Biased random-key genetic algorithm for
nonlinearly-constrained global optimization

Ricardo M. A. Silva*, Mauricio G. C. Resende’, Panos M. Pardalos* and Jodo L. Fac6®
* Centro de Informadtica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
email: rmas@cin.ufpe.br
f Algorithms and Optimization Research Department, AT&T Labs Research, Florham Park, NJ 07932 USA.
email: mgcr@research.att.com
1 Department of Industrial and Systems Engineering, University of Florida, FL. 32611, USA.

email: pardalos@ufl.edu

§ Departamento de Ciéncia da Computacdo, Universidade Federal do Rio de Janeiro, RJ, Brazil.

email: jldfaco@uftj.br

Abstract—Global optimization seeks a minimum or maximum
of a multimodal function over a discrete or continuous domain. In
this paper, we propose a biased random key genetic algorithm for
finding approximate solutions for bound-constrained continuous
global optimization problems subject to nonlinear constraints.
Experimental results illustrate its effectiveness on some functions
from CEC2006 benchmark (Liang et al. [2006]).

I. INTRODUCTION

Continuous global minimization optimization seeks a solu-
tion z* € S C R™ such that f(z*) < f(x), Va € S, where S
is some region of R™ and the objective function f is defined
by f : S — R. In this paper, we consider the domain S as
the intersection between a set of nonlinear constraints and a
hyper-rectangle Q@ = {z = (x1,...,2,) € R" : { < x < u},
where £ € R™ and u € R™ such that u; > [;, fori =1,...,n,
in order to present the BRKGA heuristic for solving bound-
constrained continuous global optimization problems subject
to nonlinear constraints:

minf(x), x = (x1,22,...,2,) €))
subject to:
gi(@) <0, i=1,....q @)
hj(x) =0, j=q+1,....m 3)
i<z <wuyy 1=1,...,n @
Given that the constraints (2) can be written as equalities with
the introduction of the ¢ slack variables x4 1,. .., ZTpyq:
gi(x1, ., xn) +Tnyi =0, 1=1,...,q, (5)
with 2z, > 0, k =n+1,...,n+ ¢, the original problem can

be reduced to the minimization of function F(x1,..
defined as follows:

. 7$n+q>

. wrn) + mn-{—i}z“i’

[f(l?l, e

(6)

subject to:
liSI’iSUz’,izl,...7n (7)

x>0, k=n+1,...,n+gq, ®)

where f* is a known optimum value of problem (1-4), or the
best known value in the literature. In case we do not know
what the global solution value is, if possible, we can consider
an appropriate lower bound as f*.

Since F(x1,...,Zp4q) > 0 for all I; < z; < wuy
i=1,....,n,and z, > 0,k =n+1,...,n+ g, it is easy
to see that F(x1,...,Tntq) = 0 <= f(a1,...,2,) = 5
gi(l‘l,... ,Cljn) = Tp+is 1= 1,...7(]; and hj(xh...,xn) = 0,
j = q+1,...,m. Hence, we have the following: 3 z* =
(1,...,&n4q)* feasible 3 F(2*) = 0 = 2* is a global
minimizer of problem (1-4).

This paper is organized as follows. BRKGA heuristic for
global optimization problem is described in Sections II and III.
In Section IV, experimental results illustrate the effectiveness
of BRKGA for global optimization with nonlinear constraints.
Concluding remarks are made in Section V.

II. BIASED RANDOM-KEY GENETIC ALGORITHMS

Genetic algorithms with random keys, or random-key
genetic algorithms (RKGA), were first introduced by Bean
[1994] for solving combinatorial optimization problems in-
volving sequencing. In a RKGA, chromosomes are represented
as vectors of randomly generated real numbers in the interval
[0,1]. A deterministic algorithm, called a decoder, takes as
input a solution vector and associates with it a solution of
the combinatorial optimization problem for which an objective
value or fitness can be computed.

A RKGA evolves a population of random-key vectors
over a number of iterations, called generations. The initial
population is made up of p vectors of random-keys. Each
component of the solution vector is generated independently
at random in the real interval [0, 1]. After the fitness of each
individual is computed by the decoder in generation k, the
population is partitioned into two groups of individuals: a small
group of p. elite individuals, i.e. those with the best fitness
values, and the remaining set of p—p. non-elite individuals. To

evolve the population, a new generation of individuals must be
produced. All elite individual of the population of generation k
are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants
into the population. A mutant is simply a vector of random
keys generated in the same way that an element of the initial
population is generated. At each generation, a small number
(prm) of mutants is introduced into the population. With the
pe elite individuals and the p,, mutants accounted for in
population k£ + 1, p — p. — p,,, additional individuals need
to be produced to complete the p individuals that make up
the new population. This is done by producing p — pe — pm
offspring through the process of mating or crossover.

Figure 1 illustrates the evolution dynamics. On the left of
the figure is the current population. After all individuals are
sorted by their fitness values, the best fit are placed in the
elite partition labeled ELITE and the remaining individuals are
placed in the partition labeled NON-ELITE. The elite random-
key vectors are copied without change to the partition labeled
TOP in the next population (on the right side of the figure).
A number of mutant individuals are randomly generated and
placed in the new population in the partition labeled BOT. The
remainder of the population of the next generation is completed
by crossover. In a RKGA, Bean [1994] selects two parents
at random from the entire population. A biased random-key
genetic algorithm, or BRKGA [Gongalves and Almeida, 2002,
Ericsson et al., 2002, Gongalves and Resende, 2004], differs
from a RKGA in the way parents are selected for mating. In
a BRKGA, each element is generated combining one element
selected at random from the partition labeled ELITE in the
current population and one from the partition labeled NON-
ELITE. In some cases, the second parent is selected from
the entire population. Repetition in the selection of a mate is
allowed and therefore an individual can produce more than one
offspring. Since we require that p. < p — p., the probability
that an elite individual is selected for mating is greater than
that of a non-elite individual and therefore the elite individual
has a higher likelihood to pass on its characteristics to future
generations.

Another factor contributing to this end is the parameterized
uniform crossover [Spears and DeJong, 1991], the mechanism
used to implement mating in BRKGAs. Let p. > 0.5 be the
probability that an offspring inherits the vector component of
its elite parent. Let n denote the number of components in
the solution vector of an individual. For i = 1,...,n, the i-
th component ¢(i) of the offspring ¢ takes on the value of
the i-th component e(7) of the elite parent e with probability
pe and the value of the i-th component &(i) of the non-
elite parent ¢ with probability 1 — p.. Figure 2 illustrates
the crossover process for two random-key vectors with four
components each. Chromosome 1 refers to the elite individual
and Chromosome 2 to the non-elite one. In this example the
value of p. = 0.7, i.e. the offspring inherits the component of
the elite parent with probability 0.7 and of the other parent with
probability 0.3. A randomly generated real in the interval [0, 1]
simulates the toss of a biased coin. If the outcome is less than
or equal to 0.7, then the child inherits the component of the
elite parent. Otherwise, it inherits the component of the other
parent. When the next population is complete, i.e. when it has
p individuals, fitness values are computed for all of the newly
created random-key vectors and the population is partitioned

most
fit Copy best solutions

_—

Select one
parent from elite

partition
Randoml
Crossover y
generated
mutant
solutions

Select one
parent from
non-elite

partition BOT

/

Transition from generation k to generation £ + 1 in a BRKGA.

least
fit

Fig. 1.

into elite and non-elite individuals to start a new generation.

BRKGA heuristics are based on a general-purpose meta-
heuristic framework. In this framework, depicted in Figure
3, there is a clear divide between the problem-independent
portion of the algorithm and the problem-dependent part.
The problem-independent portion has no knowledge of the
problem being solved. The only connection to the optimization
problem being solved is the problem-dependent portion of
the algorithm, where the decoder produces solutions from
the vectors of random-keys and computes the fitness of these
solutions. Therefore, to specify a BRKGA heuristic one need
only define its chromosome representation and the decoder.
To describe a BRKGA for nonlinearly-constrained global
optimization problems, one needs only to show how solutions
are encoded as vectors of random keys and how these vectors
are decoded to feasible solutions of the problem:

e Encoding a solution to a vector of random keys. A
solution is encoded as a vector x = (1, ..., Xn) Of size
n, where x; is a random number in the interval [0, 1],
fori = 1,...,n. The i-th component of x corresponds
to the i-th dimension of hyper-rectangle €.

e Decoding a solution from a vector of random keys. A
decoder takes as input the vector of random keys x
and returns a solution x € Q with z; = [;+x;-(u;—1;),
for i = 1,...,n. After obtaining the solution z €),
we proceed by trying to improve it using the local
search described in the next section. The solutions

Crossover
.
Oﬁspring chromoseme .

Fig. 2. parameterized uniform crossover: mating in BRKGAs.

Relation to crossover
probabibility of 0.7

r : problem dependent
generate n vectors
of random keys

classify solutions
as elite or non-elite

|

copy elite solutions
to next population

decode each vector|
of random keys

sort solutions
by their fitness

combine elite and
non-elite solutions
and add offspring
to next population

generate mutants
in next population

i
i
i
i
i
i
i
i
[
i
i
i
i
i
i
i
i
i
i
R

Fig. 3. Flowchart of a BRKGA

produced by the local search usually disagree with
the genes initially supplied in the vector of random
keys to the decoder. In these cases, in order to reflect
the changes made by the local search phase of the
decoder, the heuristic replaces the initial chromosome
with the returned by the local search procedure, where
Xi = (x; = 1;)/(u; —1;), for i = 1,...,n. During all
decoder process, the solutions fitness are calculated
by the objective function f : S — R of the global
optimization problem.

III. LOCAL IMPROVEMENT PROCEDURE

BRKGA makes no use of derivatives. Though derivatives
can be easily computed for many functions, they are not always
available or efficiently computable for all functions. The local
improvement phase (with pseudo-code shown in Figure 4)
can be seen as approximating the role of the gradient of the
objective function f(-). From a given input point x € R, the
local improvement algorithm generates a neighborhood, and
determines at which points in the neighborhood, if any, the
objective function improves. If an improving point is found, it
is made the current point and the local search continues from
the new solution.

Let z € R" be the current solution and h be the current
grid discretization parameter. Define S, (Z) = {z € Q | £ <
x<wu, x=ZT+T7-h, 7€ Z"} to be the set of points in
that are integer steps (of size h) away from Z. Let By (%) =
{zeQle=z+h (&' —2)/||]2' —Z|, 2’ € Sp(x)\ {z}
be the projection of the points in Sy (Z) \ {Z} onto the hyper-
sphere centered at = of radius h. The h-neighborhood of the
point Z is defined as the set of points in By (Z). The procedure
takes as input a starting solution x € 2 C R", the objective
function f(-), lower and upper bound vectors ¢ and u, as well
as the parameters hg and h., the starting and ending grid
discretization densities, respectively. The maximum number
of points MaxPointsToExamine < [[_,[(w; — ¢;)/h] in
By, (z*) that are to be examined is also taken as an input
parameter. If all of these points are examined and no improving
point is found, the current solution =* is considered an h-local
minimum.

The current best local improvement solution z* is initial-
ized to x in line 1. In line 2, the objective function value
f* of the best solution found is initialized to f(z). Next,
the parameter h, that controls the discretization density of

procedure LocalImprovement(x, f(-), hs, he, ¢, u, MaxPointsToExamine)
1 ¥+ x;

2 T flo);

3 h < hg;

4 Impr < false;

5 while b > h. do

6 NumPointsExamined < O;

7 while NumPointsExamined < MaxPointsToExamine do
8 = < RandomlySelectElement(Bj (z™));

9 if ¢ <z <wand f(z) < f* then

10 ¥ —

1 £ o)

12 NumPointsExamined < O;

13 Impr < true;

14 end if

15 NumPointsExamined <— NumPointsExamined + 1;
16 end while

17 if Impr = true then

18 return z*;

19 else

20 h <« h/2;

21 end if

22 end while

23 return x™;

end LocalImprovement;

Fig. 4. Pseudo-code for local improvement phase.

the search space, is initialized to hg in line 3, and in line 4
the variable Impr is set to false. Starting at the point z*, in
the loop in lines 7-16, the algorithm randomly selects points
in By (z*) (line 8), one at a time. In line 9, if the current
point = selected from By, (z*) is feasible and is better than
x*, then z* is set to = (line 10), f* is set to f(x) (line 11),
NumPointsExamined is set to zero (line 12), Impr is set to
true (line 13), and the loop in lines 7-16 restarts with x* as
the starting solution. In line 17, if the variable Impr is still set
to false, then in line 20 the grid density is increased by halving
h, and the loop in lines 7-16 is re-initialized if A > h.. Local
improvement is terminated if an h-local minimum solution
z* is found. At that point, z* is returned from the local
improvement procedure in line 18 or 23.

IV. EXPERIMENTAL RESULTS

The experiments to follow were carried out on a quad
core Intel Core i7 processor (1.60 GHz) with Turbo Boost
up to (2.80 GHz) and 16 Gb of memory, running Ubuntu
10.04 LTS. The implementation of BRKGA was done in the
C++ programming language and compiled with gcc version
4.4.3. The algorithm used for random-number generation is an
implementation of the Mersenne Twister algorithm described
in Matsumoto and Nishimura [1998]. The boxplots were done
in R [R Development Core Team, 2011]. For the experiments
to follow, we made use of the test problems gO1 [Floudas
and Pardalos, 1990], g02 [Koziel and Michalewicz, 1999],
g03 [Michalewicz et al., 1996], g04 [Himmelblau, 1972] and
g05 [Hock and Schittkowski, 1981], due to their heterogeneous
properties described in Table L.

In all five problems, we ran BRKGA 200 times (a different
starting random number seed for each run from 270001 to
270200) with p = 100, p. = 0.2p, p,, = 0.1p, pe = 0.7, hy =
0.05, h. = 0.00001, rho;, = 0.15, MaxPointsToExamine =
1000, and € = 0.00001. At any time during a run, we define
the optimality gap by GAP = F(z1,...,2Tntq) — F(2%),
where (21,...,%n44) is the current best solution found by
the heuristic and F(z*) = 0. We then say that the heuristic

TABLE 1.

FOR THE FIVE PROBLEMS (g01-g05) FROM CEC2006 BENCHMARK [LIANG ET AL., 2006]: n IS THE NUMBER OF DECISION VARIABLES;

p= |F|/‘S‘, THE ESTIMATED RATIO BETWEEN THE FEASIBLE REGION AND THE SEARCH SPACE; LI, NI, LE AND NE ARE THE NO. OF LINEAR INEQUALITY,
NONLINEAR INEQUALITY, LINEAR EQUALITY AND NONLINEAR EQUALITY CONSTRAINTS, RESPECTIVELY; AND a, THE NO. OF ACTIVE CONSTRAINTS AT x.

Prob. n type flz™) P LI NI LE NE a
g01 13 quadratic -15.0000000000 0.0111 9 0 0 0 6
g02 20 nonlinear -0.8036191042 99.9971 0 2 0 0 1
g03 10 polynomial -1.0005001000 0.0000 0 0 0 1 1
g04 5 quadratic -30665.5386717834 52.1230 0 6 0 0 2
g05 5 cubic 5126.4967140071 0.0000 2 0 0 3 3
has solved the problem if GAP < e with ¢ = 0.00001. time to target plot
Therefore, we consider a solution to be found if the objective 1 : S S
function value becomes smaller than 10~°. In each problem, 0.9 %‘ﬁ a0 |
the heuristic was able to find its optimal (or best known) ' &
solution in all 200 running. N 0.8)
Table II gives the minimum, 1st quartile, median, mean, g z'; 7 |
3rd quartile and maximum times (in seconds), as well as the e
standard deviation of the running times spent to find each o 05§]
optimal (or best know) solution for each problem. According 3 o4} 1
to Table II, on average BRKGA found the solutions in less § 0.3 ,
than 21.62, 120.20, 0.60, 134.20, 4.00 seconds for g01, g02, © 02k gg; |
g03, g04, and g05 problems, respectively. In the worst (max- 1 903 k-
imum) case, BRKGA found the solutions in less than 253.60, o1l ggg e
1,076.00, 0.88, 913.40, and 15.15 seconds, respectively. 0 2‘00 4‘00 6‘00 8‘00 910‘00 7200
We record the time taken to find the optimal (or best know) time to target solution
solution for each problem, in order to plot also its runtime (a)
distribution (or time-to-target plots [Aiex et al., 2002, 2006])
in Figure 5. time to target plot
As can be seen in more details from Figure 5(b), a zoom
of Figure 5(a), about 95% of the runs terminated in less than
46.00, 377.00, 0.77, 495.00, and 9.40 seconds for g01, g02,
g03, g04, and g05 problems, respectively. %
The differences in the distributions of running times for %
BRKGA to find the optimal (or best know) solution for each o
problem is shown by side-by-side boxplots in Figure 6. E
One can see at a glance from Figures 6(a) and (b) that, %
while 75% of running times (3rd quartile) spent by BRKGA
to find the optimal (or best know) solutions for g01, g02,
g03, g04, and g05 problems are smaller than 25.36, 123.90, ‘

0.67, 125.00, and 5.60 seconds, respectively; 50% (median)
of running times are less than 18.44, 78.24, 0.61, 83.25, and
3.28 seconds, respectively.

Finally, we compare the BRKGA heuristic with the con-
tinuous GRASP (C-GRASP) algorithm [Hirsch et al., 2007,
2010, Silva et al., 2012] on same suite of test problems g0O1—
g05 [Facé et al., 2013]. The C-GRASP implementation used
in this work is described in Silva et al. [2012]. In all five
problems, we ran C-GRASP 200 times (a different starting
random number seed for each run from 270001 to 270200).
In each problem, the C-GRASP heuristic was able to find its
optimal (or best known) solution in all 200 running.

Pseudo-code for C-GRASP is shown in Figure 7. The
procedure takes as input the problem dimension n, lower and
upper bound vectors ¢ and u, the objective function f(-), as
well as the parameters hg, h., and p;,. Parameters hy and
he define the starting and ending grid discretization densities
while parameter p;, defines the portion of the neighborhood

0 50 100 150 200
time to target solution

(b)

Fig. 5. Plots of cumulative probability distributions (time-to-target plots) of
BRKGA running times to find the optimal (or best known) solution of the
g01-g05 problems.

of the current solution that is searched during the local
improvement phase.

Line 1 of the pseudo-code initializes the objective function
value f* of the best solution found to infinity. Each time the
stopping criteria of line 2 are not satisfied, another iteration
takes place, as seen in lines 3—17. At each iteration, in line 3
the initial solution x is set to a random point distributed
uniformly over the box in R™ defined by ¢ and w. The
parameter h, that controls the discretization density of the
search space, is re-initialized to h,. The construction and local

TABLE II. BRKGA TIMES (IN SECONDS) TO TARGET SOLUTIONS OF g01-g05 PROBLEMS.
prob. min Ist Qu. median mean 3rd Qu. max std. dev.
g01 2.76 13.24 18.44 21.62 25.36 253.60 20.324
g02 1.12 54.53 78.24 120.20 123.90 1076.00 145.316
g03 0.33 0.54 0.61 0.60 0.67 0.88 0.095
g04 5.37 51.38 83.25 134.20 125.00 913.40 157.995
g05 0.44 1.82 3.28 4.00 5.60 15.15 2.784
TABLE III. C-GRASP TIMES (IN SECONDS) TO TARGET SOLUTIONS OF g01-g05 PROBLEMS.
prob. min Ist Qu. median mean 3rd Qu. max std. dev.
go1 8.72 9.91 11.22 12.08 13.20 19.32 2.793
g02 3.00 657.00 1055.00 1009.00 1321.00 1881.00 429.347
g03 0.02 0.06 0.09 0.10 0.13 0.27 0.060
g04 3.37 7.55 98.33 604.50 561.40 5472.00 1369.259
g05 1.88 2.49 3.46 3.43 4.45 5.04 1.057
procedure C-GRASP(n, £, u, f(+), hs, he, pio)
N 1 f* + oo;
s 2 while Stopping criteria not met do
2 3 z < UnifRand (¥, u);
° 4 h 4 hg;
° ° 5 while h > h. do
8 7 o 6 Imprc < false;
H 7 Impr; <— false;
o : 8 [z, Imprc] < ConstructGreedyRand.(z, f (), n, h, £, u, Imprc);
27 9 [z, Impry] < LocalImprovement(z, f(-),n, h, %, u, pio, Impry);
é 10 if f(z) < f* then
o 8 11 Tt x;
<7 8 g 12 T+ f(z);
q 13 end if
o | ° 8 8 14 if Imprc = false and Impr; = false then
& 15 h < h/2; /% make grid more dense */
o 16 end if
o == E E o 17 end while
; ; ‘ ; ; 18 end while
1 2 3 4 5 19 return(z™);
end C-GRASP;
(@
Fig. 7. Pseudo-code for C-GRASP.
time to target solution boxplot
] - 12, the current best solution is updated with the returned
solution. In line 14, if the variables Impr¢ and Impry are still
- set to false, then the grid density is increased by halving h,
g in line 15. While variable Impr¢ is false upon return from
§ the construction procedure if and only if no improvement is
% < made in the construction phase, the Impr; variable is false
H on return from the local improvement procedure if and only
H S if the input solution to local improvement is determined to
T e | — be an h-local minimum. We increase the grid density at this
| stage because repeating the construction procedure with the
i E same grid density will not improve the solution. This allows
o ‘ C-GRASP to start with a coarse discretization and adaptively

problems

(b)

Fig. 6. Boxplots of BRKGA running times to find the optimal (or best known)
solution of the (a) g01-g05 problems, and (b) g01, g03, and g05 problems.

improvement phases are then called sequentially in lines 8
and 9, respectively. The solution returned from the local
improvement procedure is compared against the current best
solution in line 10. If the returned solution has a smaller
objective value than the current best solution, then, in lines 11—

increase the density as needed, thereby intensifying the search
in a more dense discretization when a good solution has been
found. The best solution found, at the time the stopping criteria
are satisfied, is returned.

Table IIT gives the minimum, Ist quartile, median, mean,
3rd quartile and maximum times (in seconds), as well as the
standard deviation of the running times spent to find each
optimal (or best know) solution for each problem. According
to Table III, on average C-GRASP heuristic found the solutions
in less than 12.08, 1,009.00, 0.10, 604.50, 3.43 seconds
for g01, g02, g03, g04, and g05 problems, respectively. In
the worst (maximum) case, C-GRASP found the solutions in

less than 19.32, 1,881.00, 0.27, 5,472.00, and 5.04 seconds,
respectively.

Although on instances g01, g03, and g05, the performance
of C-GRASP heuristic was a little better than the performance
of BRKGA algorithm; the smallest, average, 50% (median),
and 70% (3rd quartile) of BRKGA running times were far less
than those reported in [Facé et al., 2013] for the C-GRASP
heuristic on the two most difficult instances from test suite:
g02 and g04 problems.

V. CONCLUDING REMARKS

In this paper, we present the BRKGA heuristic for find-
ing approximate solutions for continuous global optimization
problems subject to box and nonlinear constraints. We il-
lustrate the approach using five challenging problems from
CEC2006 benchmark [Liang et al., 2006]. The promising
results shown here illustrate the potential of BRKGA for
nonlinearly-constrained global optimization problems.

ACKNOWLEDGMENT

The research of R.M.A Silva was partially supported by
the Brazilian National Council for Scientific and Technological
Development (CNPq), the Foundation for Support of Research
of the State of Minas Gerais (FAPEMIG), the Brazilian Coor-
dination for the Improvement of Higher Education Personnel
(CAPES), the Office for Research and Graduate Studies of
the Federal University of Pernambuco (PROPESQ), and the
Foundation for Support of Science and Technology of the State
of Pernambuco (FACEPE).

REFERENCES

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability
distribution of solution time in GRASP: An experimental
investigation. J. of Heuristics, 8:343-373, 2002.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS:
A perl program to create time-to-target plots. Optimization
Letters, 2006.

J.C. Bean. Genetic Algorithms and Random Keys for Sequenc-
ing and Optimization. ORSA J. on Computing, 6:154-160,
1994.

M. Ericsson, M.G.C. Resende, and P.M. Pardalos. A genetic
algorithm for the weight setting problem in OSPF routing.
J. of Combinatorial Optimization, 6:299-333, 2002.

Joao L. Facd, Mauricio G.C. Resende, and Ricardo M.A.
Silva. Continuous grasp for nonlinearly-constrained global
optimization. In Congreso Latino-Iberoamericano de In-
vestigacion Operativa / Simposio Brasileiro de Pesquisa
Operacional, CLAIO/SBPO 2013. Sociedade Brasileira de
Pesquisa Operacional, 2013.

C.A. Floudas and P.M. Pardalos. A collection of test problems
for constrained global optimization algorithms. Springer-
Verlag New York, Inc., New York, NY, USA, 1990. ISBN
0-387-53032-0.

J.E. Gongalves and J. Almeida. A hybrid genetic algorithm for
assembly line balancing. J. of Heuristics, 8:629-642, 2002.

J.E. Gongalves and M.G.C. Resende. An evolutionary algo-
rithm for manufacturing cell formation. Computers and
Industrial Engineering, 47:247-273, 2004.

D.M. Himmelblau. Applied nonlinear programming. McGraw-
Hill, 1972. URL http://books.google.com.br/books?id=
KMpEAAAAIAAJ.

M.J. Hirsch, C.N. Meneses, PM. Pardalos, and M.G.C. Re-
sende. Global optimization by continuous GRASP. Opti-
mization Letters, 1:201-212, 2007.

M.J. Hirsch, PM. Pardalos, and M.G.C. Resende. Speeding
up continuous grasp. European Journal of Operational
Research, 205(3):507 — 521, 2010. ISSN 0377-2217. doi:
10.1016/j.jor.2010.02.009. URL http://www.sciencedirect.
com/science/article/pii/S0377221710001141.

W. Hock and K. Schittkowski. Test Examples for Nonlinear
Programming Codes. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1981. ISBN 0387105611.

S. Koziel and Z. Michalewicz. Evolutionary algorithms,
homomorphous mappings, and constrained parameter opti-
mization. Evolutionary Computation, 7:pp., 1999.

J. J. Liang, T. P. Runarsson, E. M. Montes, M. Clerc, P. N.
Suganthan, C. A. Coello, and Deb K. Problem Definitions
and Evaluation Criteria for the CEC 2006 Special Session on
Constrained Real-Parameter Optimization. Technical report,
2006.

M. Matsumoto and T. Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1):3-30, 1998.

Z. Michalewicz, G. Nazhiyath, and M. Michalewicz. A note
on usefulness of geometrical crossover for numerical opti-
mization problems. In Evolutionary Programming, pages
305-312, 1996.

R Development Core Team. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria, 2011. URL http://www.R-project.
org/. ISBN 3-900051-07-0.

R.M.A. Silva, M.G.C. Resende, PM. Pardalos, and M.J.
Hirsch. A python/c library for bound-constrained global op-
timization with continuous grasp. to appear in Optimization
Letters, 2012.

W.M. Spears and K.A. DeJong. On the virtues of parameter-
ized uniform crossover. In Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, pages 230-236,
1991.

