A PARALLEL MULTI-POPULATION BIASED RANDOM-KEY GENETIC
ALGORITHM FOR A CONTAINER LOADING PROBLEM

JOSE FERNANDO GONGALVES AND MAURICIO G. C. RESENDE

ABsTRACT. This paper presents a multi-population biased random-key genetic algorithm (BRKGA)
for the Single Container Loading Problem (CLP) where several rectangular boxes of different
sizes are loaded into a single rectangular container. The approach uses a maximal-space rep-
resentation to manage the free spaces in the container. The proposed algorithm hybridizes a
novel placement procedure with a multi-population genetic algorithm based on random keys.
The BRKGA is used to evolve the order in which the box types are loaded into the container
and the corresponding type of layer used in the placement procedure. A heuristic is used to de-
termine the maximal space where each box is placed. A novel procedure is developed for joining
free spaces in the case where full support from below is required. The approach is extensively
tested on the complete set of test problem instances of Bischoff and Ratcliff (1995) and Davies
and Bischoff (1999) and is compared with other approaches. The test set consists of weakly
to strongly heterogeneous instances. The experimental results validate the high quality of the
solutions as well as the effectiveness of the proposed heuristic.

1. INTRODUCTION

The Single Container Loading Problem (CLP) is a three-dimensional packing problem in which
a large rectangular box (the container) has to be filled with smaller rectangular boxes of different
sizes. Figure 1.1 shows that CLPs can be differentiated according to the mix of box types to
be loaded. They vary from the completely homogeneous case, where boxes have identical dimen-
sions and orientations, to the strongly heterogeneous case, where boxes of many different sizes are
present. CLPs with relatively few box types are often referred to as weakly heterogeneous (Bischoff
and Ratcliff, 1995). According to the typology of Wéscher et al. (2007) for cutting and packing
problems, the heuristic for the CLP presented in this paper falls into the output maximization
assignment category and can be applied to both the Single Large Object Placement Problem (3D
rectangular SLOPP, weakly heterogeneous) and the Single Knapsack Problem (3D rectangular
SKP, strongly heterogeneous).

Date: July 9, 2010.
Key words and phrases. Container loading, 3D Packing, genetic algorithm, multi-population, random keys.

Supported by Fundacdo para a Ciéncia e Tecnologia (FCT) project PTDC/GES/72244/2006.
AT&T Labs Research Technical Report.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 2

Weakly heterogeneous CLP

Strongly heterogeneous CLP

FiGUure 1.1. Weakly and strongly heterogeneous CLPs

The CLP is NP-hard (Scheithauer, 1992). To date, heuristics have been the only viable alter-
native to find optimal or near-optimal packings. Many heuristic procedures have been proposed
for solving the CLP. These include wall-building algorithms (George and Robinson, 1980, Loh and
Nee, 1992), such as tabu search (Bortfeldt and Gehring, 1998, Bortfeldt et al., 2003), GRASP
(Moura and Oliveira, 2005, Parreno et al., 2008b), simulated annealing (Mack et al., 2004), ge-
netic algorithms (Gehring and Bortfeldt, 1997), tree search methods (Morabito and Arenales, 1994,
Terno et al., 2000, Eley, 2002, Pisinger, 2002, Hifi, 2002, Fanslau and Bortfeldt, 2009), and hybrid
heuristics (Bortfeldt and Gehring, 2001). In some case, the heuristics include parallelization (Bort-
feldt and Gehring, 2002, Bortfeldt et al., 2003, Mack et al., 2004). All of these heuristics involve
some type of neighborhood structure in which it moves from one feasible solution to another. The
moves are usually applied on indirect representations of the solutions which change the order in
which boxes are packed rather than their physical location.

Other authors have considered additional practical constraints. For instance, Davies and Bischoff
(1999), Eley (2002), and Gehring and Bortfeldt (1997) take into account the weight distribution of

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 3

cargo within a container. Bischoff (2006) examines the impact of varying the load-bearing strength.
Several studies consider loading stability, including Bortfeldt and Gehring (2001), Bortfeldt et al.
(2003), and Terno et al. (2000). Other container-related factors, such as orientation constraints
(Gehring and Bortfeldt, 2002) and the grouping of boxes (Bischoff and Ratcliff, 1995, Takahara,
2005), have also been considered.

In this paper, we introduce a multi-population biased random-key genetic algorithm (BRKGA)
for the CLP. The remainder of the paper is organized as follows. In Section 2, we formally define
the problem In Section 3 we introduce the new approach, describing in detail the BRKGA, the
placement strategy, and a novel procedure for joining maximal spaces. Finally, in Section 4, we
report on computational experiments, and in Section 5 make concluding remarks.

2. THE PROBLEM

The single container loading problem addressed in this paper can be applied to any mix of box
types (i.e. from weakly to strongly heterogeneous sets of box types). Some practical constraints are
taken into account. The problem may be stated as follows: A given 3D rectangular container C' is to
be loaded with a subset of a given set of rectangular boxes in such a way that all boxes are feasibly
placed, the packed volume is maximized, and the constraints are met. A box is considered to be
feasibly placed if it is arranged in such a way that it is parallel to the side walls of the container,
does not overlap with another box, and lies completely inside the container. The dimensions of
the rectangular container C' are given as L (length), W (width), and H (height). The boxes to be
loaded are categorized into K box types depending on their dimensions. For each box type k, there
are Nj boxes with a length, width, and height of, respectively, I, wg, and hg, for k=1, 2, ..., K.

Additional constraints, taken from the large number of constraints found in practice (cf. Bischoff
and Ratcliff (1995)) are also considered. They are:

e ('1 - Orientation constraint: Originally each box can be arranged in the container in a
maximum of six rotation variants. However, for each box, up to five rotation variants may
be prohibited by means of an orientation constraint. For example, some boxes require that
one side be always on top.

e (2 - Stability constraint: To guarantee load stability, the bottom sides of all boxes not
placed directly on the container floor must be completely supported by the top sides of
one or more boxes.

3. BIASED RANDOM-KEY GENETIC ALGORITHM

We begin this section with an overview of the solution process. This is followed by a discussion of
the biased random-key genetic algorithm, including detailed descriptions of the solution encoding
and decoding, evolutionary process, fitness function, and parallel implementation.

3.1. Overview. The new approach is based on a constructive heuristic algorithm which uses
layers of boxes that may take the shape of a set columns or a set of rows. A layer is a rectangular
arrangement of boxes of the same type, in rows and columns, filling one side of an empty space
(see Figure 3.8). The management of the feasible placement positions is based on a list of empty
maximal-spaces as described in Lai and Chan (1997). An 3D empty space in the container is
maximal if it is not contained in any other other space in the container. Each time a layer is
placed in an empty maximal-space, new empty maximal-spaces are generated. The new approach
proposed in this paper combines a multi-population biased random-key genetic algorithm, a new
placement strategy, and a novel procedure to join maximal-spaces having the same base level.

The role of the genetic algorithm is to evolve the encoded solutions, or chromosomes, which
represent the box type packing sequence (BTPS) and the type of layer used to place each box type.
For each chromosome, the following phases are applied to decode the chromosome:

(1) Decoding of the box type packing sequence. This first phase decodes part of the chromosome
into the BTPS. i.e. the sequence in which the box types are packed into the container.

(2) Decoding of layer types. The second phase decodes part of the chromosome into the vector
of layer types (VLT) used the by the placement procedure to select the type of layer used
to pack boxes into the container.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 4

(3) Placement procedure. The third phase makes use of the BTPS defined in phase 1 and the
VLT obtained in phase 2 and constructs a packing of the boxes. In this phase, we develop
a novel procedure, MaxJoin, which joins maximal-spaces having the same base level. This
is done so the supporting area of the maximal-spaces is increased, increasing therefore the
possibly of satisfying constraint C2.

(4) Fitness evaluation. The final phase computes the percentage volume packed, the fitness
measure (quality measure) of the solution.

Figure 3.1 illustrates the sequence of steps applied to each chromosome generated by the BRKGA.

—p Chromosome Phase
Decoding of the Generate
Box Type Packing Sequence (BTPS) Box Type Packing Sequence

|

A]

Storage of Vector
of Layer Types (VLT)

Use BTPS, VLT and the MaxJoin procedure
to obtain a packing of the rectangles

Generate Layer Types

Placement Strategy

A 4

Compute % Volume Packed Compute Fitness

!

< | Feedback Quality of Chromosome
(% Volume Packed)

Evolutionary Process of the Genetic Algorithm

FIGURE 3.1. Architecture of the algorithm. Evolutionary process is on the left
and decoder is on the right.

The remainder of this section describes in detail the genetic algorithm, the decoding procedure
and the placement strategy.

3.2. Biased random-key genetic algorithm. Genetic algorithms are adaptive methods that are
used to solve search and optimization problems (Goldberg, 1989, Beasley et al., 1993). They are
based on the genetic process of biological organisms. Over many generations, natural populations
evolve according to the principles of natural selection, i.e. survival of the fittest, first clearly stated
by Charles Darwin (1859). By mimicking this process, genetic algorithms, if suitably encoded,
are able to evolve solutions to real-world problems. Before a genetic algorithm can be defined, an
encoding (or representation) for the problem must be devised. A fitness function, which assigns a
figure of merit to each encoded solution, is also required. During the run, parents are selected for
reproduction and recombined to generate offspring. Figure 3.2 shows high-level pseudo-code for a
standard genetic algorithm.

In genetic algorithms, a solution is encoded as a set of parameters, known as genes, joined
together to form a string of values called a chromosome. In genetic terminology, the set of pa-
rameters represented by a particular chromosome is referred to as an individual. The fitness of an

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 5

individual depends on its chromosome and is evaluated by the fitness function. During the repro-
ductive phase, individuals are selected from the population and recombined, producing offspring,
which comprise the next generation. Parents are randomly selected from the population using a
scheme that favors fitter individuals. Once selected, the chromosomes of the two parents are re-
combined, typically using mechanisms of crossover. Mutation is usually applied to some individuals
to guarantee population diversity.

procedure GENETIC-ALGORITHM

Generate initial population Py;

Evaluate population Pp;

Initialize generation counter g « 0;

while stopping criteria not satisfied repeat
Select some elements from P, to copy into Py41;
Crossover some elements of P, and put into Py 1;
Mutate some elements of P, and put into Py,1;
FEvaluate new population Pyy1;

9 Increment generation counter: g «— g+ 1;

10 end while;

end GENETIC-ALGORITHN;

00~ O Ot W=

FIGURE 3.2. Pseudo-code of a standard genetic algorithm.

3.2.1. Chromosome representation and decoding . The heuristic described in this paper is a biased
random-key genetic algorithm (Gongalves and Resende, 2009). It uses a random-key alphabet
comprised of random real numbers between 0 and 1. The evolutionary strategy used is similar to
the one proposed by Bean (1994), the main difference occurring in the crossover operator. The
important feature of this type of genetic algorithm is that all offspring formed by crossover are
feasible solutions. This is accomplished by moving much of the feasibility issue into the objective
function evaluation. If any random-key vector can be interpreted as a feasible solution, then any
crossover vector is also feasible. Through the dynamics of the genetic algorithm, the system learns
the relationship between random-key vectors and solutions with good objective function values.

A chromosome represents a solution to the problem and is encoded as a vector of random keys.
In a direct representation, a chromosome represents a solution of the original problem, and is called
genotype, while in an indirect representation it does not, and special procedures are needed to derive
from it a solution called a phenotype. In the present context, the direct use of packing patterns as
chromosomes is too complicated to represent and manipulate. In particular, it is difficult to develop
corresponding crossover and mutation operations. Instead, solutions are represented indirectly by
parameters that are later used by a decoding procedure to obtain a solution. To obtain the solution
(phenotype) we use the placement strategy that we describe in Section 3.3.5.

Recall that there are K box types and that, for k = 1,..., K, at most Ny boxes of type k can
be packed into the container. In the description of the genetic algorithm, we are given a total of
M = Zszl Ny, boxes. Each solution chromosome is made of 2M genes, i.e.

Chromosome = (geney,..., geney, , genep . q,-.., geneopys).

Box Type Packing Sequence Vector of Layer Types

The first M genes are used to obtain the Box Type Packing Sequence (BTPS), while the last M
genes are used to obtain the Vector of Layer Types (VLT). The BTPS as well as the VLT are
used by the placement strategy.

The decoding (mapping) of the first M genes of each chromosome into a BTPS is accomplished
by sorting the genes and box types in ascending order. Figure 3.3 shows an example of the decoding
process for the BTPS. In this example there are there four types of boxes with N; = 2, Ny = 3,
N3 =1, and Ny = 2. According to the ordering obtained, the box types should be packed in the
order 2, 4,2, 1, 2, 1, 3, 4. The vector of layer types VLT is defined such that

VLT, = Gene pr4,

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 6

i.e., each position i = 1,..., M of VLT is populated with Gene pr;.

o I DoDoEam

Random keys

somsmamion (9) @) €3 €9 €9 €9) € €9
Box Type
Packing Sequence (BTPS) 1 I 1 I 3 I

F1GURE 3.3. Chromosome decoding procedure for the Box Type Packing Sequence.

3.2.2. Ewvolutionary process. The population of random-key vectors is operated upon by a genetic
algorithm to breed good solutions. Many variations of genetic algorithms, obtained by altering
the reproduction, crossover, and mutation operators, have been proposed. The reproduction and
crossover operators determine which parents will have offspring, and how the genetic material is
exchanged between the parents to create those offspring. Mutation allows for random alteration
of genetic material. Reproduction and crossover operators tend to increase the quality of the
populations and force convergence. Mutation opposes convergence and replaces genetic material
lost during reproduction and crossover.

In a random-key genetic algorithm, the population is initialized with random-key vectors whose
components are random real numbers uniformly sampled from the interval [0,1]. Reproduction
is accomplished by first copying some of the best individuals from one generation to the next,
in what is called an elitist strategy (Goldberg, 1989). The advantage of an elitist strategy over
traditional probabilistic reproduction is that the best solution is monotonically improving from
one generation to the next. The potential downside is population convergence to a local minimum.
This can, however, be mitigated by an appropriate amount of mutation.

Parameterized uniform crossover (Spears and Dejong, 1991) is employed in place of the tradi-
tional one-point or two-point crossover. After two parents are chosen at random, one selected from
the best (TOP in Figure 3.5) and the other from the full old population (including chromosomes
copied to the next generation in the elitist pass), at each gene we toss a biased coin to select which
parent will contribute the allele. Unlike Bean (1994), in a biased-random key genetic algorithm,
we always select one parent from the set of elite solutions. Gongalves and Resende (2009) show
that, compared to the random-key GA of Bean, this change produces results with better quality
and converges faster to good quality solutions. Figure 3.4 presents an example of the crossover
operator. It assumes that a coin toss of heads selects the gene from the first parent, a tails chooses
the gene from the second parent, and that the probability of tossing a heads is 0.7, i.e. the crossover
probability CProb = 0.7. In Section 4 we describe how this value is determined empirically.

Rather than using the traditional gene-by-gene mutation with very small probability at each
generation, a random-key GA adds a small set of new members to the population. These individ-
uals, called mutants, are randomly generated from the same distribution as the initial population
(see BOT in Figure 3.5). Like in standard mutation, the objective here is to prevent premature
convergence of the population and leads to a simple statement of convergence. Figure 3.5 depicts
the transitional process between two consecutive generations.

3.2.3. Fitness function. To feedback the quality of a solution to the evolutionary process, a measure
of solution fitness, or quality measure, has to be defined. The natural fitness function for this type
of problem is the percent total packed volume given by

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 7

Chromosome 1 (from TOP) 0.32 0.77 053 0.85
m—
Random number 058 089 0.68 0.25

Crossover

Relation to crossover
probability of 0.7

Offspring Chromosome 0.32 0.53 0.85

F1cURE 3.4. Example of parameterized uniform crossover with crossover proba-
bility equal to 0.7. The offspring resembles parent 1 more than it does parent 2.

Current Population Next Population

Best Elitist Selection

TOP

|

One Chromosome
from TOP

Crossover

One Chromosome
from entire population

Y BOT

Worst
Mutation
(Immigration)

F1GURE 3.5. Transitional process between consecutive generations.

\

K
Z v NPy,

1 k=1
OO%L x W x H

where N Py, is the number of boxes of type k£ packed in a solution, v; is the volume of a box of type
k and the denominator represents the volume of the container.

3.2.4. Multi-population strategy. In the multi-population strategy used in this paper, several popu-
lations are evolved independently in parallel. After a pre-determined number of generations, all the
populations exchange good-quality chromosomes. When evaluating possible interchange strategies,
we observed that exchanging too many chromosomes, or exchanging them too frequently, often lead
to the disruption of the evolutionary process. With this in mind, we chose a strategy that, after a
pre-determined number of generations, inserts the overall two best chromosomes (from the union

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 8

of all populations) into all populations. In Section 4 we show how this choice was determined
empirically.

3.3. Placement strategy.

3.3.1. Maximal-spaces and the difference process. While trying to place a box in the container we
use a list S of empty maximal-spaces (EMSs), i.e. largest empty parallelepiped spaces available for
filling with boxes. Maximal-spaces are represented by their vertices with minimum and maximum
coordinates (x;, i, z; and X;, Y;, Z; respectively). When searching for a place to pack a box we
need to consider only the coordinates corresponding to the FMS vertices with minimum coordinates
(4, i, 7). To generate and keep track of the EMSs, we make use of the difference process (DP),
developed by Lai and Chan (1997). Figure 3.6 depicts an example of the application of the DP
process. In the example we assume that we have one box to be packed in the container (see
Figure 3.6a. Since the container is empty, the box is packed at the origin of the container as shown
in Figure 3.6b. In order to pack the next box, we first update the list S of empty maximal-spaces.
Figure 3.6c shows the three new EMSs generated by the DP process. Every time a box is packed,
we reapply the DP process to update list S before we pack the next box.

Newly generated maximal-spaces Newly generated maximal-spaces

with full support from below without full support from below
Box to be packed
@ Box packed in the maximal-space
Initial maximal-space
a) b) <) d)

FIGURE 3.6. Example of difference process (DP) with and without full support
from below.

There some real applications where full support from below (constraint C2) is not required.
Figure 3.6d) presents the the newly generated maximal-spaces generated by the DP procedure
when full support from below is enforced.

3.3.2. The Back-Bottom-Left procedure. Recall from Section 3.3.4 that x;, y;, z; denote the min-
imum coordinates of EMS,;. The Back-Bottom-Left (BBL) procedure orders the EMSs in such
a way that EMS; < EMS; if x; < xj, or if 2; = x; and 2; < z;, or if &3 = 2, z; = 25, and
yi < y;, and then chooses the first EMS in which the box type to be packed fits. Figure 3.7 shows
pseudo-code for the BBL procedure.

3.3.3. Layers of boxes. The new loading approach is based on a constructive heuristic that uses
layers of boxes. A layer is a rectangular arrangement of boxes of the same type, in rows and
columns, filling one side of an empty maximal space.

To determine which layer type to use to pack a box type by we first fill the vector Layers
with all the feasible layer-types that can be used to pack box type by into a predetermined empty
maximal-space EM S*. Each box type can have at most six rotation variants. For each variant,

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 9

procedure BBL(b, S)
Let by be a box of type k to be packed in the container;
Let Ng be the number of available EMSs in S;
Initialize X* « L, Y* — W, Z* — H;
fori=1,...,Ng do

Let z(EMS;) be the minimum z coordinate of EMS;;

Let y(EMS;) be the minimum y coordinate of EMS;;

Let z(EMS;) be the minimum z coordinate of EMS;;

if b, fits in EMS,; then

if x(EMS;) < X or (z(ERS;) = X* and z(ERS;) < Z*) or
(z(ERS%) = X* and z(ERS)) = Z* and y(ERS;) <Y*) then

10 X* «— x(ERS})), Z* < z(ERSy), Y* «— y(ERS}) ;
11 EMS* = EMS;:
12 end if
13 end if
14 end for
15 Return EMS™;
end BBL;

© 00~ ~JO Ot Ww N =~

FIGURE 3.7. Pseudo-code of the Back-Bottom-Left (BBL) procedure.

we can have at most six types of layers. Therefore, we have at most 36 layers types. Figure 3.8
shows all possible six layers types that can be defined for one of the six box type variants and a
empty-maximal-space where the layers can be packed.

Ficure 3.8. Example of the 6 different feasible layers types for a box type rotation variant.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 10

3.3.4. Joining mazximal spaces. The DP procedure presented in Section 3.3.1 generates new EMSs
each time a box is added to the container. However, when a new box is added, the supporting area
of some of the previously generated FMSs can sometimes increase. Since the DP process does not
take this into account, in such situations the possibility of satisfying constraint C'2 (full supporting
from below) is reduced. In this section, we develop a novel procedure we call MaxJoin which joins
maximal-spaces having the same supporting area height.

To illustrate MaxJoin, we use the example depicted in Figure 3.9, where we assume that the box
labeled x was the last one to be packed (see Figure 3.9a). Figure 3.9b shows all packed boxes that
have the same height as box x. Figure 3.9c shows a top-down view of the supporting area defined
by the boxes. In the remainder of this section, we restrict ourselves only to the top-down view
since the heights of the FMSs are equal and known.

The MaxJoin procedure consists of two main steps in which the DP procedure is applied twice
to obtain the desired EMSs. In the first step, the DP procedure in applied to subtract from the
container the spaces corresponding to the boxes (see Figure 3.10a). Note that the resulting EMSs
denoted by 1, 2, 3, and 4 in Figure 3.10a correspond to the complement of the FMSs that we seek.
In the second step, we apply the DP procedure to subtract from the container the final EMSs
obtained in the first step. The resulting sought EMSs are shaded in Figure 3.10b.

S~

L

‘‘‘‘‘

a) b) 0

F1GURE 3.9. Example where the empty maximal-spaces are not joined by DP.

3.3.5. Placement procedure. The placement procedure follows a sequential process which tries to
pack a box or a layer of boxes at each stage. The procedure combines four elements: the list
BTPS of box types defined by the genetic algorithm, a list S of empty maximal spaces, initially
containing only container C, the BBL procedure, and the vector of layer types (VLT) also defined
by the GA. Each stage is comprised of the following five main steps:

(1) Box type selection;

2) Maximal space selection;
3) Layers type selection;

4) Layer packing;

5) State information update.

~ o~~~

The pseudo-code of the placement procedure is given in Figure 3.3.5. The box type selection step
consists in choosing from BTPS the first box type k* which has not yet been used (lines 9 to 11
of the pseudo-code). The maximal space selection is carried out by the BBL procedure and the
list S to produce EMS™ (lines 12 to 13 of the pseudo-code). If a maximal space was found in
the previous step, then the layer selection uses VLT, the vector Layers, and all the possible layer
types of box type k* that can be packed into EMS*, to obtain the selected layer type Layers™
(lines 17 to 19 of the pseudo-code). The layer packing step consists in packing Layerx into EM Sx
(lines 17-19 of the pseudo-code). The final step, state information update, consists in updating the
remaining quantities of the box type packed k* and updating list S, using the DP and MaxJoin
procedures, as well as some flags (Skip and Placed) (lines 21 to 31 of the pseudo-code).

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 11

2)

Initial Final
N Spaces to subtract .
maximal space maximal spaces

J 2

b)

Initial Final
. Spaces to subtract .
maximal space maximal spaces

FIGURE 3.10. Joining spaces with the MaxJoin procedure.

3.4. Parallel implementation. We limit parallelization only to the task that performs the eval-
uation of the chromosome fitness since it is the most time consuming. The tasks related with the
GA logic were not parallelized since they consume very little time. This type of parallelization
is easy to implement and in multi-core CPUs allows for a large reduction in computational times
(almost a linear speed-up with the number of cores). The parallel implementation of our heuristic
was done using the OpenMP Application Program Interface (API) which supports multi-platform
shared-memory parallel programming in C/C++.

4. NUMERICAL EXPERIMENTS

In this section we report on results obtained on a set of experiments conducted to evaluate the
performance of the multi-population biased random key genetic algorithm for a container loading
problem (BRKGA-CLP) proposed in this paper.

4.1. Benchmark algorithms. We compare BRKGA-CLP with the 13 approaches listed in Ta-
ble 1. These approaches comprise the most effective to date.

4.2. Test problem instances. The effectiveness of BRKGA-CLP is evaluated by solving the
complete set of 1500 problems suggested by Bischoff and Ratcliff (1995) and Davies and Bischoff
(1999) which range from weakly heterogeneous to strongly heterogeneous cargo.

The instances are divided in 15 test cases, each with 100 instances, and are referred to as
BRD_01 to BRD _15. The number of different box types in each case are 3, 5, 8, 10, 12, 15, 20,
30, 40, 50, 60, 70, 80, 90, and 100. The structure of each problem changes gradually from weakly
heterogeneous to strongly heterogeneous according to the decreasing average number of boxes per

type.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 12

procedure PLACEMENT (BT PS, VLT, FullSupport)

1

w N

(=]

10
11

12
13

14
15
16

17

18
19

20

21
22
23
24
25
26
27
28
29

30
31

Let Placed; be a flag that indicates whether the box type given by BT PS(i)
has already been used to pack a box type or not;

Let S be the list of available empty EM S's;

Let QtRemainy be the remaining quantity of unpacked boxes of type k;

Let Skipy be a flag that indicates whether the box type k should
be skipped or not when searching for the next box type to pack;

// ** Initialization

S «— Empty container;

QtRemainy < Ny, Skipy < False, for all k;
Placed; + False for all i;

do while (There exits at least one k for which Skip, = False);
// ** Box type selection
i «— 0;
Let i* be the first index i in BT'PS for which Placed; = False and Skipprps) = False;
Let kx be box type corresponding to BT PS(i*);

// ** Maximal space selection
EMS™ « 0;
Let EMS™ be the EMS in S in which a box of type k*
is placed when the Back-Bottom-Left placement heuristic is applied;

if EMS* =0 then // no EMS was found ;
Skipg = False; // box type k* is not packable
else if ;
// ** Layer type selection
According to QtRemainy- fill the vector Layers
with all the layer-types packable into maximal-space FM.S™;
Let MaxLayers be number of layers in vector Layers;
Let Layer* = Layers ([VLT(i*) x MaxLayers]) be the layer type selected
for placing the box type k*, ([z]denotes the minimum integer greater than z);

// ** Layer packing
Pack Layer* at the origin of maximal space FM Sx;

// ** Information update

Let nBox be the number of boxes of type k*contained in Layer*;

QtRemaing- = QtRemaing- — nBox;

if QtRemaing~ = 0 then Skipy,. = True; // no more boxes of type k*to pack

Placed; = True;

Update S using the DP procedure of Lai and Chan (1997);

if FullSupport then
Update S by applying the MaxJoin procedure to all the EM Ss with

origin height equal to the top height of the Layer*after being packed;

Skipy < False for all {k|QtRemain; > 0};

end if

end if
end do

end PLACEMENT,;

F1GURE 3.11. Pseudo-code for the PLACEMENT procedure.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 13

TABLE 1. Efficient approaches used for comparison.

Approach Source of approach Type of method
T_BB Terno et al. (2000) Branch and Bound
BG_GA Bortfeldt and Gehring (2001) GA

BG_PGA Bortfeldt and Gehring (2002) Parallel GA

E_TRS Eley (2002) Tree Search (TRS)

L _GH Lim et al. (2003) Greedy Heuristic
B_PTS Bortfeldt et al. (2003) Parallel Tabu Search (TS)
B_NMP Bischoff (2006) Nelder-Mead Proc.
M_SATS Mack et al. (2004) Parallel SA/TS

MO _GR Moura and Oliveira (2005) GRASP

P _GR Parreno et al. (2008b) GRASP

P_VNS Parreno et al. (2008a) VNS

FB_TRS Fanslau and Bortfeldt (2009) TRS

HH_HBS He and Huang (2010) Heuristic Beam Search

In test case BRD 01 there are on average 50.15 boxes for each box type, whereas in test case
BRD 15 the average number is only 1.33. Each individual instance never exceeds the volume of
the container and the average of available cargo is over 99.46% of the capacity of the container.
The dimensions of the boxes were generated independently of the dimensions of the container,
therefore there is no guarantee that all the boxes will fit into the container. The percentage given
should be seen as a loose upper bound on the volume of the container attainable by an optimal
packing.

Each instance includes the orientation constraint (C1), which prohibits the use of certain larger
side dimension as height dimension.

4.3. GA configuration. Configuring genetic algorithms is oftentimes more an art form than a
science. In our past experience with genetic algorithms based on the same evolutionary strategy (see
Gongalves and Almeida (2002), Ericsson et al. (2002), Gongalves and Resende (2004), Gongalves
et al. (2005), Buriol et al. (2005), Buriol et al. (2007), Gongalves (2007), Gongalves et al. (2009),
Gongalves et al. (2009), Gongalves and Resende (2009) and Gongalves and Resende (2009)), we
obtained good results with values of TOP, BOT, and Crossover Probability (CProb) in the intervals
shown in Table 2.

TABLE 2. Range of Parameters in past implementations.

Parameter Interval
TOP 0.10 - 0.25
BOT 0.15 - 030

Crossover Probability (CProb) 0.70 - 0.80

For the population size, we have obtained good results by indexing it to the dimension of the
problem, i.e. we use small size populations for small problems and larger populations for larger
problems. With this in mind, we conducted a small pilot study to obtain a reasonable configuration.
We tested all the combinations of the following values:

TOP € {0.10, 0.15, 0.20, 0.25};

BOT € {0.15, 0.20, 0.25, 0.30};

CProb € {0.70, 0.75, 0.80};

Population size with 10, 15, 20, and 25 times the number of rectangles in the problem
instance.

For each of the 192 possible configurations, we made three independent runs of the algorithm
(with three distinct random number generator seeds) and computed the average total value. The
configuration that minimized the sum, over the pilot problem instances, was TOP = 15%, BOT =

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 14

15%, CProb = 0.7, and Population size — 20 times the number of rectangles in the problem
instance.

After some experimentation with the problem instances in a pilot study we came to the conclu-
sion that using three parallel populations and exchanging information every 15 generations was a
reasonable configuration for this type of problem.

The configuration presented in Table 3 was held constant for all experiments and all problems
instances. The computational results presented in the next section demonstrate that this configu-
ration not only provides excellent results in terms of solution quality but is also very robust.

TABLE 3. Configuration used on all runs in the computational experiments.

Population size: 20 X number of input boxes
Crossover probability: 0.7
The 15 % most fit chromosomes from the previous
TOP: generation are copied to the next generation
The 15 % least fit chromosomes from the previous generation
BOT: are replaced with randomly generated chromosomes
Number of population: 3
Exchange information btw pops: Every 15 generations
Fitness: Maximize % total packed volume
Stopping Criterion: Stop after 500 generations

4.4. Computational results. Algorithm BRKGA-CLP was implemented in C++. The compu-
tational experiments were carried out on a computer with a AMD 2.2 GHz Opteron 6-core CPU
with the Linux (Fedora release 12) operating system.

All computational results show average values for the 100 instances of each test case. All tests
where performed using the configuration summarized in Table 3.

For comparison purposes and because some authors report computational results where the
support constraint (C2) is not enforced we present results for two versions of our approach: version
BRKGA-CLP-S (supported) that enforces the support constraint (C2) and version BRKGA-CLP-
U (unsupported) which does not.

We note that some of approaches in Table 1 report results only for the first seven sets of
weakly heterogeneous instances, BRD 01-BRD 07.The complete computational results appear
in Tables 4 and 5 for versions BRKGA-CLP-S and BRKGA-CLP-U, respectively.

As can be observed from Tables 4 and 5 both versions of BRKGA-CLP obtain the best overall
results (for BRKGA-CLP-S: Mean 01-07 — 94.53%, Mean 08-15 — 90.23%, Mean 01-15 — 92.24%
while for BRKGA-CLP-U: Mean 01-07 = 95.74%, Mean 08-15 = 93.49%, Mean 01-15 = 94.54%).
The second best approach is FB_TRS and it obtains overall means 01-15 which are 0.26% and
0.59% worst than BRKGA-CLP. BRKGA-CLP is only outperformed by FB_TRS for test case
BRD 01 when full support is enforced. For all the other test cases BRKGA-CLP finds better
average solutions than any of the other approaches.

In terms of computational times we cannot make any fair and meaningful comments since all
the other approaches were implemented and tested on computers with different computing power.
Instead, we limit ourselves to reporting the average running times for the best three approaches.

5. CONCLUDING REMARKS

In this paper we addressed the Single Container Loading Problem (CLP) where several rectan-
gular boxes of different sizes are to be loaded into a single rectangular container. The approach
uses a maximal-space representation to manage the free spaces in the container. The approach hy-
bridizes a novel placement procedure with a multi-population genetic algorithm based on random
keys. The genetic algorithm is used to evolve the order in which the box types are loaded into
the container and to determine the corresponding types of layers used in the packing. A heuristic
procedure is used to determine the maximal space where each box is placed and a novel proce-
dure is developed for joining free spaces for the case where full support from below is required.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 15

TABLE 4. Performance comparison of BRKGA-CLP with other approaches when
support constraint (C2) is enforced.

Test case =~ T BB BG GA BG PGA E TRS B NMP MO GR FB TRS BRKGA

(packing CLP-S

variant)
BRD 01 89.9 87.81 88.10 88.0 89.39 89.07 94.51 94.34
BRD 02 89.6 89.40 89.56 88.5 90.26 90.43 94.73 94.88
BRD_03 89.2 90.48 90.77 89.5 91.08 90.86 94.74 95.05
BRD_04 88.9 90.63 91.03 89.3 90.90 90.42 94.41 94.75
BRD_05 88.3 90.73 91.23 89.0 91.05 89.57 94.13 94.58
BRD 06 87.4 90.72 91.28 89.2 90.70 89.71 93.85 94.39
BRD 07 86.3 90.65 91.04 88.0 90.44 88.05 93.20 93.74
BRD_08 - 89.73 90.26 - - 86.13 92.26 92.65
BRD_09 - 89.06 89.50 - - 85.08 91.48 91.90
BRD_10 - 88.40 88.73 - - 84.21 90.86 91.28
BRD 11 - 87.53 87.87 - - 83.98 90.11 90.39
BRD 12 - 86.94 87.18 - - 83.64 89.51 89.81
BRD 13 - 86.25 86.70 - - 83.54 88.98 89.27
BRD_14 - 85.55 85.81 - - 83.25 88.26 88.57
BRD_15 - 85.23 85.48 - - 83.21 87.57 87.96
Avg. 01-07 88.51 90.06 90.43 88.79 90.55 89.73 94.22 94.53
Avg. 08-15 - 87.34 87.69 - - 84.13 89.88 90.23
Avg. 01-15 - 88.61 88.97 - - 86.74 91.91 92.24

Note: The best values appear in bold.

TABLE 5. Performance comparison of BRKGA-CLP with other approaches when
support constraint (C2) is not enforced.

Test case L _GH B_PTS M _SATS P _GR P GR P _VNS FB_TRS HH HBS BRKGA

(200000) (5000) (cutting CLP-U

variant)

BRD_01 88.70 93.52 93.70 93.85 93.27 94.93 95.05 87.54 95.28
BRD 02 88.17 93.77 94.30 94.22 93.38 95.19 95.43 89.12 95.90
BRD 03 87.52 93.58 94.54 94.25 93.39 94.99 95.47 90.32 96.13
BRD 04 87.58 93.05 94.27 94.09 93.16 94.71 95.18 90.57 96.01
BRD_05 87.30 92.34 93.83 93.87 92.89 94.33 95.00 90.78 95.84
BRD_06 86.86 91.72 93.34 93.52 92.62 94.04 94.79 90.91 95.72
BRD 07 87.15 90.55 92.50 92.94 91.86 93.53 94.24 90.88 95.29
BRD 08 - - - - 91.02 92.78 93.70 90.85 94.76
BRD 09 - - - - 90.46 92.19 93.44 90.64 94.34
BRD_10 - - - - 89.87 91.92 93.09 90.43 93.86
BRD_11 - - - - 89.36 91.46 92.81 90.23 93.60
BRD_12 - - - - 89.03 91.20 92.73 89.97 93.22
BRD 13 - - - - 88.56 91.11 92.46 89.88 92.99
BRD 14 - - - - 88.46 90.64 92.40 89.67 92.68
BRD_15 - - - - 88.36 90.38 92.40 89.54 92.46
Avg. 01-07 87.61 92.70 93.78 93.82 92.94 94.53 95.02 90.02 95.74
Avg. 08-15 - - - - 89.39 91.46 92.88 90.15 93.49
Avg. 01-15 - - - - 91.05 92.89 93.88 90.09 94.54

Note: The best values appear in bold.

Two versions of the approach (with and without enforcement of full support from below) are is
extensively tested on the complete set of problems of Bischoff and Ratcliff (1995) and Davies and

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 16

TABLE 6. Computational times (s) for best three approaches.

Avg. Time (s) for test cases BRD 01 - BRD 15
Parreno et al. (2008a) Fanslau and Bortfeldt (2009) BRKGA-CLP
Supported - 320 232
Unsupported 238 320 147

Bischoff (1999) which range from weakly to strongly heterogeneous cargo and compared with 13
other solution techniques. The experimental results validate the excellent quality of the solutions
and the effectiveness of the proposed algorithm.

ACKNOWLEDGMENTS

This work has been supported by funds granted by Fundacao para a Ciéncia e Tecnologia (FCT)
project PTDC/GES /72244 /2006.

REFERENCES

Bean, J. C. (1994). Genetics and random keys for sequencing and optimization. ORSA Journal
on Computing, 6:154—160.

Beasley, D., Bull, D. R., and Martin, R. R. (1993). An overview of genetic algorithms: Part 1,
Fundamentals. University Computing, 15:58—69.

Bischoff, E. (2006). Three-dimensional packing of items with limited load bearing strength. Euro-
pean Journal of Operational Research, 168(3):952-966.

Bischoff, E. E. and Ratcliff, M. S. W. (1995). Issues in the Development of Approaches to Container
Loading. Omega, International Journal of Management Science, 23(3):377-390.

Bortfeldt, A. and Gehring, H. (1998). A Tabu Search Algorithm for Weakly Heterogeneous Con-
tainer Loading Problems. OR Spektrum, 20(4):237-250 (in German).

Bortfeldt, A. and Gehring, H. (2001). A hybrid genetic algorithm for the container loading problem.
European Journal of Operational Research, 131(1):143-161.

Bortfeldt, A. and Gehring, H. (2002). A Parallel Genetic Algorithm for Solving the Container
Loading Problem. International Transactions in Operational Research, 9(4):497-511.

Bortfeldt, A., Gehring, H., and Mack, D. (2003). A parallel tabu search algorithm for solving the
container loading problem. Parallel Computing, 29(5):641-662.

Buriol, L. S., Resende, M. G. C., Ribeiro, C. C., and Thorup, M. (2005). A hybrid genetic algorithm
for the weight setting problem in OSPF/IS-IS routing. Networks, 46:36—-56.

Buriol, L. S., Resende, M. G. C., and Thorup, M. (2007). Survivable IP network design with OSPF
routing. Networks, 49:51-64.

Darwin, C. R. (1859). On the origin of species through natural selection. John Murray, London.

Davies, A. P. and Bischoff, E. E. (1999). Weight distribution considerations in container loading.
European Journal of Operational Research, 114(3):509-527.

Eley, M. (2002). Solving Container Loading Problems by Block Arrangement. European Journal
of Operational Research, 141(2):393-4009.

Ericsson, M., Resende, M. G. C., and Pardalos, P. M. (2002). A genetic algorithm for the weight
setting problem in OSPF routing. J. of Combinatorial Optimization, 6:299-333.

Fanslau, T. and Bortfeldt, A. (2009). A Tree Search Algorithm for Solving the Container Loading
Problem. INFORMS Journal on Computing.

Gehring, H. and Bortfeldt, A. (1997). A Genetic Algorithm for Solving the Container Loading
Problem. International Transactions in Operational Research, pages 401-418.

Gehring, H. and Bortfeldt, A. (2002). A parallel genetic algorithm for solving the container loading
problem. International Transactions in Operational Research, 9(4):497-511.

George, A. J. and Robinson, D. F. (1980). A Heuristic for Packing Boxes into a Container.
Computers and Operations Research, 7(3):147-156.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning. Addison-
Wesley.

Gongalves, J. F. (2007). A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem. FEuropean Journal of Operational Research, 183:1212-1229.

MULTI-POPULATION BRKGA FOR CONTAINER LOADING 17

Gongalves, J. F. and Almeida, J. R. (2002). A hybrid genetic algorithm for assembly line balancing.
Journal of Heuristics, 8:629—642.

Gongalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2005). A hybrid genetic algorithm for
the job shop scheduling problem. FEuropean Journal of Operational Research, 167:77-95.

Gongalves, J. F. and Resende, M. G. C. (2004). An evolutionary algorithm for manufacturing cell
formation. Computers and Industrial Engineering, 47:247-273.

Gongalves, J. F. and Resende, M. G. C. (2009). Biased random key genetic algorithms for combi-
natorial optimization. Technical report, AT&T Labs Research Technical Report, Florham Park,
NJ 07733 USA.

Gongalves, J. F., Mendes, J. J. M., and Resende, M. G. C. (2009). A genetic algorithm for
the resource constrained multi-project scheduling problem. Furopean Journal of Operational
Research, 189:1171-1190.

Gongalves, J. F. and Resende, M. G. C. (2009). A parallel multi-population genetic algorithm for a
constrained two-dimensional orthogonal packing problem. Journal of Combinatorial Optimiza-
tion, In press.

He, K. and Huang, W. (2010). Solving the single-container loading problem by a fast heuristic
method. Optimization Methods and Software, 25(2):263-277.

Hifi, M. (2002). Approximate algorithms for the container loading problem. International Trans-
actions in Operations Research, 9:747-774.

Lai, K. K. and Chan, J. W. M. (1997). Developing a simulated annealing algorithm for the cutting
stock problem. Computers and Industrial Engineering, 32:115-127.

Lim, A., Rodrigues, B., and Wang, Y. (2003). A multi-faced buildup algorithm for three-
dimensional packing problems. Omega, 31(6):471-481.

Loh, T. H. and Nee, A. Y. C. (1992). A packing algorithm for hexahedral boxes. In Proceedings
of the Conference of Industrial Automation, pages 115-126.

Mack, D., Bortfeldt, A., and Gehring, H. (2004). A Parallel hybrid local search algorithm for the
container loading problem. International Transactions in Operational Research, 11:511-533.
Morabito, R. and Arenales, M. (1994). An AND/OR-graph approach to the container loading

problem. International Transactions in Operational Research, 1(1):59-73.

Moura, A. and Oliveira, J. F. (2005). A grasp approach to the container-loading problem. IEEE
Intelligent Systems, 20(4):50-57.

Parreno, F., Alvarez-Valdes, R., Oliveira, J. F., and Tamarit, J. M. (2008a). Neighborhood struc-
tures for the container loading problem: a VNS implementation. Journal of Heuristics.

Parreno, F., Alvarez-Valdes, R., Tamarit, J. M., and Oliveira, J. F. (2008b). A Maximal-Space
Algorithm for the Container Loading Problem. INFORMS JOURNAL ON COMPUTING,
20(3):412-422.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal of Operational
Research, 141:143-153.

Scheithauer, G. (1992). Algorithm for the container loading problem. In Operational Research
Proceedings, pages 445-452.

Spears, W. M. and Dejong, K. A. (1991). On the virtues of parameterized uniform crossover. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 230-236.

Takahara, S. (2005). Loading problem in multiple containers and pallets using strategic search
method. In Modeling Decisions for Artificial Intelligence, Proceedings Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin, Heidelberg,, volume 3558, pages 448-456.

Terno, J., Scheithauer, G., Sommerweiss, U., and Riehme, J. (2000). An efficient approach for the
multi-pallet loading problem. European Journal of Operational Research, 123(2):372-381.

Wischer, G., Haussner, H., and Schumann, H. (2007). An improved typology of cutting and
packing problems. Furopean Journal of Operational Research, 183:1109-1130.

LIAAD, FacuLpaDE DE EcoNomia DO PorTo, UNIVERSIDADE DO PorTO, Rua DR. ROBERTO FRIAS, S/N,
4200-464 Porro, PORTUGAL
E-mail address: jfgoncal@fep.up.pt

ALGORITHMS AND OPTIMIZATION RESEARCH DEPARTMENT, AT&T LaBs REsearcH,, 180 PArRk AVENUE,
Room C241, FLoruaM Park, NJ 07932 USA
FE-mail address: mgcr@research.att.com

