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Abstract. In Overlapping Correlation Clustering (OCC), a number
of objects are assigned to clusters. Two objects in the same cluster have

correlated characteristics. As opposed to traditional clustering where objects
are assigned to a single cluster, in OCC objects may be assigned to one or
more clusters. since an object can have characteristics that are correlated with
objects in more than one cluster. In this paper, we present Biased Random-
Key Genetic Algorithms for OCC. Computational experiments are presented.

1. Introduction

One of the most fundamental tasks in data analysis is to categorize objects in
different sets such that two objects in the same set have certain characteristics that
are correlated. This correlation is usually measured by a similarity value. The
standard way of clustering is the creation of a partition of these objects. However,
for some applications, it is natural that an object belong to two or more clusters
since it can share characteristics with objects in more than one cluster. In this case,
to partition the ground set does not make sense. Instead, it is more appropriate
to assign the objects to clusters with possible overlapping. Several scenarios with
these properties can be addressed: in social networks, a user belongs to several
communities; in mobility analysis, persons share trajectories with respect to time
and space; in biology, a protein belongs to several protein complexes having similar
expressions.

We can model scenarios like these using Overlapping Correlation Clus-
tering (OCC), introduced in Bonchi et al. (2012). This problem is closely related
to Correlation Clustering (CC) (Bansal et al., 2004) but allows overlapping of the
clusters. Another major difference is in the relation among the objects. In OCC,
this relation is expressed as a value in range [0, 1] while in CC it takes on one of
two discrete values in the set {0, 1}. This enables the utilization of different types
of similarity functions leading to a more sophisticated analysis.

This paper presents Biased Random-Key Genetic Algorithms associated with lo-
cal search procedures aiming to solve the overlapping correlation clustering problem
under an optimization point of view. Section 2 formalizes the problem. Section 3
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presents high level algorithms to deal with OCC. Section 4 depicts the experimental
results and Section 5 presents the concluding remarks.

2. Definitions

Let V = {v1, . . . , vn} be a set of n objects such that there exists a symmetric
function s : V × V → [0, 1] which gives the similarity s(u, v) between two objects u
and v in V . Let L = {1, . . . , k} be the set of k available labels (clusters). Since we
allow an object to be in several clusters, we define ℓ : V → 2L \ ∅ with ℓ(v) being
the set of labels assigned to object v. Note that we require that each object have
at least one label. If the set ℓ(v) = {c1, . . . , cs} of labels is given to object v, then
we assume that v is in clusters c1, . . . , cs. Consider also H : 2L × 2L → [0, 1], a
symmetric function which gives the similarity between two sets of labels. Higher
“similarity” of E and F should correspond to higher H(E,F ), and H(E,E) should
be 1 for all E. In Overlapping Correlation Clustering (OCC), the task is
to find a multi-labeling function ℓ that minimizes the cost function

(1)
1

2

∑

(u,v)∈V×V,u6=v

|H(ℓ(u), ℓ(v))− s(u, v)|.

Note that Objective Function (1) represents the absolute error between the labeling
and the similarity measure. In this sense, the objective is to find a labeling as close
as possible to the given similarities.

This formulation enables the application in different contexts. However, we first
need to measure the similarities that are context dependent. As the problem is
general enough, we can use any type of comparison measure as long as it scales
to the real interval [0, 1]. Another considerable task is to find the appropriate H
function. As suggested in Bonchi et al. (2012), we use two functions: The Jaccard
Similarity Coefficient and the Set-Intersection Indicator. The Jaccard similarity
coefficient, also known as the Jaccard index, is a well-known measure of similarity
between two sample sets, widely used in biology and machine learning. Let E
and F be two sets, not both empty. The Jaccard index of E and F is defined

as J (E,F ) = |E∩F |
|E∪F | . The set-intersection indicator function is a simple function

defined as I(E,F ) = 1 if E ∩ F 6= ∅ or I(E,F ) = 0, otherwise.
Some scenarios require that objects be assigned a restricted number of labels

among those available. A good example is in the analysis of mobility patterns,
where in spite of the fact that trajectories can have a large number of characteristics,
we restrict ourselves to only a few of the most meaningful ones. In these cases, we
introduce a parameter p such that |ℓ(v)| ≤ p for all v ∈ V .

It is easy to see that, if we consider H = I and p = 1, each object will belong
to a single cluster and the similarity between pairs of objects will be an indi-
cation as to whether they share the same cluster. In this case, if s follows the
set-intersection function, we face the original correlation clustering problem, which
is NP-hard (Bansal et al., 2004). In Bonchi et al. (2012), hardness proofs for the
other cases are presented.
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3. Biased Random Key Genetic Algorithm and Local Search

To solveOverlapping Correlation Clustering, we opt to use a Biased Random-Key
Genetic Algorithm (BRKGA) mainly because of its recent success in solving sev-
eral problems, such as routing (Andrade et al., 2013), winner determination prob-
lems (Andrade et al. (2012)), covering packing, (Gonçalves and Resende, 2011b),
packing (Gonçalves and Resende, 2011a), among others. The major features that
distinguish BRKGAs from other genetic algorithms is the standard chromosome
encoding and a well-defined and parameterized evolutionary process. The biased
component of a BRKGA contributes to increasing the likelihood that high-quality
solutions will pass down their genes to future generations. The decoding process
links the genetic algorithm with the problem itself, indirectly mapping the chro-
mosome space [0, 1]n onto the set of feasible solutions. See Gonçalves and Resende
(2011a) for more details regarding BRKGAs.

3.1. Representation. In most BRKGA implementations, a chromosome is en-
coded as a real vector x′ ∈ [0, 1]n, following the procedure given in Bean (1994).
However, other encodings are possible. In this paper, we use two forms of chromo-
somes to represent a labeling. Let n be the number of objects and k the number
of available clusters. The first representation, called compact, is an integer vector
xc ∈ N

n, and the second, called extended, is a binary vector xe ∈ {0, 1}nk.
For the compact chromosome xc, each xc

i is a positive integer that represents
the clusters to which object vi belongs. In this case, we consider each bit as a set
indicator in which the least-significant bit corresponds to the first cluster, and so
on. Although this representation limits the number of possible clusters (k < 64 on
a 64-bit machine)1, it enables very fast set operations since they are done bitwise,
and for most applications, this limit is sufficient. In the extended chromosome xe,
the subvector x̃e = x̃e

(i−1)k+1, . . . , x̃
e

ik is an indicator vector where, for each object

vi, x̃
e

j is 1 if vi is in cluster j, or 0 otherwise. This representation can be used with
any n > 1 and k > 1.

Although both compact and extended representations are quite similar, they
affect the evolutionary mechanism of BRKGA differently. In the compact repre-
sentation, each allele is the full labeling of an object and therefore, in the mating
process, the offspring inherits these full labelings. Learning occurs through the
combination of entire sets of labels of each object. In the extended representation,
each allele represents a specific label of an object. In the mating process, the off-
spring inherits each label individually, enabling learning to occur at the level of
each label for each object.

3.2. Decoding a solution. To decode a solution from a chromosome using the
representations of Section 3.1, we use a two-phase decoder in which the first phase
extracts a solution and the second phase is committed to local search procedures.
We assume that the input vector to the decoder is in compact representation.
Algorithm 1 describes the first phase.

First of all, we must guarantee that the number of clusters of each object is
limited to p. If the number |ℓ(v)| of clusters containing object v is greater than
p, we repair the chromosome by removing |ℓ(v)| − p clusters from v uniformly at

1If a specialized bitset structure like C++’s bitset<> template is used, this limitation can be
overcome although at the expense of increased complexity.
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random. Lines 1–2 of Algorithm 1 summarize this procedure, in which by “s ∈ x”
we mean that “s = xh for some h,” and by “|s|,” the number of bits equal to one
in the binary representation of s.

After the repair, we have a feasible solution whose value is computed in lines 4–11.
We compare each pair of objects (u, v), calculating the Jaccard or set-intersection
similarity and adding the error to the solution value, according to Equation (1).
Note that in line 5 we abuse notation: l(u)← xu gets the labeling of object u. We
also split the amount of error caused by u and v into two parts: the positive error
e+, indicating that labels assigned to u and v are too similar, and the negative error
e−, indicating otherwise. These errors are used in the local search phase to improve
the solution. Note that vectors e+, e− ∈ R

+. After local search, the solution may
be improved and, in such case, we consolidate the change of the solution in the
chromosome (line 13).

Algorithm 1: Decoder – Phase 1

Input: a vector x ∈ N
n, integers k, p ∈ N, and set V .

Output: modified x and the fitness C of x.

1 foreach s ∈ x such that |s| > p do

2 Remove |s| − p elements from s uniformly at random;

3 C ← 0;

4 foreach pair (u, v) ∈ V × V do

5 l(u)← xu; l(v)← xv;

6 error ← H(ℓ(u), ℓ(v))− s(u, v);

7 C ← C + absval(error);

8 if error > 0 then

9 e+u ← e+u + error ; e+v ← e+v + error ;

10 else

11 e−u ← e−u − error ; e−v ← e−v − error ;

12 LocalSearch();

13 Rewrite the improved solution on the chromosome x;

14 return modified x and solution value C;

The running time complexity of the first phase is O(kn2) when k is unrestricted.
Note that the repair phase runs in O(kn) time. The solution value computation
has a quadratic factor due to the comparison of each pair of objects. The time
complexity of function H depends directly on k and the type of function. Assuming
k is unrestricted, when H = J , we need to compute the union and intersection of
the two sets of labels, which takes O(k) time each. In the case of H = I, we only
need to calculate the intersection, which takes O(k) time. However as observed
in the previous section, for most practical applications, k < 64, which enables the
representation using a 64-bit integer. The intersection can be implemented using a
single machine AND operation, the union using a single machine OR operation, and
the bit counting running in O(1) using a lookup table2. Using this implementation,
the time complexity of phase 1 is O(n2), if k < 64.

2Another approach is to use the special hardware instruction POPCNT found in modern proces-
sors. For details, see Haque et al. (2011).
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In the second phase, a local search procedure is applied to the solution found in
phase 1. We developed a local search that explores neighborhood solutions based
on error reduction. This procedure is detailed on Section 3.3. We also use the
local search methods proposed in Bonchi et al. (2012). They developed two local
searches, one for OCC using the Jaccard index as the H function and another using
the set-intersection function. Section 3.4 details these algorithms.

3.3. Error Reduction Local Search. Algorithm 2 depicts the local search pro-
cedure based on error reduction, which we call OLS. In line 4, we sort the objects v
in nonincreasing order of e+v +e−v , such that we start with the object whose labeling
leads to the most error in the entire clustering process. For the first given τ ≤ n
objects in this order, OLS attempts to reduce or augment the total similarity driven
by the values of e+ and e−. This is done by removing or adding labels that impact
total similarity. For a given object v, if e+v ≥ e−v , we try to find a most common
label between v and all other objects, and remove it from v (line 16). Otherwise,
if e+v < e−v , we try to add to v a most common label that was not assigned to it
(line 18). If none of these add or remove operations can be done, we remove a
label from v uniformly at random and replace it with a label not assigned to v, also
chosen uniformly at random (line 10–14). In this case, in each exchange we only
select a new label not previously chosen in the previous iterations. In the worst
case, we try all k labels. If an improvement is reached, the solution value and the
errors of each object are updated (lines 19–25) and a new iteration begins. After τ
iterations without improvement, the local search stops.

The time complexity of OLS is tricky to compute since it depends on the starting
solution. The innermost loop (starting in line 10) iterates at most k times since
each label is added or removed only once. Note that adding (respectively, removing)
a label that was removed (respectively, added) in earlier iterations (of the loop
starting on line 10) does not lead to an improvement in solution quality. The
exchange on line 14 can be done in O(1) time. The operations in lines 16 and 18
can be done in O(log k) time using a red-black tree (Bayer, 1972) data structure for
the histogram of labels that we use to keep track of the most used labels. However,
note that for small values of k, it is worthwhile to use a naive linear approach
running in time O(k). The update operations in lines 19–25 take O(n) time since
we need to recalculate the functionH for all pairs (v, w) with fixed v and w 6= u ∈ V .
Therefore, the loop starting on line 6 has time complexity O(τ(k log k + kn)). If
k < 64 and τ ≤ n, then the time complexity is O(n2). As observed earlier, it
is hard to estimate the complexity of the loop starting on line 3, but its main
components are O(n logn) from line 4 and the complexity of the loop starting on
line 6. Therefore, each iteration has time complexity O(n2).

3.4. Bonchi et al. Local Search. Bonchi et al. (2012) propose two local search
algorithms to deal withOCC using the Jaccard index and set-intersection functions.
Their framework is based on the relabeling of objects, one at time, by solving a
system of linear equations in the case of Jaccard, and by applying a simple greedy
algorithm in the case of set intersection. The main idea is to find a good labeling
of a single object given a fixed labeling of the other objects.
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Algorithm 2: Error Reduction Local Search – OLS

Input: labeling function ℓ; vectors e+, e− ∈ R
+; integers p, τ ∈ N; set V.

1 Let C be the cost of ℓ computed with Obj. Func. (1);

2 impr ← True;

3 while impr = True do

4 Let V ′ be the set of objects v ∈ V , sorted in nonincreasing order of

e+v + e−v ;

5 impr ← False; i← 0;

6 while i ≤ τ do

7 Take the next v ∈ V ′ in the given order;

8 ℓ̂(v)← ℓ(v);

9 local impr ← True;

10 while local impr = True do

11 Ĉ ← C;
12 local impr ← False;

13 if e+v ≥ e−v and |ℓ(v)| = 1 then

14 Exchange the unique label c ∈ ℓ(v) for a c′ /∈ ℓ(v) chosen

uniformly at random;

15 if e+v ≥ e−v and |ℓ(v)| > 1 then

16 Remove from ℓ(v) the c ∈ ℓ(v) which corresponds to the largest

cluster containing v;

17 if e+v < e−v and |ℓ(v)| < p then

18 Add to ℓ(v) the c which corresponds to the largest cluster not
containing v;

19 foreach u ∈ V \ {v} do
20 δ ← H(ℓ(u), ℓ̂(v))−H(ℓ(u), ℓ(v));
21 if δ > 0 then

22 e+(v)←e+(v)+δ; e+(u)←e+(u)+δ;

23 else

24 e−(v)←e−(v)+δ; e−(u)←e−(u)+δ;

25 C ← C + δ;

26 if C ≤ Ĉ then

27 impr ← True; local impr ← True;

28 else

29 C ← Ĉ;
30 if local impr = True then go to line 3; else ℓ(v)← ℓ̂(v); i++;

31 return labeling ℓ and solution value C;

Let v be an object and ℓ be a labeling for all objects. The error incurred by v is
defined as

(2) Cv(ℓ(v)|ℓ) =
∑

u∈V \{v}

|H(ℓ(v), ℓ(u))− s(v, u)|,
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and, consequently, the objective function (1) can be rewritten as

(3)
1

2

∑

v∈V

Cv(ℓ(v)|ℓ).

Using these observations, Bonchi et al. proposed Algorithm 3, which is a simple
local search algorithm.

In the case of the Jaccard index, the following approach is used. Let v be an
object to be relabeled and ℓ be a fixed labeling for all u ∈ V \ {v}. Let xv be an
indicator vector such that xv

j = 1 if label j is assigned to object v, and xv
j = 0,

otherwise. Assume that the number of labels assigned to v is t, that is,

(4)
∑

j∈L

xv
j = t.

Ideally we would like to have J (ℓ(v), ℓ(u)) = s(v, u) for all u ∈ V \ {v}. This can
be written as

J (ℓ(v), ℓ(u)) =
∑

j∈ℓ(u) x
v
j

|ℓ(u)|+ t−∑

j∈ℓ(u) x
v
j

= s(v, u),

which is equivalent to

(5) (1 + s(v, u))
∑

j∈ℓ(u)

xv
j − s(v, u)t = s(v, u)|ℓ(u)|

for all u ∈ V \ {v}. Although Equations (4) and (5) are linear with respect to the
unknowns xv

j and t, these variables are integral and therefore the system seemingly
cannot be solved in polynomial time. In Bonchi et al. (2012), the authors applied a
nonnegative least-squares optimization method which led to possibly fractional xv

and t values. They then sort xv in nonincreasing order, breaking ties arbitrarily.
Let πv be the permutation of labels induced by this order and consider the p sets
{πv

1 , . . . , π
v
i } for i = 1, . . . , p. The new set of labels for v is the set {πv

1 , ..., π
v
i } that

minimizes Equation (2).
For the set-intersection indicator, Bonchi et al. present a greedy approach which

starts from an empty labeling for a given object and fixes the labeling for the other
objects as is done in the approach for the Jaccard index. In each iteration, the label
that causes the least error while improving the solution value is chosen. If such a
label cannot be found, the algorithm stops the search for this object and goes on
to the next. In fact, this greedy search solves Cv(ℓ(v)|ℓ) in line 6 of Algorithm 3.

As in Algorithm 2, the time complexity of Algorithm 3 is tricky to determine
because of its dependency on the starting solution. For the Jaccard function, the
dominant factor is the nonnegative least squares that can be computed in O(m3)
time, where m is the major dimension of the matrix (Householder, 1958). Note
that the matrix resulting from Equation (5) has dimension n× (k+1). As observed
earlier, if k < n, then the complexity of an iteration of the main loop (starting on
line 3) is O(n4). For the set-intersection function, each label search takes O(k2)
time, which is done at most p times. As this operation is performed for each object,
each iteration of the main loop takes O(nk3) time.
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Algorithm 3: Bonchi et al. Local Search – BSL

Input: labeling function ℓ; set V.

1 Let C be the cost of ℓ computed with Obj. Func. (1);

2 improvement ← True;

3 while improvement = True do

4 improvement ← False;

5 foreach v ∈ V do

6 Find the labeling L that minimizes Cv(L|ℓ);
7 Let Ĉ be the cost of (L|ℓ);
8 if Ĉ < C then

9 ℓ(v)← L; Ĉ ← C;
10 improvement ← True;

11 return labeling ℓ and solution value;

4. Experimental results

4.1. Instances. We used several datasets, grouped in two major categories, to
evaluate our algorithms. The first category has instances with known multi-label
assignments. For this case, we computed the similarities between the objects using
the Jaccard index. These datasets were used to check the quality of the labelings
produced by the algorithms when compared to the actual labelings. We used two
datasets in this category. The first, named Emotions, corresponds to psychological
trials of people listening to music (Trohidis et al., 2008). There are 593 objects
(trials) and six available labels. The second dataset, named Yeast, is formed by
micro-array expression data and phylogenetic profiles with 2417 genes in a learning
set for which 14 functional classes (labels) are assigned (Elisseeff and Weston, 2001).

The second category is instances with unknown multi-labelings. The first dataset
in this category corresponds to animal trajectories from the Starkey Project (Row-
land et al., 1998)3. We used an instance with 88 trajectories of elk, mule deer, and
cattle, and classify them using five labels. To calculate the similarity between each
trajectory, we used the approach presented in Chen et al. (2005), which defines the
Edit Distance in Real Sequences (EDR).4 The similarity between two trajectories
u and v is given by s(u, v) = 1− EDR(u, v).

The second group of instances in this category is from the field of biology. They
consist of homologous groups of proteins from the SCOP taxonomy (Murzin et al.,
2009)5. This taxonomy is a hand-made tree classification of functional proteins.
We tested four databases with 669, 587, 567, and 654 proteins (objects) for which
we assigned at most with five labels. The similarities were calculated as follows:
For a node u in the protein tree, let d(u) be the depth of u in the tree. If u is
the root, d(u) = 0. For any pair of nodes u and v, let lca(u, v) denote the lowest
common ancestor of u and v. Let V be the set of leaves of the classification tree.
The similarity between different objects u ∈ V and v ∈ V is defined as

s(u, v) =
d(lca(u, v))

max(d(u), d(v)) − 1
.

3Available at http://www.fs.fed.us/pnw/starkey.
4Please, refer to the supplementary material for a comprehensive description.
5Available at http://scop.mrc-lmb.cam.ac.uk/scop.
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The third group in this category consists of 1,000 newsgroup messages spread
over 20 newsgroups (Rennie et al., 2008). The similarities are calculated using a
base dictionary of the 500 most common words excluding stop words and common
names but keeping political and religious references. For each message, we construct
a characteristic vector to reflect the term frequency – inverse document frequency
(TF-IDF) of each word in the dictionary (Jones, 1972). Using these vectors, we

applied a radial basis function to obtain the similarities s(u, v) = e||u−v||2 where u

and v are the characteristic vectors of messages u and v, respectively.

4.2. Evaluated algorithms. Using the two representations of Section 3.1 and
decoders from Sections 3.3 and 3.4, we consider the following variations of BRKGAs:

• OLS-Comp: BRKGA using the compact representation and local search from
Section 3.3;
• OLS-Ext: Same as above but using the extended representation;
• BLS-Comp: BRKGA using the compact representation and Bochi et al. local
search from Section 3.4;
• BLS-Ext: Same as above but using the extended representation;

We also tested the algorithms from Bonchi et al. (2012). Originally, each run of
those algorithms starts with a simple random vector and ends when Algorithm 3
cannot find improvements. To fortify these algorithms, we built multi-start ap-
proaches around them, allowing each run to take several iterations, each starting
with a different random vector. We always keep the best solution and the algo-
rithms stop when a stopping criterion is reached. These modifications have a great
impact on the original algorithms in terms of solution quality. As expected, the
multi-start approaches outperformed the original algorithms. Consequently, we use
them in this paper but still refer to them as Bonchi.

4.3. Computational environment and parameters. The experiments were
conducted on identical machines with two 6-core Intel Xeon 2.4 GHz CPUs (two
threads per core) and 32 GBytes of RAM running GNU/Linux. Running times
reported are UNIX real wall-clock times in seconds, excluding the effort to read
the instance. The algorithms are implemented in C++ and we use the GNU g++

compiler version 4.8. Random numbers were generated by an implementation of
the Mersenne Twister.For the nonnegative least-squares method, we use the House-
holder rank-revealing QR decomposition (Householder, 1958) provided by the Eigen
library (Guennebaud et al., 2010).

For the BRKGAs, the population size was set to p = 500, the elite size to
pe = ⌈0.30p⌉, and the number of mutants to pm = ⌊0.15p⌋. The probability of
inheriting each allele from the elite parent was ρe = 0.70. We used the island
model (Tanese, 1987) with three independent and concurrent populations where
every 100 generations each population exports its two best solutions to the other
populations. After 300 generations without improvement, all populations are reset
to vectors of random keys. We set τ = 2

√
n after performing some short tuning

trials and analyze the quality of solutions as a function of optimization time. We
use 12 simultaneous cores for decoding.

Thirty independent runs were performed for all five algorithms. Each algorithm
ran for a given maximum amount of time (instance dependent) or at for most 1,000
generations (or iterations) without improvement of the best solution.
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4.4. Defining maximum running times for BRKGA. Since we have several
types of problems, a significant variation in BRKGA running times is expected on
each problem. We carried out some preliminary experiments and observed that the
BRKGAs obtained a large number of small improvements in solution quality. In
fact, in the first hour of optimization, the BRKGAs improved the solution about
every two or three generations. In light of this, we performed one long run for an
instance of each scenario. For these long runs we did not set a time limit but rather
stopped after 1,000 generations without improvement of the best solution. As we
only did one long run per scenario, we cannot draw any statistically significant
conclusion about comparisons of the BRKGAs with the different H functions. We
limit ourselves to observing the general behavior of these BRKGAs.

Figure 1 depicts the convergence of the cost value as a function of time and
iterations for the Emotions dataset. The Y -axis shows the cost value. The X-
axis represents the time in seconds in Figure 1a and the number of iterations in
Figure 1b. The solid red lines show the convergence for the BRKGA with the set-
intersection function for values of p from one to six. The dashed blue line shows
the same but for the Jaccard index function. We note that the BRKGA takes a
long time with small improvements in the best solution and, after 30,000 seconds
(about 8.3 hours), the improvements are even rarer. For the BRKGA with the
Jaccard index function, values very close to zero, a lower bound on the optimum,
are reached. Using the set-intersection indicator, the results are worse but the
convergence behavior is similar. Looking at the number of iterations, one can note
that the BRKGA with set-intersection function converges faster than it does with
respect to time. We can conclude, therefore, that the local search spends more time
using this function.

For other instances, the curves have the same behavior and they can be found
in the supplementary material. For the Yeast dataset, running times are much
larger than those on Emotions. In this case, the BRKGA with the set-intersection
function has slower convergence than it does with the Jaccard index but is able to
obtain improvements even after running for 1,000,000 seconds (about 11 days). For
the Starkey project dataset, the running times are very small for both H functions,
mainly due to the size of the problem (88 objects). One notes that the BRKGA
with set intersection is much worse than with the Jaccard index (except for the
case of p = 2, in which they obtained similar results). For the SCOP dataset 1, we
observe different behavior: although the convergence is similar, running times are
smaller than for the previous scenarios and, more importantly, the BRKGA with
set intersection shows poor results when compared to Emotions and Yeast. Later
in this paper, we discuss these results in more detail. For newsgroup messages, we
omitted the curves for the BRKGA with set intersection since it obtained results
20 times worse than with the Jaccard index but with convergence about 400 times
faster. This may indicate that set intersection is not appropriate for clustering in
this type of instance.

From these experiments, we can estimate the running times for each scenario
and set time bounds for the experiments to follow. For Emotions and Yeast,
we limit the experiments to at most eight hours (28,800 seconds) trying to balance
running time and solution quality. This limit is less favorable to the BRKGA with
set intersection which still finds solution improvements after 15 days (1,250,000
seconds). For Starkey and SCOP, we set the maximum running time to one hour
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Figure 1. Evolution of the cost for the Emotions dataset.

(3,600 seconds). For newsgroup messages, the maximum running time is set to
seven days (604,800 seconds).

4.5. Evaluating the quality of the algorithms on ground-truth instances.

To evaluate the quality of the algorithms, we first applied them on instances in
which we know the actual labeling a priori. We compare the costs of the final
solutions produced by the algorithms and also make use of two metrics, precision
and recall. Define P (x) = {{u, v}, u 6= v : x(u) ∩ x(v) 6= ∅}, the set of unordered
pairs of objects with at least one common label in x. Let g be the labeling of the
ground truth. The precision of a labeling ℓ is

(6) Precisiong(ℓ) =
|P (ℓ) ∩ P (g)|
|P (ℓ)| .

The recall of a labeling ℓ is

(7) Recallg(ℓ) =
|P (ℓ) ∩ P (g)|
|P (g)| .

Note that for ℓ = g, Precisiong(ℓ) = Recallg(ℓ) = 1.
Figure 2 shows the performance of the algorithms for the Emotions dataset.

The X-axis on all plots corresponds to the maximum number of allowed labels per
object. For Figures 2a and 2c, the Y -axis corresponds to the scaled solution costs
(wth lower being better). In the plots, the red line with circles shows results for
Bonchi, the black lines with triangles for the BRKGAs with the OLS decoder, while
the blue lines with squares show results for the BRKGAs with the BLS decoder.
Solid symbols correspond to the compact chromosome representation and hollow
symbols correspond to the extended representation. The description of Figures 2b
and 2d is similar, but there, solid lines show precision and dashed lines, recall (with
higher being better). Figures 2a and 2b correspond to the Jaccard index function
and Figures 2c and 2d, to the set-intersection function.

The algorithms using the Jaccard index with p = 1 have similar performance.
One notes that this case is very close to traditional clustering and results in a par-
tition of the objects. But as more labels per object are allowed, the performance of
Bonchi degrades while all but one of the BRKGAs perform well. The exception is
OLS-Comp, which followed the performance of Bonchi and displayed a large varia-
tion in its results. The same decoder using the extended representation (OLS-Ext)
obtained the best results on average. Analyzing Figure 2b, one can see that the
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Figure 2. Comparison of costs, precision, and recall among the
algorithms for the Emotions dataset.

precision and the recall of the BRKGAs are always above those of Bonchi. Even
OLS-Comp, which obtained costs similar to those of Bonchi, showed better precision
and recall. The algorithms that use the Bonchi et al. approach for set intersection
showed worse performance than those using the OLS decoder. It is worthwhile to
mention that the solutions obtained using the Jaccard index function have different
cost values from those obtained using the set-intersection function, as the objective
functions are different.

Figure 3 depicts results for the Yeast dataset. Its description is identical to that
of Figure 2. Here, we observe a very different behavior for both the Jaccard index
and set-intersection functions. For the Jaccard index, note that the algorithms using
the OLS decoder perform poorly (Figure 3a) when the number of labels allowed
for each object is small, while algorithms using BLS performed quite well. As p
increases, OLS outperforms BLS. In particular, when p is between 8 and 11, the
algorithms switch their behavior. However, it is interesting to notice that both
precision and recall are relatively stable. For the set-intersection function, the plots
resemble the behavior of those for the Jaccard index function on the Emotions
dataset. Finally, note that the BRKGAs with BLS found better solutions on the
Yeast dataset than they did on Emotions. All BRKGAs obtained better precision
on Yeast than they did on Emotions.

4.6. Evaluating the algorithms for instances with unknown multi-labeling.

To evaluate the algorithms on instances with no multi-labeling given a priori, we
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Figure 3. Comparison of costs, precision, and recall among the
algorithms for the Yeast dataset.

first consider the Starkey project dataset. The algorithms were run for labelings
of size p = 1, 2, 3, from a total of k = 5 available labels. Figure 4 shows the costs
of the labelings obtained by the algorithms. For each scenario (consisting of an
H function and a value of p), we scaled the costs into the interval [0, 1] using the
minimum and maximum costs of all algorithms. The box plots show the smallest
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Figure 4. Boxplot of median and quartiles for each algorithm in
Starkey dataset.
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Figure 5. Boxplot of median and quartiles for each algorithm in
SCOP dataset.

cost (lowest whiskers), the first quartile (bottom box), the median cost (filled cir-
cles), the third quartile (upper box), the largest cost (highest whiskers), and the
outliers (gray hollow circles). We observe that the sizes of the boxes for all config-
urations are very small, indicating that similar costs were found for all runs on a
given algorithm.

For the Jaccard index, BLS-Comp and BLS-Ext were able to produce the best
results, although slightly different. For set intersection, OLS-Comp found better
solutions, although in some cases OLS-Ext also found good solutions as its out-
liers suggest. To confirm these results, we applied the Wilcoxon-Mann-Whitney U
test (Conover, 1980). This test assumes as the null hypothesis that the location
statistics are equal in both distributions. Assuming a confidence interval of 95%,
almost all algorithms presented significant difference in their results when com-
pared to each other for the Jaccard index. The exception is the pair BLS-Comp and
BLS-Ext for p = 3, whose p-value is 0.67 and we cannot thus assure a significant
difference. For the set-intersection function, OLS-Comp was significantly better than
the other algorithms. Bonchi, BLS-Comp, and BLS-Ext found solutions having the
same value on all runs. The complete results are presented in the supplementary
material.

Figure 5 shows results on the four SCOP datasets. The structure is similar to
that of Figure 4, except that the scaling was done for each dataset set separately
and then combined in the plots for each configuration. For the Jaccard index,
BLS-Comp and BLS-Ext found good solutions for p = 1, whereas OLS-Comp, OLS-Ext,
and BLS-Ext had the best results for p = 2. In fact, the U test did not present
significant difference among these three algorithms and value of p (for a confidence
interval of 95%). For p = 3, OLS-Ext presented significantly better results than the
other algorithms. For set intersection, the algorithms performed similarly and for
most cases, no significant difference was found. Notice that the results are closer to
1.0 (worst solutions) which indicates that the algorithms converged to local minima
frequently. But since the bottom whiskers are at 0.0, the algorithms did find a good
solution. Again, refer to the supplementary material for the complete tests.

Figure 6 shows results for the instance from the newsgroup messages dataset.
For the Jaccard index function, the behaviors of the algorithms are similar to those
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Figure 6. Boxplot of median and quartiles for each algorithm in
newsgroup messages.

on the other instances. For p = 1, the algorithms using the Bonchi approach
are able to find better results, but for p ≥ 2, OLS-Comp found significantly better
solutions. For set intersection, the algorithms using the Bonchi approach found the
best results with no significant difference among them.

Table 1 lists the algorithms that obtained the best results for each dataset and
configuration. For the Jaccard index, both OLS-Ext and BLS-Ext presented the best
results for most cases, which indicates that algorithms using the extended represen-
tation are able to find better solutions than those using the compact representation.
The OLS approach obtained more best solutions than did the BSL approach. For set
intersection, the performances of the algorithms were similar, reaching the best so-
lution at least once in most cases. In the Starkey dataset, the algorithms using OLS

performed better than those which did not. For the newsgroup message dataset,
Bonchi found the best solutions.

Table 1. Algorithms that computed the best results for each in-
stance, H function, and p.

Inst. p Jaccard Intersec Inst. p Jaccard Intersec

1 BLS-Ext
OLS-Comp/
OLS-Ext

1 BLS-Ext All

2 BLS-Ext OLS-Comp 2 OLS-Comp
Except
OLS-Ext

S
ta

rk
e
y

3 BLS-Ext
OLS-Comp/
OLS-Ext

S
C
O
P
3

3 OLS-Ext All

1 BLS-Ext All 1 BLS-Ext All

2 OLS-Ext All 2 OLS-Ext All

S
C
O
P
1

3 OLS-Ext All S
C
O
P
4

3 OLS-Ext All

1 BLS-Ext All 1 Bonchi Bonchi

2 OLS-Ext All 2 OLS-Comp Bonchi

S
C
O
P
2

3 OLS-Ext All N
e
w
s.

3 OLS-Comp Bonchi

5. Concluding remarks

In general, the BRKGAs are effective at finding good solutions and are able to
beat the Bonchi et al. approach on most cases when using the Jaccard index in
the objective function. For set intersection, the algorithms based on Bonchi et al.
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approach presented better results than other algorithms in most scenarios. Also,
the extended representation allows the BRKGAs to obtain better results when
compared to the compact representation on most cases. On the negative side,
running times to convergence for the BRKGAs can be high. We believe that this is
not a major issue, since most applications of OCC are prospective in nature and
therefore do not require real-time response.
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Supplementary Material

Starkey trajectory similarity

To calculate the similarity of trajectories for Starkey, we use the EDR distance
[5], which is defined as following: let P = [(x1, y1, t1), . . . , (xn, yn, tn)] be a tra-
jectory such that each triple (x, y, t) is a position in space and time. Denote by
r(P ) = [(x2, y2, t2), . . . , (xn, yn, tn)] the remainder of the trajectory, i.e., the orig-
inal trajectory without the first point. Let P and Q be two different trajectories.
For p ∈ P , q ∈ Q, we say that m(p, q) = 1 if |px − qx| < εx and |py − qy| < εy
and |pt − qt| < εt, i.e., the distance in space and time is not larger than a constant
factor. We take m(p, q) = 0 otherwise. We say the Edit Distance in Real Sequences
is

EDR(P,Q) =































|P | if |Q| = 0,

|Q| if |P | = 0,

min(EDR(r(P ), r(Q)) +m(p1, q1),

EDR(r(P ), Q) + 1,

EDR(P, r(Q)) + 1), otherwise.

The similarity between two trajectories u and v is given by

(8) s(u, v) = 1− EDR(u, v).
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Additional plots of Section 4.4
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Figure 7. Evolution of the cost for the Yeast dataset.
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Figure 8. Evolution of the cost for the Starkey project dataset.
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Figure 9. Evolution of the cost for the protein alignment dataset 1.
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Figure 10. Evolution of the cost for the newsgroup messages.
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Additional tables of Section 4.6

Table 2. Difference in median location for cost distributions for
Starkey dataset using Wilcoxon-Mann-Whitney U test with 95% of
confidence. The bottom-left block shows p-values that are greater
than 0.05. A negative value means that the median of the “line”
algorithm is smaller/better than the “column” algorithm. A dash
(—) indicates that the results for that pair of algorithms are iden-
tical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.61 -0.27 -0.27 0.60 0.61

OLS-Comp 0.89 0.00 0.87 0.88

OLS-Ext 0.16 0.89 0.87 0.88

BLS-Comp 0.01 0.01

1

BLS-Ext 0.003

Bonchi 0.98 0.80 0.73 0.96 0.97

OLS-Comp 0.17 -0.07 0.15 0.16

OLS-Ext 0.24 0.22 0.23

BLS-Comp 0.01 0.008

2

BLS-Ext 0.009

Bonchi 0.98 0.91 0.94 0.96 0.96

OLS-Comp 0.06 0.02 0.04 0.04

OLS-Ext 0.03 0.01 0.01

BLS-Comp 0.01 -0.001

J
a
cc
a
rd

3

BLS-Ext 0.67 0.01

Bonchi 0.85 0.85 0.85 — —

OLS-Comp 0.00 0.00 -0.85 -0.85

OLS-Ext 0.00 -0.85 -0.85

BLS-Comp 0.85 —

1

BLS-Ext 0.85

Bonchi 0.40 0.40 -0.04 — —

OLS-Comp 0.003 -0.44 -0.40 -0.40

OLS-Ext 0.44 0.04 0.04

BLS-Comp 0.40 —

2

BLS-Ext 0.04

Bonchi 0.62 0.59 -0.07 — —

OLS-Comp 0.03 -0.65 -0.59 -0.59

OLS-Ext 0.06 0.67 0.07 0.07

BLS-Comp 0.06 0.62 —

S
et
-i
n
te
rs
ec
ti
o
n

3

BLS-Ext 0.62
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Table 3. Difference in median location for cost distributions for
SCOP datasets using Wilcoxon-Mann-Whitney U test with 95% of
confidence. The bottom-left block shows p-values that are greater
than 0.05. A negative value means that the median of the “line”
algorithm is smaller/better than the “column” algorithm. A dash
(—) indicates that the results for that pair of algorithms are iden-
tical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.96 -0.03 -0.03 0.70 0.95

OLS-Comp 1.00 — 0.75 0.99

OLS-Ext 1.00 0.75 0.99

BLS-Comp 0.24 0.23

1

BLS-Ext 0.00

Bonchi 0.99 0.97 0.98 0.19 0.92

OLS-Comp 0.01 0.001 -0.77 -0.02

OLS-Ext 0.62 0.00 -0.74 -0.00

BLS-Comp 0.79 0.73

2

BLS-Ext 0.28 0.32 0.04

Bonchi 0.98 0.85 0.97 0.00002 0.40

OLS-Comp 0.07 0.07 -0.85 -0.43

OLS-Ext 0.0003 -0.95 -0.46

BLS-Comp 0.92 0.95 0.42

J
a
cc
a
rd

3

BLS-Ext 0.48

Bonchi 1.00 -0.00001 -0.00002 -0.00002 -0.00002

OLS-Comp 0.52 1.00 0.00003 0.00003 0.00003

OLS-Ext 0.65 1.00 — —

BLS-Comp 0.65 1.00 —

1

BLS-Ext 0.65 1.00

Bonchi 1.00 -0.00002 -0.00002 -0.00002 -0.00002

OLS-Comp 1.00 -0.00003 — —

OLS-Ext 0.34 0.48 1.00 0.0000004 0.0000004

BLS-Comp 0.48 1.00 —

2

BLS-Ext 0.48 1.00

Bonchi 1.00 -0.00002 -0.00001 -0.00002 -0.00002

OLS-Comp 1.00 -0.00003 — —

OLS-Ext 0.52 0.65 1.00 0.00003 0.00003

BLS-Comp 0.65 1.00 —

S
et
-i
n
te
rs
ec
ti
o
n

3

BLS-Ext 0.65 1.00



EVOLUTIONARY ALGORITHMS FOR OVERLAPPING CORRELATION CLUSTERING 23

Table 4. Difference in median location for cost distributions for
newsgroup messages using Wilcoxon-Mann-Whitney U test with
95% of confidence. The bottom-left block shows p-values that are
greater than 0.05. A negative value means that the median of the
“line” algorithm is smaller/better than the “column” algorithm.
A dash (—) indicates that the results for that pair of algorithms
are identical.

H p Algorithm Bonchi OLS-Comp OLS-Ext BLS-Comp BLS-Ext

Bonchi 0.001 -0.52 -0.92 -0.46 -0.51

OLS-Comp 0.52 -0.40 0.05 0.006

OLS-Ext 0.92 0.45 0.44

BLS-Comp 0.46 -0.04

1

BLS-Ext 0.70 0.51

Bonchi 0.99 0.99 0.90 0.002 0.75

OLS-Comp 0.00 -0.09 -0.99 -0.23

OLS-Ext 0.09 -0.89 -0.14

BLS-Comp 0.70 0.99 0.75

2

BLS-Ext 0.23

Bonchi 0.98 0.98 0.94 -0.01 0.77

OLS-Comp 0.0002 -0.04 -0.99 -0.21

OLS-Ext 0.04 -0.95 -0.16

BLS-Comp 0.10 0.99 0.78

J
a
cc
a
rd

3

BLS-Ext 0.21

Bonchi 0.000007 -0.99 -0.99 -0.001 -0.001

OLS-Comp 0.99 -0.005 0.992 0.99

OLS-Ext 0.99 0.998 0.99

BLS-Comp 0.10 0.001 -0.0001

1

BLS-Ext 0.10 0.70 0.001

Bonchi 0.00001 -0.98 -0.99 -0.001 -0.001

OLS-Comp 0.98 -0.01 0.98 0.98

OLS-Ext 0.99 0.99 0.99

BLS-Comp 0.10 0.001 -0.0003

2

BLS-Ext 0.10 0.10 0.001

Bonchi 0.00003 -0.99 -0.99 -0.001 -0.001

OLS-Comp 0.99 -0.007 0.99 0.99

OLS-Ext 0.99 0.99 0.99

BLS-Comp 0.01 0.001 -0.000

J
a
cc
a
rd

3

BLS-Ext 0.01 0.10 0.001
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