinking al-
gorithm. This operation can take too long and impair the optimization process.
Therefore, we use an additional parameter that limits the number (or percentage) of
chromosome pairs tested before the path-relinking. If the IPR reaches this thresh-
old without finding a chromosome pair suitable for the operation, the algorithm
declares failure, indicating that the population is too homogeneous.

We conclude this section by listing the IPR parameters in Table [2|

TABLE 2. IPR parameters. The first column describes the param-
eter name and the second has its definition.

Parameter Description

sel Individual selection (random elite or best solutions)
cp% Number /percentage of chromosome pairs to be tested
md Minimum distance between chromosomes

typ Path-relinking type (direct or permutation-based)

bs Block size
ps% Percentage /path size

max.time Maximum time

4. HyBRIDIZATIONS OF BRKGA-MP AND IPR

Since both BRKGA-MP and IPR methods operate over the same space of solu-
tions (the unit hypercube), the hybridization between the two methods is straight-
forward, as partially described in Section [3.3] However, there are two items yet
to be discussed: how to mix the calls between the evolutionary steps of BRKGA
and path-relinking; and how to deal with new solutions originated from the path-
relinking.

In some methods, such as GRASP (Resende and Ribeiro| 2016, path-relinking
procedures are used as an intensification method after the main algorithm is stopped.
In this paper, we propose two different approaches. In the first, we call the IPR
periodically, after a given number of generations of the BRKGA. The rationale for
this approach is that the IPR may intensify the search offering alternative high-
quality solutions, potentially speeding up convergence. In the second approach, the
IPR is called only when the BRKGA converges and stalls for a given number of
generations. Once we obtain a new solution from IPR, this solution is inserted into
the population (see criterion below), and the BRKGA is resumed; hopefully, this
new individual will lead to better solutions in the BRKGA. In Section 5l we describe
experiments with both approaches.

The second and most critical issue in hybridization is when to insert solutions
from IPR back into the BRKGA population. If the IPR solution is the best solution
found so far, we can add it to the population directly. However, it is possible that
the IPR solution is not the best found so far. If such solution is worse than the worst
solution in the elite set, we discard it; otherwise, we compute the distance between
the TPR solution and all other solutions in the elite set, using distance functions as
described in Section [3:3] If the new solution respects a minimum distance between
all elite solutions, we discard the worst solution of the elite set and add this IPR

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 13

solution. This strategy tries to maintain a diverse population. Another common-
used strategy is to s replace the most similar solution having worse cost. In this
case, we keep the diversity of the population but improve the overall quality of the
solutions.

5. EXPERIMENTAL RESULTS AND DISCUSSION

To assess the performance of BRKGA-MP-IPR, we make use of three real-
life scenarios where the standard BRKGA was previously applied (see, e.g., |An-
drade et al.| (2017b)), |Andrade et al.|(2017c), /Andrade et al.| (2015a), and |Andrade
et al. (2015b))). In each case, the chromosomes are used in a different way to rep-
resent the solution, namely threshold-based, permutation-based, and hybrid repre-
sentation. Moreover, the decoders have no local-search procedures, allowing us to
evaluate the performance of the evolutionary algorithm alone, without interference
from local search procedures.

We also tested the implicit path-relinking mechanism by itself, without the evo-
lutionary dynamics of BRKGA. For that, we sampled the individuals for path-
relinking from the entire population.

The results are represented by labels as following: STD for the original / standard
BRKGA; MpP for BRKGA-MP (no IPR hybridization); 1PR for standalone IPR;
STALL for the hybrid BRKGA-MP-IPR where the IPR procedure is called when
the BRKGA evolution does not improve the best solution for a given number of
generations; FIXED for the BRKGA-MP-IPR where the IPR procedure is always
called after a given number of generations. When needed, we use the suffix “DIR”
(respectively, “PER”) to explicitly indicate the use of direct (resp., permutation-
based) path-relinking.

For each scenario, we carefully tuned each algorithm individually using iterated
F-race (Birattari et al., |2010; Lopez-Ibanez et al., |2016) so that we can extract
the best results from each algorithm. Having tuned each algorithm, we performed
ten independent runs on each instance for each problem. The stopping criterion
used was a maximum wall-clock time or a maximum number of iterations without
improvement, both independently set for each problem.

The computational experiments were performed on a cluster of identical ma-
chines, each having an Intel Xeon E5-2650 CPU at 2.0 GHz (12 cores / 24 threads)
and 128 GB of RAM running CentOS Linux 6.9. The algorithms tested in this pa-
per are implemented in C++ and built with GNU GCC 7.2. The BRKGA-MP-IPR
framework is licensed under a BSD-like license and is available at:

e https://github.com/ceandrade/brkga_mp_ipr_cpp (C++ version);
e https://github.com/ceandrade/brkga_mp_ipr_julia (Julia version);
e https://github.com/ceandrade/brkga_mp_ipr_python (Python version).

5.1. Hybrid representation: Wireless backhaul network design problem.
We start off testing a complex problem that uses a hybrid chromosome represen-
tation to solve the wireless backhaul network design problem (WBNDP) first de-
scribed in (Andrade et al.| [2015a)). WBNDP is a real-world, very complex problem
that aims to build a routing forest for LTE small cells, mixing wireless and fiber
hops. The problem consists of set of demand points, a set of locations where small
cells (radio base stations) can be installed (usually utility poles on street intersec-
tions), and a set of root points to where the small cells can connect either by fiber

https://github.com/ceandrade/brkga_mp_ipr_cpp
https://github.com/ceandrade/brkga_mp_ipr_julia
https://github.com/ceandrade/brkga_mp_ipr_python

14 ANDRADE, TOSO, GONCALVES, AND RESENDE

TABLE 3. Tuned algorithm parameters for the WBNDP.

BRKGA IPR Extra

[Pl Pe% Pm% p m wme ® sel % md typ bs psh I, I; Iy R
STD 500 30 15 070 - - - - - - - - — 3 2 100 300
MP 1800 24 10 - 3 10e " - - - - - - 1 - - 215
FIXED-DIR 720 32 12 - 7 10 1/r Best 12 0.26 Dir. 33 3 1 - 400 410
STALL-DIR 360 22 11 - 4 6 1/r Best — 0.12 Perm. 32 31 1 - 150 500
FIXED-PER 1400 43 14 — 5 10 e7” Best 11 0.23 Perm. 50 70 1 - 275 330
STALL-PER 950 13 10 - 7 10 1/r Best — 0.08 Perm. 35 15 1 — 260 440
IPR-DIR 60 - - - - — — Rand. 100 0.12 Dir. 15 92 - - — 300
IPR-PER 100 - - - - — — Rand. 100 0.15 Perm. 11 8 - - — 290

or wireless links. Each demand point generates traffic that can be converted into
revenue. Such traffic must be served by small cells (either LTE, WiFi, or both, each
one with a service radius) with limited capacity in handling traffic and number of
connections. The small cells must route over wireless links with limited capacity
or a fiber if it is in the last hop (close to a root point). We have equipment costs
(depending of the type of the equipment), fiber trenching costs, and pole leasing
costs. The objetive is to build a routing forest such net revenue (gross revenue
minus deployment and operations cost) is maximized over a given time window.
There are 30 instances with sizes varying from 454 poles, 24 root nodes, 2,500 de-
mand blocks, over an area of 62 km? to 8,740 poles, 420 root nodes, 35,750 blocks
over an area of 410 km?.

In |Andrade et al.| (2015a), the chromosome is partitioned into five sections using
a mix of threshold and permutation representations. Although the decoder is some-
what convoluted, it does not contain local search routines. Since it is not straight-
forward to use direct or permutation-based path-relinking in a hybrid chromosome
representation, we tested both versions. For the same reason, we implemented a
custom routine to compute the distance between two chromosomes: first, we com-
pute the sum of the Kendall Tau distance for each permutation-inducing block;
next, we add the Hamming distance between the correspondent threshold blocks
(activation parameters genes, see Section 5.1 in |Andrade et al.| (2015a))).

The tuned parameters for this problem are described in Table [3] The first sec-
tion describes the BRKGA parameters (according to Table , followed by the
IPR parameters (description in Table , and the extra parameters (also described
in Table . Each row shows the parameters for each algorithm. Note that “-’
indicates “not applicable.” The minimum distance between chromosomes is pro-
portional to the chromosome size multiplied by column “md.” For FIXED-DIR and
FIXED-PER, parameter 7, indicates the interval, in number of generations, that the
path-relinking procedure is called. For STALL-DIR and STALL-PER, parameter Z,
indicates the number of generations without improvement in the best solution be-
fore path-relinking should be called. Also note that, for a single population, there
is no individual exchange. We used one wall-clock hour or 1,000 iterations with-
out improvement as the stopping criterion, and four threads for decoding, over 30
instances presented in |Andrade et al.| (2015a)).

Figure [1] shows the distribution of the average percentage deviation over the
best solution found for each instance. Note that STALL-DIR and STALL-PER present
slightly better deviations, though FIXED-PER follows closely. The average percent-
ages and standard deviations are 7.20+5.76, 6.68+5.88, and 7.63+4.72, respectively.

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 15

TABLE 4. p-values for Wilcoxon rank sum test among the algo-
rithms for the WBNDP. We use a confidence interval of 95% and
omit p-values are less than 0.05.

STD MP FIXED-DIR STALL-DIR FIXED-PER STALL-PER IPR-DIR

MP -
FIXED-DIR — 1.00
STALL-DIR — —
FIXED-PER — 0.20 — 0.76
STALL-PER — — — 1.00 0.05
IPR-DIR —
IPR-PER

- - 1.00

MP and FIXED-DIR presented similar results with average percentage of 8.73 4+ 5.62
and 9.14 £ 5.71, respectively. The STD, IPR-DIR, and IPR-PER algorithms fell short
(11.19 £ 5.62, 45.85 + 22.10, and 47.52 4 19.19, respectively).

To confirm our conclusions, we tested the normality of these distributions using
the Shapiro-Wilk test and applied the Wilcoxon rank sum test, considered more
effective than the t-test for distributions sufficiently far from normal and for suffi-
ciently large sample sizes (Conoverl, [1980} [Fay and Proschan), 2010)). For all tests,
we assume a confidence interval of 95%, and used the Bonferroni method for p-
value adjustment. Table [f] shows the p-values from the Wilcoxon test. We also
provide, in Appendix the analysis of variance (ANOVA) test for each pair of
algorithms, even though the distributions are not normal. As expected, ANOVA
and Wilcoxon results differ slightly, but they agree in the majority of cases. Note
that all BRKGA-MP versions are significantly better than sTD and 1PR. We cannot
confirm a statistical difference between STALL-DIR, FIXED-PER, and STALL-PER. We
also cannot confirm a significant difference between MP and FIXED-DIR, and MP and
FIXED-DIR.

Table [5| reports the performance of the algorithms with respect to the best solu-
tions found. Column “% Sol” shows the percentage of the number of best solutions
found, and column “% Run” shows the percentage of the number of runs on which
the algorithm found a best solution. The two columns under label “Prop. diff.”

25

20

-
o

Deviation (%)

[
o

RA

- ? N x e; Q,l\ N e;
=2 W O% O% e @ O R
A Y R

Algorithms

FIGURE 1. Deviation from the best solutions found for the WBNDP.

16 ANDRADE, TOSO, GONCALVES, AND RESENDE

show, respectively, the average of the proportional difference between the best so-
lution value and the achieved value (%), and its corresponding standard deviation
(o). One can notice the superiority of the STALL versions, with more best solutions
found, and a smaller deviation from the other solutions.

Figure [2] shows performance profiles for all algorithms. The z-axis shows the
time needed to reach a target solution value, while the y-axis shows the cumulative
probability to reach a target solution value for the given time in the z-axis. The
target values are the best solution for each instance. It is interesting to note that
STD is faster in finding solutions within 50 minutes. However, towards the end of
the optimization, all variants exhibit similar profile.

Table[6] brings the number of calls of the IPR method according to each algorithm
variation. The second and third columns show the average number of calls (and
standard deviation) per run, and the maximum number of calls among all runs,
respectively. The fourth and fifth columns show the average and the maximum
number of improved solutions obtained by IPR. The last two columns show the
average and maximum number of times that the IPR procedure found the elite
population to be homogeneous and bailed out. In general, the IPR methods were
called a few times in this scenario. Note that STALL-DIR and FIXED-PER could not
find improved solutions. Indeed, in almost all its calls, IPR declared the population
too homogeneous for path-relinking. FIXED-DIR and STALL-PER could execute IPR
a few times, but only one improvement was found in a given run.

TABLE 5. Algorithm performance compared to the best solutions
found the WBNDP.

Prop. diff.
Alg. % Sol. % Run ————

% o
STD 20.00 4.03 11.80 5.24
MP 26.67 5.67 9.39 5.65

FIXED-DIR 3.33 3.33 9.59 5.62
STALL-DIR 43.33 7.00 7.89 5.66
FIXED-PER 3.33 2.67 798 4.64
STALL-PER 40.00 7.00 793 5.14
IPR-DIR 3.33 1.33 46.56 21.52
IPR-PER 3.33 0.67 47.92 18.79

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 17

o]
— ||—e— sTD g
= wmp o
2 & -—+ FIXED-Dir b
g |+ STALL-Dir &
s FIXED-Per 4K
© A
S S STALL-Per A
o | h},;;;
g A
g 3
>
g i
o 3
o |
o

T
0 10 20 30 40 50 60

Minutes to reach the best solution

FIGURE 2. Running time distributions to best solutions found for
the WBNDP. The identification marks correspond to 4% of the
points plotted for each algorithm.

TABLE 6. Statistics for IPR routine calls for WBNDP.

Calls Improv. Homog.
Avg Max Avg Max Avg Max

FIXED-DIR 24+3 100+£1 1 0 0
STALL-DIR 445 21 0 04+4 21
FIXED-PER 3+3 15 0 02+3 15
STALL-PER 1+ 1 50%x1 1 0 0

Alg.

5.2. Permutation representation: Firmware-over-the-air scheduling prob-
lem. To test a straightforward representation, we use the Firmware-over-the-air
(FOTA) scheduling problem, defined in |Andrade et al.| (2017bic|). In this problem,
one must create a schedule for connected cars to initiate a download /update session
over LTE networks. In FOTA, historical data of the car connections and LTE net-
work utilization and capacity are given. With that, we build a download capacity
map over a given time window. Cars and network capacity restrictions are also
given. The objective is to find a schedule that: 1) shifts the FOTA download to
quieter periods on the network to avoid rush hours, and therefore, minimizing the
impact of FOTA in the network; 2) schedule as many cars as possible such that they
finish the download within the time window; and 3) minimize the total completion
time for the FOTA download. This problem was modeled as a machine scheduling
problem. The 153 instances vary from 107 jobs and 1,676 machines to 33,132 jobs
and 9,916 machines over a time window of 672 periods. Due to several real-world
constraints and the size of the instances, the FOTA scheduling problem is extremely
challenging and hard to solve. |Andrade et al. (2019a) presented a BRKGA with
permutation-based representation to schedule the cars using a simple constructive
decoder.

In Table[7] we list the tuned parameters for this permutation-based BRKGA. The
distance between two chromosomes was computed using the Kendall tau method,

18 ANDRADE, TOSO, GONCALVES, AND RESENDE

Deviation (%)
e (9] (2] ~ [e¢]

w

N

i

STD MP FIXED STALL IPR
Algorithms

FIGURE 3. Deviation from the best solutions found for the FOTA.

and it is proportional to the size of the chromosome as described before. For this
scenario, we used six wall-clock hours or 1,000 iterations without improvement
as stopping criterion and four threads for decoding. There are 154 instances, as
described in [Andrade et al. (20194).

In Figure[3] one can see the distribution of the average percentage deviation with
respect to the best solution found for each instance. Note that Mmp and MP-IPR
variations presented the smallest deviations from the best solutions. On average,
MP shows 1.33 £1.34% of deviation, FIXED shows 1.16 +0.79%, and STALL presents
1.20 + 0.88%. The original version, STD, resulted on a deviation of 4.19 4+ 1.75%,
and IPR alone resulted on 17.56 + 8.40%. Applying the Wilcoxon rank sum test,
we confirm that all these differences (pairwise) are statistically significant at a
confidence interval of 95%, except for FIXED and STALL, for which the p-value is
larger than 0.05. Appendix [Bf brings the analysis of variance (ANOVA) test for
each pair of algorithms, which results agree with Wilcoxon results. Therefore, the
MP-IPR procedures are able to find much better results than the multi-parent and
standard BRKGA variants alone. This can be confirmed in Table 8] as the number
of best solutions found by the MP-IPR versions is significantly larger than by the
other algorithms.

Figure [4 depicts the performance profiles, similar to Figure The standalone
IPR is absent from the figure since it did not result in a curve. Note that all
algorithms take a long time to converge due to the difficulty of this problem. STD
and MP are slower than the other algorithms. Note that FIXED presented better

TABLE 7. Algorithm parameters for the FOTA problem.

BRKGA IPR Extra
|P| Pe% Pm% p m me D sel cp% md typ bs psh I, I; I, R
sTp 500 30 15 0.70 - - — - - - - - - 3 2 100 300
MP 300 26 10 - 2 3 m — 90 — — - - 1 - 75 500
FIXED 320 24 12 — 4 6 1/r Rand. 85 0.29 Perm. 19 25 1 - 75 380
STALL 360 22 11 - 4 6 1/r Best 93 0.12 Perm. 32 31 1

- 65 340

IPR 100 - - - Rand. 100 0.10 Perm. 13 17 - 240

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 19

cumulative probability than STALL, although they converge to similar results at the
end of their runs.

Table [9] exposes the number of calls of the IPR method according for each algo-
rithm. The description is similar to Table [6] but we omitted the last two columns
since no homogeneity was found in this scenario. As expected, in FIXED the IPR
is called more times on average due to its cyclical nature, consequently resulting in
more improvements. However, even if we wait to call IPR only when the BRKGA
mechanism stalls, we can improve the incumbent solution; indeed, STALL calls IPR
in only 20% of the runs, but those calls are still valuable in the final results.

Cumulative probability

[
T T T T T T T T T T T T T T T T T 11
180 210 240 270 300 330 360

Minutes to reach the best solution

FIGURE 4. Running time distributions to best solutions found the
FOTA. The identification marks correspond to 4% of the points
plotted for each algorithm.

5.3. Threshold representation: Winner determination problem. For some
problems, the hybridization between BRKGA-MP and IPR methods may be not
as effective as expected. To show this, we experimented with the Winner Deter-
mination Problem (WDP) in combinatorial auctions, where a seller should pick
a set of non-overlapping bids to maximize the total selling value. Such bids are
done on different and possibly overlapping sets of items. More formally, let I be
a set of items, 41,72 € I be two items, and let v : 2/ — R be a valuation function
for sets of these items. Items i; and iy are said to be complementary if and only

TABLE 8. Algorithm performance compared to the best solutions
found the FOTA.

Prop. diff.

Alg. % Sol. % Run ———
% o

STD 0.65 0.07 4.19 1.75

MP 22.88 229 216 1.31

FIXED 37.91 3.79 1.21 0.77
STALL 38.56 3.86 1.24 0.86
IPR 0.00 0.00 17.57 8.40

20 ANDRADE, TOSO, GONCALVES, AND RESENDE

TABLE 9. Statistics for IPR routine calls for FOTA.

Calls Improv.
Avg Max Avg Max

FIXED 7+10 64 3+3 16
STALL 416 44 1+1 4

Alg.

TABLE 10. Algorithm parameters for the WDP.

BRKGA IPR Extra
[Pl Pe% Pm% p w0 me @ sel cp% md typ bs psh I, I; I, R
sTp 2000 20 15 0.70 - — - - - - - 3 2 100 500

MP 4600 13 23 - 2 3 r72 - 92 - - - - 3 1 60 300
FIXED 4670 10 29 - 2 3 e " Best 97 0.20 Dir. 132 48 3 2 450 470
STALL 4500 11 35 - 2 3 e " Rand. 94 0.15 Dir. 74 22 3 2 200 470
IPR 70 Rand. 100 0.02 Dir. 5 70 400

if v({i1}) + v({i2}) < v({é1,i2}), where {i1,i2} denotes a bundle of items i; and
io. They are said to be substitutes if and only if v({i1}) + v({i2}) > v({i1,i2}).
Each bidder sets his/her offers for several subsets of sale items, i.e., each bidder b
submit a function v, to the seller. Using these functions, the seller chooses the
non-overlapping best offers, maximizing his/her revenue. Instances for WDP varies
from 40 bids to 10 goods to 1,500 bids and 1,500 goods.

Andrade et al.| (2015b)) presented six variants of decoders to solve such problem,
both threshold and permutation-based. Here, we used the GAg, threshold-based
variation where the bids are sorted by cost/benefit and the decoder picks the non-
overlapping bids such that the corresponding key in the chromosome is larger than
or equal to 0.5.

The tuned parameters employed throughout this section are listed in Table
We used one wall-clock hour or 1,000 iterations without improvement as stopping
criterion, and four threads for decoding. There are 105 instances available for this
problem, as presented in |Andrade et al.| (2015b).

Figure [f] depicts the distribution of the average percentage deviation from the
best solution found for each instance. Notice that MP, FIXED, and STALL all have
small deviations from the best solution (mean and standard deviation of 0.59+0.75,
0.68+0.75, 0.704+0.90, respectively). Also notice that, for the MP-IPR variants, the
majority of the solutions found are quite close to the best solutions. By applying the
Wilcoxon rank test, we can assert that MP, FIXED and STALL are not significantly
different. However, they are significantly better than sSTD and IPR. The analysis of
variance (ANOVA) in Appendix [C| shows slightly different results, where most of
the algorithms have significantly different results pairwisely. However, since these
distributions are not normal, these results may be skewed. Also, Table [I1] shows
that MP found the most substantial portion of best solutions when compared with
the other variations, also offering the smallest proportional difference.

We investigate the use of IPR in this scenario in Table Note that neither
IPR variant could find better solutions within their calls. In fact, for most cases,
the elite population was too homogeneous and prevented the IPR from running. In
Figure [6] we can see that MP has a higher probability of finding a good solution
faster than the MP-IPR variations, since MP does not waste time with unsuccessful

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 21

TABLE 11. Algorithm performance compared to the best solutions
found for the WDP.

Prop. diff.

Alg. % Sol. % Run ———
% o

STD 43.27 16.44 1.06 1.06

MP 52.88 20.00 0.74 0.78

FIXED 50.00 19.90 0.85 0.88
STALL 45.19 18.85 0.87 0.92
IPR 4.81 0.67 2.74 231

IPR calls. One can argue that is also a reason for MP to find more best solutions
than the IPR counterparts.

Note that if the practitioner had implemented a custom path-relinking procedure
for this scenario, the outcome would be very disappointing, especially after investing
development time and expectations only to find out that a path-relinking procedure
is not adequate for this scenario. Even though IPR could not improve the results, it
would still save development time and provide a quick answer as to the (in)feasibility
of its adoption.

TABLE 12. Statistics for IPR routine calls for WDP.

Calls Improv. Homog.
Avg Max Avg Max Avg Max

FIXED 3+ 1 6 0 02+1 6
STALL 5+2 11 0 052 11

Alg.

w
S)
T

N
3
L

N
=]
T

Deviation (%)
P
[5,]

[y
o
T

e
«
L

0.0+

STD MP FIXED STALL IPR
Algorithms

FIGURE 5. Deviation from the best solutions found for the WDP.

22 ANDRADE, TOSO, GONCALVES, AND RESENDE

o
('\!,
o

Cumulative probability
0.05
|

0.00
|

0 10 20 30 40 50 60

Minutes to reach the best solution

FIGURE 6. Running time distributions to best solutions found for
the WDP. The identification marks correspond to 4% of the points
plotted for each algorithm.

6. FINAL CONSIDERATIONS

In this paper, we presented the Multi-Parent Biased Random-Key Genetic Al-
gorithm hybridized with a novel Implicit Path-Relinking (BRKGA-MP-IPR) pro-
cedure. The BRKGA-MP uses multiple parents for mating, chosen using a biased
function for faster convergence. The IPR leverages the generic unit hypercube
representation of the BRKGA and applies the path-relinking procedures over that
space, instead of the problem space as does the standard version of path-relinking
does.

By testing the variations of the BRKGA-MP-IPR extensively on real-world prob-
lems, we conclude that both the multi-parent evolutionary dynamics and the IPR
mechanism contribute to finding solutions that are much better than those found by
the standard BRKGA. It must be said that the implicit path-relinking procedure is
more sensitive to the application, to the point where it may fail when the BRKGA
population is too homogeneous.

At the very least, the BRKGA-MP-IPR can save considerable development time.
Using the same infrastructure, the user can experiment with variants of BRKGA
and IPR incurring minimal development overhead. This fact not only offers savings
for an optimization project using these tools but also reduces the time-to-market
for a good solution to the underlying problem.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for providing comments that improved this
paper. José F. Gongalves thanks the support of the North Portugal Regional Opera-
tional Programme (NORTE 2020) [grant number NORTE-01-0145-FEDER~000020]
under the PORTUGAL 2020 Partnership Agreement, and through the European
Regional Development Fund (ERDF).

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 23

DISCLAIMER

The work of Rodrigo F. Toso and Mauricio G. C. Resende was done while
they were employed by AT&T Labs Research in Middletown, NJ, and of José F.
Gongalves when he was employed at University of Porto, Portugal.

REFERENCES

Renata M. Aiex, Silvio Binato, and Mauricio G. C. Resende. Parallel GRASP with
path-relinking for job shop scheduling. Parallel Computing, 29(4):393-430, 2003.
ISSN 0167-8191. doi: 10.1016/S0167-8191(03)00014-0.

Carlos E. Andrade, Flavio K. Miyazawa, and Mauricio G. C. Resende. Evolu-
tionary algorithm for the k-interconnected multi-depot multi-traveling salesmen
problem. In Proceedings of the 15" Annual Conference on Genetic and Evolu-
tionary Computation, GECCO’13, pages 463-470, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1963-8. doi: 10.1145/2463372.2463434.

Carlos E. Andrade, Mauricio G. C. Resende, Howard J. Karloff, and Flavio K.
Miyazawa. Evolutionary algorithms for overlapping correlation clustering. In
Proceedings of the 16" Conference on Genetic and Evolutionary Computation,
GECCO’14, pages 405-412, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2662-9. doi: 10.1145/2576768.2598284.

Carlos E. Andrade, Mauricio G. C. Resende, Weiyi Zhang, Rakesh K. Sinha, Ken-
neth C. Reichmann, Robert D. Doverspike, and Flavio K. Miyazawa. A biased
random-key genetic algorithm for wireless backhaul network design. Applied Soft
Computing, 33:150-169, 2015a. doi: 10.1016/j.as0c¢.2015.04.016.

Carlos E. Andrade, Rodrigo F. Toso, Mauricio G. C. Resende, and Flavio K.
Miyazawa. Biased random-key genetic algorithms for the winner determina-
tion problem in combinatorial auctions. FEvolutionary Computation, 23:279-307,
2015b. doi: 10.1162/EVCO_a_00138.

Carlos E. Andrade, Shabbir Ahmed, George L. Nemhauser, and Yufen Shao. A
hybrid primal heuristic for finding feasible solutions to mixed integer programs.
European Journal of Operational Research, 263(1):62-71, 2017a. ISSN 0377-2217.
doi: 10.1016/j.€jor.2017.05.003.

Carlos E. Andrade, Simon D. Byers, Vijay Gopalakrishnan, Emir Halepovic,
David J. Poole, Lien K. Tran, and Christopher T. Volinsky. Connected cars
in a cellular network: A measurement study. In Proceedings of the 2017 Internet
Measurement Conference, IMC ’17, pages 235-241, New York, NY, USA, 2017b.
ACM. doi: 10.1145/3131365.3131403.

Carlos E. Andrade, Simon D. Byers, Vijay Gopalakrishnan, Emir Halepovic,
David J. Poole, Lien K. Tran, and Christopher T. Volinsky. Managing mas-
sive firmware-over-the-air updates for connected cars in cellular networks. In
Proceedings of the 2nd ACM International Workshop on Smart, Autonomous,
and Connected Vehicular Systems and Services, CarSys ’17, pages 65-72. ACM,
2017c. ISBN 978-1-4503-5146-1/17/10. doi: 10.1145/3131944.3131953.

Carlos E. Andrade, Simon D. Byers, Vijay Gopalakrishnan, Emir Halepovic,
David J. Poole, Lien K. Tran, and Christopher T. Volinsky. Scheduling software
updates for connected cars with limited availability. Applied Soft Computing, 82:
105575, 2019a. ISSN 1568-4946. doi: 10.1016/j.as0c.2019.105575.

Carlos E. Andrade, Thuener Silva, and Luciana S. Pessoa. Minimizing flowtime
in a flowshop scheduling problem with a biased random-key genetic algorithm.

24 ANDRADE, TOSO, GONCALVES, AND RESENDE

Expert Systems with Applications, 128:67-80, 2019b. ISSN 0957-4174. doi: 10.
1016/j.eswa.2019.03.007.

James C. Bean. Genetic algorithms and random keys for sequencing and optimiza-
tion. ORSA Journal on Computing, 2(6):154-160, 1994. doi: 10.1287/ijoc.6.2.
154.

Nuno C. L. F. Beirao. Sistema de apoio a decisao para sequenciamento de operagoes
em ambientes job shop. Master’s thesis, Faculadade de Engenharia, U. do Porto,
1997. URL https://repositorio-aberto.up.pt/handle/10216/12242,

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stiitzle. F-Race
and iterated F-Race: an overview. In Experimental methods for the analysis of
optimization algorithms, pages 311-336. Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-02538-9 13.

John L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the 13"
national conference on Artificial Intelligence, volume 1 of AAAI’96, pages 271—
278. AAAI Press, 1996. ISBN 0-262-51091-X.

Marco Caserta and Torsten Reiners. A pool-based pattern generation algorithm
for logical analysis of data with automatic fine-tuning. Furopean Journal of
Operational Research, 248(2):593-606, 2016. ISSN 0377-2217. doi: 10.1016/j.
ejor.2015.05.078.

Timothy M. Chan and Mihai Patragcu. Counting inversions, offline orthogonal
range counting, and related problems. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 161-173, 2010. ISBN 978-
0-89871-701-3, 978-1-61197-307-5. doi: 10.1137/1.9781611973075.15.

William J. Conover. Practical nonparametric statistics. John Wiley & Sons, 279
edition, 1980. doi: 10.1086/407092.

M. Ericsson, Mauricio G. C. Resende, and Panos M. Pardalos. A genetic algorithm
for the weight setting problem in OSPF routing. Journal of Combinatorial Op-
timization, 6(3):299-333, 2002. ISSN 1382-6905. doi: 10.1023/A:1014852026591.

Michael P. Fay and Michael A. Proschan. Wilcoxon-Mann-Whitney or t-test? On
assumptions for hypothesis tests and multiple interpretations of decision rules.
Statistics Surveys, 4:1-39, 2010. doi: 10.1214,/09-SS051.

Paola Festa, Panos M. Pardalos, Leonidas S. Pitsoulis, and Mauricio G. C. Resende.
GRASP with path relinking for the weighted MAXSAT problem. Journal of
Ezxperimental Algorithmics, 11, 2007. ISSN 1084-6654. doi: 10.1145/1187436.
1216581.

Fred Glover. Tabu Search and Adaptive Memory Programming — Advances, Appli-
cations and Challenges, chapter 1, pages 1-75. Springer US, Boston, MA, 1997.
ISBN 978-1-4615-4102-8. doi: 10.1007/978-1-4615-4102-8 1.

José F. Gongalves and Nuno C. L. F. Beirao. Um algoritmo genético baseado em
chave aleatorias para sequenciamento de opeargoes. Investiga¢io Operacional,
19:123-137, 1999.

José F. Gongalves and Jorge R. de Almeida. A hybrid genetic algorithm for assembly
line balancing. Journal of Heuristics, 8(6):629-642, 2002. ISSN 1381-1231. doi:
10.1023/A:1020377910258.

José F. Gongalves and Mauricio G. C. Resende. Biased random-key genetic algo-
rithms for combinatorial optimization. Journal of Heuristics, 17:487-525, 2011a.
ISSN 1381-1231. doi: 10.1007/s10732-010-9143-1.

https://repositorio-aberto.up.pt/handle/10216/12242

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS 25

José F. Gongalves and Mauricio G. C. Resende. A parallel multi-population genetic
algorithm for a constrained two-dimensional orthogonal packing problem. Journal
of Combinatorial Optimization, 22(2):180-201, 2011b. ISSN 1382-6905. doi:
10.1007/s10878-009-9282-1.

John Henry Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. University
of Michigan press, 1975. ISBN 0-472-08460-7.

M. Kendall. A new measure of rank correlation. Biometrika, 30:81-89, 1938. doi:
10.2307/2332226.

Oliver Kramer. Genetic Algorithm Essentials. Springer International Publishing
AG, 2017. ISBN 978-3-319-52156-5. doi: 10.1007/978-3-319-52156-5.

Mauro C. Lopes, Carlos E. Andrade, Thiago A. Queiroz, Mauricio G. C. Resende,
and Flavio K. Miyazawa. Heuristics for a hub location-routing problem. Net-
works, 68(1):54-90, 2016. ISSN 1097-0037. doi: 10.1002/net.21685.

Manuel Loépez-Ibanez, Jérémie Dubois-Lacoste, Leslie Pérez Céceres, Mauro Bi-
rattari, and Thomas Stiitzle. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives, 3:43-58, 2016. ISSN
2214-7160. doi: 10.1016/j.0rp.2016.09.002.

Marina L. Lucena, Carlos E. Andrade, Mauricio G. C. Resende, and Flavio K.
Miyazawa. Some extensions of biased random-key genetic algorithms. In Pro-
ceedings of the 46" Brazilian Symposium of Operational Research, XLVI SBPO,
pages 2469-2480, 2014. URL http://www.din.uem.br/sbpo/sbpo2014/pdf/
arq0357.pdf.

Geraldo R. Mateus, Mauricio G. C. Resende, and Ricardo M. A. Silva. GRASP
with path-relinking for the generalized quadratic assignment problem. Journal of
Heuristics, 17:527-567, 2011. ISSN 1572-9397. doi: 10.1007/s10732-010-9144-0.

Luciana S. Pessoa and Carlos E. Andrade. Heuristics for a flowshop scheduling
problem with stepwise job objective function. Furopean Journal of Operational
Research, 266(3):950-962, 2018. ISSN 0377-2217. doi: 10.1016/j.ejor.2017.10.045.

Luciana S. Pessoa, Mauricio G.C. Resende, and Celso C. Ribeiro. A hybrid la-
grangean heuristic with GRASP and path-relinking for set k-covering. Com-
puters € Operations Research, 40(12):3132-3146, 2013. ISSN 0305-0548. doi:
10.1016/j.cor.2011.11.018.

Mauricio G. C. Resende and Celse C. Ribeiro. A GRASP with path-relinking for
private virtual circuit routing. Networks, 41(2):104-114, 2003. doi: 10.1002/net.
10065.

Mauricio G. C. Resende and Celso C. Ribeiro. Optimization by GRASP. Springer-
Verlag New York, 2016. ISBN 978-1-4939-6530-4, 978-1-4939-6528-1. doi: 10.
1007/978-1-4939-6530-4.

Mauricio G. C. Resende, Rodrigo F. Toso, José F. Gongalves, and Ricardo M. A.
Silva. A biased random-key genetic algorithm for the Steiner triple covering
problem. Optimization Letters, pages 1-15, 2011. ISSN 1862-4472. doi: 10.1007/
$11590-011-0285-3.

Celso C. Ribeiro and Mauricio G. C. Resende. Path-relinking intensification meth-
ods for stochastic local search algorithms. Journal of Heuristics, 18:192-214,
2011. ISSN 1572-9397. doi: 10.1007,/s10732-011-9167-1.

http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf
http://www.din.uem.br/sbpo/sbpo2014/pdf/arq0357.pdf

26 ANDRADE, TOSO, GONCALVES, AND RESENDE

Auliya Noor Rochman, Hari Prasetyo, and Munajat Tri Nugroho. Biased random
key genetic algorithm with insertion and gender selection for capacitated vehi-
cle routing problem with time windows. AIP Conference Proceedings, 1855(1):
020025, 2017. doi: 10.1063/1.4985470.

Fernando Stefanello, Vaneet Aggarwal, Luciana S. Buriol, José F. Gongalves, and
Mauricio G. C. Resende. A biased random-key genetic algorithm for placement
of virtual machines across geo-separated data centers. In Proceedings of the 2015
on Genetic and Evolutionary Computation Conference, GECCO ’15, pages 919—
926, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3472-3. doi: 10.1145/
2739480.2754768.

Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. The island model ge-
netic algorithm: On separability, population size and convergence. Journal of
Computing and Information Technology, 7:33-47, 1998.

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS

APPENDIX A. ANALYSIS OF VARIANCE FOR HYBRID REPRESENTATION:
WIRELESS BACKHAUL NETWORK DESIGN PROBLEM

Signif. codes: 0 kk%’

>> STD / MP

Df Sum Sq Mean Sq
Algorithm 1 1292 1292.2
Residuals 1018 32080 31.5
>> STD / FIXED-DIR

Df Sum Sq Mean Sq
Algorithm 1 874 874.4
Residuals 1018 31599 31.0
>> STD / STALL-DIR

Df Sum Sq Mean Sq
Algorithm 1 2361 2360.9
Residuals 1018 31917 31.4
>> STD / FIXED-PER

Df Sum Sq Mean Sq
Algorithm 1 1939 1939.3
Residuals 1018 30200 29.7
>> STD / STALL-PER

Df Sum Sq Mean Sq
Algorithm 1 4260 4260
Residuals 1018 32769 32
>> STD / IPR-DIR

Df Sum Sq Mean Sq
Algorithm 1 256104 256104
Residuals 1018 167183 164
>> STD / IPR-PER

Df Sum Sq Mean Sq
Algorithm 1 281351 281351
Residuals 1018 131151 129

>> MP / FIXED-DIR

Df Sum Sq Mean Sq
Algorithm 1 29 28.81
Residuals 598 19824 33.15

>> MP / STALL-DIR

Df Sum Sq Mean Sq
Algorithm 1 113 113.20
Residuals 598 20142 33.68
>> MP / FIXED-PER

Df Sum Sq Mean Sq
Algorithm 1 46 46.36
Residuals 598 18425 30.81

>> MP / STALL-PER

Df Sum Sq Mean Sq
Algorithm 1 609 609.0
Residuals 598 20994 35.1

>> MP / IPR-DIR

Df Sum Sq Mean Sq
Algorithm 1 208094 208094
Residuals 598 155408 260

>> MP / IPR-PER

Df Sum Sq Mean Sq

F

F

F

F

F

F

F

F

F

F

0.001 “**’> 0.01

value
41.01

value
28.17

value
75.3

value
65.37

value
132.3

value
1559

value
2184

value
0.869

value
3.361

value
1.505

value
17.35

value
800.7

value

‘%2 0.05 ‘. 0.1 ‘Algbrithm

Pr(>F)
2.31e-10 ***

Pr(>F)
1.36e-07 **x

Pr (>F)
<2e-16 **x

Pr(>F)
1.75e-15 *%*

Pr (>F)
<2e-16 **x

Pr (>F)
<2e-16 **x

Pr(>F)
<2e-16 **x

Pr(>F)
0.352

Pr(>F)
0.0673 .

Pr(>F)
0.22

Pr (>F)
3.57e-05 *x*x

Pr(>F)
<2e-16 *xx

Pr(>F)

1 227218 227218

Residuals 598 119376 200

>> FIXED-DIR / STALL-DIR

Df Sum Sq Mean Sq
Algorithm 1 256 256.24
Residuals 598 19661 32.88

>> FIXED-DIR / FIXED-PER

Df Sum Sq Mean Sq
Algorithm 1 148 148.28
Residuals 598 17944 30.01

>> FIXED-DIR / STALL-PER

Df Sum Sq Mean Sq
Algorithm 1 903 902.8
Residuals 598 20514 34.3

>> FIXED-DIR / IPR-DIR

Df Sum Sq Mean Sq
1 203226 203226

598 154928 259

Algorithm
Residuals

>> FIXED-DIR / IPR-PER

Df Sum Sq Mean Sq
1 222129 222129

598 118896 199

Algorithm
Residuals

>> STALL-DIR / FIXED-PER

Df Sum Sq Mean Sq
Algorithm 1 15 14.67
Residuals 598 18262 30.54

>> STALL-DIR / STALL-PER

Df Sum Sq Mean Sq
Algorithm 1 197 197.11
Residuals 598 20831 34.83

>> STALL-DIR / IPR-DIR

Df Sum Sq Mean Sq
1 217914 217914

598 155245 260

Algorithm
Residuals

>> STALL-DIR / IPR-PER

Df Sum Sq Mean Sq
1 237474 237474

598 119213 199

Algorithm
Residuals

>> FIXED-PER / STALL-PER

Df Sum Sq Mean Sq
Algorithm 1 319 319.3
Residuals 598 19114 32.0

>> FIXED-PER / IPR-DIR

Df Sum Sq Mean Sq
1 214353 214353

598 153528 257

Algorithm
Residuals

>> FIXED-PER / IPR-PER

Df Sum Sq Mean Sq
1 233756 233756

598 117496 196

Algorithm
Residuals

F

F

F

F

F

F

F

F

1138

value
7.793

value
4.941

value
26.32

value
784.4

value
1117

value
0.48

value
5.658

value
839.4

value
1191

value
9.991

value
834.9

value
1190

<2e-16 **x

Pr(>F)
0.00541 *x*

Pr(>F)
0.0266 *

Pr(>F)
3.92e-07 kx

Pr(>F)
<2e-16 **x

Pr(>F)

<2e-16 **x

Pr(>F)
0.488

Pr(>F)
0.0177 *

Pr(>F)

<2e-16 **x

Pr(>F)
<2e-16 **x

Pr(>F)
0.00165 *x*

Pr(>F)
<2e-16 **x

Pr(>F)
<2e-16 **x

27

28 ANDRADE, TOSO, GONCALVES, AND RESENDE

>> STALL-PER / IPR-DIR

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 231219 231219 885.8 <2e-16 **x
Residuals 598 156098 261

>> STALL-PER / IPR-PER
Df Sum Sq Mean Sq F value Pr(>F)

Algorithm
Residuals

1 251355 251355

598 120065

>> IPR-DIR / IPR-PER
Df Sum Sq Mean Sq F value Pr(>F)

Algorithm
Residuals

1 420
598 254480

201

420.3
425.6

1252 <2e-16 *x*x

0.988 0.321

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS

APPENDIX B. ANALYSIS OF VARIANCE FOR PERMUTATION REPRESENTATION:
FIRMWARE-OVER-THE-AIR SCHEDULING PROBLEM

Signif. codes: O

>> STD / MP

Df
Algorithm 1
Residuals 3028

>> STD / FIXED
Df

Algorithm 1

Residuals 3028

>> STD / STALL
Df

Algorithm 1

Residuals 3028

>> STD / IPR

Df
Algorithm 1
Residuals 3010

>> MP / FIXED

Df
Algorithm 1
Residuals 3058

>> MP / STALL

Df
Algorithm 1
Residuals 3058

>> MP / IPR

Df
Algorithm 1
Residuals 3040

>> FIXED / STALL

Df
Algorithm 1
Residuals 3058

>> FIXED / IPR
Df

Algorithm 1

Residuals 3040

>> STALL / IPR
Df

Algorithm 1

Residuals 3040

Cx*xx7 0.001 “*x> 0.01 ‘x> 0.05 .

Sum Sq
180948
108477

Sum Sq
203913
106699

Sum Sq
203008
106934

Sum Sq
134753
110383

Sum Sq
693
3674

Sum Sq
641
3909

Sum Sq
3286
7358

Sum Sq

2131

Sum Sq
6984
5580

Sum Sq
6817
5814

Mean Sq
180948
36

Mean Sq
203913
35

Mean Sq
203008
35

Mean Sq
134753
37

Mean Sq
692.7

Mean Sq
640.6
1.3

Mean Sq
3286

Mean Sq
1.0166
0.6967

Mean Sq
6984

Mean Sq
6817

F

F

F

F

F

F

F

F

F

F

value
5051

value
5787

value
5748

value
3675

value
576.5

value
501.2

value
1358

value
1.459

value
3805

value
3564

Pr(>F)
<2e-16

Pr(>F)
<2e-16

Pr (>F)
<2e-16

Pr (>F)
<2e-16

Pr(>F)
<2e-16

Pr(>F)
<2e-16

Pr (>F)
<2e-16

Pr(>F)
0.227

Pr(>F)
<2e-16

Pr(>F)
<2e-16

%k k

*okok

*kk

%k k

%k k

*okok

*okok

*okok

*kok

29

30 ANDRADE, TOSO, GONCALVES, AND RESENDE

APPENDIX C. ANALYSIS OF VARIANCE FOR THRESHOLD REPRESENTATION:
WINNER DETERMINATION PROBLEM

Signif. codes: O “x**> 0.001 ‘**> 0.01 ‘%’ 0.05 ¢.’ 0.1 ¢ > 1

>> STD / MP

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 44 .9 44 .93 53.98 2.9e-13 ***
Residuals 2078 1729.6 0.83

>> STD / FIXED

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 21.3 21.296 23.21 1.56e-06 *x*x
Residuals 2078 1907.0 0.918

>> STD / STALL

Df Sum Sq Mean Sq F value Pr (>F)
Algorithm 1 16.6 16.620 17.46 3.06e-05 *x*
Residuals 2078 1978.4 0.952

>> STD / IPR

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 1759 1759.4 544.2 <2e-16 ***
Residuals 2078 6719 3.2

>> MP / FIXED

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 4.4 4.360 6.667 0.00989 **
Residuals 2078 1359.0 0.654

>> MP / STALL

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 6.9 6.896 10.02 0.00157 *x*
Residuals 2078 1430.4 0.688

>> MP / IPR

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 2367 2367 797 <2e-16 **x
Residuals 2078 6171 3

>> FIXED / STALL

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 0.3 0.289%4 0.374 0.541
Residuals 2078 1607.8 0.7737

>> FIXED / IPR

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 2168 2167.8 709.6 <2e-16 ***
Residuals 2078 6348 3.1

>> STALL / IPR

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 2118 2118.0 685.6 <2e-16 ***
Residuals 2078 6419 3.1

MULTI-PARENT BRKGA WITH IMPLICIT PATH-RELINKING AND APPLICATIONS

(Carlos E. Andrade) AT&T LaBs RESEarcH, MIDDLETOWN, NJ USA
E-mazil address: cea@research.att.com

(Rodrigo F. Toso) MicrosorT Al & REsSEARCH, BELLEVUE, WA USA
E-mail address: rofran@microsoft.com

(José F. Gongalves) AMazoN.coM, SEATTLE, WA USA anp U. po Porro, PORTUGAL
E-mail address: jfgoncal@fep.up.pt

(Mauricio G.C. Resende) AMazoN.coM AND U. oF WASHINGTON, SEATTLE, WA USA
E-mail address: mgcr@uw.edu

31

	1. Introduction
	2. A primer on BRKGA and the Multi-Parent BRKGA
	3. The Implicit Path-Relinking
	3.1. Direct implicit path-relinking
	3.2. Permutation-based implicit path-relinking
	3.3. Selecting solutions for path-relinking

	4. Hybridizations of BRKGA-MP and IPR
	5. Experimental Results and Discussion
	5.1. Hybrid representation: Wireless backhaul network design problem
	5.2. Permutation representation: Firmware-over-the-air scheduling problem
	5.3. Threshold representation: Winner determination problem

	6. Final considerations
	Acknowledgements
	Disclaimer
	References
	Appendix A. Analysis of Variance for hybrid representation: Wireless backhaul network design problem
	Appendix B. Analysis of Variance for permutation representation: Firmware-over-the-air scheduling problem
	Appendix C. Analysis of Variance for threshold representation: Winner determination problem

