
AN EXTENDED AKERS GRAPHICAL METHOD WITH A BIASED

RANDOM-KEY GENETIC ALGORITHM FOR JOB-SHOP SCHEDULING

JOSÉ FERNANDO GONÇALVES AND MAURICIO G. C. RESENDE

Abstract. This paper presents a local search, based on a new neighborhood for the job-shop
scheduling problem, and its application within a biased random-key genetic algorithm. Schedules
are constructed by decoding the chromosome supplied by the genetic algorithm with a procedure
that generates active schedules. After an initial schedule is obtained, a local search heuristic,
based on an extension of the graphical method of Akers (1956), is applied to improve the solution.
The new heuristic is tested on a set of 205 standard instances taken from the job-shop scheduling
literature and compared with results obtained by other approaches. The new algorithm improved
the best known solution values for 57 instances.

1. Introduction

In the job-shop scheduling problem (JSP), we are given a set J = {1, . . . , n} of n jobs and a
set M = {1, . . . , m} of m machines. Job j ∈ J consists of nj ordered operations Oj,1, . . . , Oj,nj ,
each of which must be processed on one of the m machines. Let O = {1, . . . , o} denote the
set of all operations to be scheduled. Each operation k ∈ O uses one of the m machines for a
�xed processing time dk. Each machine can process at most one operation at a time and once
an operation initiates processing on a given machine it must complete processing on that machine
without interruption. Furthermore, let Pk be the set of all the predecessor operations of operation
k ∈ O. The operations are interrelated by two kinds of constraints. First, precedence constraints
force each operation k ∈ O to be scheduled after all operations in Pk are completed. Second,
operation k ∈ O can only be scheduled if the machine it requires is idle.

Let a schedule be represented by a vector of �nish times (F1, ..., Fo). The job-shop scheduling
problem consists in �nding a feasible schedule of the operations on the machines that minimizes
the makespan Cmax, i.e., the �nish time of the last operation completed in the schedule.

Not only is the JSP NP-hard, but it has been also been considered to be one of the most com-
putationally challenging combinatorial optimization problems (Lenstra and Rinnooy Kan, 1979).
Early attempts at solving the JSP considered the following approaches:

• Exact methods: Gi�er and Thompson (1960),Brucker et al. (1994), Williamson et al.
(1997), Lageweg et al. (1977), Carlier and Pinson (1989, 1990), Applegate and Cook (1991),
and Sabuncuoglu and Bayiz (1999). Carlier and Pinson (1989) were the �rst to successfully
solve the notorious 10×10 (10 jobs, 10 machines) instance of Fisher and Thompson (1963),
proposed in 1963 and only solved 20 years later;

• Heuristic procedures based on priority rules: Gi�er and Thompson (1960), French (1982),
Baker and McMahon (1985), and Gray and Hoesada (1991);

• Shifting bottleneck : Adams et al. (1988) and Balas and Vazacopoulos (1998).

Problems of dimension 20×20 are still considered to be beyond the reach of today's exact methods.
A growing number of heuristics have been proposed to �nd optimal or near-optimal solutions of
the JSP, including:

• Simulated annealing : Van Laarhoven et al. (1992) and Lourenço (1995);

Date: February 2011, rev. July 2013.
Key words and phrases. Job-shop; Scheduling; Genetic algorithm; Biased random-key genetic algorithm; Heuris-

tics; Random keys, Graphical approach.

Supported by the ERDF through the Programme COMPETE and by the Portuguese Government through FCT
- Foundation for Science and Technology, project PTDC/EGE-GES/117692/2010.

AT&T Labs Research Technical Report.

1

mgcr
Text Box
Cite as J.F. Gonçalves and M.G.C. Resende, "An extended Akers graphical method with a biased random-key genetic algorithm," International Transactions in Operational Research, vol. 21, pp. 215-246, 2014

BRKGA FOR JOBSHOP PROBLEM 2

• Tabu search: Taillard (1994), Lourenço and Zwijnenburg (1996), Nowicki and Smutnicki
(1996), Nowicki and Smutnicki (2005), Zhang et al. (2007) and Zhang et al. (2008);

• Genetic algorithms: Davis (1985), Storer et al. (1992), Aarts et al. (1994), Della Croce
et al. (1995), Dorndorf and Pesch (1995), and Gonçalves et al. (2005);

• GRASP : Binato et al. (2002) and Aiex et al. (2003);
• Other heuristics: Lourenço (1995), Vaessens et al. (1996), Lourenço and Zwijnenburg
(1996), Pardalos and Shylo (2006) and Pardalos et al. (2010).

Surveys of heuristic methods for the JSP are given in Pinson (1995), Blazewicz et al. (1996),
Vaessens et al. (1996), and Cheng et al. (1996, 1999). A comprehensive survey of job-shop sched-
uling techniques can be found in Jain and Meeran (1999).

In this paper, we introduce a new local search neighborhood for the job-shop scheduling problem,
extending the graphical method of Akers (1956) for more than two jobs. This local search is
hybridized with a tabu search procedure. The hybrid local search procedure is coordinated by a
biased random-key genetic algorithm (Gonçalves and Resende, 2011), or BRKGA. In computational
experiments with a large set of standard job-shop scheduling test problems, we show that our
algorithm is competitive with state-of-art heuristics for the JSP and improves the best known
solution values for 57 of these instances.

The remainder of the paper is organized as follows. Section 2 introduces the new local search
for the JSP and Section 3 describes its use within a BRKGA. This section also describes a sched-
ule generation procedure and a solution improvement procedure. Section 4 reports experimental
results. Concluding remarks are made in Section 5.

2. New local search for JSP

We present a new neighborhood for local search for the JSP based on a graphical method
originally proposed by Akers (1956) for JSPs with two jobs. To illustrate the various aspects of
the approach we use an instance with data shown in Table 1. This example consists of four jobs
(J1, J2, J3, J4) to be processed on three machines (a, b, c).

Table 1. Problem data for 4-job, 3-machine example.

J1 J2 J3 J4

Seq. Order Mach. Proc.

time

Mach. Proc.

time

Mach. Proc.

time

Mach. Proc.

time

1 a 2 b 3 c 5 b 2

2 b 3 c 2 b 2 a 4

3 c 4 a 3 a 3 c 2

In the remainder of this section, we present the original graphical approach of Akers (1956) for
two jobs, and propose its extension for more than two jobs, and a new local search that makes
use of the extension.

2.1. Graphical method for two jobs. Akers (1956) introduced a graphical method for job-shop
scheduling problem with two jobs. The method consists in transforming the two-job-shop sched-
uling problem into a shortest-path problem. This problem is represented in a two-dimensional
plane with obstacles, where one axis corresponds to job J1 = {O1,1, O1,2, . . . , O1,n1

} and is de-
composed into n1 intervals and the other to job J2 = {O2,1, O2,2, . . . , O2,n2

}, and is decomposed
into n2 intervals. For i = 1, 2 and k = 1, . . . , ni, interval Ii,k has a length Li,k, that is equal to the
processing time of operation Oi,k. If operations O1,k and O2,l share the same machine, then the
rectangle induced by intervals I1,k and I2,l becomes an obstacle. The right and upper borders of
the rectangle de�ned by the start point S and the end point F , correspond to the completion of
the two jobs. A feasible solution of the JSP corresponds to a path that goes from point S to point
F while avoiding the interiors of the obstacles. A path consists of only horizontal, vertical, and
diagonal segments, where a horizontal (resp. vertical) segment implies that only J1 (resp. J2) is
processed, whereas a diagonal segment implies that both J1 and J2 are processed simultaneously.
The length L of a path is equal to the makespan of the corresponding schedule and is given by

BRKGA FOR JOBSHOP PROBLEM 3

L = LH + LV +
LD√

2
, (2.1)

where LH , LV , and LD represent the total lengths of the horizontal, vertical, and diagonal seg-
ments, respectively. Therefore, �nding the schedule that minimizes the makespan is equivalent to
�nding the shortest path in this plane. Figure 2.1 depicts the shortest path and the corresponding
schedule for a job-shop problem consisting of jobs J1 and J2 de�ned in Table 1.

b

a

J2

J1 1.1: a-2 1.2: b-3 1.3: c-4

2 3 5 6 8 10

J1 1.1: a-2 1.2: b-3 1.3: c-4

2.1: b-3 2.2: c-2 2.3: a-3

Schedule corresponding to path

c

0

2 5 9 0

J2

Figure 2.1. Akers graphical method for two jobs.

Let r denote the number of obstacles in the shortest-path problem. Brucker (1988) showed
that �nding the shortest path on a plane with obstacles is equivalent to �nding the shortest path
in an directed graph G that can be constructed in O(r log r) time and on which a shortest path
can be found in O(r) time, where r is bounded above by O(n1n2). The digraph G = (V, E, d) is
constructed as follows:

(1) V is the set of vertices, consisting of the start point S = (0, 0), the end point F , and all
the north-west (NW) and south-east (SE) corners of the obstacles;

(2) Each vertex v ∈ V \ {F} has at most two successors, obtained by moving diagonally (at
an angle of 45°) from v, until an obstacle is hit. If the obstacle encountered is the last one,
then F is the unique successor of v (see Figure 2.2a). If the obstacle represents a machine
con�ict, then its NW and SE corners are the two direct successors of vertex v (see Figure
2.2b);

(3) When an obstacle D is hit, then two links (v,DNW) and (v,DSE) corresponding to the
two vertices being the direct successors of vertex v are created, where DNW and DSE are,
respectively, the NW and SE corners of obstacle D (see Figure 2.2b). The length d (v1, v2)
of link (v1, v2) is equal to its horizontal or vertical part plus the projection on one of the
axis of its diagonal part.

A path going from S to F in digraph G = (V, E, d) corresponds to a feasible schedule for the
problem and its length is equal to the makespan. Therefore, �nding the optimal makespan for the
example is equivalent to �nding a shortest path on the graph shown in Figure 2.1.

BRKGA FOR JOBSHOP PROBLEM 4

obstacle
D

v

NW

SE

obstacle
D

v

NW

SE

F

v

a) b)

Figure 2.2. Successors of a vertex v.

2.2. Extension of the graphical method for n > 2. We now propose a new heuristic for
solving job-shop problems with more than two jobs based on the graphical method for the two-job
problem described in the previous subsection. Jobs are added to the schedule, one at a time. At
each stage s, a new job is added. All jobs already scheduled are placed below the horizontal axis
and the new job is placed to the left of the vertical axis. Next, the graphical method of Akers
(1956) for n = 2 is used to �nd the shortest path taking into account the obstacles generated by
the operations that share the same machine in the job on the vertical axis and all the jobs in the
horizontal axis (see Figure 2.3a where job J3 is added to the �nal schedule of jobs J1 and J2 in
Figure 2.1). After �nding the shortest path, the schedules of the job on the vertical axis and the
jobs on the horizontal axis are updated accordingly (see Figure 2.3b). Finally, all jobs already
scheduled are placed below the horizontal axis and another unscheduled job is placed left of the
vertical axis. This process is repeated until all jobs are scheduled.

2 3 5 6 8 10 0

b

c

J3

J1 1.1: a-2 1.2: b-3 1.3: c-4

J2

2 3 5 7 8 10

2.1: b-3 2.2: c-2 2.3: a-3

Schedule corresponding to path

J1 1.1: a-2 1.2: b-3 1.3: c-4

J2 2.1: b-3 2.2: c-2 2.3: a-3

c

b

J3 3.1: c-5 3.2: b-2 3.3: a-3

a a

12 13

J1 1.1: a-2 1.2: b-3

J2

2 3 5 8 10

2.1: b-3 2.2: c-2 2.3: a-3

Schedule after applying a left shift

J3 3.1: c-5 3.2: b-2

11 13

1.3: c-4

3.3: a-3

6 0

0

a)

b)

c)

Figure 2.3. Example of the extension of the Akers graphical method for n > 2.

BRKGA FOR JOBSHOP PROBLEM 5

To decode the shortest path into the corresponding schedules of each job we follow the same
rules used in the case n = 2. A horizontal segment implies that only the jobs in the horizontal
axis are being processed, a vertical segment implied that only the job in the vertical axis is being
processed, and a diagonal segment implies that all the jobs are being processed simultaneously.
However, when n > 2 the following two problems may arise when applying the exact two-job
graphical method:

(1) The shortest path obtained does not always correspond to a shortest path. This is so
because when there is a vertical segment all the schedules of the jobs in the horizontal axis
are delayed, which is not always necessary. To overcome this problem, we apply a left shift
to all operations in the schedule (in a left shift, we move all operations in the schedule as
far left as possible). Figure 2.3c illustrates the result of the application of a left shift to
the schedule in Figure 2.3b.

(2) It may happen that adding the link (v,DNW) when moving diagonally from a vertex v
until an obstacle D is hit may lead to an invalid path segment going to the left (see Figure
2.4). To overcome this, we simply do not add to G links that correspond to path segments
in the left direction.

D

v

NW

SE

Invalid link

Figure 2.4. Invalid link.

Figure 2.5 presents pseudo code for the scheduling procedure AKERS_EXT which extends the
graphical approach to the case n > 2. The procedure receives as input the set SchedJobs of
jobs already scheduled, the current schedule CurSch of all jobs j ∈ SchedJobs, and the sequence
AddSeq = {J1, J2, . . . , Jn} in which the jobs j /∈ SchedJobs will be added to schedule CurSch.

2.3. New Local Search. We next present a set of new local search algorithms for the JSP. Given
a current schedule, we generate new schedules by removing nr jobs, apply a left-shift operator to all
remaining operations, and add back the nr previously removed jobs using procedure AKERS_EXT,
whose pseudo code is shown in Figure 2.5.

To illustrate how the new schedules are generated, we consider again the 4-job example given
in Table 1. We use as the current schedule the initial schedule given in Figure 2.6a. The �rst step
consists in removing from the schedule a number of jobs. We will remove jobs J1 and J4. We then
apply a left shift to the resulting schedule and end up with the schedule shown in Figure 2.6b.

Next, the local search adds the removed jobs in the order given by AddSeq which we assume
in this example to be AddSeq = {J1, J4}. To obtain the new solution all that is required is to
run procedure AKERS_EXT with CurSch equal to the schedule given in Figure 2.6b, AddSeq =
{J1, J4}, and SchedJobs = {J2, J3}. Figures 2.7 and 2.8 depict the Akers graph, the shortest
path, and the corresponding schedules for jobs J1, J2, J3 and J1, J2, J3, J4 after adding back job
J1 and after adding back jobs J1 and J4, respectively. Note that the new �nal schedule not only
is di�erent from the initial schedule but also has a smaller makespan.

Several variants of this local search algorithm can be produced by changing the number of jobs
to be removed. As before, let CurSch denote the current schedule associated with the set of jobs
J and let nr be the number of jobs to be removed. The corresponding �owchart of this new variant
of the local search is shown in Figure 2.9.

Despite being very e�ective, the LS_AKERS_EXT local search procedure can have long running
times when nr ≥ 2. To overcome this problem, we propose a new variant of LS_AKERS_EXT

BRKGA FOR JOBSHOP PROBLEM 6

procedure AKERS_EXT (CurSch, SchedJobs, AddSeq)
1 if SchedJobs = {∅} then SchedJobs ← {AddSeq(1)}
2 for s = 2 to n do
3 Set Jadd ← AddSeq(s)
4 Construct an Akers graph where job Jadd is placed in the
· vertical axis and all the jobs j ∈ SchedJobs are placed
· below the horizontal axis according to schedule CurSch.

5 Find the shortest path in the Akers graph and assign
· the schedule of each job j ∈ SchedJobs ∪ {Jadd}
· to schedule NewSch.

6 Apply the left shift operator to schedule NewSch.

7 // Update sets
· SchedJobs ← SchedJobs ∪ {Jadd}
· CurSch ← NewSch
8 end for

9 return CurSch;
end AKERS_EXT;

Figure 2.5. Pseudo-code for the AKERS_EXT schedule construction procedure.

Initial schedule

1.1: a-2 1.2: b-3

2.1: b-3 2.2: c-2 2.3: a-3

3.1: c-5 3.2: b-2

1.3: c-4

3.3: a-3

4.1: b-2 4.2: a-4 4.3: c-2

2 5 8 10 136 7 0 16 14

2.1: b-3 2.2: c-2 2.3: a-3

3.1: c-5 3.2: b-2 3.3: c-3

3 5 107 0

J1

J2

J3

J4

J2

J3

Schedule after removing jobs J1 and J4 and applying a left shift

a)

b)

13

Figure 2.6. Removal of jobs J1 and J4 and left shifting the resulting scheduling.

where nr ≤ 2. When nr = 2, each job j ∈ J is combined with only nRand jobs, chosen at
random from the set J \{j}. We call this new variant LS1+_AKERS_EXT and its corresponding
pseudo-code is shown in Figure 2.10. Note that the LS1+_AKERS_EXT local search guarantees
that every job j ∈ J is removed from the schedule and is added back. Also, note that when
nRand = 0 we obtain the LS_AKERS_EXT local search for the case where nr = 1. Likewise,
when nRand = n− 1 we obtain the LS_AKERS_EXT local search for the case where nr = 2.

The heuristic AKERS_EXT runs 2 × n × nr times in the LS1+_AKERS_EXT local search
and the complexity of AKERS_EXT is O(nr × n×m× log(n×m)) . Therefore, the complexity
of LS1+_AKERS_EXT is O(n2 ×m× log(n×m)). Since m = O(n), this complexity reduces to
O(n3 × log(n)) .

3. The new heuristic

The new heuristic proposed in this paper is a biased random-key genetic algorithm (BRKGA).
In this section, we �rst brie�y review the BRKGA framework. Then, we describe the encod-
ing/decoding of the chromosome with a schedule generation scheme and an improvement proce-
dure. We �nally describe a chromosome adjustment procedure.

BRKGA FOR JOBSHOP PROBLEM 7

b

J1

a

b

c c

1.1: a-2 1.2: b-3

3.1: c-5 3.2: b-2 3.3: a-3

2 5 7 0

J1

J3

J2 2.1: b-3 2.2: c-2 2.3: a-3

14 3

2.1: b-3 2.2: c-2 2.3: a-3

3.1: c-5 3.2: b-2 3.3: a-3

3 5 107 0

J2

J3

Schedule the corresponding to path

a

13

11

1.3: c-4

6 8 12

a)

b)

c)
1.1: a-2 1.2: b-3

3.1: c-5 3.2: b-2

2 5 7 0

J1

J3

J2 2.1: b-3 2.2: c-2 2.3: a-3

13 3

Schedule after applying left shift

11

1.3: c-4

6 8 10

3.3: a-3

Figure 2.7. Schedule after adding back job J1.

3.1. Biased random-key genetic algorithm. Genetic algorithms with random keys, or random-

key genetic algorithms (RKGA), for solving optimization problems whose solutions can be repre-
sented as permutation vectors were introduced in Bean (1994). In a RKGA, chromosomes are
represented as vectors of randomly generated real numbers in the interval [0, 1]. A deterministic
algorithm, called a decoder, takes as input a solution vector and associates with it a solution of the
combinatorial optimization problem for which an objective value or �tness can be computed.

A RKGA evolves a population, or set, of random-key vectors over a number of iterations, or
generations. The initial population is made up of p vectors, each with o = n ×m random keys.
Each component of the solution vector, or random key, is generated independently at random in
the real interval [0, 1]. After the �tness of each individual is computed by the decoder in generation
k, the population is partitioned into two groups of individuals: a small group of pe elite individuals,
i.e. those with the best �tness values, and the remaining set of p − pe non-elite individuals. To
evolve the population, a new generation of individuals must be produced. All elite individual of the
population of generation g are copied without modi�cation to the population of generation g + 1.
RKGAs implement mutation by introducing mutants into the population. A mutant is simply
a vector of random keys generated in the same way that an element of the initial population is
generated. At each generation, a small number pm of mutants is introduced into the population.
With pe + pm individuals accounted for in population g + 1, p − pe − pm additional individuals
need to be generated to complete the p individuals that make up population g + 1. This is done
by producing p− pe − pm o�spring solutions through the process of mating or crossover.

A biased random-key genetic algorithm, or BRKGA (Gonçalves and Resende, 2011), di�ers from
a RKGA in the way parents are selected for mating. While in the RKGA of Bean (1994) both
parents are selected at random from the entire current population, in a BRKGA each element is
generated combining a parent selected at random from the elite partition in the current popula-
tion and one from the rest of the population. Repetition in the selection of a mate is allowed
and therefore an individual can produce more than one o�spring in the same generation. As in
RKGAs, parameterized uniform crossover (DeJong and Spears, 1991) is used to implement mating
in BRKGAs. Let ρe be the probability that an o�spring inherits the vector component of its elite

BRKGA FOR JOBSHOP PROBLEM 8

b

a

b

c c

J4

c

b

a

1.1: a-2 1.2: b-3

3.1: c-5 3.2: b-2

1.3 c-4

3.3: a-3

2 5 10 7 0

J1

J3

J2 2.1: b-3 2.2: c-2 2.3: a-3

4

4.1: b-2 4.2: a-4 4.3: c-2 J4

13

Schedule corresponding to path

a

1.1: a-2 1.2: b-3

3.1: c-5 3.2: b-2

2 5 70

J1

J3

J2 2.1: b-3 2.3: a-3

13 3 11

1.3: c-4

6 8 10

3.3: a-3

9 8 12 15

1.1: a-2 1.2: b-3

3.1: c-5 3.2: b-2

1.3 c-4

3.3: a-3

2 5 10 7 0

J1

J3

J2 2.1: b-3 2.2: c-2 2.3: a-3

4

4.1: b-2 4.2: a-4 4.3: c-2 J4

11

Schedule after applying left shift

9 8 12 14

2.2: c-2

a)

b)

c)

Figure 2.8. Schedule after adding back jobs J1 and J4.

parent. Recall that o denotes the number of components in the solution vector of an individual.
For i = 1, . . . , o, the i-th component c(i) of the o�spring vector c takes on the value of the i-th
component e(i) of the elite parent e with probability ρe and the value of the i-th component ē(i)
of the non-elite parent ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, �tness values are computed
for all of the newly created random-key vectors and the population is partitioned into elite and
non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem indirectly
by searching the continuous o-dimensional hypercube, using the decoder to map solutions in the
hypercube to solutions in the solution space of the combinatorial optimization problem where the
�tness is evaluated.

To specify a biased random-key genetic algorithm, we simply need to specify how solutions are
encoded and decoded. We specify our algorithm in the next section by �rst showing how schedules
are encoded and then how decoding is done.

We have been building powerful heuristics based on the biased random-key genetic algorithm
framework for over ten years (Gonçalves and Resende, 2011). We have observed that this framework
allows the control and coordination of one or more heuristics enabling us to �nd solutions of much
better quality than those found by the heuristics alone. The BRKGA works as a kind of long-
term memory mechanism that learns how to best control the heuristic as the generations proceed.
For example, in a set covering problem (Resende et al., 2012), the BRKGA controls a greedy
algorithm by "learning" which sets are in a partial cover and only uses the greedy algorithm,
starting from the "learned" partial cover, to complete the cover. In a 2D orthogonal packing
problem (Gonçalves and Resende, 2011) where a number of small rectangles are packed in a large
rectangle with the objective of maximizing the value of the packed rectangles, the BRKGA controls
two simple heuristics (bottom-left and left-bottom) by "learning" the sequence the small rectangles
are packed and which simple heuristic is used to pack each small rectangle. In the case of the job-
shop scheduling problem, we expected that the BRKGA would learn a good order of the operations

BRKGA FOR JOBSHOP PROBLEM 9

Stop

Let RS be the set of all
permutations of nr out of n jobs.

Get Parameters
(CurSch = Current Schedule,

 J = Set of Jobs
nr = Number of jobs to remove)

For all permutations of jobs rs in RS do

 1 – Remove the permutations of jobs rs from

 CurSch and call it RemSch.

2 – Apply a left shift to the remaining jobs in
 RemSch.

3 – Add back the jobs in rs to RemSch
 using the heuristic AKERS_EXT and
 call it NewSch.

4 – If the makespan of NewSch is smaller
 than the one of CurSch make it
 CurSch.

Figure 2.9. Flowchart for the LS_AKERS_EXT local search procedure.

(and subsequent schedule) which could be improved by the local search heuristics employed here.
As we will see in the remainder of this paper, the BRKGA does indeed achieve this goal.

3.2. Solution Encoding. We now describe the chromosome representation, i.e., how solutions to
the problem are represented. The direct mapping of schedules as chromosomes is too complicated
to represent and manipulate. In particular, it is di�cult to develop corresponding crossover and
mutation operations. As is always the case with BRKGAs, solutions (in this case schedules) are
represented indirectly by parameters that are later used by a decoder to extract a solution. In this
BRKGA, a schedule is represented by the following chromosome structure:

chromosome = (gene1, ..., genen1︸ ︷︷ ︸
n1

, genen1+1, ..., genen1+n2︸ ︷︷ ︸
n2

, ... , geneo−nn+1, ..., geneo︸ ︷︷ ︸
nn

)

where nj represents the number of operations of job j = 1, ..., n. Each gene is a randomly generated
real number in the interval [0, 1]. The value of each gene is used in the decoding procedure described
in the next subsection.

3.3. Decoding a random-key vector into a job-shop schedule. The decoding process of a
chromosome into a schedule consists of three steps: initial schedule generation; local search with
tabu search; and chromosome adjustment. We next describe each of these components. Figure 3.1
illustrates the sequence of steps applied to each chromosome in the decoding process.

3.3.1. Initial schedule generation. An initial schedule is decoded from a chromosome with the
following two steps:

BRKGA FOR JOBSHOP PROBLEM 10

procedure LS1+_AKERS_EXT (CurSch, J , nRand)
1 for j = 1 to n do
2 Choose randomly nRand jobs from the set J \ {j}
· and assign them to set RandJobs;

3 if nRand > 0 then
4 Let RS be the set of all ordered combinations of two
· jobs where one job is j and the other belongs
· to the set RandJobs;
· else

5 Let RS be {j};
· end if

6 for all rs ∈ RS do
// Update set of scheduled jobs

7 SchedJobs ← J \ rs;

// Remove the jobs in rs and apply a left shift
8 Let RemSch be the schedule of all the jobs
· j ∈ SchedJobs obtained after removing from schedule
· CurSch all the jobs j ∈ rs and applying a left shift;

// Add back the jobs in the order given by rs
9 NewSch← AKERS_EXT(RemSch, SchedJobs, rs);

// If makespan is reduced update current schedule
10 if makespan(NewSch) <makespan(CurSch) then
11 CurSch← NewSch;
12 end if

13 end for

14 end for

15 return CurSch;
end LS1+_AKERS_EXT;

Figure 2.10. Pseudo-code for the LS1+_AKERS_EXT local search procedure.

(1) Translate the chromosome into a list of ordered operations;
(2) Generate the schedule with a one-pass heuristic based on the list obtained in (1).

To translate the chromosome, we use an operation-based representation where a schedule is
represented by an unpartitioned permutation with nj repetitions of each job j (Gen et al., 1994,
Bierwirth, 1995, Cheng et al., 1996, Shi et al., 1996). Because of the precedence constraints, each
repeating gene does not indicate a concrete operation of a job but refers to a unique operation
which is context-dependent. To illustrate the translation process we will use the example in
Table 1. The process starts by �lling an unordered vector of jobs with the number of each job
repeated nj times (see Figure 3.2a). Next, the vector is ordered according to the values of the
corresponding genes in the chromosome (see Figure 3.2b). Finally, the list of ordered operations
is obtained by replacing, from left to right, each kth job number occurrence in the ordered vector
of jobs by the kth operation in the technological sequence of the job (see Figure 3.2c).

Once a list of ordered operations is obtained, a schedule is constructed by initially scheduling
the �rst operation in the list, then the second operation, and so on. Each operation is assigned
to the earliest feasible starting time in the machine it requires. The process is repeated until
all operations are scheduled (see Figure 3.3 for the �nal schedule corresponding to the ordered
operation list in Figure 3.1c). Note that the schedules generated by this process are guaranteed

BRKGA FOR JOBSHOP PROBLEM 11

Construct an initial active schedule using
the priorities supplied by the chromosome

Initial Schedule Generation

Phase

Feedback of the Quality of the Chromosome
(Makespan)

Chromosome

B
ia

se
d

R
an

do
m

-K
ey

 G
en

et
ic

 A
lg

or
ith

m

Use new local search / tabu
 to improve schedule Schedule Improvement

Chromosome Adjustment Adjust of genes to
reflect improved schedule

Figure 3.1. Sequence of steps applied to each chromosome in the decoding process.

4

0.35

1

0.78

4

0.87

2

0.49

3

0.02

3

0.17

1

0.93

2

0.07

Unsorted genes

Ordered jobs

Sorted genes

2 2 2 Unordered jobs 3 3

0.67 0.78 0.49 0.07 0.35 0.87 0.17 0.02 0.93

a) n2=3 n3=3

3

4

0.67

Ordered operations

b)

c)

1 1 1

n1=3

2 2 2 3 3 3 1 1 1 Unordered jobs

O4,1 O1,1 O4,3 O2,2 O3,1 O3,2 O1,2 O2,1 O4,2

1

0.25

2

0.52

3

0.42

4 4

0.25 0.52 0.42

n4=3

4

4 4 4

O1,3 O2,3 O3,3

Figure 3.2. Translating a chromosome into a list of ordered operations.

to be active schedules. An active schedule is one where no activity can be started earlier without
changing the start times of any other activity and still maintain feasibility (Schrage, 1970).

1.1: a-2

1.2: b-3 2.1: b-3

2.2: c-2 3.1: c-5

3.2: b-2

1.3: c-4 3.3: c-3

4.1: b-2

4.2: a-4

4.3: c-2

2 5 3 10 13 7 0 17 9

a

b

c

12 11

2.3: a-3

Figure 3.3. Initial active schedule obtained from the list of ordered operations.

BRKGA FOR JOBSHOP PROBLEM 12

3.3.2. Local search with tabu search. After an initial schedule using the random keys provided by
the BRKGA is obtained and the decoding procedure described in the previous section is carried out,
we proceed by trying to improve the schedule with a new hybrid local search that we developed.
This new local search, denoted by NEW_LS, combines the LS1+_AKERS_EXT local search
(introduced in Section 2.3) with a tabu search procedure that uses the neighborhood structure
proposed by Nowicki and Smutnicki (1996) and will be denoted as TS_NS. The neighborhood of
Nowicki and Smutnicki randomly selects a critical path in the current schedule and identi�es all of
its critical blocks (sequences of contiguous operations on the same machine). Then, it considers for
exchange only the �rst two and the last two operations in every block (the �rst two and last two
operations in the critical path are excluded). To select a move, we must �rst evaluate the makespan
of every move in the neighborhood. Since the exact evaluation of a move is time consuming, we use
the fast approximate method of Taillard (1994) in place of the exact evaluation. The move with
the smallest approximate makespan is selected and applied. We then compute the exact makespan.
To do that, we use the topological order and the e�cient updating procedures for heads and tails
of Nowicki and Smutnicki (2005).

The TS_NS tabu search is embedded into the LS1+_AKERS_EXT local search between lines 9
and 10 of its pseudo-code.

The tabu list, TL, consists of maxT operation pairs that have been exchanged in the last maxT
moves of the tabu search. If the move corresponding to the exchange of the operations in pair
{ou, ov} has been performed, its inverse pair {ov, ou} replaces the oldest move in TL (or is added
to the end of the list TL if it is not full). This process prevents the exchange of the same operations
for the next maxT moves.

The pseudo-code for the TS_NS hybrid local search procedure is depicted in Figure 4.1.

3.3.3. Chromosome Adjustment. Solutions produced by the hybrid local search procedure NEW_LS
usually disagree with the genes initially supplied to the decoder in the vector of random keys.
Changes in the order of the operations made by the local search phase of the decoder need to
be taken into account in the chromosome. The heuristic adjusts the chromosome to re�ect these
changes. To make the chromosome supplied by the GA agree with the solution produced by local
search, the heuristic adjusts the order of the genes according to the starting times of the operations.
This chromosome adjustment not only improves the quality of the solutions but also reduces the
number of generations needed to obtain the best values.

3.4. Fitness measure. A natural �tness function (measure of quality) for this type of problem
is Cmax. However, since di�erent schedules can have the same makespan, this measure does
not di�erentiate well the potential for improvement of schedules having identical makespans. To
better di�erentiate the potential for improvement we use a measure called modi�ed makespan that
is detailed in Mendes et al. (2009) and Gonçalves et al. (2010). The modi�ed makespan combines
the makespan of the schedule with a measure of the potential for improvement of the schedule
which has values in the interval]0, 1[. The rationale for this new measure is that if we have two
schedules with the same makespan value, then the one with a smaller number of activities ending
close to the makespan will have more potential for improvement.

4. Experimental results

We next report results obtained on a set of experiments conducted to evaluate the performance of
BRKGA-JSP, the algorithm proposed in this paper. BRKGA-JSP was implemented in C++ and
all the computational experiments were carried out on a computer with an AMD 2.2 GHz Opteron
(2427) CPU running the Linux (Fedora release 12) operating system. We list the benchmark
instances and algorithms used in the experiments, specify the parameter con�guration used in the
experiments, and present the results.

BRKGA FOR JOBSHOP PROBLEM 13

procedure TS_NS (CurSch)
1 Let BestSch be the best schedule found in the procedure;
2 Let nNIM be the number of non improving moves;
3 Let TL be a tabu list with length maxT ;
4 Let maxNIM be the maximum number allowed of consecutive
· non improving moves;
5 nNIM ← 0;
6 BestSch← CurSch;
7 Continue← TRUE; // used to stop while loop;
8 while (nNIM ≤ maxNIM and Continue) do

9 Let CP be a critical path in the current schedule CurSch;
· Let NS be the set operations pairs generated by the neighborhood of
· Nowicki and Smutnicki when applied to critical path CP .
10 Evaluate the makespan corresponding to each move in NS using
· the approximate method of Taillard (1994);

11 Let DS be the set operations pairs in NS which correspond to
· moves that decrease the makespan
12 Let IS be the set operations pairs in NS \ TL which correspond to
· moves that increase the makespan;

13 if (DS = {∅} and IS = {∅}) then
14 Continue← FALSE; // stop search;
15 else

16 if DS 6= {∅} then;
17 Let {ou, ov} be the operation pair in DS that decreases the
· most the makespan;
18 else

19 Let {ou, ov} be the operation pair in IS that increases the
· least the makespan;
20 end if

21 Exchange operations in {ou, ov} and update the schedule
· and its makespan using the exact procedures from
· Nowicki and Smutnicki (2005). Denote the resulting
· schedule as NewSch;

22 Update TL with the operation pair {ov, ou};

23 if makespan(NewSch) <makespan(BestSch) then
24 BestSch← NewSch;
25 nNIM ← 0;
26 else

27 nNIM ← nNIM + 1;
28 end if

29 CurSch← NewSch;
30 end if

31 end while

32 return BestSch;
end TS_NS;

Figure 4.1. Pseudo-code for the TS_NS tabu search procedure.

BRKGA FOR JOBSHOP PROBLEM 14

4.1. Benchmark instances and algorithms. To illustrate the e�ectiveness of BRKGA-JSP, we
consider the following well-known problem classes from the job-shop scheduling literature :

• FT � three problems denoted as (FT06, FT10 and FT20) due to Fisher and Thompson
(1963);

• LA � 40 problems denoted as (LA01 � LA40) due to Lawrence (1984);
• ABZ � three problems denoted as (ABZ07 � ABZ09) due to Adams et al. (1988)
• ORB � 10 problems denoted as (ORB01 � ORB10) due to Applegate and Cook (1991);
• YN � four problems denoted as (YN01 � YN04) due to Yamada and Nakano (1992)
• SWV � 15 problems denoted as (SWV01 � SWV15) due to Storer et al. (1992)
• TA � 50 problems denoted as (TA01 � TA50) due to Taillard (1994). Instances TA51�80
are commonly considered easy and the corresponding results are not usually reported.
Since BRKGA-JSP obtained the optimal solutions to all these instances, we will focus our
attention only on the instances TA01�50 which are more di�cult.

• DMU � 80 problems denoted as (DMU01 � DMU80) due to Demirkol et al. (1997).

We compare our results with those obtained by the currently best performing approaches found in
the literature, namely:

• i -TSAB (Nowicki and Smutnicki, 2005);
• GES (Pardalos and Shylo, 2006);
• TS (Zhang et al., 2007);
• TS/SA (Zhang et al., 2008);
• AlgFix (Pardalos et al., 2010).

4.2. Con�guration. All the computational experiments were conducted using the same con�gu-
ration parameters shown in Table 2.

Table 2. Con�guration parameters.

Parameter Value

BRKGA
p max (150, d0.5× oe)
pe 10
pm 10
ρe 0.85
Fitness Modi�ed makespan (to minimize)
Stopping Criterion 20 generations

LS1+_AKERS_EXT
nRand max (4, min (d0.3× ne , 12))

TS_NS
maxNIM 100
maxT max (4, d0.3× ne)

Number of runs 10
dxe denotes the smallest integer greater than x

4.3. Results. To compare with other approaches we use the following measures:

%RE = the % relative error of a solution with makespan Cmax with respect to
the best-known upper bound (UB), i.e.,
%RE = 100% × (Cmax − UB) /UB.

%ARE = average %RE over all instances.

BRKGA FOR JOBSHOP PROBLEM 15

Because some of the literature describing other approaches with which we compare our heuristic
do not report detailed results for each instance or report results relative to best known values
that are not reported, we only compute %ARE for BRKGA-JSP using those instances reported in
detail in the literature. The values for which there are no detailed information are left blank in our
tables. For all instances we provide its lower bound (LB) and and best known value (UB) (when
LB=UB the best known value is optimal). The updated values of LB and UB were obtained from
the following papers: Taillard (1994), Balas and Vazacopoulos (1998), Wennink (1995), Nowicki
and Smutnicki (1996), Vaessens et al. (1996), Demirkol et al. (1997), Jain (1998), Brinkkötter and
Brucker (2001), Schilham. (2001), Henning (2002), Nowicki and Smutnicki (2002), Pardalos and
Shylo (2006), Zhang et al. (2008), Pardalos et al. (2010) and the URLs: http://mistic.heig-vd.
ch/taillard/problemes.dir/ordonnancement.dir/jobshop.dir/best_lb_up.txt,

http://plaza.ufl.edu/shylo/TA.html, and http://plaza.ufl.edu/shylo/DMU.html.

The detailed experimental results obtained for the problem classes FT, ORB, LA, ABZ, YN,
TA, and DMU are presented in Tables 7 to 15 in the appendix. Note that since not all the other
approaches report results for the same set of instances, we have to use two rows with labels %ARE
and BRKGA-JSP %ARE at the bottom of some tables to aggregate the average %RE over all
instances being compared.

Optimal solutions for all the instances in problem classes FT, ORB, and LA are known. For
problem classes FT and ORB, the approaches BRKGA-JSP, GES, TS, and TS/SA obtained optimal
solutions on all instances. For problem class LA, the approach GES obtained the optimal solutions
on all instances, while BRKGA-JSP failed to do so on instance LA29 where it obtained a value of
1153 instead of 1152. Approaches TS and TS/SA failed to �nd optimal values for instances LA29
and LA40. Problem classes ABZ, YN, TA, and DMU include some hard instances for which no
optimal solution is known. BRKGA-JSP obtained the best %ARE results for these classes with the
exception of problem class SWV where the TS approach, which only presents values for instances
SWV11-15, obtained a single better result (for instance SWV15). BRKGA-JSP improved the best
known values (UB) for 57 instances (42 on the DMU class, nine on the TA class, one on the YN
class, and �ve on the SWV class). Table 3 presents a summary of the %ARE obtained by each
approach for each problem class (note that since not all the other approaches use the same set of
instances we have to use two rows for each class of problems - the row that starts with �other�
presents the results obtained by the other approaches and the row starting with BRKGA-JSP
present the results for the corresponding instance obtained by our algorithm).

Table 3. Summary of %ARE obtained by each approach for each instance class.

Class Approach GES TS TS/SA AlgFix i-TSAB

FT Other 0 0

BRKGA-JSP 0 0

ORB Other 0 0

BRKGA-JSP 0 0

LA Other 0.000 0.046 0.023
BRKGA-JSP 0.002 0.008 0.008

ABZ Other 0.350 0.202
BRKGA-JSP 0.100 0.100

YN Other 0.026
BRKGA-JSP -0.083

SWV01-10 Other 0.007
BRKGA-JSP -0.015

SWV11-15 Other 0.000

BRKGA-JSP 0.010

TA Other 0.194 0.119 0.518 0.194
BRKGA-JSP -0.023 -0.023 -0.023 -0.043

DMU Other 0.629 0.162 0.424 1.150
BRKGA-JSP -0.104 -0.155 -0.104 -0.138

Best values of %ARE are in bold.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/jobshop.dir/best_lb_up.txt
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/jobshop.dir/best_lb_up.txt
http://plaza.ufl.edu/shylo/TA.html
http://plaza.ufl.edu/shylo/DMU.html

BRKGA FOR JOBSHOP PROBLEM 16

To investigate the contribution of each of the components included in BRKGA-JSP (Genetic
Algorithm, Tabu Search, LS1+_AKERS_EXT, and Chromosome Adjustment) we conducted the ad-
ditional experiments using the components described in Table 4.

Table 4. Description of additional experiments.
Experiment Description

GA Run BRKGA alone, using chromosome adjustment.

GA-TS Run BRKGA with Tabu Search and chromosome adjustment.

GA-AK
Run BRKGA with the LS1+_AKERS_EXT search and chromosome
adjustment.

GA-AKTS
Run BRKGA with both LS1+_AKERS_EXT search and Tabu
Search, but without chromosome adjustment.

Table 5 lists, for each problem class, %GA, %GA-TS, % GA-AK, and %GA-AKTS, the average
% increase in makespan for GA, GA-TS, GA-AK, and GA-AKTS, respectively, with respect to the
average makespans of the solutions obtained by BRKGA-JSP.

Table 5. % increase in makespan with respect to full algorithm for each experi-
ment on all instance classes.

Class n × m % GA % GA-TS % GA-AK % GA-AKTS

FT06 6 Ö 6 0.0% 0.0% 0.0% 0.0%
FT10 10 Ö 10 5.9% 0.0% 0.9% 0.0%
FT20 20 Ö 5 6.8% 0.7% 0.0% 0.0%
ORB01-10 10 Ö 10 7.0% 0.6% 0.3% 0.0%
LA01-05 10 Ö 5 0.9% 0.0% 0.0% 0.0%
LA06-10 15 Ö 5 0.0% 0.0% 0.0% 0.0%
LA11-15 20 Ö 5 0.0% 0.0% 0.0% 0.0%
LA16-20 10 Ö 10 2.2% 0.1% 0.1% 0.0%
LA21-25 15 Ö 10 7.0% 0.3% 1.1% 0.0%
LA26-30 20 Ö 10 7.6% 0.9% 1.4% 0.2%
LA31-35 30 Ö 10 0.2% 0.0% 0.0% 0.0%
LA36-40 15 Ö 15 11.2% 1.3% 1.6% 0.0%
ABZ07-09 20 Ö 15 14.7% 2.3% 3.1% 0.3%
YN01-04 20 Ö 20 13.6% 1.8% 3.6% 0.5%
SWV01-05 20 Ö 10 19.9% 6.3% 3.8% 0.6%
SWV06-10 20 Ö 15 22.9% 6.9% 6.6% 1.5%
SWV11-15 50 Ö 10 28.8% 10.9% 7.2% 0.6%
TA01-10 15 Ö 15 10.3% 0.8% 1.3% 0.0%
TA11-20 20 Ö 15 14.6% 2.7% 3.8% 0.5%
TA21-30 20 Ö 20 14.9% 1.9% 4.4% 0.5%
TA31-40 30 Ö 15 15.0% 2.4% 6.6% 0.6%
TA41-50 30 Ö 20 20.7% 4.0% 9.3% 1.4%
DMU01-05 20 Ö 15 17.6% 1.8% 3.6% 0.4%
DMU06-10 20 Ö 20 17.3% 1.9% 3.7% 0.3%
DMU11-15 30 Ö 15 16.4% 2.7% 6.9% 0.5%
DMU16-20 30 Ö 20 18.6% 3.0% 8.7% 0.7%
DMU21-25 40 Ö 15 7.8% 0.0% 2.3% 0.0%
DMU26-30 40 Ö 20 16.8% 2.2% 8.0% 0.3%
DMU31-35 50 Ö 15 3.7% 0.0% 1.2% 0.0%
DMU36-40 50 Ö 20 14.3% 1.0% 6.1% 0.0%
DMU41-45 20 Ö 15 22.8% 7.2% 6.4% 1.5%
DMU46-50 20 Ö 20 22.3% 5.9% 7.9% 1.4%
DMU51-55 30 Ö 15 28.8% 10.1% 9.5% 2.1%
DMU56-60 30 Ö 20 28.7% 11.4% 11.7% 3.0%
DMU61-65 40 Ö 15 31.5% 13.8% 11.1% 0.2%
DMU66-70 40 Ö 20 32.1% 13.3% 13.5% 0.1%
DMU71-75 50 Ö 15 33.1% 15.3% 12.5% 0.1%
DMU76-80 50 Ö 20 35.0% 17.7% 14.2% 0.1%

Overall average = 15.0% 4.0% 4.8% 0.5%

From Table 5 it is clear that the BRKGA alone does not perform well since it produces an overall
average makespan increase of 15% with respect to the full algorithm. The combinations of the
BRKGA with the tabu search (GA-TS) and with the LS1+_AKERS_EXT (GA-AK) produce better

BRKGA FOR JOBSHOP PROBLEM 17

results. Nevertheless, they are 4% and 4.8%, respectively, above the ones produced by BRKGA-
JSP. Combining the BRKGA with both the LS1+_AKERS_EXT search and the tabu search into GA-
AKTS results in the best makespans of the four, with only an average makespan increase of 0.5%
with respect to the solutions found by BRKGA-JSP. This shows that the addition of chromosome
adjustment, used in the full algorithm (BRKGA-JSP), is consequential since it contributes to an
additional average makespan reduction of 0.5%. It also clear that the good performance of the
algorithm results mainly from the combination of the two local searches LS1+_AKERS_EXT and TS.

In terms of computational times, we cannot make any fair and meaningful comment since all the
other approaches were implemented with di�erent programming languages and tested on computers
with di�erent computing power. Hence, to avoid discussion about the di�erent computers speed
used in the tests, we limit ourselves to reporting in Table 6 the average running times per run
for BRKGA-JSP, while for each of the other algorithms we only report, when available, the CPU
used and the reported running times. We pro�led our runs and also include the percentage of the
total time that was spent on each of the algorithm components of BRKGA-JSP (%GA � genetic
algorithm, %TS � tabu search, and %AK � LS1+_AKERS_EXT search). It is clear from Table 6 that
BRKGA-JSP spends most of its time in the LS1+_AKERS_EXT search.

Table 6. Average running times for BRKGA-JSP.

BRKGA-JSP i-TSAB TS TS/SA AlgFix GES

Class n × m % GA % TS % AK Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

FT06 6 Ö 6 12.50% 25.00% 62.50% 1.0
FT10 10 Ö 10 4.44% 6.67% 88.89% 10.1 41.1 3.8
FT20 20 Ö 5 1.75% 1.75% 96.49% 13.4
ORB01-10 10 Ö 10 1.73% 2.80% 95.47% 5.8 6.2
LA01-05 10 Ö 5 7.04% 10.80% 82.15% 1.4 0.0
LA06-10 15 Ö 5 3.34% 3.92% 92.74% 2.9
LA11-15 20 Ö 5 1.86% 1.93% 96.21% 5.3
LA16-20 10 Ö 10 5.92% 7.92% 86.16% 4.6 0.2
LA21-25 15 Ö 10 1.93% 3.17% 94.90% 15.3 13.6
LA26-30 20 Ö 10 0.95% 1.51% 97.54% 21.8 15.2
LA31-35 30 Ö 10 0.31% 0.49% 99.21% 38.7
LA36-40 15 Ö 15 1.73% 2.81% 95.46% 21.4 36.1
ABZ07-09 20 Ö 15 1.17% 1.76% 97.07% 54.6 88.9
YN01-04 20 Ö 20 0.90% 2.01% 97.10% 105.2 109.1
SWV01-05 20 Ö 10 0.71% 1.52% 97.78% 42.5 138.3
SWV06-10 20 Ö 15 0.76% 1.46% 97.79% 78.7 190.2
SWV11-15 50 Ö 10 0.69% 1.87% 97.44% 2304.4 3118.2
TA01-10 15 Ö 15 0.48% 1.17% 98.35% 30.4 79 65.3 10000 30000
TA11-20 20 Ö 15 0.18% 0.61% 99.21% 65.8 390 235 10000 30000
TA21-30 20 Ö 20 2.48% 3.93% 93.59% 143.2 1265 433 10000 30000
TA31-40 30 Ö 15 3.12% 3.92% 92.96% 487.6 1225 370.4 10000 30000
TA41-50 30 Ö 20 0.31% 0.69% 99.01% 1068.3 1670 845.8 10000 30000
DMU01-05 20 Ö 15 1.04% 1.51% 97.45% 68.9 10000 30000
DMU06-10 20 Ö 20 0.92% 1.78% 97.31% 145.4 10000 30000
DMU11-15 30 Ö 15 0.25% 0.51% 99.25% 427.3 10000 30000
DMU16-20 30 Ö 20 0.21% 0.72% 99.07% 1043.6 10000 30000
DMU21-25 40 Ö 15 0.09% 0.28% 99.64% 1150.6 10000 30000
DMU26-30 40 Ö 20 0.08% 0.37% 99.55% 3556.3 10000 30000
DMU31-35 50 Ö 15 0.08% 0.18% 99.74% 2086.7 10000 30000
DMU36-40 50 Ö 20 0.05% 0.24% 99.71% 9368.3 10000 30000
DMU41-45 20 Ö 15 0.56% 1.21% 98.23% 78.9 10000 30000
DMU46-50 20 Ö 20 0.52% 1.42% 98.06% 187.7 10000 30000
DMU51-55 30 Ö 15 0.16% 0.49% 99.35% 701.4 10000 30000
DMU56-60 30 Ö 20 0.14% 0.63% 99.23% 1545.8 10000 30000
DMU61-65 40 Ö 15 0.07% 0.28% 99.65% 2684.3 10000 30000
DMU66-70 40 Ö 20 0.07% 0.39% 99.54% 5394.2 10000 30000
DMU71-75 50 Ö 15 0.04% 0.21% 99.74% 8070.1 10000 30000
DMU76-80 50 Ö 20 0.04% 0.27% 99.69% 15923.4 10000 30000

Note. i-TSAB was run on a Pentium at 900 MHz, TS was run on a Pentium IV at 1.8 GHz,
TS/SA was run on a Pentium IV at 3.0 GHz and
AlgFix and GES were run on a Pentium at 2.8 GHz.

5. Concluding remarks

This paper proposes a new heuristic for the job-shop scheduling problem. The heuristic is based
on a biased random-key genetic algorithm (BRKGA) which uses a decoder with three phases. The

BRKGA FOR JOBSHOP PROBLEM 18

initial phase uses a procedure that takes the chromosome and produces an active schedule. This
is followed by a second phase which takes the active schedule and attempts to improve it with a
local search that moves back and forth between two neighborhoods, one based on an extension
of the graphical method of Akers (1956) and the other on the well-known tabu search based
local improvement procedure of Nowicki and Smutnicki (1996). Finally, in the last phase, the
chromosome is adjusted to re�ect the solution found by the previous phases.

Computational experiments compared several con�gurations of the heuristic (phase 1 only,
phases 1 and 2, and all three phases) and showed that the best results are achieved combining
the BRKGA with the three phases (BRKGA-JSP) with phase 2 having the greatest contribution
to makespan reduction.

The approach was tested on a set of 205 standard instances from the literature and compared
with other approaches. Of the 205 instances, 103 were open, i.e. had best known solutions not yet
proven optimal. Of these 103 instances, our new heuristic improved the best known values for 57
of them. We improved the best known solution for one of four open instances in class YN (Yamada
and Nakano, 1992), �ve of nine open instances in class SWV (Storer et al., 1992), nine of 32 open
instances in class TA (Taillard, 1994), and 42 of 56 open instances in class DMU (Demirkol et al.,
1997). For instance DMU18, one of the instances in class DMU, our new heuristic found a solution
of value 3844, matching its previously best known lower bound and thus establishing, for the �rst
time, optimality for this instance.

Compared to results reported in the literature for other algorithms, BRKGA-JSP found the
best average solutions for seven of nine problem classes, as shown in Table 3. In classes LA and
SWV11-15, the two classes for which BRKGA-JSP was not the best, it was second best with average
solutions only 0.002% and 0.01%, respectively, above those of the winner.

6. Appendix

Table 7. Makespan and average percent deviation from best upper bound for
problem class FT.

BRKGA-JSP TS/SA TS

Prob n × m Opt. max avg min min min

FT06 6 Ö 6 55 55 55 55
FT10 10 Ö 10 930 930 930 930 930 930
FT20 20 Ö 5 1165 1165 1165 1165

%ARE = 0 0 0

BRKGA FOR JOBSHOP PROBLEM 19

Table 8. Makespan and average percent deviation from best upper bound for
problem class LA.

BRKGA-JSP GES TS/SA TS

Prob n × m Opt. max avg min min min min

LA01 10 Ö 5 666 666 666 666 666
LA02 10 Ö 5 655 655 655 655 655
LA03 10 Ö 5 597 597 597 597 597
LA04 10 Ö 5 590 590 590 590 590
LA05 10 Ö 5 593 593 593 593 593
LA06 15 Ö 5 926 926 926 926 926
LA07 15 Ö 5 890 890 890 890 890
LA08 15 Ö 5 863 863 863 863 863
LA09 15 Ö 5 951 951 951 951 951
LA10 15 Ö 5 958 958 958 958 958
LA11 20 Ö 5 1222 1222 1222 1222 1222
LA12 20 Ö 5 1039 1039 1039 1039 1039
LA13 20 Ö 5 1150 1150 1150 1150 1150
LA14 20 Ö 5 1292 1292 1292 1292 1292
LA15 20 Ö 5 1207 1207 1207 1207 1207
LA16 10 Ö 10 945 945 945 945 945
LA17 10 Ö 10 784 784 784 784 784
LA18 10 Ö 10 848 848 848 848 848
LA19 10 Ö 10 842 842 842 842 842 842 842
LA20 10 Ö 10 902 902 902 902 902
LA21 15 Ö 10 1046 1046 1046 1046 1046 1046 1046
LA22 15 Ö 10 927 927 927 927 927
LA23 15 Ö 10 1032 1032 1032 1032 1032
LA24 15 Ö 10 935 935 935 935 935 935 935
LA25 15 Ö 10 977 977 977 977 977 977 977
LA26 20 Ö 10 1218 1218 1218 1218 1218
LA27 20 Ö 10 1235 1235 1235 1235 1235 1235 1235
LA28 20 Ö 10 1216 1216 1216 1216 1216
LA29 20 Ö 10 1152 1160 1154.7 1153 1152 1153 1156
LA30 20 Ö 10 1355 1355 1355 1355 1355
LA31 30 Ö 10 1784 1784 1784 1784 1784
LA32 30 Ö 10 1850 1850 1850 1850 1850
LA33 30 Ö 10 1719 1719 1719 1719 1719
LA34 30 Ö 10 1721 1721 1721 1721 1721
LA35 30 Ö 10 1888 1888 1888 1888 1888
LA36 15 Ö 15 1268 1268 1268 1268 1268 1268 1268
LA37 15 Ö 15 1397 1397 1397 1397 1397 1397 1397
LA38 15 Ö 15 1196 1196 1196 1196 1196 1196 1196
LA39 15 Ö 15 1233 1233 1233 1233 1233 1233 1233
LA40 15 Ö 15 1222 1226 1223.2 1222 1222 1224 1224

%ARE = 0.000 0.023 0.046
BRKGA-JSP %ARE = 0.002 0.008 0.008

Table 9. Makespan and average percent deviation from best upper bound for
problem class ORB.

BRKGA-JSP TS/SA GES

Prob n m Opt. max avg min min min

ORB01 10 10 1059 1059 1059 1059 1059 1059
ORB02 10 10 888 888 888 888 888 888
ORB03 10 10 1005 1005 1005 1005 1005 1005
ORB04 10 10 1005 1011 1006.2 1005 1005 1005
ORB05 10 10 887 887 887 887 887 887
ORB06 10 10 1010 1010 1010 1010 1010 1010
ORB07 10 10 397 397 397 397 397 397
ORB08 10 10 899 899 899 899 899 899
ORB09 10 10 934 934 934 934 934 934
ORB10 10 10 944 944 944 944 944 944

%ARE = 0 0 0

BRKGA FOR JOBSHOP PROBLEM 20

Table 10. Makespan and average percent deviation from best upper bound for
problem class ABZ.

BRKGA-JSP TS/SA TS

Prob n × m LB UB max avg min min min

ABZ07 20 Ö 15 656 656 661 658 656 658 657
ABZ08 20 Ö 15 645 665 668 667.7 667 667 669
ABZ09 20 Ö 15 661 678 681 678.9 678 678 680

%ARE = 0.100 0.202 0.350

Table 11. Makespan and average percent deviation from best upper bound for
problem class YN.

BRKGA-JSP TS/SA

Prob n × m LB UB max avg min min

YN01 20 Ö 20 826 884 889 886 884 884
YN02 20 Ö 20 861 907 909 906.5 904 907
YN03 20 Ö 20 827 892 895 893.1 892 892
YN04 20 Ö 20 918 968 979 973 968 969

%ARE = -0.083 0.026

Newly found upper bounds by BRKGA-JSP are in bold.

Table 12. Makespan and average percent deviation from best upper bound for
problem class SWV.

BRKGA-JSP TS/SA TS

Prob n × m LB UB max avg min min min

SWV01 20 Ö 10 1407 1407 1413 1408.9 1407 1412
SWV02 20 Ö 10 1475 1475 1490 1478.2 1475 1475
SWV03 20 Ö 10 1369 1398 1404 1400 1398 1398
SWV04 20 Ö 10 1450 1470 1478 1472.8 1470 1470
SWV05 20 Ö 10 1424 1424 1441 1431.4 1425 1425
SWV06 20 Ö 15 1591 1678 1694 1682.1 1675 1679
SWV07 20 Ö 15 1446 1600 1609 1601.2 1594 1603
SWV08 20 Ö 15 1640 1756 1770 1764.3 1755 1756
SWV09 20 Ö 15 1604 1661 1675 1667.9 1656 1661
SWV10 20 Ö 15 1631 1754 1772 1754.6 1743 1754
SWV11 50 Ö 10 2983 2983 2989 2985.9 2983 2983
SWV12 50 Ö 10 2972 2979 2994 2989.7 2979 2979
SWV13 50 Ö 10 3104 3104 3140 3111.6 3104 3104
SWV14 50 Ö 10 2968 2968 2968 2968 2968 2968
SWV15 50 Ö 10 2885 2886 2904 2902.9 2901 2886

%ARE = 0.007 0.000
BRKGA-JSP %ARE = -0.015 0.010

Newly found upper bounds by BRKGA-JSP are in bold.

BRKGA FOR JOBSHOP PROBLEM 21

Table 13. Makespan and average percent deviation from best upper bound for
problem class TA.

BRKGA-JSP GES AlgFix i-TSAB TS/SA

Prob n × m LB UB max avg min min min min min

TA01 15 Ö 15 1231 1231 1231 1231 1231 1231 1231 1231
TA02 15 Ö 15 1244 1244 1244 1244 1244 1244 1244 1244
TA03 15 Ö 15 1218 1218 1218 1218 1218 1218 1218 1218
TA04 15 Ö 15 1175 1175 1175 1175 1175 1175 1175 1175
TA05 15 Ö 15 1224 1224 1227 1224.9 1224 1224 1224 1224
TA06 15 Ö 15 1238 1238 1240 1238.9 1238 1238 1238 1238
TA07 15 Ö 15 1227 1227 1228 1228 1228 1228 1228 1228
TA08 15 Ö 15 1217 1217 1217 1217 1217 1217 1217 1217
TA09 15 Ö 15 1274 1274 1280 1277 1274 1274 1274 1274
TA10 15 Ö 15 1241 1241 1241 1241 1241 1241 1241 1241
TA11 20 Ö 15 1323 1357 1365 1360 1357 1357 1358 1361 1359
TA12 20 Ö 15 1351 1367 1376 1372.6 1367 1367 1367 1371
TA13 20 Ö 15 1282 1342 1351 1347.3 1344 1344 1342 1342
TA14 20 Ö 15 1345 1345 1345 1345 1345 1345 1345 1345
TA15 20 Ö 15 1304 1339 1360 1348.9 1339 1339 1339 1339
TA16 20 Ö 15 1302 1360 1371 1362.1 1360 1360 1360 1360
TA17 20 Ö 15 1462 1462 1478 1470.5 1462 1469 1473 1462 1464
TA18 20 Ö 15 1369 1396 1407 1400.9 1396 1401 1396 1399
TA19 20 Ö 15 1297 1332 1338 1333.2 1332 1332 1332 1335 1335
TA20 20 Ö 15 1318 1348 1357 1350.4 1348 1348 1348 1351 1350
TA21 20 Ö 20 1539 1643 1650 1647 1642 1647 1643 1644 1644
TA22 20 Ö 20 1511 1600 1600 1600 1600 1602 1600 1600 1600
TA23 20 Ö 20 1472 1557 1570 1562.6 1557 1558 1557 1557 1560
TA24 20 Ö 20 1602 1646 1654 1650.6 1646 1653 1646 1647 1646
TA25 20 Ö 20 1504 1595 1611 1602 1595 1596 1595 1595 1597
TA26 20 Ö 20 1539 1645 1658 1652.3 1643 1647 1647 1645 1647
TA27 20 Ö 20 1616 1680 1689 1685.6 1680 1685 1686 1680 1680
TA28 20 Ö 20 1591 1603 1617 1611.7 1603 1614 1613 1614 1603
TA29 20 Ö 20 1514 1625 1629 1627.4 1625 1625 1625 1627
TA30 20 Ö 20 1473 1584 1598 1588.5 1584 1584 1584 1584 1584
TA31 30 Ö 15 1764 1764 1766 1764.4 1764 1764 1766 1764
TA32 30 Ö 15 1774 1790 1801 1794.1 1785 1793 1790 1795
TA33 30 Ö 15 1778 1791 1799 1793.7 1791 1799 1791 1793 1796
TA34 30 Ö 15 1828 1829 1834 1832.1 1829 1832 1832 1829 1831
TA35 30 Ö 15 2007 2007 2007 2007 2007 2007 2007 2007
TA36 30 Ö 15 1819 1819 1827 1822.9 1819 1819 1819 1819
TA37 30 Ö 15 1771 1771 1784 1777.8 1771 1779 1784 1778 1778
TA38 30 Ö 15 1673 1673 1681 1676.7 1673 1673 1673 1673
TA39 30 Ö 15 1795 1795 1806 1801.6 1795 1795 1795 1795
TA40 30 Ö 15 1631 1673 1689 1678.1 1669 1680 1979 1674 1676
TA41 30 Ö 20 1859 2006 2027 2018.7 2008 2022 2022 2018
TA42 30 Ö 20 1867 1945 1957 1949.3 1937 1956 1953 1956 1953
TA43 30 Ö 20 1809 1848 1874 1863.1 1852 1870 1869 1859 1858
TA44 30 Ö 20 1927 1983 2003 1992.4 1983 1991 1992 1984 1983
TA45 30 Ö 20 1997 2000 2000 2000 2000 2004 2000 2000 2000
TA46 30 Ö 20 1940 2008 2023 2015.5 2004 2011 2011 2021 2010
TA47 30 Ö 20 1789 1897 1908 1902.1 1894 1903 1902 1903 1903
TA48 30 Ö 20 1912 1945 1973 1959.2 1943 1962 1962 1953 1955
TA49 30 Ö 20 1915 1966 1983 1972.6 1964 1969 1974 1967
TA50 30 Ö 20 1807 1925 1932 1927 1925 1931 1927 1928 1931

%ARE = 0.194 0.518 0.194 0.119
BRKGA-JSP %ARE = -0.023 -0.023 -0.043 -0.023

Newly found upper bounds by BRKGA-JSP are in bold.

BRKGA FOR JOBSHOP PROBLEM 22

Table 14. Makespan and average percent deviation from best upper bound for
problem class DMU (DMU01�DMU40).

BRKGA-JSP TS GES i-TSAB AlgFix

Prob n × m LB UB max avg min min min min min

DMU01 20 Ö 15 2501 2563 2563 2563 2563 2566 2566 2571 2563
DMU02 20 Ö 15 2651 2706 2716 2714.5 2706 2711 2706 2715 2706
DMU03 20 Ö 15 2731 2731 2741 2736.5 2731 2731 2731
DMU04 20 Ö 15 2601 2669 2679 2672.4 2669 2669 2669
DMU05 20 Ö 15 2749 2749 2771 2755.4 2749 2749 2749
DMU06 20 Ö 20 2834 3244 3250 3246.6 3244 3254 3250 3265 3244
DMU07 20 Ö 20 2677 3046 3063 3058.6 3046 3053 3046
DMU08 20 Ö 20 2901 3188 3191 3188.3 3188 3191 3197 3199 3188
DMU09 20 Ö 20 2739 3092 3095 3094.4 3092 3092 3094 3096
DMU10 20 Ö 20 2716 2984 2985 2984.8 2984 2984 2985 2984
DMU11 30 Ö 15 3395 3453 3449 3445.8 3445 3455 3453 3470 3455
DMU12 30 Ö 15 3481 3516 3529 3518.9 3513 3516 3518 3519 3522
DMU13 30 Ö 15 3681 3681 3698 3690.6 3681 3681 3697 3698 3687
DMU14 30 Ö 15 3394 3394 3394 3394 3394 3394 3394 3394
DMU15 30 Ö 15 3332 3343 3343 3343 3343 3343 3343
DMU16 30 Ö 20 3726 3759 3769 3758.9 3751 3759 3781 3787 3772
DMU17 30 Ö 20 3697 3836 3870 3850.6 3830 3842 3848 3854 3836
DMU18 30 Ö 20 3844 3846 3847 3845.4 3844 3846 3849 3854 3852
DMU19 30 Ö 20 3650 3775 3803 3791.8 3770 3784 3807 3823 3775
DMU20 30 Ö 20 3604 3712 3718 3715.3 3712 3716 3739 3740 3712
DMU21 40 Ö 15 4380 4380 4380 4380 4380 4380 4380
DMU22 40 Ö 15 4725 4725 4725 4725 4725 4725 4725
DMU23 40 Ö 15 4668 4668 4668 4668 4668 4668 4668
DMU24 40 Ö 15 4648 4648 4648 4648 4648 4648 4648
DMU25 40 Ö 15 4164 4164 4164 4164 4164 4164 4164
DMU26 40 Ö 20 4647 4647 4686 4658.4 4647 4647 4667 4679 4688
DMU27 40 Ö 20 4848 4848 4848 4848 4848 4848 4848 4848
DMU28 40 Ö 20 4692 4692 4692 4692 4692 4692 4692
DMU29 40 Ö 20 4691 4691 4691 4691 4691 4691 4691 4691
DMU30 40 Ö 20 4732 4732 4732 4732 4732 4732 4732 4749
DMU31 50 Ö 15 5640 5640 5640 5640 5640 5640 5640
DMU32 50 Ö 15 5927 5927 5927 5927 5927 5927 5927
DMU33 50 Ö 15 5728 5728 5728 5728 5728 5728 5728
DMU34 50 Ö 15 5385 5385 5385 5385 5385 5385 5385
DMU35 50 Ö 15 5635 5635 5635 5635 5635 5635 5635
DMU36 50 Ö 20 5621 5621 5621 5621 5621 5621 5621
DMU37 50 Ö 20 5851 5851 5851 5851 5851 5851 5851 5851
DMU38 50 Ö 20 5713 5713 5713 5713 5713 5713 5713
DMU39 50 Ö 20 5747 5747 5747 5747 5747 5747 5747
DMU40 50 Ö 20 5577 5577 5577 5577 5577 5577 5577

Newly found upper bounds by BRKGA-JSP are in bold.

BRKGA FOR JOBSHOP PROBLEM 23

Table 15. Makespan and average percent deviation from best upper bound for
problem class DMU (DMU41�DMU80).

BRKGA-JSP TS GES i-TSAB AlgFix

Prob n × m LB UB max avg min min min min min

DMU41 20 Ö 15 2839 3264 3304 3281.9 3261 3267 3277 3278
DMU42 20 Ö 15 3066 3401 3429 3403.9 3395 3416 3401 3448 3412
DMU43 20 Ö 15 3121 3443 3468 3452.7 3441 3459 3443 3473 3450
DMU44 20 Ö 15 3112 3489 3539 3510.7 3488 3524 3489 3528 3489
DMU45 20 Ö 15 2930 3273 3316 3287.3 3272 3296 3273 3321 3273
DMU46 20 Ö 20 3425 4043 4071 4043.2 4035 4080 4099 4101 4071
DMU47 20 Ö 20 3353 3950 3991 3968 3939 3972 3973 3950
DMU48 20 Ö 20 3317 3795 3812 3800.9 3781 3795 3810 3838 3813
DMU49 20 Ö 20 3369 3724 3735 3729.6 3723 3735 3754 3780 3725
DMU50 20 Ö 20 3379 3737 3776 3746.5 3732 3761 3768 3794 3742
DMU51 30 Ö 15 3839 4202 4258 4222.9 4201 4218 4247 4260 4202
DMU52 30 Ö 15 4012 4353 4366 4352.3 4341 4362 4380 4383 4353
DMU53 30 Ö 15 4108 4419 4438 4420.2 4415 4428 4450 4470 4419
DMU54 30 Ö 15 4165 4405 4409 4402.7 4396 4405 4424 4425 4413
DMU55 30 Ö 15 4099 4303 4310 4299.4 4290 4308 4331 4332 4321
DMU56 30 Ö 20 4366 4985 5026 4768.4 4961 5025 5051 5079 4985
DMU57 30 Ö 20 4182 4698 4716 4704.9 4698 4698 4779 4785 4709
DMU58 30 Ö 20 4214 4787 4759 4752.8 4751 4796 4829 4834 4787
DMU59 30 Ö 20 4199 4638 4641 4633.3 4630 4667 4694 4696 4638
DMU60 30 Ö 20 4259 4805 4786 4777 4774 4805 4888 4904 4827
DMU61 40 Ö 15 4886 5228 5248 5233.3 5224 5228 5293 5294 5310
DMU62 40 Ö 15 5004 5311 5316 5304.4 5301 5311 5354 5354 5330
DMU63 40 Ö 15 5049 5371 5399 5386.6 5357 5371 5439 5446 5431
DMU64 40 Ö 15 5130 5330 5340 5321.8 5312 5330 5388 5443 5385
DMU65 40 Ö 15 5072 5201 5247 5211.5 5197 5201 5269 5271 5322
DMU66 40 Ö 20 5357 5797 5827 5806.6 5796 5797 5902 5911 5886
DMU67 40 Ö 20 5484 5872 5900 5881.3 5863 5872 6012 6016 5938
DMU68 40 Ö 20 5423 5834 5857 5843.7 5826 5834 5934 5936 5840
DMU69 40 Ö 20 5419 5794 5856 5804 5776 5794 6002 5891 5868
DMU70 40 Ö 20 5492 5954 5984 5968.2 5951 5954 6072 6096 6028
DMU71 50 Ö 15 6050 6278 9298 6603.8 6293 6278 6333 6359 6437
DMU72 50 Ö 15 6223 6520 6593 6560.7 6503 6520 6589 6586 6604
DMU73 50 Ö 15 5935 6249 6297 6250.5 6219 6249 6291 6330 6343
DMU74 50 Ö 15 6015 6316 6354 6312.6 6277 6316 6376 6383 6467
DMU75 50 Ö 15 6010 6236 6326 6282.4 6248 6236 6380 6437 6397
DMU76 50 Ö 20 6329 6893 6910 6885.4 6876 6893 6974 7082 6975
DMU77 50 Ö 20 6399 6868 6934 6892.7 6857 6868 7006 6930 6949
DMU78 50 Ö 20 6508 6846 6875 6855.7 6831 6846 6988 7027 6928
DMU79 50 Ö 20 6593 7055 7084 7060.9 7049 7055 7158 7253 7083
DMU80 50 Ö 20 6435 6719 6810 6757.9 6736 6719 6843 6998 6861

% ARE = 0.162 0.629 1.150 0.424

BRKGA-JSP %ARE = -0.155 -0.104 -0.138 -0.104

Newly found upper bounds by BRKGA-JSP are in bold.

Acknowledgments

This work has been supported by funds granted by the ERDF through the Programme COM-
PETE and by the Portuguese Government through FTC, the Foundation for Science and Technol-
ogy, project PTDC/EGE-GES/117692/2010.

References

Aarts, E., Van Laarhoven, P., Lenstra, J., Ulder, N., 1994. A computational study of local search
algorithms for job shop scheduling. INFORMS Journal on Computing 6, 118.

Adams, J., Balas, E., Zawack, D., 1988. The shifting bottleneck procedure for job shop scheduling.
Management Science 34, 391�401.

Aiex, R., Binato, S., Resende, M., 2003. Parallel GRASP with path-relinking for job shop sched-
uling. Parallel Computing 29, 393�430.

Akers, S., 1956. A graphical approach to production scheduling problems. Operations Research 4,
244�245.

Applegate, D., Cook, W., 1991. A computational study of the job-shop scheduling problem. ORSA
Journal on Computing 3, 149�156.

Baker, J., McMahon, G., 1985. Scheduling the general job-shop. Management Science 31, 594�598.

BRKGA FOR JOBSHOP PROBLEM 24

Balas, E., Vazacopoulos, A., 1998. Guided local search with shifting bottleneck for job shop
scheduling. Management Science , 262�275.

Bean, J.C., 1994. Genetics and random keys for sequencing and optimization. ORSA Journal on
Computing 6, 154�160.

Bierwirth, C., 1995. A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spectrum 17, 87�92.

Binato, S., Hery, W., Loewenstern, D., Resende, M., 2002. A GRASP for job shop scheduling, in:
Ribeiro, C., Hansen, P. (Eds.), Essays and surveys in metaheuristics, pp. 58�79.

Blazewicz, J., Domschke, W., Pesch, E., 1996. The job shop scheduling problem: Conventional
and new solution techniques. European journal of operational research 93, 1�33.

Brinkkötter, W., Brucker, P., 2001. Solving open benchmark instances for the job-shop problem
by parallel head-tail adjustments. Journal of Scheduling 4, 53�64.

Brucker, P., 1988. An e�cient algorithm for the job-shop problem with two jobs. Computing 40,
353�359.

Brucker, P., Jurisch, B., Sievers, B., 1994. A branch and bound algorithm for the job-shop sched-
uling problem* 1. Discrete Applied Mathematics 49, 107�127.

Carlier, J., Pinson, E., 1989. An algorithm for solving the job-shop problem. Management science
, 164�176.

Carlier, J., Pinson, E., 1990. A practical use of Jackson's preemptive schedule for solving the
job-shop problem. Annals of Operations Research 26, 269�287.

Cheng, R., Gen, M., Tsujimura, Y., 1996. A tutorial survey of job-shop scheduling problems
using genetic algorithms - I. Representation : Genetic algorithms and industrial engineering.
Computers and Industrial Engineering 30, 983�997.

Cheng, R., Gen, M., Tsujimura, Y., 1999. A tutorial survey of job-shop scheduling problems using
genetic algorithms, part II: Hybrid genetic search strategies. Computers & Industrial Engineering
36, 343�364.

Davis, L., 1985. Job shop scheduling with genetic algorithms, in: Proceedings of the 1st Interna-
tional Conference on Genetic Algorithms, L. Erlbaum Associates Inc.. p. 140.

DeJong, K., Spears, W., 1991. On the virtues of parameterised uniform crossover, in: Belew, R.K.,
Booker, L.B. (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms.
Morgan Kaufman, San Mateo, CA, pp. 230�236.

Della Croce, F., Tadei, R., Volta, G., 1995. A genetic algorithm for the job shop problem. Com-
puters & Operations Research 22, 15�24.

Demirkol, E., Mehta, S., Uzsoy, R., 1997. A computational study of shifting bottleneck procedures
for shop scheduling problems. Journal of Heuristics 3, 111�137.

Dorndorf, U., Pesch, E., 1995. Evolution based learning in a job shop scheduling environment.
Computers & Operations Research 22, 25�40.

Fisher, H., Thompson, G., 1963. Probabilistic learning combinations of local job-shop scheduling
rules, in: Muth, J., Thompson, G. (Eds.), Industrial Scheduling. Prentice Hall, Englewood Cli�s,
New Jersey, pp. 225�251.

French, S., 1982. Sequencing and scheduling: An introduction to the mathematics of the job-shop.
Halsted Press.

Gen, M., Tsujimura, Y., Kubota, E., 1994. Solving job-shop scheduling problems by genetic
algorithm, in: IEEE International Conference on Systems, Man, and Cybernetics. �Humans,
Information and Technology�, pp. 1577�1582.

Gi�er, B., Thompson, G., 1960. Algorithms for solving production-scheduling problems. Opera-
tions Research , 487�503.

Gonçalves, J.F., Resende, M.G.C., Mendes, J.J.M., 2010. A biased random-key genetic algorithm
with forward-backward improvement for the resource constrained project scheduling problem.
Journal of Heuristics , 1�20.

Gonçalves, J., Resende, M., 2011. A parallel multi-population genetic algorithm for a constrained
two-dimensional orthogonal packing problem. J. of Combinatorial Optimization 22, 180�201.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2005. A hybrid genetic algorithm for the job
shop scheduling problem. European Journal of Operational Research 167, 77�95.

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics 17, 487�525.

BRKGA FOR JOBSHOP PROBLEM 25

Gray, C., Hoesada, M., 1991. Matching heuristic scheduling rules for job shops to the business
sales level. Production and Inventory Management Journal 4, 12�17.

Henning, A., 2002. Practical job shop scheduling problems (in german). Ph.d. thesis,. Friedrich-
Schiller-University Jena, Jena, Germany.

Jain, A., 1998. A Multi-Level Hybrid Framework for the Deterministic Job-Shop Scheduling Prob-
lem. Ph.d. thesis,. Department of Applied Physics and Electrical and Mechanical Engineering,
University of Dundee, Dundee, Scottland, UK .

Jain, A., Meeran, S., 1999. Deterministic job-shop scheduling: Past, present and future. European
Journal of Operational Research 113, 390�434.

Lageweg, B., Lenstra, J., Rinnooy Kan, A., 1977. Job-shop scheduling by implicit enumeration.
Management Science 24, 441�450.

Lawrence, S., 1984. Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania .

Lenstra, J., Rinnooy Kan, A., 1979. Computational complexity of discrete optimization problems.
Annals of Discrete Mathematics 4, 121�140.

Lourenço, H., 1995. Job-shop scheduling: Computational study of local search and large-step
optimization methods. European Journal of Operational Research 83, 347�364.

Lourenço, H., Zwijnenburg, M., 1996. Combining the large-step optimization with tabu-search:
Application to the job-shop scheduling problem, in: Osman, I., Kelly, J. (Eds.), Meta-Heuristics:
Theory & Applications. Kluwer Academic Publishers, Boston, pp. 219�236.

Mendes, J., Gonçalves, J., Resende, M., 2009. A random key based genetic algorithm for the
resource constrained project scheduling problem. Computers & Operations Research 36, 92�
109.

Nowicki, E., Smutnicki, C., 1996. A fast taboo search algorithm for the job shop problem. Man-
agement Science 42, 797�813.

Nowicki, E., Smutnicki, C., 2002. Some new tools to solve the job shop problem. Technical Report
60/02. Institute of Engineering Cybernetics, Wroclaw University of Technology.

Nowicki, E., Smutnicki, C., 2005. An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling 8, 145�159.

Pardalos, P., Shylo, O., 2006. An algorithm for the job shop scheduling problem based on global
equilibrium search techniques. Computational Management Science 3, 331�348.

Pardalos, P., Shylo, O., Vazacopoulos, A., 2010. Solving job shop scheduling problems utilizing
the properties of backbone and �big valley�. Computational Optimization and Applications 47,
61�76.

Pinson, E., 1995. The job shop scheduling problem: A concise survey and some recent develop-
ments, in: Chrétienne, P., Co�man, E., Lenstra, J.K., Liu, Z. (Eds.), Scheduling Theory and Its
Applications. John Wiley and Sons, pp. 277�293.

Resende, M., Toso, R., Gonçalves, J., Silva, R., 2012. A biased random-key genetic algorithm for
the steiner triple covering problem. Optimization Letters 6, 605�619.

Sabuncuoglu, I., Bayiz, M., 1999. Job shop scheduling with beam search. European Journal of
Operational Research 118, 390�412.

Schilham., R., 2001. Commonalities in local search. Phd thesis,. Utrecht University, The Nether-
lands.

Schrage, L., 1970. Solving resource-constrained network problems by implicit enumeration - non-
preemptive case. Operations Research 18, 263�278.

Shi, G., Iima, H., Sannomiya, N., 1996. A new encoding scheme for solving job shop problems by
genetic algorithm, in: Proceedings of the 35th IEEE Decision and Control, pp. 4395�4400.

Storer, R., Wu, S., Vaccari, R., 1992. New search spaces for sequencing problems with application
to job shop scheduling. Management Science 38, 1495�1509.

Taillard, E., 1994. Parallel taboo search techniques for the job shop scheduling problem. ORSA
journal on Computing 6, 108�108.

Vaessens, R., Aarts, E., Lenstra, J., 1996. Job shop scheduling by local search. INFORMS Journal
on Computing 8, 302�317.

Van Laarhoven, P., Aarts, E., Lenstra, J., 1992. Job shop scheduling by simulated annealing.
Operations Research 40, 113�125.

BRKGA FOR JOBSHOP PROBLEM 26

Wennink, M., 1995. Algorithm support for automated planning boards. Ph.d. thesis,. Department
of Mathematics and Computing Science, Eindhoven University of Technology,.

Williamson, D., Hall, L., Hoogeveen, J., Hurkens, C., Lenstra, J., Sevast'janov, S., Shmoys, D.,
1997. Short shop schedules. Operations Research 45, 288�294.

Yamada, T., Nakano, R., 1992. A genetic algorithm applicable to large-scale job-shop problems,
in: Proceedings of 2nd International Workshop on Parallel Problem Solving from Nature, pp.
281�290.

Zhang, C., Li, P., Guan, Z., Rao, Y., 2007. A tabu search algorithm with a new neighborhood
structure for the job shop scheduling problem. Computers & Operations Research 34, 3229�3242.

Zhang, C., Li, P., Rao, Y., Guan, Z., 2008. A very fast TS/SA algorithm for the job shop scheduling
problem. Computers & Operations Research 35, 282�294.

LIAAD, INESCTEC, Faculdade de Economia, Universidade do Porto,, Rua Dr. Roberto Frias,
s/n, 4200-464 Porto, Portugal

E-mail address: jfgoncal@fep.up.pt

Algorithms and Optimization Research Department, AT&T Labs Research,, 180 Park Avenue,
Room C241, Florham Park, NJ 07932 USA

E-mail address: mgcr@research.att.com

	1. Introduction
	2. New local search for JSP
	2.1. Graphical method for two jobs
	2.2. Extension of the graphical method for n>2
	2.3. New Local Search

	3. The new heuristic
	3.1. Biased random-key genetic algorithm
	3.2. Solution Encoding
	3.3. Decoding a random-key vector into a job-shop schedule
	3.4. Fitness measure

	4. Experimental results
	4.1. Benchmark instances and algorithms
	4.2. Configuration
	4.3. Results

	5. Concluding remarks
	6. Appendix
	Acknowledgments
	References

