AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING
HEURISTICS WITH A BIASED RANDOM-KEY
GENETIC ALGORITHM

P. FESTA, J.F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

ABSTRACT. GRASP with path-relinking (GRASP+PR) is a metaheuristic for
finding optimal or near-optimal solutions of combinatorial optimization prob-
lems. This paper proposes a new automatic parameter tuning procedure
for GRASP+PR heuristics based on a biased random-key genetic algorithm
(BRKGA). Given a GRASP+PR heuristic with n input parameters, the tun-
ing procedure makes use of a BRKGA in a first phase to explore the parameter
space and set the parameters with which the GRASP+PR heuristic will run in
a second phase. The procedure is illustrated with a GRASP+PR for the gener-
alized quadratic assignment problem with n = 30 parameters. Computational
results show that the resulting hybrid heuristic is robust.

1. INTRODUCTION

A commonly cited drawback of heuristics is the large number of parameters that
need to be tuned for good performance. These parameters are not limited to those
that are numerically valued but can also be logical parameters that determine,
for example, which sub-modules are activated in the heuristic and which ones are
not. Heuristic parameters can consequently run into the tens and even hundreds
and tuning them can be a labor intensive activity. Furthermore, the performance
of a heuristic depends on the instance being solved, so a tuned set of parameters
obtained for one instance may not result in a good performing heuristic for another
instance. When documenting a heuristic, a description of the tuning process is
often left out and therefore it is often difficult to reproduce computational results.
These are some of the factors that point to the need for an algorithmic approach
to parameter tuning.

In this paper we propose an automatic tuning procedure for GRASP with path-
relinking (GRASP+PR) heuristics. In the first phase of this two-phase solution
strategy a biased random-key genetic algorithm searches the space of parameters
for a set of values that results in a good performance of the heuristic. In the second
phase, the GRASP+PR heuristic is run using the parameters found in the first
phase. We illustrate this procedure on a GRASP+PR heuristic for the general-
ized quadratic assignment problem. This GRASP+PR has 30 tunable parameters.
Computational results show that the two-phase approach results in a robust hybrid
heuristic.

Date: February 16, 2010.

Key words and phrases. Automatic tuning of parameters, GRASP, path-relinking, algorithm
engineering, metaheuristics.

AT&T Labs Research Technical Report.

2 P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

The paper is organized as follows. In Section 2 we briefly describe the genetic
algorithm. In Section 3 we summarize the solution strategy implemented in the
GRASP+PR heuristic. The two-phase strategy is described in Section 4. Finally,
computational experiments are reported in Section 5.

2. BIASED RANDOM-KEY GENETIC ALGORITHMS

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were first introduced by Bean [1] for solving combinatorial optimization problems
involving sequencing. In a RKGA, chromosomes are represented as vectors of ran-
domly generated real numbers in the interval [0,1]. A deterministic algorithm,
called a decoder, takes as input a solution vector and associates with it a solution
of the combinatorial optimization problem for which an objective value or fitness
can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations,
called generations. The initial population is made up of p vectors of random-keys.
Each component of the solution vector is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder in
generation k, the population is partitioned into two groups of individuals: a small
group of p. = 0.3p elite individuals, i.e. those with the best fitness values, and the
remaining set of p—p, = 0.7p non-elite individuals. To evolve the population, a new
generation of individuals must be produced. All elite individual of the population of
generation k are copied without modification to the population of generation k + 1.
RKGASs implement mutation by introducing mutants into the population. A mutant
is simply a vector of random keys generated in the same way that an element of the
initial population is generated. At each generation, a small number (p,,, = 0.2p) of
mutants is introduced into the population. With the p. elite individuals and the p,,
mutants accounted for in population k£ + 1, p — p. — p., additional individuals need
to be produced to complete the p individuals that make up the new population.
This is done by producing p — p. — p.,, offspring through the process of mating or
Crossover.

Bean [1] selects two parents at random from the entire population to implement
mating in a RKGA. A biased random-key genetic algorithm, or BRKGA [2], differs
from a RKGA in the way parents are selected for mating. In a BRKGA, each
element is generated combining one element selected at random from the elite par-
tition in the current population and one from the non-elite partition. Repetition
in the selection of a mate is allowed and therefore an individual can produce more
than one offspring in the same generation. Parameterized uniform crossover [3] is
used to implement mating in BRKGAs. Let p. = 0.7 be the probability that an
offspring inherits the vector component of its elite parent. Let n denote the number
of components in the solution vector of an individual. For ¢ = 1,...,n, the i-th
component ¢(i) of the offspring vector ¢ takes on the value of the i-th component
e(i) of the elite parent e with probability p. and the value of the i-th component
€(i) of the non-elite parent € with probability 1 — pe.

When the next population is complete, i.e. when it has p individuals, fitness
values are computed for all of the newly created random-key vectors and the pop-
ulation is partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous n-dimensional hypercube, using the decoder

AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING 3

to map solutions in the hypercube to solutions in the solution space of the combi-
natorial optimization problem where the fitness is evaluated.

3. GRASP WITH PATH-RELINKING FOR THE GENERALIZED QUADRATIC
ASSIGNMENT PROBLEM

A GRASP [4, 5] is a multi-start metaheuristic where at each iteration a greedy
randomized solution is constructed to be used as a starting solution for local search.
The best local minimum found over all GRASP iterations is output as the solution.
See [6, 7, 8, 9] for recent surveys of GRASP.

GRASP iterations are independent, i.e. solutions found in previous GRASP iter-
ations do not influence the algorithm in the current iteration. The use of previously
found solutions to influence the procedure in the current iteration can be thought
of as a memory mechanism. One way to incorporate memory into GRASP is with
path-relinking [10, 11, 12]. In GRASP with path-relinking (GRASP+PR) [13, 14],
an elite set of diverse good-quality solutions is maintained to be used during each
GRASP iteration. After a solution is produced with greedy randomized construc-
tion and local search, that solution is combined with a randomly selected solution
from the elite set using the path-relinking operator. The best of the combined so-
lutions is a candidate for inclusion in the elite set and is added to the elite set if it
meets quality and diversity criteria.

Mateus, Resende, and Silva [15] propose a GRASP with path-relinking heuristic
for the generalized quadratic assignment problem (GQAP). In the GQAP, we are
given n facilities and m locations and want to feasibly assign each facility to a
location. Each facility uses a portion of the capacity of a location and each location
has a fixed amount of capacity to distribute among facilities. An assignment is
feasible if each location has sufficient capacity to accommodate the demands of all
facilities assigned to it. Given nonnegative flows between all pairs of facilities and
nonnegative distances between all pairs of locations, the GQAP seeks a feasible
assignment that minimizes the sum of products of flows and distances in addition
to a linear assignment component.

Algorithm 1 shows pseudo-code for the GRASP+PR heuristic proposed in [15]
for the GQAP. The algorithm takes as input the set N of facilities, the set M of
locations, the flow matrix A, the distance matrix B, the assignment cost matrix C,
the facility demands g;, 7 € IV, and the location capacities @);, j € M, and outputs
an assignment vector 7* specifying the location of each facility in the best solution
found.

After initializing the elite set P as empty in line 1, the GRASP+PR iterations
are computed in lines 2 to 24 until a stopping criterion is satisfied. During each
iteration, a greedy randomized solution 7’ is generated in line 3. If the elite set P
does not have at least p elements (p is an input parameter), then if 7’ is feasible
and sufficiently different from all other elite set solutions, 7’ is added to the elite set
in line 22. To define the term sufficiently different more precisely, let A(x’,7) be
defined as the minimum number of facility to location swaps needed to transform
7' into 7 or vice-verse. For a given level of difference 6 (§ is an input parameter),
we say 7’ is sufficiently different from all elite solutions in P if A(x’,7) > § for all
m € P, which we indicate with the notation 7’ % P. If the elite set P does have at
least p elements, then the steps in lines 5 to 19 are computed.

4 P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

The greedy randomized construction procedure is not guaranteed to generate a
feasible solution. If the greedy randomized procedure returns an infeasible solution,
a feasible solution 7’ is selected uniformly at random from the elite set in line 6 to be
used as a surrogate for the greedy randomized solution. An approximate local search
is applied using 7’ as a starting point in line 8, resulting in an approximate local
minimum, which we denote by 7. Since elite solutions are made up of approximate
local minima, then applying an approximate local search to an elite solution will,
with high probability, result in a different approximate local minimum.

The approximate local search is not guaranteed to find an exact local minimum.
Since 7’ is an approximate local minimum, the application of an approximate local
search to it will, with high probability, result in a different approximate local mini-
mum. Next, path-relinking is applied in line 10 between 7’ and an elite solution 7,
randomly chosen in line 9. Solution 7T is selected with probability proportional to
A(n’,7F). In line 11, the approximate local search is applied to «’. If the elite set
is full (the maximum number of solutions in the elite set is an input parameter),
then if 7’ is of better quality than the worst elite solution and 7’ % P, then it will
be added to the elite set in line 14 in place of some elite solution. Among all elite
solutions having cost no better than that of 7/, a solution m most similar to 7/, i.e.
with the smallest A(n’,) value, is selected to be removed from the elite set. Ties
are broken at random. Otherwise, if the elite set is not full, 7’ is simply added to
the elite set in line 18 if 7/ 5 P.

We next summarize procedures GreedyRandomized, ApproxLocalSearch, and
PathRelinking. These procedures are described in detail in Mateus, Resende, and
Silva [15].

Procedure GreedyRandomized attempts to construct a greedy randomized solu-
tion to serve at a starting solution for local search. It does so by attempting, at
most ¢ € [1,100] times, to construct a feasible solution. In the construction pro-
cess facilities and locations are selected at random with bias. To implement the
randomized selection three types of probabilities are computed:

e Probability of selecting new location j: H;/ 3", ; H;, where L is the set
h1 Hh2
of currently unused locations and H; = >, ijhﬁl , where Q; is the
J
capacity of location j, bj; is the distance between locations j and [, CL is
the set of previously selected locations, and input parameters hy, hs, hs are
real numbers in the interval [0, 1].

e Probability of selecting new facility i: Wi/ >, . Wi, where T'is the subset
of currently unused facilities and W; = ¢;"* 3, N} aj,?, where g¢; is the
demand of facility i, a; is the flow between facilities ¢ and ¢, IV is the set
of facilities, and input parameters wi, w2 are real numbers in the interval
[0, 1].

e Probability of selecting a used location j: Z;/>" . Zy, where R is a subset

reR
21 22
of currently used locations and Z; = ZZGCL\{]-} %, where o is the
il
available capacity of location j, d is the increase in the objective function
resulting from the assignment to it of the chosen facility in 7', and input

parameters 21, 22, 23, 24 are real numbers in the interval [0, 1].

AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING 5

procedure GRASP+PR
Data :]\f7]\47 A, B, C, qi, Qj-
Result: Solution 7* € y.

1 P« (;
2 while stopping criterion not satisfied do
3 7/ + GreedyRandomized(-);
4 if elite set P has at least p elements then
5 if 7 is not feasible then
6 | Randomly select a new solution 7’ € P;
7 end
8 7’ « ApproxLocalSearch(n’);
9 Randomly select a solution 7t € P;
10 7/ « PathRelinking(n’', 7 T);
11 7’ « ApproxLocalSearch(n’);
12 if elite set P is full then
13 if ¢(r") < max{c(m) | # € P} and 7’ % P then
14 Replace the element most similar to 7’ among all
elements with cost worst than 7’;
15 end
16
17 else if 7’ % P then
18 | P—Pu{r'}
19 end
20
21 else if 7’ is feasible and 7’ % P then
22 | P—Pu{r'}
23 end
24 end

25 return 7 = min{c(r) | 7 € P};

Algorithm 1: Pseudo-code for GRASP+PR: GRASP with path-relinking
heuristic.

These probabilities are used in one of five heuristic-biased stochastic sampling
schemes of Bresina [16] determined by input parameter s € {1,2,3,4,5}. If Bresina’s
polynomial bias is selected, parameter g € {1,2,...,10} determines the degree of
the polynomial used. Consequently procedure GreedyRandomized takes as input
12 user-defined parameters t, hy, ha, ha, wi, wa, 21, 22, 23, 24, S, and g.

Procedure ApproxLocalSearch applies an approximate local search scheme from
a given starting solution. Given a current solution, the method samples solutions
resulting from single and double facility-to-location moves to create a set of candi-
date solutions (CLS) to which to move to. At each iteration the method samples
at most Mazltr moves, some improving, some not, and creates the set CLS with at
most MaxCLS elements. The method either chooses the solution 7 from CLS in a
greedy fashion or it selects it with probability

s G, where G = 1/f(x),

6 P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

where f(-) is the objective function the GQAP. Input parameter CLChoice deter-
mines which option is used. In the former case, parameters s € {1,2,3,4,5}and g €
{1,2,...,10} determine, as in construction procedure, which of Bresina’s stochas-
tic sampling schemes will be used. Consequently, procedure ApproxLocalSearch
uses as input 6 user-defined parameters: Mazltr € {1,2,...,1000}, MazCLS €
{1,2,...,100}, CLChoice € {0,1}, s € {1,2,3,4,5}, g € {1,2,...,10}, which
determines if the greedy or which randomized selection will be used, and the real-
valued neighborhoodBalance € [0, 1] which determines the proportion of single and
double facility-to-location moves sampled.

Procedure PathRelinking takes as input 8 user-defined parameters that deter-
mine, among many options, whether forward-, backward-, or mixed-path-relinking
is used, whether truncated path-relinking is used (and if so, how many steps are
carried out), whether greedy or greedy randomized path-relinking is used, and the
maximum number of feasibility restoration steps that can be carried out.

In addition to the above 26 parameters, the main algorithm has the follow-
ing 5 parameters: the maximum size of the elite set maxzES € {1,2,...,50}, the
minimum number of elements in the elite set required for path-relinking to be used
p €42,3,..., maxES}, the minimum difference parameter 6 € {0,1,...,n}, and pa-
rameter selectFromES € {0,1} which determines whether in line 9 of Algorithm 1
element 77 is selected uniformly at random or with bias. In total, there are 30
user-defined parameters than need to be tuned.

4. TWO-PHASE HYBRID HEURISTIC

The two-phase hybrid heuristic consists first of a tuning phase, where the BRKGA
explores the GRASP+PR parameter space, followed by a solution phase, where the
GRASP+PR heuristic using the parameters determined in the first phase explores
the GQAP solution space seeking an optimal or near optimal assignment of facili-
ties to locations. In the first phase, the BRKGA is run for Y7 generations while in
the second phase, the GRASP+PR heuristic is run for Y3 iterations.

To describe the first phase of the two-phase hybrid heuristic, we first specify the
encoding of the parameter-space solutions as well as the decoding of these solutions.
The random-key solution vector x has n = 30 components, one for each tunable
parameter. Each component is a random key generated in the real interval [0, 1]. If
a parameter ¢ = 1,...,n is in the real interval [I,u], its random-key component ()
is decoded as I + x(i) - (u —1). On the other hand, if parameter ¢ is in the discrete
interval [I,u], its random-key component z(i) is decoded as [l — 5 + x(i) - (u — 1)].

The fitness of a solution vector is obtained by carrying out V' independent runs of
the GRASP+PR heuristic using the parameters decoded from the solution vector,
each run for U GRASP+PR iterations. The fitness is computed as the average
objective function value of the V runs.

5. COMPUTATIONAL RESULTS

In this section, we report on preliminary computational results with the auto-
matic parameter tuning scheme introduced in this paper.

All experiments were done on a Dell PE1950 computer with dual quad core
2.66 GHz Intel Xeon processors and 16 Gb of memory, running Red Hat Linux
nesh version 5.1.19.6 (CentOS release 5.2, kernel 2.6.18-53.1.21.el5). The two-
phase BRKGA / GRASP+PR heuristic was implemented in Java and compiled

AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING 7

TABLE 1. Comparison of a GRASP+PR heuristic for the GQAP
with manually and automatically tuned parameters. For each in-
stance and each heuristic variant, the table lists minimum, maxi-
mum, and average times (in seconds) to find the best known solu-
tion, as well as standard deviations.

Manually tuned Automatically tuned
problem min max avg sdev min max avg sdev
20-15-35 1.16 845.29 147.09 146.53 0.59 7130 9.62 9.19
20-15-55 0.63 83.52 17.04 16.43 0.36 33.03 7.17 6.15
20-15-75 0.92 166.30 8.47 14.04 0.78 552.19 47.55 82.88
30-08-55 0.35 11.67 2.26 1.54 0.07 342 096 0.61
30-07-75 9.22 26914.03 716.08 2027.75 1.27 228.01 28.63 29.75

into bytecode with javac version 1.6.0-05. The random-number generator is an
implementation of the Mersenne Twister algorithm [17] from the COLT" library.

The objective of the experiments was to compare the performance of the heuristic
using the parameter obtained through manual tuning in [15] with the same heuristic
using parameters automatically tuned with the BRKGA described in this paper.
We consider five instances from Cordeau et al. [18]: 20-15-35, 20-15-55, 20-15-75,
30-07-75, and 30-08-55. Instance f-I-¢ in this class has f facilities and [locations.
Parameter ¢ controls the tightness of the constraints. The higher the value of ¢, the
greater the tightness of the constraints. The tighter the constraints, the harder it
is to find a feasible solution.

For each instance, we ran the first phase of the hybrid heuristic to automatically
tune the 30 parameters of the GRASP+PR heuristic for the GQAP. The BRKGA
used a population of 15 elements and ran for only 10 generations. The fitness
computation was done over V' = 30 independent runs of the GRASP+PR heuristic,
each one for U = 100 iterations. With the automatically tuned parameters on hand,
the heuristic found, in the second phase, the best solution for all five instances.
In addition, 200 independent runs of the GRASP+PR heuristic (manually and
automatically tuned variants) were carried out for each instance, stopping each
time only after the best known solution for the instance was found. All 200 runs of
each variant and for each instance found the best known solution.

The plots in Figure 1 show solutions found by the tuning procedure (on top)
and the GRASP+PR with the automatically tuned parameters (on the bottom) on
instance 20-15-75. As can be observed, the BRKGA finds a good parameter setting
in a few generations and the GRASP+PR using these parameters quickly reaches
the best known solution for the instance.

Table 1 summarizes the experiments. For each instance, the table lists statistics
for both the manually and automatically tuned GRASP+PR heuristic. For each
variant, the table shows the minimum, maximum, and average running times (in
seconds) to find the best known solution for each instance, as well as the standard
deviation computed over 200 independent runs of the GRASP+PR heuristic.

LCOLT is a open source library for high performance scientific and technical computing in
Java. See http://acs.1bl.gov/~hoschek/colt/.

8 P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

1le+07
Q
(%2}
[
<
o
[=)]
[=4
e
2
£ + + + .
o E +

le+06 | * * E
T s +¢+%$¢i$$%$¥$
2 + + + N +
2 . :
o) + + + Jt» + o+ + + +
‘s + + N +

+ + +

Q + + + 1
oM + + T +
e + + + + E + +
o - n + + * + +
S 100000 | ; i 1 * . N L
E * + T i + - +
3 + +
kel
%
&
o . + + + + + + o+ + o+ + + +
> ¥* + + + + + + + o+ + 4+ o+ + +
< e e Bt e

10000 Il Il Il Il Il Il Il

0 500 1000 1500 2000 2500 3000 3500 4000
time (seconds)

2.5e+06 T
o
a
a
] 2e+06 |- B
<
o
O]
kel
g \
=4
2 |
>
3 1.5e+06 T b
k]
g \
£
g \
=3
©
2 1e+06 1 .
%)
X
2 \
5 \
g
E 500000 f
>
[}
)

ssss*"*‘*t\
0 I I e e S "
0 0.05 0.1 0.15 0.2 0.25 0.3

time (seconds)

FiGURE 1. The plot on top shows, for each iteration of the
BRKGA tuning procedure, the distribution of fitness values found
for instance 20-15-75. The plot on the bottom shows the solutions
found by the GRASP+PR heuristic using the automatically tuned
parameters found by the tuning procedure. Both figures show de-
viations from the best known solution (BKS) for 20-15-75.

Figures 2, 3, 4, 5, and 6 show runtime distribution plots for the manually and
automatically tuned GRASP+PR heuristics for, respectively, instances 20-15-35,
20-15-55, 20-15-75, 30-07-75, and 30-08-55.

AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING 9

20-15-35: manually vs automatically tuned
1 T T

09 -

0.8 -

0.7 -

CDF

05 |

04

03 -

0.2 - N

. %X*X automatically tuned —+—
X X manually tuned -~~~

0.1 1 10 100 1000
time to target solution (in seconds)

FIGURE 2. Runtime distributions for manually and automatically
tuned GRASP+PR heuristics for the GQAP on instance 20-15-35.
200 independent runs of each variant were carried out and running
times to find the best known solution for the instance plotted.

Times on Table 1 as well as Figures 2, 3, 4, 5, and 6 are limited to GRASP+PR
and do not include the time taken by the BRKGA to automatically tune the pa-
rameters. Tuning times were, respectively, 10,739.2, 7,551.2, 3,690.3, 21,909.1, and
14,386.5 seconds for instances 20-15-35, 20-15-55, 20-15-75, 30-07-75, and 30-08-
55. These times could be reduced considerably with a parallel implementation of
the BRKGA as well as with the imposition of a maximum running time for the
GRASP+PR heuristic run in the process of computing the fitness of the parameter
settings. Poor settings often lead to configurations that struggle to find feasible
assignments, thus leading to long running times. On the other hand, the times for
the manually tuned heuristic do not reflect the weeks that it took for us to do the
manual tuning.

The table as well as the figures clearly show that significant improvements can
be obtained with automatic tuning of the parameters. On all instances except 20-
15-75, the automatically tuned variant proved to find the best known solution in
less time than the manually tuned variant. In the most difficult instance (30-07-
75), the automatically tuned variant was on average about 25 times faster than the
manually tuned variant. The ratio of maximum running times on this instance was
over 118, in favor of the automatically tuned variant.

REFERENCES

[1] Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. on
Computing 6 (1994) 154-160

[2] Gongalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial opti-
mization. Technical report, AT&T Labs Research, Florham Park, NJ 07932 (2009) (http:
//wuw.research.att.com/~mgcr/doc/srkga.pdf).

10

CDF

CDF

P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

20-15-55: manually vs automatically tuned
1 T

09 -

0.8 -

06 |-

05 |

03 -

02 -

0.1 |-
automatically tuned —+—
manually tuned -

sl .

0.1 1 10 100
time to target solution (in seconds)

FI1GURE 3. Runtime distributions for manually and automatically
tuned GRASP+PR heuristics for the GQAP on instance 20-15-55.
200 independent runs of each variant were carried out and running
times to find the best known solution for the instance plotted.

20-15-75: manually vs automatically tuned
1 T T

o

e A
09 - v |

08 |-

0.6 [

05 -

03 |
02|

0.1
automatically tuned —+—
Imanua\IIy tuned <

0 T 1
0.1 1 10 100 1000
time to target solution (in seconds)

FIGURE 4. Runtime distributions for manually and automatically
tuned GRASP+PR heuristics for the GQAP on instance 20-15-75.
200 independent runs of each variant were carried out and running
times to find the best known solution for the instance plotted.

CDF

CDF

AUTOMATIC TUNING OF GRASP WITH PATH-RELINKING

30-07-75: manually vs automatically tuned

0.8 -
0.7 |-

06 |-

04

03 -

0.1

automatically tuned —+—
manulally tuned -

- (X

1 10 100 1000 10000 100000
time to target solution (in seconds)

FIGURE 5. Runtime distributions for manually and automatically
tuned GRASP+PR heuristics for the GQAP on instance 30-07-75.
200 independent runs of each variant were carried out and running
times to find the best known solution for the instance plotted.

30-07-55: manually vs automatically tuned

0.9

08 |-

0.6 [
05 -

04

02|

0.1
s automatically tuned —+—
0 i ot manually tuned < -

0.01 0.1 1 10 100
time to target solution (in seconds)

FIGURE 6. Runtime distributions for manually and automatically
tuned GRASP+PR heuristics for the GQAP on instance 30-08-55.
200 independent runs of each variant were carried out and running
times to find the best known solution for the instance plotted.

11

12
3]
[4]
[5]

[6]

7

(8]
[9]

(10]

(11]

(12]

13]

14]

(15]

[16]

(17]

18]

P. FESTA, J. F. GONCALVES, M.G.C. RESENDE, AND R.M.A. SILVA

Spears, W., DeJong, K.: On the virtues of parameterized uniform crossover. In: Proceedings
of the Fourth International Conference on Genetic Algorithms. (1991) 230-236

Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters 8 (1989) 67-71

Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. of Global Optimiza-
tion 6 (1995) 109-133

Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers (2002)
219-249

Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures: Advances and
applications. In Gendreau, M., Potvin, J.Y., eds.: Handbook of Metaheuristics. 2nd edn.
Springer Science+Business Media (2010)

Festa, P., Resende, M.: An annotated bibliography of GRASP — Part I: Algorithms. Interna-
tional Transactions on Operational Research 16 (2009) 1-24

Festa, P., Resende, M.: An annotated bibliography of GRASP — Part II: Applications. Inter-
national Transactions on Operational Research (2009) In press.

Glover, F.: Tabu search and adaptive memory programing — Advances, applications and
challenges. In Barr, R., Helgason, R., Kennington, J., eds.: Interfaces in Computer Science
and Operations Research. Kluwer (1996) 1-75

Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control
and Cybernetics 39 (2000) 653-684

Resende, M., Ribeiro, C., Glover, F., Marti, R.: Scatter search and path-relinking: Fun-
damentals, advances, and applications. In Gendreau, M., Potvin, J.Y., eds.: Handbook of
Metaheuristics. 2nd edn. Springer Science+Business Media (2010)

Laguna, M., Marti, R.: GRASP and path relinking for 2-layer straight line crossing mini-
mization. INFORMS Journal on Computing 11 (1999) 44-52

Resende, M., Ribeiro, C.: GRASP with path-relinking: Recent advances and applications.
In Ibaraki, T., Nonobe, K., Yagiura, M., eds.: Metaheuristics: Progress as Real Problem
Solvers. Springer (2005) 29-63

Mateus, G., Resende, M., Silva, R.: GRASP with path-relinking for the generalized quadratic
assignment problem. Technical report, AT&T Labs Research Technical Report, Florham
Park, NJ 07932 (2009) (http://www.research.att.com/~mgcr/doc/gpr-gqap.pdf).

Bresina, J.: Heuristic-biased stochastic sampling. In: Proceedings of the AAAI-96. (1996)
271-278

Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8 (1998) 3-30

Cordeau, J.F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the generalized
quadratic assignment problem. INFORMS Journal on Computing 18 (2006) 433-443

(P. Festa) DMA, UNIVERSITY OF NapoLlI FEDERICO II, ITALY.
E-mail address: paola.festa@unina.it

(José Fernando Gongalves) FACULDADE DE ECONOMIA DO PORTO / NIAAD, Rua DR. ROBERTO

FRrias, 4200-464, PORTO, PORTUGAL.

E-mail address: jfgoncal@fep.up.pt

(M.G.C. Resende) INTERNET AND NETWORK SYSTEMS RESEARCH, AT&T LABS RESEARCH, 180

PARK AVENUE, RooMm C241, FLorHAM PARK, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

(R.M.A. Silva) COMPUTATIONAL INTELLIGENCE AND OPTIMIZATION GROUP, DEPT. OF COM-

PUTER SCIENCE, FEDERAL UNIVERSITY OF LAVRAS, C.P. 3037, CEP 37200-000, LAVRAS, MG,
BrAzIL

E-mail address, R.M.A. Silva: rmas@dcc.ufla.br

